1
|
Ghimire R, Shrestha R, Amaradhi R, Liu L, More S, Ganesh T, Ford AK, Channappanavar R. Toll-like receptor 7 (TLR7)-mediated antiviral response protects mice from lethal SARS-CoV-2 infection. J Virol 2025; 99:e0166824. [PMID: 40162785 PMCID: PMC12090760 DOI: 10.1128/jvi.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced impaired antiviral immunity and excessive inflammatory responses cause lethal pneumonia. However, the in vivo roles of key pattern recognition receptors that elicit protective antiviral and fatal inflammatory responses, specifically in the lungs, are not well described. Coronaviruses possess single-stranded RNA genome that activates TLR7/8 to induce an antiviral interferon (IFN) and robust inflammatory cytokine response. Here, using wild-type and TLR7-deficient (TLR7-/-) mice infected with mouse-adapted SARS-CoV-2 (MA-CoV-2), we examined the role of TLR7 in the lung antiviral and inflammatory response and severe pneumonia. We showed that TLR7 deficiency significantly increased lung virus loads and morbidity/mortality, which correlated with reduced levels of type I IFNs (Ifna/b), type III IFNs (Ifnl), and IFN-stimulated genes (ISGs) in the lungs. A detailed evaluation of MA-CoV-2-infected lungs revealed increased neutrophil accumulation and lung pathology in TLR7-/- mice. We further showed that blocking type I IFN receptor (IFNAR) signaling enhanced SARS-CoV-2 replication in the lungs and caused severe lung pathology, leading to 100% mortality compared to infected control mice. Moreover, immunohistochemical assessment of the lungs revealed increased numbers of SARS-CoV-2 antigen-positive macrophages, pneumocytes, and bronchial epithelial cells in TLR7-/- and IFNAR-deficient mice compared to control mice. In summary, we conclusively demonstrated that despite TLR7-induced robust lung inflammation, TLR7-induced IFN/ISG responses suppress lung virus replication and pathology and provide protection against SARS-CoV-2-induced fatal pneumonia. Additionally, given the similar disease outcomes in control, TLR7-/-, and IFNAR-deficient MA-CoV-2-infected mice and coronavirus disease 2019 (COVID-19) patients, we propose that MA-CoV-2-infected mice constitute an excellent model for studying COVID-19.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is caused by a delicate balance between a strong antiviral and an exuberant inflammatory response. A robust antiviral immunity and regulated inflammation are protective, while a weak antiviral response and excessive inflammation are detrimental. However, the key host immune sensors that elicit protective antiviral and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge are poorly defined. Here, we examined the role of viral RNA-mediated TLR7 activation in the lung antiviral and inflammatory responses in SARS-CoV-2-infected mice. We demonstrate that TLR7 deficiency led to a high rate of morbidity and mortality, which correlated with an impaired antiviral interferon (IFN)-I/III response, enhanced lung virus replication, and severe lung pathology. Furthermore, we show that blocking IFN-I signaling using anti-IFN receptor antibody promoted SARS-CoV-2 replication in the lungs and caused severe disease. These results provide conclusive evidence that TLR7 and IFN-I receptor deficiencies lead to severe disease in mice, replicating clinical features observed in COVID-19 patients.
Collapse
Affiliation(s)
- Roshan Ghimire
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lin Liu
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexandra K. Ford
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Deinhardt-Emmer S, Chousterman BG, Schefold JC, Flohé SB, Skirecki T, Kox M, Winkler MS, Cossarizza A, Wiersinga WJ, van der Poll T, Weigand MA, Cajander S, Giamarellos-Bourboulis EJ, Lachmann G, Girardis M, Scicluna BP, Ferrer R, Payen D, Weis S, Torres A, Bermejo-Martín JF, Osuchowski MF, Rubio I, Bouma HR. Sepsis in patients who are immunocompromised: diagnostic challenges and future therapies. THE LANCET. RESPIRATORY MEDICINE 2025:S2213-2600(25)00124-9. [PMID: 40409328 DOI: 10.1016/s2213-2600(25)00124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/25/2025]
Abstract
Sepsis is a life-threatening, dysregulated host response to infection. Immunosuppression is a risk factor for infections and sepsis. However, the specific immune derangements elevating the risk for infections and sepsis remain unclear in the individual patient, raising the question of whether a general state of immunosuppression exists. In this Review, we explore the relationship between immunosuppression and sepsis, detailing the definitions, causes, and clinical implications. We address the effect of primary immunodeficiencies, acquired conditions, and drugs on the risk of infection and the development of sepsis. Patients with sepsis who are immunocompromised often present with atypical symptoms and diagnostic test results can differ, making early recognition difficult. Future perspectives entail novel biomarkers to improve early sepsis detection and tailored treatments to modulate immune function. Including patients who are immunocompromised in clinical trials is crucial to enhance the relevance of research findings and improve treatment strategies for this vulnerable population.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| | - Benjamin G Chousterman
- Department of Anesthesia and Critical Care, Lariboisière Hospital, APHP, Paris, France; Université Paris Cité, Inserm UMRS 942 Mascot, Paris, France
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, University of Bern, Bern University Hospital, Bern, Switzerland
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin S Winkler
- Department of Anaesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Department of Medicine, Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Department of Medicine, Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Markus A Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece; Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Gunnar Lachmann
- Department of Anesthesiology and Intensive Care Medicine Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Massimo Girardis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Malta; Centre for Molecular Medicine and Biobanking, Biomedical Sciences, University of Malta, Malta
| | - Ricard Ferrer
- Department of Intensive Care Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; SODIR, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Didier Payen
- Paris 7 University Denis Diderot, Paris Sorbonne, Cité, Paris, France; Service de Maladies Infectieuses, CHU de Nice, Nice, France
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Antoni Torres
- Pulmonology Department, Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Jesús F Bermejo-Martín
- School of Medicine, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Traumatology, the Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University Jena, Jena, Germany
| | - Hjalmar R Bouma
- Department of Acute Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
3
|
Fekrvand S, Saleki K, Abolhassani H, Almasi-Hashiani A, Hakimelahi A, Zargarzadeh N, Yekaninejad MS, Rezaei N. COVID-19 infection in inborn errors of immunity and their phenocopies: a systematic review and meta-analysis. Infect Dis (Lond) 2025:1-35. [PMID: 40178994 DOI: 10.1080/23744235.2025.2483339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Inborn errors of immunity (IEI) are congenital disorders of the immune system. Due to impaired immune system, they are at a higher risk to develop a more severe COVID-19 course compared to general population. OBJECTIVES Herein, we aimed to systematically review various aspects of IEI patients infected with SARS-CoV-2. Moreover, we performed a meta-analysis to determine the frequency of COVID-19 in patients with different IEI. METHODS Embase, Web of Science, PubMed, and Scopus were searched introducing terms related to IEI and COVID-19. RESULTS 3646 IEI cases with a history of COVID-19 infection were enrolled. The majority of patients had critical infections (1013 cases, 27.8%). The highest frequency of critical and severe cases was observed in phenocopies of IEI (95.2%), defects in intrinsic and innate immunity (69.4%) and immune dysregulation (23.9%). 446 cases (12.2%) succumbed to the disease and the highest mortality was observed in IEI phenocopies (34.6%). COVID-19 frequency in immunodeficient patients was 11.9% (95% CI: 8.3 to 15.5%) with innate immunodeficiency having the highest COVID-19 frequency [34.1% (12.1 to 56.0%)]. COVID-19 case fatality rate among IEI patients was estimated as 5.4% (95% CI: 3.5-8.3%, n = 8 studies, I2 = 17.5%). CONCLUSION IEI with underlying defects in specific branches of the immune system responding to RNA virus infection experience a higher frequency and mortality of COVID-19 infection. Increasing awareness about these entities and underlying genetic defects, adherence to prophylactic strategies and allocating more clinical attention to these patients could lead to a decrease in COVID-19 frequency and mortality in these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash Saleki
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, KarolinskaInstitutet, Karolinska University Hospital, Stockholm, Sweden
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Hakimelahi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikan Zargarzadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Kim DR, Park BK, Baek JY, Shin A, Lee JW, Ju HY, Cho HW, Yoo KH, Sung KW, Jeong CH, Kim TY, Koh JY, Ko JH, Kim YJ. Rapid Recovery From SARS-CoV-2 Infection Among Immunocompromised Children Despite Limited Neutralizing Antibody Response: A Virologic and Sero-Immunologic Analysis of a Single-Center Cohort. J Korean Med Sci 2025; 40:e52. [PMID: 40165575 PMCID: PMC11964902 DOI: 10.3346/jkms.2025.40.e52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Immunocompromised (IC) pediatric patients are at increased risk of severe acute respiratory syndrome coronavirus 2 infection, but the viral kinetics and sero-immunologic response in pediatric IC patients are not fully understood. METHODS From April to June 2022, a prospective cohort study was conducted. IC pediatric patients hospitalized for coronavirus disease 2019 (COVID-19) were enrolled. Serial saliva swab and serum specimens were subjected to reverse transcription polymerase chain reaction assays with mutation sequencing, viral culture, anti-spike-protein, anti-nucleocapsid antibody assays, plaque reduction neutralization test (PRNT) and multiplex cytokine assays. RESULTS Eleven IC children were evaluated. Their COVID-19 symptoms resolved promptly (median, 2.5 days; interquartile range, 2.0-4.3). Saliva swab specimens contained lower viral loads than nasopharyngeal swabs (P = 0.008). All cases were BA.2 infection, and 45.5% tested negative within 14 days by saliva swab from symptom onset. Eight (72.7%) showed a time-dependent increase in BA.2 PRNT titers, followed by rapid waning. Multiplex cytokine assays revealed that monocyte/macrophage activation and Th₁ responses were comparable to those of non-IC adults. Activation of interleukin (IL)-1Ra and IL-6 was brief, and IL-17A was suppressed. Activated interferon (IFN)-γ and IL-18/IL-1F4 signals were observed. CONCLUSION IC pediatric patients rapidly recovered from COVID-19 with low viral loads. Antibody response was limited, but cytokine analysis suggested an enhanced IFN-γ- and IL-18-mediated immune response without excessive activation of inflammatory cascades. To validate our observation, immune cell-based functional studies need to be conducted among IC and non-IC children.
