1
|
Peter-Ajuzie IK, Chinyere CN, Olorunfemi AB, Kpasham LZ, Opaleye OO, Bakarey AS, Daodu OB, Happi AN, Olowe OA, Happi CT, Oluwayelu DO, Ojurongbe O, Olopade JO. Repeated detection of SARS-CoV-2 in pet dogs in Ibadan, Oyo State, Nigeria: a cause for vigilance. BMC Vet Res 2025; 21:196. [PMID: 40121457 PMCID: PMC11929258 DOI: 10.1186/s12917-025-04647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic of 2020 was unprecedented in its devastating impact on the global economy, public health, travel and tourism, education, sports, religion, and social lives. Studies conducted thereafter on the disease and its causative agent, SARS-CoV-2, have highlighted the need for effective and sustainable public health interventions. METHODS This study investigated the prevalence and endemicity of SARS-CoV-2 infection in pet dogs using immunochromatography assay (IC) and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of their blood, rectal swabs, and nasal swabs in Ibadan, Oyo State, Nigeria between 2022 and 2024. KEY FINDINGS For the IC, positivity rates of 11.7% (23/197), 85.7% (6/7), and 100% (3/3) were recorded for 2022, 2023 and 2024 while for the RT-qPCR, positivity rates of 37.9% (11/29), 33.3% (2/6) and 100% (3/3) were recorded for 2022, 2023 and 2024. This repeated detection of SARS-CoV-2 in three of the dogs tested over the three-year period suggests continuous shedding of the virus by these animals and indicates endemicity of the virus in the study area. Findings highlight the urgent need for optimized SARS-CoV-2 rapid diagnostic tools tailored for veterinary applications to ensure rapid and reliable detection of the virus, especially in resource-constrained settings. CONCLUSION Considering the zoonotic nature of SARS-CoV-2 and its potential for mutation into more virulent strains that can be transmissible to humans, the findings of this study have significant implications for public health and implementation of One Health strategies by policymakers, and highlight the need for robust SARS-CoV-2 surveillance in domestic animals to mitigate potential zoonotic risks.
Collapse
Affiliation(s)
- I K Peter-Ajuzie
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
| | - C N Chinyere
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- National Veterinary Research Institute, Vom, Nigeria
| | - A B Olorunfemi
- Humboldt Research Hub-Center for Emerging and Re-emerging Diseases, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - L Z Kpasham
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
| | - O O Opaleye
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - A S Bakarey
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria
- Institute for Advanced Medical Research and Training, University College Hospital, University of Ibadan, Ibadan, Nigeria
| | - O B Daodu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - A N Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - O A Olowe
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - C T Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| | - D O Oluwayelu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O Ojurongbe
- Humboldt Research Hub-Center for Emerging and Re-emerging Diseases, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
- Humboldt Research Hub for Zoonotic Arboviral Diseases, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
2
|
Fritz M, Elguero E, Becquart P, De Riols de Fonclare D, Garcia D, Beurlet S, Denolly S, Boson B, Rosolen SG, Cosset F, Briend‐Marchal A, Legros V, Leroy EM. A Large-Scale Serological Survey in Pets From October 2020 Through June 2021 in France Shows Significantly Higher Exposure to SARS-CoV-2 in Cats Compared to Dogs. Zoonoses Public Health 2025; 72:184-193. [PMID: 39648678 PMCID: PMC11772911 DOI: 10.1111/zph.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to infect various animals, including domestic pets like dogs and cats. Many studies have documented infection in companion animals by molecular and serological methods. However, only a few have compared seroprevalence in cats and dogs from the general population, and these studies were limited by small sample sizes and collections over short periods. Our aim was to obtain a more accurate evaluation of seroprevalence in companion animals in France and to determine whether cats and dogs differ in their exposure to SARS-CoV-2. METHODS We conducted an extensive serological survey of SARS-CoV-2, collecting blood samples from 2036 cats and 3577 dogs during routine veterinary medical examinations across different regions of metropolitan France from October 2020 to June 2021. This period encompassed the peaks and onset of two waves, as well as the emergence of the first variants. A microsphere immunoassay targeting the receptor-binding domain and trimeric spike protein was used to detect anti-SARS-CoV-2 antibodies. A subset of 308 seropositive samples was tested for the presence of neutralising antibodies. RESULTS We determined an overall seroprevalence of anti-SARS-CoV-2 antibodies of 7.1% (95% confidence interval [CI]: 6.4%-7.8%) among the sampled pets. Cats exhibited a significantly higher seroprevalence (9.3%; 95% CI: 8.1%-10.1%) compared to dogs (5.9%; 95% CI: 5.2%-6.8%). Among the subset of seropositive samples, 81 (26.3%; 95% CI: 21.5%-31.6%) displayed neutralizing antibodies. Furthermore, seroprevalence in both species was lower in older animals and was not associated with sex. Finally, unlike cats, seroprevalence in dogs was found to be correlated with the date of sampling. CONCLUSIONS The large sample size enhances the reliability and statistical robustness of our estimates regarding pet exposure to SARS-CoV-2. This study on SARS-CoV-2 reaffirms the crucial importance of adopting a One Health approach incorporating domestic animals when managing an epidemic caused by a zoonotic virus.