Collapse
Affiliation(s)
- Doo Ri Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Kwon Park
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Jin Yang Baek
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, Korea
| | - Areum Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chae-Hong Jeong
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Seoul, Korea.
| |
Collapse
|
5
|
Satyanarayanan SK, Yip TF, Han Z, Zhu H, Qin D, Lee SMY. Role of toll-like receptors in post-COVID-19 associated neurodegenerative disorders? Front Med (Lausanne) 2025; 12:1458281. [PMID: 40206484 PMCID: PMC11979212 DOI: 10.3389/fmed.2025.1458281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
In the intricate realm of interactions between hosts and pathogens, Toll-like receptors (TLRs), which play a crucial role in the innate immune response, possess the ability to identify specific molecular signatures. This includes components originating from pathogens such as SARS-CoV-2, as well as the resulting damage-associated molecular patterns (DAMPs), the endogenous molecules released after cellular damage. A developing perspective suggests that TLRs play a central role in neuroinflammation, a fundamental factor in neurodegenerative conditions like Alzheimer's and Parkinson's disease (PD). This comprehensive review consolidates current research investigating the potential interplay between TLRs, their signaling mechanisms, and the processes of neurodegeneration following SARS-CoV-2 infection with an aim to elucidate the involvement of TLRs in the long-term neurological complications of COVID-19 and explore the potential of targeting TLRs as a means of implementing intervention strategies for the prevention or treatment of COVID-19-associated long-term brain outcomes.
Collapse
Affiliation(s)
- Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Yip
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixu Han
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Suki Man Yan Lee
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Miles MA, Huttmann TD, Liong S, Liong F, O’Leary JJ, Brooks DA, Selemidis S. Exploring the Contribution of TLR7 to Sex-Based Disparities in Respiratory Syncytial Virus (RSV)-Induced Inflammation and Immunity. Viruses 2025; 17:428. [PMID: 40143355 PMCID: PMC11946665 DOI: 10.3390/v17030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
TLR7 plays a key role in recognizing viral RNA to initiate an immune response. Sex-based differences in the severity of RSV respiratory infections have been noted, and this may be related to higher expression of X-linked toll-like receptor 7 (TLR7) in female immune cells. Indeed, TLR7 has been shown to influence sex differences in responses to other respiratory viruses; however, its role in RSV infection remains underexplored. We infected adult C57Bl/6 or TLR7 knockout mice with RSV and compared the specific lung immune responses between different sexes. Gene expression analysis revealed that infected female mice had elevated levels of type I and II interferons, proinflammatory cytokines, chemokines, and viral transcripts in their lungs compared to males. Additionally, females exhibited increased numbers of macrophages and higher antibody responses in the airways. Deletion of TLR7 diminished the sex differences in certain cytokine and antibody responses. Furthermore, ex vivo infection of male alveolar macrophages with RSV resulted in greater production of proinflammatory cytokines and viral transcripts than in female macrophages, suggesting inherent sex differences in macrophage responses. These findings provide new insights into the mechanisms underlying sex differences in RSV pathophysiology and suggest that TLR7 contributes to an enhanced inflammatory response in females.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (T.D.H.); (S.L.); (F.L.)
| | - Thomas D. Huttmann
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (T.D.H.); (S.L.); (F.L.)
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (T.D.H.); (S.L.); (F.L.)
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (T.D.H.); (S.L.); (F.L.)
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D08 XW7X Dublin, Ireland;
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, D08 XW7X Dublin, Ireland
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia;
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia;
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (T.D.H.); (S.L.); (F.L.)
| |
Collapse
|
7
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
8
|
Ramón-Luing LA, Martínez-Gómez LE, Martinez-Armenta C, Martínez-Nava GA, Medina-Quero K, Pérez-Rubio G, Falfán-Valencia R, Buendia-Roldan I, Flores-Gonzalez J, Ocaña-Guzmán R, Selman M, López-Reyes A, Chavez-Galan L. TNF/IFN-γ Co-Signaling Induces Differential Cellular Activation in COVID-19 Patients: Implications for Patient Outcomes. Int J Mol Sci 2025; 26:1139. [PMID: 39940907 PMCID: PMC11817726 DOI: 10.3390/ijms26031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
TNF and IFN-γ are key proinflammatory cytokines implicated in the pathophysiology of COVID-19. Toll-like receptor (TLR)7 and TLR8 are known to recognize SARS-CoV-2 and induce TNF and IFN-γ production. However, it is unclear whether TNF and IFN-γ levels are altered through TLR-dependent pathways and whether these pathways mediate disease severity during COVID-19. This study aimed to investigate the association between TNF/IFN-γ levels and immune cell activation to understand their role in disease severity better. We enrolled 150 COVID-19 patients, who were classified by their systemic TNF and IFN-γ levels (high (H) or normal-low (N-L)) as TNFHIFNγH, TNFHIFNγN-L, TNFN-LIFNγH, and TNFN-LIFNγN-L. Compared to patients with TNFN-LIFNγN-L, patients with TNFHIFNγH had high systemic levels of pro- and anti-inflammatory cytokines and cytotoxic molecules, and their T cells and monocytes expressed TNF receptor 1 (TNFR1). Patients with TNFHIFNγH presented the SNP rs3853839 to TLR7 and increased levels of MYD88, NFκB, and IRF7 (TLR signaling), FADD, and TRADD (TNFR1 signaling). Moreover, critical patients were observed in the four COVID-19 groups, but patients with TNFHIFNγH or TNFHIFNγN-L most required invasive mechanical ventilation. We concluded that increased TNF/IFN-γ levels are associated with hyperactive immune cells, whereas normal/low levels are associated with hypoactivity, suggesting a model to explain that the pathophysiology of critical COVID-19 may be mediated through different pathways depending on TNF and IFN-γ levels. These findings highlight the potential for exploring the modulation of TNF and IFN-γ as a therapeutic strategy in severe COVID-19.
Collapse
Affiliation(s)
- Lucero A. Ramón-Luing
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico;
| | - Gloria Pérez-Rubio
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ramcés Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Julio Flores-Gonzalez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Ranferi Ocaña-Guzmán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14080, Mexico; (L.E.M.-G.); (C.M.-A.); (G.A.M.-N.); (A.L.-R.)
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.A.R.-L.); (G.P.-R.); (R.F.-V.); (I.B.-R.); (J.F.-G.); (R.O.-G.); (M.S.)
| |
Collapse
|
9
|
Behzadi P, Chandran D, Chakraborty C, Bhattacharya M, Saikumar G, Dhama K, Chakraborty A, Mukherjee S, Sarshar M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int J Biol Macromol 2025; 284:137836. [PMID: 39613064 DOI: 10.1016/j.ijbiomac.2024.137836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Toll-like receptors (TLRs) of human are considered as the most critical immunological mediators of inflammatory pathogenesis of COVID-19. These immunoregulatory glycoproteins are located on the surface and/or intracellular compartment act as innate immune sensors. Upon binding with distinct SARS-CoV-2 ligand(s), TLRs signal activation of different transcription factors that induce expression of the proinflammatory mediators that collectively induce 'cytokine storm'. Similarly, TLR activation is also pivotal in conferring protection to infection and invasion as well as upregulating the tissue repair pathways. This dual role of the human TLRs in deciding the fate of SARS-CoV-2 has made these receptor proteins as the critical mediators of immunoprotective and immunopathogenic consequences associated with COVID-19. Herein, pathbreaking discoveries exploring the immunobiological importance of the TLRs in COVID-19 and developing TLR-directed therapeutic intervention have been reviewed by accessing the up-to-date literatures available in the public domain/databases. In accordance with our knowledge in association with the importance of TLRs' role against viruses and identification of viral particles, they have been recognized as suitable candidates with high potential as vaccine adjuvants. In this regard, the agonists of TLR4 and TLR9 have effective potential in vaccine technology while the others need further investigations. This comprehensive review suggests that basal level expression of TLRs can act as friends to keep our body safe from strangers but act as a foe via overexpression. Therefore, selective inhibition of the overexpressed TLRs appears to be a solution to counteract the cytokine storm while TLR-agonists as vaccine adjuvants could lessen the risk of infection in the naïve population.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 37541-374, Iran.
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Guttula Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| | - Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India.
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, 00146, Rome, Italy
| |
Collapse
|
10
|
Tymoniuk B, Borowiec M, Makowska J, Holwek E, Sarnik J, Styrzyński F, Dróżdż I, Lewiński A, Stasiak M. Associations Between Clinical Manifestations of SARS-CoV-2 Infection and HLA Alleles in a Caucasian Population: A Molecular HLA Typing Study. J Clin Med 2024; 13:7695. [PMID: 39768617 PMCID: PMC11676434 DOI: 10.3390/jcm13247695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Background and Objectives: Severe COVID-19 still constitutes an important health problem. Taking into account the crucial role of HLA in immune reactions, evaluation of the impact of HLA on COVID-19 risk and clinical course seemed necessary, as the already available data are inconsistent. The aim of the present study was to compare the HLA profiles of patients with symptomatic SARS-CoV-2 infection and a healthy control group, as well as to compare HLA allele frequencies in patients with severe and non-severe courses of COVID-19. Materials and Methods: HLA classes were genotyped using a next-generation sequencing method in 2322 persons, including 2217 healthy hematopoietic stem cell potential donors and 105 patients with symptomatic COVID-19. Results: Symptomatic course of SARS-CoV-2 infection appeared to be associated with the presence of HLA-A*30:01, B*44:02, B*52:01, C*05:01, C*17:01, and DRB1*11:02, while HLA-C*07:04 and DQB1*03:03 seem to play a protective role. Moreover, we demonstrated that the severe symptomatic course of COVID-19 can be associated with the presence of HLA-B*08:01, C*04:01, DRB1*03:01, and DQB1*03:01, while HLA-DRB1*08:01 appeared to be protective against severe COVID-19 disease. Conclusions: Identification of alleles that are potentially associated with symptomatic SARS-CoV-2 infection as well as the severe course of COVID-19 broadens the knowledge on the genetic background of COVID-19 course and can constitute an important step in the development of personalized medicine.
Collapse
Affiliation(s)
- Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Emilia Holwek
- Central Clinical Hospital, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Filip Styrzyński
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland;
| | - Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
11
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. Sci Immunol 2024; 9:eadp7951. [PMID: 39642242 DOI: 10.1126/sciimmunol.adp7951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024]
Abstract
Severity of COVID-19 is affected by multiple factors; however, it is not understood how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure affects the control of viral replication. Here, we demonstrate that immune events in the mouse lung closely preceding SARS-CoV-2 infection affect viral control and identify innate immune pathways that limit viral replication. Pulmonary inflammatory stimuli including resolved, antecedent respiratory infections with Staphylococcus aureus or influenza, ongoing pulmonary Mycobacterium tuberculosis infection, ovalbumin/alum-induced asthma, or airway administration of TLR ligands and recombinant cytokines all establish an antiviral state in the lung that restricts SARS-CoV-2 replication. In addition to antiviral type I interferons, TNFα and IL-1 potently precondition the lung for enhanced viral control. Our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation preceding SARS-CoV-2 exposure may contribute to variability in disease outcomes.
Collapse
Affiliation(s)
- Paul J Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Andrea C Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eduardo P Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sydnee T Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Artur T L Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, MD 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, MD 20852, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Schmidt A, Casadei N, Brand F, Demidov G, Vojgani E, Abolhassani A, Aldisi R, Butler-Laporte G, DeCOI host genetics group, Alawathurage TM, Augustin M, Bals R, Bellinghausen C, Berger MM, Bitzer M, Bode C, Boos J, Brenner T, Cornely OA, Eggermann T, Erber J, Feldt T, Fuchsberger C, Gagneur J, Göpel S, Haack T, Häberle H, Hanses F, Heggemann J, Hehr U, Hellmuth JC, Herr C, Hinney A, Hoffmann P, Illig T, Jensen BEO, Keitel V, Kim-Hellmuth S, Koehler P, Kurth I, Lanz AL, Latz E, Lehmann C, Luedde T, Maj C, Mian M, Miller A, Muenchhoff M, Pink I, Protzer U, Rohn H, Rybniker J, Scaggiante F, Schaffeldt A, Scherer C, Schieck M, Schmidt SV, Schommers P, Spinner CD, Vehreschild MJGT, Velavan TP, Volland S, Wilfling S, Winter C, Richards JB, DeCOI, Heimbach A, Becker K, Ossowski S, Schultze JL, Nürnberg P, Nöthen MM, Motameny S, Nothnagel M, Riess O, Schulte EC, Ludwig KU. Systematic assessment of COVID-19 host genetics using whole genome sequencing data. PLoS Pathog 2024; 20:e1012786. [PMID: 39715278 PMCID: PMC11706450 DOI: 10.1371/journal.ppat.1012786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 01/07/2025] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Courses of SARS-CoV-2 infections are highly variable, ranging from asymptomatic to lethal COVID-19. Though research has shown that host genetic factors contribute to this variability, cohort-based joint analyses of variants from the entire allelic spectrum in individuals with confirmed SARS-CoV-2 infections are still lacking. Here, we present the results of whole genome sequencing in 1,220 mainly vaccine-naïve individuals with confirmed SARS-CoV-2 infection, including 827 hospitalized COVID-19 cases. We observed the presence of autosomal-recessive or likely compound heterozygous monogenic disorders in six individuals, all of which were hospitalized and significantly younger than the rest of the cohort. We did not observe any suggestive causal variants in or around the established risk gene TLR7. Burden testing in the largest population subgroup (i.e., Europeans) suggested nominal enrichments of rare variants in coding and non-coding regions of interferon immune response genes in the overall analysis and male subgroup. Case-control analyses of more common variants confirmed associations with previously reported risk loci, with the key locus at 3p21 reaching genome-wide significance. Polygenic scores accurately captured risk in an age-dependent manner. By enabling joint analyses of different types of variation across the entire frequency spectrum, this data will continue to contribute to the elucidation of COVID-19 etiology.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Department of Pediatric Neurology, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Nicolas Casadei
- DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fabian Brand
- Institute of Genomic Statistics and Bioinformatics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Elaheh Vojgani
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Ayda Abolhassani
- Department of Psychiatry and Psychotherapy, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute of Genomic Statistics and Bioinformatics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Guillaume Butler-Laporte
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Max Augustin
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Carla Bellinghausen
- Department of Internal Medicine, Pneumology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Bitzer
- Center for Personalized Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jannik Boos
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver A. Cornely
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Center Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | | | - Julien Gagneur
- Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Siri Göpel
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Helene Häberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Frank Hanses
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Julia Heggemann
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Johannes C. Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, Homburg, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sarah Kim-Hellmuth
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Philipp Koehler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna-Lisa Lanz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Clara Lehmann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Carlo Maj
- Center for Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Michael Mian
- Service for Innovation, Research and Teaching, (SABES-ASDAA), Bolzano-Bozen, Italy; Teaching Hospital of Paracelsus Medical University
| | - Abigail Miller
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
| | - Isabell Pink
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Ulrike Protzer
- German Center for Infection research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technical University Munich/Helmholtz Munich, Munich, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Rybniker
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Federica Scaggiante
- Laboratorio di Patologia Clinica di Bressanone, Hospital of Bressanone (SABES-ASDAA), Bressanone-Brixen, Italy; Teaching Hospital of Paracelsus Medical University
| | - Anna Schaffeldt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Philipp Schommers
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Christoph D. Spinner
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection research (DZIF), Partner Site Munich, Munich, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Sonja Volland
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Sibylle Wilfling
- Center for Human Genetics Regensburg, Regensburg, Germany
- Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany
| | - Christof Winter
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - J. Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- 5 Prime Sciences Inc, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Twin Research, King’s College London, London, United Kingdom
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | - André Heimbach
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- NGS Core Facility Bonn, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- West German Genome Center ‐ Cologne, University of Cologne, Cologne, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- West German Genome Center ‐ Cologne, University of Cologne, Cologne, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Olaf Riess
- DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Eva C. Schulte
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Institute of Virology, Technical University Munich/Helmholtz Munich, Munich, Germany
- Department of Psychiatry & Psychotherapy, University of Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, University of Munich, Munich, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
14
|
Boos J, van der Made CI, Ramakrishnan G, Coughlan E, Asselta R, Löscher BS, Valenti LVC, de Cid R, Bujanda L, Julià A, Pairo-Castineira E, Baillie JK, May S, Zametica B, Heggemann J, Albillos A, Banales JM, Barretina J, Blay N, Bonfanti P, Buti M, Fernandez J, Marsal S, Prati D, Ronzoni L, Sacchi N, Schultze JL, Riess O, Franke A, Rawlik K, Ellinghaus D, Hoischen A, Schmidt A, Ludwig KU. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG ADVANCES 2024; 5:100323. [PMID: 38944683 PMCID: PMC11320601 DOI: 10.1016/j.xhgg.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024] Open
Abstract
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10-15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.