Collapse
Affiliation(s)
- Matthieu Fritz
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Univ. Montpellier, IRD, CNRSMontpellierFrance
| | - Eric Elguero
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Univ. Montpellier, IRD, CNRSMontpellierFrance
| | - Pierre Becquart
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Univ. Montpellier, IRD, CNRSMontpellierFrance
| | - Daphné De Riols de Fonclare
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Univ. Montpellier, IRD, CNRSMontpellierFrance
| | - Déborah Garcia
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Univ. Montpellier, IRD, CNRSMontpellierFrance
| | | | - Solène Denolly
- CIRI – Centre International de Recherche en Infectiologie, Team EVIRUniv Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS LyonLyonFrance
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Team EVIRUniv Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS LyonLyonFrance
| | - Serge G. Rosolen
- Sorbonne Université, INSERM, CNRSInstitut de la VisionParisFrance
- Clinique vétérinaire VoltaireAsnièresFrance
| | - François‐Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Team EVIRUniv Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS LyonLyonFrance
| | | | - Vincent Legros
- CIRI – Centre International de Recherche en Infectiologie, Team EVIRUniv Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS LyonLyonFrance
- Université de Lyon, VetAgro Sup, Campus vétérinaire de LyonMarcy‐l'Etoile, LyonFrance
| | - Eric M. Leroy
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Univ. Montpellier, IRD, CNRSMontpellierFrance
| |
Collapse
|
3
|
Loy DS, Birn R, Poonsuk K, Tegomoh B, Bartling A, Wiley MR, Loy JD. SARS-CoV-2 surveillance and detection in wild, captive, and domesticated animals in Nebraska: 2021-2023. Front Vet Sci 2025; 11:1496207. [PMID: 39830165 PMCID: PMC11739072 DOI: 10.3389/fvets.2024.1496207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Widespread surveillance for SARS-CoV-2 was conducted across wildlife, captive animals in zoological collections, and domestic cats in Nebraska from 2021 to 2023. The goal of this effort was to determine the prevalence, phylogenetic and spatial distribution characteristics of circulating SARS-CoV-2 variants using various diagnostic methodologies that can utilize both antemortem and postmortem samples, which may be required for wildlife such as white-tailed deer. Statewide surveillance testing revealed high variation in SARS-CoV-2 prevalence among species, with white-tailed deer identified as the primary reservoir. In 2021, seroprevalence in white-tailed deer was 63.73% (n = 91) and 39.66% (n = 237) in 2022, while virus detection in retropharyngeal lymph nodes (RLN) was 16.35% (n = 483) in 2021 and 3.61% (n = 277) in 2022. Phylogenetic analysis was conducted on 11 positive samples from 2021. This analysis revealed the presence of four lineages of the Delta variant: AY.100, AY.119, AY.3, and AY.46.4. Conversely, other species showed no virus detection, except domestic cats, which had a low seroprevalence of 2.38% (n = 628) in 2022, indicating minimal exposure. The detection of SARS-CoV-2 in white-tailed deer and the identification of multiple Delta lineages underscores the need for ongoing surveillance and the importance of using different diagnostic methodologies. These efforts are critical for understanding virus circulation and evolution in wildlife and domestic animals, informing public health strategies, and mitigating the risks of zoonotic transmission of SARS-CoV-2 and other emerging infectious diseases.
Collapse
Affiliation(s)
- Duan Sriyotee Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rachael Birn
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Korakrit Poonsuk
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Bryan Tegomoh
- Division of Public Health, Nebraska Department of Health and Human Services, Lincoln, NE, United States
| | - Amanda Bartling
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael R. Wiley
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
4
|
Qiao P, Yue C, Peng W, Liu K, Huo S, Zhang D, Chai Y, Qi J, Sun Z, Gao GF, Wu G, Liu J. Precise motif and cross-presentation of coronavirus peptides by feline MHC class I: implications for the mild infection of SARS-CoV-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:115-129. [PMID: 40073263 DOI: 10.1093/jimmun/vkae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 03/14/2025]
Abstract
As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein. The possibility of cross-presentation is further supported by the similar conformation of the corresponding peptides KP-CoV-9 (RSFIEDLLF) and KM-FECV-9 (RSAVEDLLF) from the 2 coronaviruses presented by FLA-K*00701. Our findings provide insights into the understanding of the cross-presentation of peptides from SARS-CoV-2 and feline coronaviruses FECV and the development of universal vaccine for coronaviruses.