Collapse
Affiliation(s)
- Jannik Boos
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Caspar I van der Made
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gayatri Ramakrishnan
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamon Coughlan
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital - via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Luca V C Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Julià
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Erola Pairo-Castineira
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sandra May
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Berina Zametica
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Julia Heggemann
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Agustín Albillos
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jordi Barretina
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Paolo Bonfanti
- Division of Infectious Diseases, Università degli Studi di Milano Bicocca, Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Maria Buti
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernandez
- Hospital Clinic, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF CLif), Barcelona, Spain
| | - Sara Marsal
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Daniele Prati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Konrad Rawlik
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Wang C, Khatun MS, Ellsworth CR, Chen Z, Islamuddin M, Nisperuza Vidal AK, Afaque Alam M, Liu S, Mccombs JE, Maness NJ, Blair RV, Kolls JK, Qin X. Deficiency of Tlr7 and Irf7 in mice increases the severity of COVID-19 through the reduced interferon production. Commun Biol 2024; 7:1162. [PMID: 39289468 PMCID: PMC11408513 DOI: 10.1038/s42003-024-06872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Toll-like receptor 7 (Tlr7) deficiency-accelerated severe COVID-19 is associated with reduced production of interferons (IFNs). However, the underlying mechanisms remain elusive. To address these questions, we utilize Tlr7 and Irf7 deficiency mice, single-cell RNA analysis together with bone marrow transplantation approaches. We demonstrate that at the early phase of infection, SARS-CoV-2 causes the upregulation of Tlr7, Irf7, and IFN pathways in the lungs of the infected mice. The deficiency of Tlr7 and Irf7 globally and/or in immune cells in mice increases the severity of COVID-19 via impaired IFN activation in both immune and/or non-immune cells, leading to increased lung viral loads. These effects are associated with reduced IFN alpha and gamma levels in the circulation. The deficiency of Tlr7 tends to cause the reduced production and nuclear translocation of interferon regulatory factor 7 (IRF7) in the lungs of the infected mice, indicative of reduced IRF7 activation. Despite higher amounts of lung viral antigen, Tlr7 or Irf7 deficiency resulted in substantially reduced production of antibodies against SARS-CoV-2, thereby delaying the viral clearance. These results highlight the importance of the activation of TLR7 and IRF7 leading to IFN production on the development of innate and adaptive immunity against COVID-19.
Collapse
Affiliation(s)
- Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mst Shamima Khatun
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Calder R Ellsworth
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mohammad Islamuddin
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ana Karina Nisperuza Vidal
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mohammad Afaque Alam
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shumei Liu
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Janet E Mccombs
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
16
|
Delgado-Wicke P, Fernández de Córdoba-Oñate S, Roy-Vallejo E, Alegría-Carrasco E, Rodríguez-Serrano DA, Lamana A, Montes N, Nicolao-Gómez A, Carracedo-Rodríguez R, Marcos-Jiménez A, Díaz-Fernández P, Galván-Román JM, Rabes-Rodríguez L, Sanz-Alba M, Álvarez-Rodríguez J, Villa-Martí A, Rodríguez-Franco C, Villapalos-García G, Zubiaur P, Abad-Santos F, de Los Santos I, Gomariz RP, García-Vicuña R, Muñoz-Calleja C, González-Álvaro I, Fernández-Ruiz E. Genetic variants regulating the immune response improve the prediction of COVID-19 severity provided by clinical variables. Sci Rep 2024; 14:20728. [PMID: 39237611 PMCID: PMC11377536 DOI: 10.1038/s41598-024-71476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The characteristics of the host are crucial in the final outcome of COVID-19. Herein, the influence of genetic and clinical variants in COVID-19 severity was investigated in a total of 1350 patients. Twenty-one single nucleotide polymorphisms of genes involved in SARS-CoV-2 sensing as Toll-like-Receptor 7, antiviral immunity as the type I interferon signalling pathway (TYK2, STAT1, STAT4, OAS1, SOCS) and the vasoactive intestinal peptide and its receptors (VIP/VIPR1,2) were studied. To analyse the association between polymorphisms and severity, a model adjusted by age, sex and different comorbidities was generated by ordinal logistic regression. The genotypes rs8108236-AA (OR 0.12 [95% CI 0.02-0.53]; p = 0.007) and rs280519-AG (OR 0.74 [95% CI 0.56-0.99]; p = 0.03) in TYK2, and rs688136-CC (OR 0.7 [95% CI 0.5-0.99]; p = 0.046) in VIP, were associated with lower severity; in contrast, rs3853839-GG in TLR7 (OR 1.44 [95% CI 1.07-1.94]; p = 0.016), rs280500-AG (OR 1.33 [95% CI 0.97-1.82]; p = 0.078) in TYK2 and rs1131454-AA in OAS1 (OR 1.29 [95% CI 0.95-1.75]; p = 0.110) were associated with higher severity. Therefore, these variants could influence the risk of severe COVID-19.
Collapse
Affiliation(s)
- Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Sara Fernández de Córdoba-Oñate
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Emilia Roy-Vallejo
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | | | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Montes
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, Boadilla del Monte, Spain
- Methodology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Rosa Carracedo-Rodríguez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Paula Díaz-Fernández
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - José M Galván-Román
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Laura Rabes-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Sanz-Alba
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Jesús Álvarez-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Almudena Villa-Martí
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Rodríguez-Franco
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio de Los Santos
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa P Gomariz
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain.
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Xu D, Qin X. Type I Interferonopathy among Non-Elderly Female Patients with Post-Acute Sequelae of COVID-19. Viruses 2024; 16:1369. [PMID: 39339845 PMCID: PMC11435747 DOI: 10.3390/v16091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of the post-acute sequelae of COVID-19 (PASC) remain unclear. Sex differences not only exist in the disease severity of acute SARS-CoV-2 infection but also in the risk of suffering from PASC. Women have a higher risk of suffering from PASC and a longer time to resolution than men. To explore the possible immune mechanisms of PASC among non-elderly females, we mined single-cell transcriptome data from peripheral blood samples of non-elderly female patients with PASC and acute SARS-CoV-2 infection, together with age- and gender-matched non-PASC and healthy controls available from the Gene Expression Omnibus database. By comparing the differences, we found that a CD14+ monocyte subset characterized by higher expression of signal transducers and activators of transcription 2 (STAT2) (CD14+STAT2high) was notably increased in the PASC patients compared with the non-PASC individuals. The transcriptional factor (TF) activity analysis revealed that STAT2 and IRF9 were the key TFs determining the function of CD14+STAT2high monocytes. STAT2 and IRF9 are TFs exclusively involving type I and III interferon (IFN) signaling pathways, resulting in uncontrolled IFN-I signaling activation and type I interferonopathy. Furthermore, increased expression of common interferon-stimulated genes (ISGs) has also been identified in most monocyte subsets among the non-elderly female PASC patients, including IFI6, IFITM3, IFI44L, IFI44, EPSTI1, ISG15, and MX1. This study reveals a featured CD14+STAT2high monocyte associated with uncontrolled IFN-I signaling activation, which is indicative of a possible type I interferonopathy in the non-elderly female patients with PASC.
Collapse
Affiliation(s)
- Donghua Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Forsyth KS, Jiwrajka N, Lovell CD, Toothacre NE, Anguera MC. The conneXion between sex and immune responses. Nat Rev Immunol 2024; 24:487-502. [PMID: 38383754 PMCID: PMC11216897 DOI: 10.1038/s41577-024-00996-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Kaliappan A, Ramakrishnan S, Thomas P, Verma SK, Panwar K, Singh M, Dey S, Mohan Chellappa M. Polymorphism in the leucine-rich repeats of TLR7 in different breeds of chicken and in silico analysis of its effect on TLR7 structure and function. Gene 2024; 912:148373. [PMID: 38490513 DOI: 10.1016/j.gene.2024.148373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Chicken toll-like receptor 7 (chTLR7) is a viral sensing pattern recognition receptor and detects ssRNA. The ligand binding site comprises leucine-rich repeats (LRRs) located in the ectodomain of chTLR7. Hence, any polymorphism in the binding site would modify its functional interaction with the ligand, resulting in varied strength of immune response. This study first aimed to compare the single nucleotide polymorphisms (SNPs) associated with the ligand binding site of TLR7 in three indigenous chicken breeds namely Aseel, Kadaknath, Nicobari along with an exotic breed White Leghorn. Four synonymous SNPs (P123P, I171I, N339N and L421L) and four non-synonymous SNPs (I121V, S135T, F356S and S447G) were identified among various breeds. We employed in silico tools to screen the pathogenic nsSNPs and one nsSNP was identified as having potential impact on chTLR7 protein. Moreover, sequence and structure-based methods were used to determine the effect of nsSNPs on protein stability. It revealed I121V, F356S, and S447G as decreasing the stability while S135T increasing the stability of chTLR7. Additionally, docking analysis confirmed that I121V and F356S reduced the binding affinity of ligands (R-848 and polyU) to chTLR7 protein. The results suggest that the nsSNPs found in this study could alter the ligand binding of chTLR7 and modify the immune response between different breeds further contributing to disease susceptibility or resistance. Further, in vitro and in vivo studies are needed to analyze the effect of these SNPs on susceptibility or resistance against various viral diseases in poultry.
Collapse
Affiliation(s)
- Abinaya Kaliappan
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Surya Kant Verma
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Khushboo Panwar
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Mithilesh Singh
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Madhan Mohan Chellappa
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| |
Collapse
|
20
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
21
|
Akaho R, Kiyoura Y, Tamai R. Synergistic effect of Toll-like receptor 2 ligands and alendronate on proinflammatory cytokine production in mouse macrophage-like RAW-ASC cells is accompanied by upregulation of MyD88 expression. J Oral Biosci 2024; 66:412-419. [PMID: 38614429 DOI: 10.1016/j.job.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVES Toll-like receptors (TLRs) recognize whole cells or components of microorganisms. Alendronate (ALN) is an anti-bone-resorptive drug that has inflammatory side effects. The aim in this study was to examine whether ALN augments TLR2 ligand-induced proinflammatory cytokine production using mouse macrophage-like RAW264.7 cells transfected with murine apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) gene (hereafter, referred to as "RAW-ASC cells"). METHODS RAW-ASC cells were pretreated with or without ALN and then incubated with or without TLR2 ligands. The levels of secreted mouse IL-1α, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in culture supernatants and the activation of activator protein-1 (AP-1) or nuclear factor-κB (NF-κB) were measured using enzyme-linked immunosorbent assay (ELISA). The expressions of myeloid differentiation factor 88 (MyD88), caspase-11, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), ASC, NF-κB p65, and actin were analyzed via Western blotting. TLR2 expression was analyzed using flow cytometry. RESULTS ALN substantially upregulated the Pam3CSK4-induced release of IL-1α, IL-1β, IL-6, and TNF-α and MyD88 expression in RAW-ASC cells. ST-2825, a MyD88 inhibitor, inhibited the ALN-augmented release of these cytokines. Pretreatment with ALN augmented Pam3CSK4-induced NF-κB activation in RAW-ASC cells and upregulated AP-1 activation. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein and ALN synergically upregulated the release of IL-1α, IL-1β, IL-6 and TNF-α in RAW-ASC cells. CONCLUSIONS Our findings suggest that ALN augments TLR2 ligand-induced proinflammatory cytokine production via the upregulation of MyD88 expression, and this augmentation is accompanied by the activation of NF-κB and AP-1 in RAW-ASC cells.
Collapse
Affiliation(s)
- Reiko Akaho
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| |
Collapse
|
22
|
Martelloni G, Turchi A, Fallerini C, Degl’Innocenti A, Baldassarri M, Olmi S, Furini S, Renieri A. Host genetics and COVID-19 severity: increasing the accuracy of latest severity scores by Boolean quantum features. Front Genet 2024; 15:1362469. [PMID: 38841724 PMCID: PMC11150643 DOI: 10.3389/fgene.2024.1362469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024] Open
Abstract
The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147-173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity.. IPGS leads to an accuracy of 55%-60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into "Boolean quantum features," inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores (IPGS p h 1 and IPGS p h 2 ). By applying a logistic regression with both IPGS, (IPGS p h 2 (or indifferently IPGS p h 1 ) and age as inputs, we reached an accuracy of 84%-86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147-173) by a factor of 10%.
Collapse
Affiliation(s)
| | - Alessio Turchi
- INAF Osservatorio Astrofisico di Arcetri, Florence, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
| | - Andrea Degl’Innocenti
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
| | - Simona Olmi
- CNR-Consiglio Nazionale delle Ricerche—Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
| | - Simone Furini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| |
Collapse
|
23
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
24
|
Huret C, Ferrayé L, David A, Mohamed M, Valentin N, Charlotte F, Savignac M, Goodhardt M, Guéry JC, Rougeulle C, Morey C. Altered X-chromosome inactivation predisposes to autoimmunity. SCIENCE ADVANCES 2024; 10:eadn6537. [PMID: 38701219 PMCID: PMC11068014 DOI: 10.1126/sciadv.adn6537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.
Collapse
Affiliation(s)
- Christophe Huret
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Léa Ferrayé
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Antoine David
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nicolas Valentin
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Frédéric Charlotte
- Sorbonne University, Department of Pathological Anatomy and Cytology, Hôpital Pitié-Salpêtrière Charles Foix, F-75013, Paris, France
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Michele Goodhardt
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Céline Morey
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| |
Collapse
|
25
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586885. [PMID: 38585846 PMCID: PMC10996686 DOI: 10.1101/2024.03.27.586885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Current Address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sydnee T. Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
- Current Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M. Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F. Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Asteris PG, Gandomi AH, Armaghani DJ, Tsoukalas MZ, Gavriilaki E, Gerber G, Konstantakatos G, Skentou AD, Triantafyllidis L, Kotsiou N, Braunstein E, Chen H, Brodsky R, Touloumenidou T, Sakellari I, Alkayem NF, Bardhan A, Cao M, Cavaleri L, Formisano A, Guney D, Hasanipanah M, Khandelwal M, Mohammed AS, Samui P, Zhou J, Terpos E, Dimopoulos MA. Genetic justification of COVID-19 patient outcomes using DERGA, a novel data ensemble refinement greedy algorithm. J Cell Mol Med 2024; 28:e18105. [PMID: 38339761 PMCID: PMC10863978 DOI: 10.1111/jcmm.18105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
Complement inhibition has shown promise in various disorders, including COVID-19. A prediction tool including complement genetic variants is vital. This study aims to identify crucial complement-related variants and determine an optimal pattern for accurate disease outcome prediction. Genetic data from 204 COVID-19 patients hospitalized between April 2020 and April 2021 at three referral centres were analysed using an artificial intelligence-based algorithm to predict disease outcome (ICU vs. non-ICU admission). A recently introduced alpha-index identified the 30 most predictive genetic variants. DERGA algorithm, which employs multiple classification algorithms, determined the optimal pattern of these key variants, resulting in 97% accuracy for predicting disease outcome. Individual variations ranged from 40 to 161 variants per patient, with 977 total variants detected. This study demonstrates the utility of alpha-index in ranking a substantial number of genetic variants. This approach enables the implementation of well-established classification algorithms that effectively determine the relevance of genetic variants in predicting outcomes with high accuracy.
Collapse
Affiliation(s)
- Panagiotis G. Asteris
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Amir H. Gandomi
- Faculty of Engineering & ITUniversity of Technology SydneySydneyNew South WalesAustralia
- University Research and Innovation Center (EKIK), Óbuda UniversityBudapestHungary
| | - Danial J. Armaghani
- School of Civil and Environmental EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Markos Z. Tsoukalas
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | - Gloria Gerber
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | - Gerasimos Konstantakatos
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Athanasia D. Skentou
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Leonidas Triantafyllidis
- Computational Mechanics Laboratory, School of Pedagogical and Technological EducationAthensGreece
| | - Nikolaos Kotsiou
- 2nd Propedeutic Department of Internal MedicineAristotle University of ThessalonikiThessalonikiGreece
| | | | - Hang Chen
- Hematology DivisionJohns Hopkins UniversityBaltimoreUSA
| | | | | | - Ioanna Sakellari
- Hematology Department – BMT UnitG Papanicolaou HospitalThessalonikiGreece
| | | | - Abidhan Bardhan
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Maosen Cao
- Department of Engineering MechanicsHohai UniversityNanjingChina
| | - Liborio Cavaleri
- Department of Civil, Environmental, Aerospace and Materials EngineeringUniversity of PalermoPalermoItaly
| | - Antonio Formisano
- Department of Structures for Engineering and ArchitectureUniversity of Naples “Federico II”NaplesItaly
| | - Deniz Guney
- Engineering FacultySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mahdi Hasanipanah
- Department of Geotechnics and Transportation, Faculty of Civil EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
| | - Manoj Khandelwal
- Institute of Innovation, Science and SustainabilityFederation University AustraliaBallaratVictoriaAustralia
| | | | - Pijush Samui
- Civil Engineering DepartmentNational Institute of Technology PatnaPatnaIndia
| | - Jian Zhou
- School of Resources and Safety EngineeringCentral South UniversityChangshaChina
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, Faculty of MedicineNational Kapodistrian University of AthensAthensGreece
| |
Collapse
|
27
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
28
|
Joly C, Desjardins D, Porcher R, Péré H, Bruneau T, Zhang Q, Bastard P, Cobat A, Resmini L, Lenoir O, Savale L, Lécuroux C, Verstuyft C, Roque-Afonso AM, Veyer D, Baron G, Resche-Rigon M, Ravaud P, Casanova JL, Le Grand R, Hermine O, Tharaux PL, Mariette X. More rapid blood interferon α2 decline in fatal versus surviving COVID-19 patients. Front Immunol 2023; 14:1250214. [PMID: 38077399 PMCID: PMC10703045 DOI: 10.3389/fimmu.2023.1250214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Background The clinical outcome of COVID-19 pneumonia is highly variable. Few biological predictive factors have been identified. Genetic and immunological studies suggest that type 1 interferons (IFN) are essential to control SARS-CoV-2 infection. Objective To study the link between change in blood IFN-α2 level and plasma SARS-Cov2 viral load over time and subsequent death in patients with severe and critical COVID-19. Methods One hundred and forty patients from the CORIMUNO-19 cohort hospitalized with severe or critical COVID-19 pneumonia, all requiring oxygen or ventilation, were prospectively studied. Blood IFN-α2 was evaluated using the Single Molecule Array technology. Anti-IFN-α2 auto-Abs were determined with a reporter luciferase activity. Plasma SARS-Cov2 viral load was measured using droplet digital PCR targeting the Nucleocapsid gene of the SARS-CoV-2 positive-strand RNA genome. Results Although the percentage of plasmacytoid dendritic cells was low, the blood IFN-α2 level was higher in patients than in healthy controls and was correlated to SARS-CoV-2 plasma viral load at entry. Neutralizing anti-IFN-α2 auto-antibodies were detected in 5% of patients, associated with a lower baseline level of blood IFN-α2. A longitudinal analysis found that a more rapid decline of blood IFN-α2 was observed in fatal versus surviving patients: mortality HR=3.15 (95% CI 1.14-8.66) in rapid versus slow decliners. Likewise, a high level of plasma SARS-CoV-2 RNA was associated with death risk in patients with severe COVID-19. Conclusion These findings could suggest an interest in evaluating type 1 IFN treatment in patients with severe COVID-19 and type 1 IFN decline, eventually combined with anti-inflammatory drugs. Clinical trial registration https://clinicaltrials.gov, identifiers NCT04324073, NCT04331808, NCT04341584.