Collapse
Affiliation(s)
- Peiwen Qiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiyu Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuting Huo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Guizhen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
5
|
Gonçalves ACA, Conzentino MDS, de Souza Barbosa AB, Doline FR, Nilsson MG, da Silva AV, Kmetiuk LB, Biondo AW, Huergo LF. Ultrafast and high-throughput immunoassay assay to detect anti-SARS-CoV-2 IgG antibodies in dogs and cats. Braz J Microbiol 2024; 55:4183-4189. [PMID: 39302629 PMCID: PMC11711606 DOI: 10.1007/s42770-024-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
The fact that SARS-CoV-2 has reportedly infected companion, livestock and wildlife animals may constitute a significant risk for virus reservoirs, ground for emerging variants and potential for novel reverse zoonosis. Hence, SARS-CoV-2 surveillance in animal species is crucial to prevent emerging variants which may spread to humans. The present study aimed to develop a simple, high-throughput and ultrafast magnetic bead immunoassay to detect anti-SARS-CoV-2 nucleocapsid and spike reactive IgG antibodies in dog and cat serum samples. The assays were validated using serum from eleven dogs and cats which had SARS-CoV-2 infections confirmed by real-time RT-PCR. The negative cohort consisted of pre-pandemic dog and cat samples. The assays performed at 73-82% sensitivity and 97.5-98% specificity for dogs and 71% sensitivity and 92-94% specificity for cats. The lower assay specificity for cats is explained by the fact that cat pre-pandemic sera showed high levels of cross-reactive with SARS-CoV-2 Nucleocapsid and Spike, supporting that these animals have been exposed to other coronavirus sharing structural similarities with SARS-CoV-2. These assays described in this work are now being used for SARS-CoV-2 surveillance and research purposes.
Collapse
Affiliation(s)
| | - Marcelo Dos Santos Conzentino
- Seashore Campus Setor Litoral, Federal University of Paraná (UFPR), 512 Jaguariaíva Street, Matinhos, Paraná, 83260-000, Brazil
| | - Altina Bruna de Souza Barbosa
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, 81531-970, Brazil
| | - Fernando Rodrigo Doline
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, 81531-970, Brazil
| | - Mariana Guimarães Nilsson
- Zoonosis and Public Health Research Group, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, 44036-900, Brazil
| | - Aristeu Vieira da Silva
- Zoonosis and Public Health Research Group, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, 44036-900, Brazil
| | - Louise Bach Kmetiuk
- Carlos Chagas Institut, Oswaldo Cruz Foundation, Curitiba, Paraná, 81310-020, Brazil
| | - Alexander Welker Biondo
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Paraná, 81531-970, Brazil
| | - Luciano Fernandes Huergo
- Seashore Campus Setor Litoral, Federal University of Paraná (UFPR), 512 Jaguariaíva Street, Matinhos, Paraná, 83260-000, Brazil.
| |
Collapse
|
6
|
Bashor L, Gallichotte EN, Galvan M, Erbeck K, Croft L, Stache K, Stenglein M, Johnson JG, Pabilonia K, VandeWoude S. SARS-CoV-2 within-host population expansion, diversification and adaptation in zoo tigers, lions and hyenas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620075. [PMID: 39484504 PMCID: PMC11527109 DOI: 10.1101/2024.10.24.620075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 rapidly adapts to new hosts following cross-species transmission; this is highly relevant as novel within-host variants have emerged following infection of susceptible wild and domestic animal species. Furthermore, SARS-CoV-2 transmission from animals (e.g., white-tailed deer, mink, domestic cats, and others) back to humans has also been observed, documenting the potential of novel animal-derived variants to infect humans. We investigated SARS-CoV-2 evolution and host-specific adaptation during an outbreak in Amur tigers (Panthera tigris altaica), African lions (Panthera leo), and spotted hyenas (Crocuta crocuta) at Denver Zoo in late 2021. SARS-CoV-2 genomes from longitudinal samples collected from 16 individuals were evaluated for within-host variation and genomic signatures of selection. The outbreak was likely initiated by a single spillover of a rare Delta sublineage subsequently transmitted from tigers to lions to hyenas. Within-host virus populations rapidly expanded and diversified. We detected signatures of purifying and positive selection, including strong positive selection in hyenas and in the nucleocapsid (N) gene in all animals. Four candidate species-specific adaptive mutations were identified: N A254V in lions and hyenas, and ORF1a E1724D, spike T274I, and N P326L in hyenas. These results reveal accelerated SARS-CoV-2 adaptation following host shifts in three non-domestic species in daily contact with humans.