Collapse
Affiliation(s)
- Candie Joly
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Raphael Porcher
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Hélène Péré
- Sorbonne Université and Université de Paris, INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Paris, France
| | - Thomas Bruneau
- Service de Microbiologie (Unité de virologie), Assistance Publique Hôpitaux de Paris-Centre (AP-HP-Centre), Hôpital Européen Georges Pompidou, Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Léa Resmini
- Université de Paris, INSERM, Paris Cardiovascular Center (PARCC), Paris, France
| | - Olivia Lenoir
- Université de Paris, INSERM, Paris Cardiovascular Center (PARCC), Paris, France
| | - Laurent Savale
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, INSERM UMR999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Camille Lécuroux
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Centre de Ressource Biologique Paris-Saclay, Le Kremlin Bicêtre, France
| | - Anne-Marie Roque-Afonso
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Centre de Ressource Biologique Paris-Saclay, Le Kremlin Bicêtre, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Laboratoire de Virologie, Villejuif, France
| | - David Veyer
- Sorbonne Université and Université de Paris, INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Paris, France
- Service de Microbiologie (Unité de virologie), Assistance Publique Hôpitaux de Paris-Centre (AP-HP-Centre), Hôpital Européen Georges Pompidou, Paris, France
| | - Gabriel Baron
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Matthieu Resche-Rigon
- Centre of Research in Epidemiology and Statistics (CRESS), Université de Paris, INSERM, Hôpital Saint Louis, Paris, France
| | - Philippe Ravaud
- Université de Paris, Center of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Howard Hughes Medical Institute, New York, NY, United States
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
| | - Olivier Hermine
- Université de Paris, Institut Imagine, INSERM UMR1183, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Département d’Hématologie, Paris, France
| | | | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), UMR1184, Le Kremlin Bicêtre, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Rhumatologie, Le Kremlin Bicêtre, France
| |
Collapse
|
29
|
Miquel CH, Abbas F, Cenac C, Foret-Lucas C, Guo C, Ducatez M, Joly E, Hou B, Guéry JC. B cell-intrinsic TLR7 signaling is required for neutralizing antibody responses to SARS-CoV-2 and pathogen-like COVID-19 vaccines. Eur J Immunol 2023; 53:e2350437. [PMID: 37438976 DOI: 10.1002/eji.202350437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. TLR7 loss-of-function mutants are associated with life-threatening pneumonia in severe COVID-19 patients. Whereas TLR7-driven innate induction of type I IFN appears central to control SARS-CoV2 virus spreading during the first days of infection, the impact of TLR7-deficiency on adaptive B-cell immunity is less clear. In the present study, we examined the role of TLR7 in the adaptive B cells response to various pathogen-like antigens (PLAs). We used inactivated SARS-CoV2 and a PLA-based COVID-19 vaccine candidate designed to mimic SARS-CoV2 with encapsulated bacterial ssRNA as TLR7 ligands and conjugated with the RBD of the SARS-CoV2 Spike protein. Upon repeated immunization with inactivated SARS-CoV2 or PLA COVID-19 vaccine, we show that Tlr7-deficiency abolished the germinal center (GC)-dependent production of RBD-specific class-switched IgG2b and IgG2c, and neutralizing antibodies to SARS-CoV2. We also provide evidence for a non-redundant role for B-cell-intrinsic TLR7 in the promotion of RBD-specific IgG2b/IgG2c and memory B cells. Together, these data demonstrate that the GC reaction and class-switch recombination to the Myd88-dependent IgG2b/IgG2c in response to SARS-CoV2 or PLAs is strictly dependent on cell-intrinsic activation of TLR7 in B cells.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- Arthritis R&D, Neuilly-Sur-Seine, France
| | - Flora Abbas
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Charlotte Foret-Lucas
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Chang Guo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mariette Ducatez
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Baidong Hou
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| |
Collapse
|
30
|
Martínez-Gómez LE, Martinez-Armenta C, Medina-Luna D, Ordoñez-Sánchez ML, Tusie-Luna T, Ortega-Peña S, Herrera-López B, Suarez-Ahedo C, Jimenez-Gutierrez GE, Hidalgo-Bravo A, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Martinez Matsumoto PM, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, Martínez-Ruiz FDJ, Zayago-Angeles DM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Andrade-Alvarado J, Granados J, Ramos-Tavera L, Camacho-Rea MDC, Segura-Kato Y, Rodríguez-Pérez JM, Coronado-Zarco R, Franco-Cendejas R, López-Jácome LE, Magaña JJ, Vela-Amieva M, Pineda C, Martínez-Nava GA, López-Reyes A. Implication of myddosome complex genetic variants in outcome severity of COVID-19 patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:939-950. [PMID: 37365052 PMCID: PMC10273757 DOI: 10.1016/j.jmii.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND/PURPOSE(S) During a viral infection, the immune response is mediated by the toll-like receptors and myeloid differentiation Factor 88 (MyD88) that play an important role sensing infections such as SARS-CoV-2 which has claimed the lives of more than 6.8 million people around the world. METHODS We carried out a cross-sectional with a population of 618 SARS-CoV-2-positive unvaccinated subjects and further classified based on severity: 22% were mild, 34% were severe, 26% were critical, and 18% were deceased. Toll Like Receptor 7 (TLR7) single-nucleotide polymorphisms (rs3853839, rs179008, rs179009, and rs2302267) and MyD88 (rs7744) were genotyped using TaqMan OpenArray. The association of polymorphisms with disease outcomes was performed by logistic regression analysis adjusted by covariates. RESULTS A significant association of rs3853839 and rs7744 of the TLR7 and MyD88 genes, respectively, was found with COVID-19 severity. The G/G genotype of the rs3853839 TLR7 was associated with the critical outcome showing an Odd Ratio = 1.98 (95% IC = 1.04-3.77). The results highlighted an association of the G allele of MyD88 gene with severe, critical and deceased outcomes. Furthermore, in the dominant model (AG + GG vs. AA), we observed an Odd Ratio = 1.70 (95% CI = 1.02-2.86) with severe, Odd Ratio = 1.82 (95% CI = 1.04-3.21) with critical, and Odd Ratio = 2.44 (95% CI = 1.21-4.9) with deceased outcomes. CONCLUSION To our knowledge this work represents an innovative report that highlights the significant association of TLR7 and MyD88 gene polymorphisms with COVID-19 outcomes and the possible implication of the MyD88 variant with D-dimer and IFN-α concentrations.
Collapse
Affiliation(s)
- Laura E Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Carlos Martinez-Armenta
- Graduate Program in Experimental Biology, Dirección de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico.
| | - Daniel Medina-Luna
- Microbiology & Immunology Department, Dalhousie University, Halifax, B3H4R2, Nova Scotia, Canada.
| | - María Luisa Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - Tere Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico; Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Silvestre Ortega-Peña
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Guadalupe Elizabeth Jimenez-Gutierrez
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Alberto Hidalgo-Bravo
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | - Rosa P Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | - Juan P Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - José-Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | | | | | - Mónica Maribel Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Gustavo Jesús Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Ciudad de México, Mexico.
| | - Javier Andrade-Alvarado
- Servicio de Cirugía General, Hospital Central Norte Petróleos Mexicanos (PEMEX), Estado de México, Mexico.
| | - Julio Granados
- Departamento de Inmunogenética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico.
| | - Luis Ramos-Tavera
- Departamento de Inmunogenética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico.
| | - María Del Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| | - Roberto Coronado-Zarco
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Rafael Franco-Cendejas
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Luis Esau López-Jácome
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Jonathan J Magaña
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaria de Salud, Ciudad de México, Mexico.
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Medicina de Rehabilitación, Laboratorio de Infectología, Departamento de Reconstrucción Articular, Laboratorio de Medicina Genómica, Laboratorio Facilitador. Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, Mexico.
| |
Collapse
|
31
|
Youness A, Cenac C, Faz-López B, Grunenwald S, Barrat FJ, Chaumeil J, Mejía JE, Guéry JC. TLR8 escapes X chromosome inactivation in human monocytes and CD4 + T cells. Biol Sex Differ 2023; 14:60. [PMID: 37723501 PMCID: PMC10506212 DOI: 10.1186/s13293-023-00544-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Human endosomal Toll-like receptors TLR7 and TLR8 recognize self and non-self RNA ligands, and are important mediators of innate immunity and autoimmune pathogenesis. TLR7 and TLR8 are, respectively, encoded by adjacent X-linked genes. We previously established that TLR7 evades X chromosome inactivation (XCI) in female immune cells. Whether TLR8 also evades XCI, however, has not yet been explored. METHOD In the current study, we used RNA fluorescence in situ hybridization (RNA FISH) to directly visualize, on a single-cell basis, primary transcripts of TLR7 and TLR8 relative to X chromosome territories in CD14+ monocytes and CD4+ T lymphocytes from women, Klinefelter syndrome (KS) men, and euploid men. To assign X chromosome territories in cells lacking robust expression of a XIST compartment, we designed probes specific for X-linked genes that do not escape XCI and therefore robustly label the active X chromosome. We also assessed whether XCI escape of TLR8 was associated with sexual dimorphism in TLR8 protein expression by western blot and flow cytometry. RESULTS Using RNA FISH, we show that TLR8, like TLR7, evades XCI in immune cells, and that cells harboring simultaneously TLR7 and TLR8 transcript foci are more frequent in women and KS men than in euploid men, resulting in a sevenfold difference in frequency. This transcriptional bias was again observable when comparing the single X of XY males with the active X of cells from females or KS males. Interestingly, TLR8 protein expression was significantly higher in female mononuclear blood cells, including all monocyte subsets, than in male cells. CONCLUSIONS TLR8, mirroring TLR7, escapes XCI in human monocytes and CD4+ T cells. Co-dependent transcription from the active X chromosome and escape from XCI could both contribute to higher TLR8 protein abundance in female cells, which may have implications for the response to viruses and bacteria, and the risk of developing inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ali Youness
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Berenice Faz-López
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Solange Grunenwald
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Larrey, Centre Hospitalier Universitaire (CHU) de Toulouse, 31059, Toulouse, France
| | - Franck J Barrat
- Hospital for Special Surgery, HSS Research Institute and David Z. Rosensweig Genomics Research Center, New York, NY, 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, 10021, USA
| | - Julie Chaumeil
- INSERM, CNRS, Université Paris Cité, Institut Cochin, 75014, Paris, France
| | - José Enrique Mejía
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France.
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France.
| |
Collapse
|
32
|
Duarte N, Shafi AM, Penha-Gonçalves C, Pais TF. Endothelial type I interferon response and brain diseases: identifying STING as a therapeutic target. Front Cell Dev Biol 2023; 11:1249235. [PMID: 37791071 PMCID: PMC10542901 DOI: 10.3389/fcell.2023.1249235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The endothelium layer lining the inner surface of blood vessels serves relevant physiological functions in all body systems, including the exchanges between blood and extravascular space. However, endothelial cells also participate in innate and adaptive immune response that contribute to the pathophysiology of inflammatory disorders. Type I Interferon (IFN) signaling is an inflammatory response triggered by a variety of pathogens, but it can also be induced by misplaced DNA in the cytosol caused by cell stress or gene mutations. Type I IFN produced by blood leukocytes or by the endothelium itself is well-known to activate the interferon receptor (IFNAR) in endothelial cells. Here, we discuss the induction of type I IFN secretion and signaling in the endothelium, specifically in the brain microvasculature where endothelial cells participate in the tight blood-brain barrier (BBB). This barrier is targeted during neuroinflammatory disorders such as infection, multiple sclerosis, Alzheimer's disease and traumatic brain injury. We focus on type I IFN induction through the cGAS-STING activation pathway in endothelial cells in context of autoinflammatory type I interferonopathies, inflammation and infection. By comparing the pathophysiology of two separate infectious diseases-cerebral malaria induced by Plasmodium infection and COVID-19 caused by SARS-CoV-2 infection-we emphasize the relevance of type I IFN and STING-induced vasculopathy in organ dysfunction. Investigating the role of endothelial cells as active type I IFN producers and responders in disease pathogenesis could lead to new therapeutic targets. Namely, endothelial dysfunction and brain inflammation may be avoided with strategies that target excessive STING activation in endothelial cells.
Collapse
|
33
|
Naushad SM, Mandadapu G, Ramaiah MJ, Almajhdi FN, Hussain T. The role of TLR7 agonists in modulating COVID-19 severity in subjects with loss-of-function TLR7 variants. Sci Rep 2023; 13:13078. [PMID: 37567916 PMCID: PMC10421879 DOI: 10.1038/s41598-023-40114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
We investigate the mechanism associated with the severity of COVID-19 in men with TLR7 mutation. Men with loss-of-function (LOF) mutations in TLR7 had severe COVID-19. LOF mutations in TLR7 increased the risk of critical COVID by 16.00-fold (95% confidence interval 2.40-106.73). The deleterious mutations affect the binding of SARS-CoV2 RNA (- 328.66 ± 26.03 vs. - 354.08 ± 27.70, p = 0.03) and MYD88 (β: 40.279, p = 0.003) to TLR7 resulting in the disruption of TLR7-MyD88-TIRAP complex. In certain hypofunctional variants and all neutral/benign variants, there is no disruption of TLR7-MyD88-TIRAP complex and four TLR7 agonists showed binding affinity comparable to that of wild protein. N-acetylcysteine (NAC) also showed a higher binding affinity for the LOF variants (p = 0.03). To conclude, TLR7 LOF mutations increase the risk of critical COVID-19 due to loss of viral RNA sensing ability and disrupted MyD88 signaling. Majority of hypofunctional and neutral variants of TLR7 are capable of carrying MyD88 signaling by binding to different TLR7 agonists and NAC.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Yoda LifeLine Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add on, Ameerpet, Hyderabad, 500016, India.
| | | | | | - Fahad N Almajhdi
- COVID-19 Virus Research Chair, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Cobat A, Zhang Q, Abel L, Casanova JL, Fellay J. Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants. Annu Rev Biomed Data Sci 2023; 6:465-486. [PMID: 37196358 PMCID: PMC10879986 DOI: 10.1146/annurev-biodatasci-020222-021705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.
Collapse
Affiliation(s)
- Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
36
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
37
|
Giri T, Panda S, Palanisamy A. Pregnancy-induced differential expression of SARS-CoV-2 and influenza a viral entry factors in the lower respiratory tract. PLoS One 2023; 18:e0281033. [PMID: 37437040 DOI: 10.1371/journal.pone.0281033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Despite differences in the clinical presentation of coronavirus disease-19 and pandemic influenza in pregnancy, fundamental mechanistic insights are currently lacking because of the difficulty in recruiting critically ill pregnant subjects for research studies. Therefore, to better understand host-pathogen interaction during pregnancy, we performed a series of foundational experiments in pregnant rats at term gestation to assess the expression of host entry factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) and genes associated with innate immune response in the lower respiratory tract. We report that pregnancy is characterized by a decrease in host factors mediating SARS-CoV-2 entry and an increase in host factors mediating IAV entry. Furthermore, using flow cytometric assessment of immune cell populations and immune provocation studies, we show an increased prevalence of plasmacytoid dendritic cells and a Type I interferon-biased environment in the lower respiratory tract of pregnancy, contrary to the expected immunological indolence. Our findings, therefore, suggest that the dissimilar clinical presentation of COVID-19 and pandemic influenza A in pregnancy could partly be due to differences in the extent of innate immune activation from altered viral tropism and indicate the need for comparative mechanistic investigations with live virus studies.
Collapse
Affiliation(s)
- Tusar Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Santosh Panda
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Arvind Palanisamy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
38
|
Savan R, Gale M. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023; 56:1443-1450. [PMID: 37437537 PMCID: PMC10361255 DOI: 10.1016/j.immuni.2023.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
39
|
Carmona-Pérez L, Dagenais-Lussier X, Mai LT, Stögerer T, Swaminathan S, Isnard S, Rice MR, Barnes BJ, Routy JP, van Grevenynghe J, Stäger S. The TLR7/IRF-5 axis sensitizes memory CD4+ T cells to Fas-mediated apoptosis during HIV-1 infection. JCI Insight 2023; 8:e167329. [PMID: 37227774 PMCID: PMC10371351 DOI: 10.1172/jci.insight.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Collapse
Affiliation(s)
- Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Linh T. Mai
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Tanja Stögerer
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Stéphane Isnard
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew R. Rice
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| |
Collapse
|
40
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Hoang HD, Naeli P, Alain T, Jafarnejad SM. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem Soc Trans 2023; 51:1047-1056. [PMID: 37199495 PMCID: PMC10317165 DOI: 10.1042/bst20221037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Interferons (IFNs) are crucial components of the cellular innate immune response to viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a remarkable capacity to suppress the host IFN production to benefit viral replication and spread. Thus far, of the 28 known virus-encoded proteins, 16 have been found to impair the host's innate immune system at various levels ranging from detection and signaling to transcriptional and post-transcriptional regulation of expression of the components of the cellular antiviral response. Additionally, there is evidence that the viral genome encodes non-protein-coding microRNA-like elements that could also target IFN-stimulated genes. In this brief review, we summarise the current state of knowledge regarding the factors and mechanisms by which SARS-CoV-2 impairs the production of IFNs and thereby dampens the host's innate antiviral immune response.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Parisa Naeli
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| |
Collapse
|
42
|
Nabi AHMN, Ebihara A, Shekhar HU. Impacts of SARS-CoV-2 on diabetes mellitus: A pre and post pandemic evaluation. World J Virol 2023; 12:151-171. [PMID: 37396707 PMCID: PMC10311579 DOI: 10.5501/wjv.v12.i3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 06/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crippled the whole world and has resulted in large number of morbidity and mortality. The origin of the SARS-CoV-2 is still disputed. The risk of infection with SARS-CoV-2 is dependent on several risk factors as observed in many studies. The severity of the disease depends on many factors including the viral strain, host immunogenetics, environmental factors, host genetics, host nutritional status and presence of comorbidities like hypertension, diabetes, Chronic Obstructive Pulmonary Disease, cardiovascular disease, renal impairment. Diabetes is a metabolic disorder mainly characterized by hyperglycemia. Diabetic individuals are intrinsically prone to infections. SARS-CoV-2 infection in patients with diabetes result in β-cell damage and cytokine storm. Damage to the cells impairs the equilibrium of glucose, leading to hyperglycemia. The ensuing cytokine storm causes insulin resistance, especially in the muscles and liver, which also causes a hyperglycemic state. All of these increase the severity of COVID-19. Genetics also play pivotal role in disease pathogenesis. This review article focuses from the probable sources of coronaviruses and SARS-CoV-2 to its impacts on individuals with diabetes and host genetics in pre- and post-pandemic era.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
43
|
Kolb AW, Ferguson SA, Larsen IV, Brandt CR. Disease parameters following ocular herpes simplex virus type 1 infection are similar in male and female BALB/C mice. PLoS One 2023; 18:e0287194. [PMID: 37319284 PMCID: PMC10270577 DOI: 10.1371/journal.pone.0287194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Sex related differences in the incidence or severity of infection have been described for multiple viruses. With herpes simplex viruses, the best example is HSV-2 genital infection where women have a higher incidence of infection and can have more severe infections than men. HSV-1 causes several types of infections including skin and mucosal ulcers, keratitis, and encephalitis in humans that do not appear to have a strong biological sex component. Given that mouse strains differ in their MHC loci it is important to determine if sex differences occur in multiple strains of mice. Our goal was to answer two questions: Are virus related sex differences present in BALB/C mice and does virulence of the viral strain have an effect? We generated a panel of recombinant HSV-1 viruses with differing virulence phenotypes and characterized multiple clinical correlates of ocular infection in BALB/c mice. We found no sex-specific differences in blepharitis, corneal clouding, neurovirulence, and viral titers in eye washes. Sex differences in neovascularization, weight loss and eyewash titers were observed for some recombinants, but these were not consistent across the phenotypes tested for any recombinant virus. Considering these findings, we conclude that there are no significant sex specific ocular pathologies in the parameters measured, regardless of the virulence phenotype following ocular infection in BALB/c mice, suggesting that the use of both sexes is not necessary for the bulk of ocular infection studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarah A. Ferguson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Inna V. Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
44
|
Suarez-Pajes E, Tosco-Herrera E, Ramirez-Falcon M, Gonzalez-Barbuzano S, Hernandez-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genetic Determinants of the Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:3713. [PMID: 37297908 PMCID: PMC10253474 DOI: 10.3390/jcm12113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
45
|
Wang M, Yu F, Chang W, Zhang Y, Zhang L, Li P. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology. Front Immunol 2023; 14:1185233. [PMID: 37251383 PMCID: PMC10213254 DOI: 10.3389/fimmu.2023.1185233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Huang Z, Gao Y, Han Y, Yang J, Yang C, Li S, Zhou D, Huang Q, Yang J. Revealing the roles of TLR7, a nucleic acid sensor for COVID-19 in pan-cancer. BIOSAFETY AND HEALTH 2023:S2590-0536(23)00054-X. [PMID: 37362864 PMCID: PMC10167782 DOI: 10.1016/j.bsheal.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023] Open
Abstract
Recent studies suggested that cancer was a risk factor for coronavirus disease 2019 (COVID-19). Toll-like receptor 7 (TLR7), a severe acute respiratory syndrome 2 (SARS-CoV-2) virus's nucleic acid sensor, was discovered to be aberrantly expressed in many types of cancers. However, its expression pattern across cancers and association with COVID-19 (or its causing virus SARS-CoV-2) has not been systematically studied. In this study, we proposed a computational framework to comprehensively study the roles of TLR7 in COVID-19 and pan-cancers at genetic, gene expression, protein, epigenetic, and single-cell levels. We applied the computational framework in a few databases, including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), Human Protein Atlas (HPA), lung gene expression data of mice infected with SARS-CoV-2, and the like. As a result, TLR7 expression was found to be higher in the lung of mice infected with SARS-CoV-2 than that in the control group. The analysis in the Opentargets database also confirmed the association between TLR7 and COVID-19. There are also a few exciting findings in cancers. First, the most common type of TLR7 was "Missense" at the genomic level. Second, TLR7 mRNA expression was significantly up-regulated in 6 cancer types and down-regulated in 6 cancer types compared to normal tissues, further validated in the HPA database at the protein level. The genes significantly co-expressed with TLR7 were mainly enriched in the toll-like receptor signaling pathway, endolysosome, and signaling pattern recognition receptor activity. In addition, the abnormal TLR7 expression was associated with mismatch repair (MMR), microsatellite instability (MSI), and tumor mutational burden (TMB) in various cancers. Mined by the ESTIMATE algorithm, the expression of TLR7 was also closely linked to various immune infiltration patterns in pan-cancer, and TLR7 was mainly enriched in macrophages, as revealed by single-cell RNA sequencing. Third, abnormal expression of TLR7 could predict the survival of Brain Lower Grade Glioma (LGG), Lung adenocarcinoma (LUAD), Skin Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), and Testicular Germ Cell Tumors (TGCT) patients, respectively. Finally, TLR7 expressions were very sensitive to a few targeted drugs, such as Alectinib and Imiquimod. In conclusion, TLR7 might be essential in the pathogenesis of COVID-19 and cancers.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China
| | - Jingwen Yang
- Department of Clinical Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Can Yang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Decong Zhou
- Geriatric Hospital of Hainan Medical Education Department, Haikou 571100, China
| | - Qiuyan Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
47
|
García-García A, Pérez de Diego R, Flores C, Rinchai D, Solé-Violán J, Deyà-Martínez À, García-Solis B, Lorenzo-Salazar JM, Hernández-Brito E, Lanz AL, Moens L, Bucciol G, Almuqamam M, Domachowske JB, Colino E, Santos-Perez JL, Marco FM, Pignata C, Bousfiha A, Turvey SE, Bauer S, Haerynck F, Ocejo-Vinyals JG, Lendinez F, Prader S, Naumann-Bartsch N, Pachlopnik Schmid J, Biggs CM, Hildebrand K, Dreesman A, Cárdenes MÁ, Ailal F, Benhsaien I, Giardino G, Molina-Fuentes A, Fortuny C, Madhavarapu S, Conway DH, Prando C, Schidlowski L, Martínez de Saavedra Álvarez MT, Alfaro R, Rodríguez de Castro F, Meyts I, Hauck F, Puel A, Bastard P, Boisson B, Jouanguy E, Abel L, Cobat A, Zhang Q, Casanova JL, Alsina L, Rodríguez-Gallego C. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J Exp Med 2023; 220:e20220170. [PMID: 36880831 PMCID: PMC9998661 DOI: 10.1084/jem.20220170] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ana García-García
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández-Brito
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Mohamed Almuqamam
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | | | - Elena Colino
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Santos-Perez
- Unidad de Gestión Clínica de Pediatría y Cirugía Pediátrica, Hospital Virgen de las Nieves-IBS, Granada, Spain
| | - Francisco M. Marco
- Dept. of Immunology, Alicante University General Hospital Doctor Balmis, Alicante, Spain
- Alicante Institute for Health and Biomedical Research, Alicante, Spain
| | - Claudio Pignata
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Aziz Bousfiha
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Stuart E. Turvey
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Stefanie Bauer
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Dept. of Internal Medicine and Pediatrics, PID Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Francisco Lendinez
- Dept. of Pediatric Oncohematology, Hospital Materno Infantil Torrecárdenas, Almería, Spain
| | - Seraina Prader
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Nora Naumann-Bartsch
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Catherine M. Biggs
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kyla Hildebrand
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | | | - Miguel Ángel Cárdenes
- Dept. of Internal Medicine, Unit of Infectious Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Fatima Ailal
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Giuliana Giardino
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Claudia Fortuny
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Swetha Madhavarapu
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Daniel H. Conway
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | - Rafael Alfaro
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Fabian Hauck
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
48
|
Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8065. [PMID: 37175768 PMCID: PMC10178469 DOI: 10.3390/ijms24098065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.
Collapse
Affiliation(s)
- Stefania Mantovani
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Barbara Oliviero
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Stefania Varchetta
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy;
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Mario U. Mondelli
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
49
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
50
|
Simón-Fuentes M, Herrero C, Acero-Riaguas L, Nieto C, Lasala F, Labiod N, Luczkowiak J, Alonso B, Delgado R, Colmenares M, Corbí ÁL, Domínguez-Soto Á. TLR7 Activation in M-CSF-Dependent Monocyte-Derived Human Macrophages Potentiates Inflammatory Responses and Prompts Neutrophil Recruitment. J Innate Immun 2023; 15:517-530. [PMID: 37040733 PMCID: PMC10315069 DOI: 10.1159/000530249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is an endosomal pathogen-associated molecular pattern (PAMP) receptor that senses single-stranded RNA (ssRNA) and whose engagement results in the production of type I IFN and pro-inflammatory cytokines upon viral exposure. Recent genetic studies have established that a dysfunctional TLR7-initiated signaling is directly linked to the development of inflammatory responses. We present evidence that TLR7 is preferentially expressed by monocyte-derived macrophages generated in the presence of M-CSF (M-MØ). We now show that TLR7 activation in M-MØ triggers a weak MAPK, NFκB, and STAT1 activation and results in low production of type I IFN. Of note, TLR7 engagement reprograms MAFB+ M-MØ towards a pro-inflammatory transcriptional profile characterized by the expression of neutrophil-attracting chemokines (CXCL1-3, CXCL5, CXCL8), whose expression is dependent on the transcription factors MAFB and AhR. Moreover, TLR7-activated M-MØ display enhanced pro-inflammatory responses and a stronger production of neutrophil-attracting chemokines upon secondary stimulation. As aberrant TLR7 signaling and enhanced pulmonary neutrophil/lymphocyte ratio associate with impaired resolution of virus-induced inflammatory responses, these results suggest that targeting macrophage TLR7 might be a therapeutic strategy for viral infections where monocyte-derived macrophages exhibit a pathogenic role.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Lucia Acero-Riaguas
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Concha Nieto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fatima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|