Collapse
Affiliation(s)
- Laura Bashor
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Michelle Galvan
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Colorado State University Veterinary Diagnostic Laboratories
| | | | | | - Mark Stenglein
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | | | - Sue VandeWoude
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
7
|
Lunardi M, Martins FDC, Gustani-Buss E, Chideroli RT, de Oliveira IM, Peronni KC, Figueiredo DLA, Alfieri AF, Alfieri AA. Higher Frequency of SARS-CoV-2 RNA Shedding by Cats than Dogs in Households with Owners Recently Diagnosed with COVID-19. Viruses 2024; 16:1599. [PMID: 39459932 PMCID: PMC11512312 DOI: 10.3390/v16101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Studies have demonstrated the susceptibility of companion animals to natural infection with SARS-CoV-2. Using quantitative reverse transcription polymerase chain reaction and sequencing analyses, this study investigated SARS-CoV-2 RNA excretion in pets in households with infected owners. Oropharyngeal and rectal swabs were collected from dogs and cats in Parana, Southern Brazil, between October 2020 and April 2021. Viral RNA was detected in 25% of cats and 0.98% of dog oropharyngeal swabs; however, systemic, respiratory, and gastrointestinal signs were absent. Complete viral genomes belonged to the Gamma lineage. Phylogenetic analyses indicated that pet samples were probably derived from human-positive cases in Parana. Viral excretion in the oropharynx was more frequent in cats than in dogs. Mutations in the S protein characteristic of Gamma strains were present in all sequenced SARS-CoV-2 strains. The receptor-binding domain of these Brazilian strains did not show any additional mutations not reported in the Gamma strains. Mutations in NSP6, NSP12, and N proteins previously mapped to strains that infect deer or minks were detected. This study highlights the importance of actively monitoring the SARS-CoV-2 strains that infect pets with continued viral exposure. Monitoring genetic changes is crucial because new variants adapted to animals may pose human health risks.
Collapse
Affiliation(s)
- Michele Lunardi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (M.L.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, University Pitagoras Unopar, Arapongas 86702-670, Brazil
| | - Felippe Danyel Cardoso Martins
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Post Graduate Program in Animal Science, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Emanuele Gustani-Buss
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven—University of Leuven, Box 1030, 3000 Leuven, Belgium;
| | - Roberta Torres Chideroli
- Post Graduate Program in Animal Science, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | | | - Kamila Chagas Peronni
- Institute for Cancer Research, IPEC, Guarapuava 85100-000, Brazil; (I.M.d.O.); (K.C.P.); (D.L.A.F.)
| | - David Livingstone Alves Figueiredo
- Institute for Cancer Research, IPEC, Guarapuava 85100-000, Brazil; (I.M.d.O.); (K.C.P.); (D.L.A.F.)
- Department of Medicine, Midwestern Parana State University—UNICENTRO, Guarapuava 85040-167, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (M.L.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (M.L.); (A.F.A.)
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
8
|
Daigle L, Khalid H, Gagnon CA, Arsenault J, Bienzle D, Bisson SK, Blais MC, Denis-Robichaud J, Forest C, Grenier St-Sauveur V, Koszegi M, MacNicol J, Nantel-Fortier N, Nury C, Prystajecky N, Fraser E, Carabin H, Aenishaenslin C. High prevalence of SARS-CoV-2 antibodies and low prevalence of SARS-CoV-2 RNA in cats recently exposed to human cases. BMC Vet Res 2024; 20:304. [PMID: 38982461 PMCID: PMC11232172 DOI: 10.1186/s12917-024-04150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The primary objective of this cross-sectional study, conducted in Québec and Bristish Columbia (Canada) between February 2021 and January 2022, was to measure the prevalence of viral RNA in oronasal and rectal swabs and serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amongst cats living in households with at least one confirmed human case. Secondary objectives included a description of potential risk factors for the presence of SARS-CoV-2 antibodies and an estimation of the association between the presence of viral RNA in swabs as well as SARS-CoV-2 antibodies and clinical signs. Oronasal and rectal swabs and sera were collected from 55 cats from 40 households at most 15 days after a human case confirmation, and at up to two follow-up visits. A RT-qPCR assay and an ELISA were used to detect SARS-CoV-2 RNA in swabs and serum SARS-CoV-2 IgG antibodies, respectively. Prevalence and 95% Bayesian credibility intervals (BCI) were calculated, and associations were evaluated using prevalence ratio and 95% BCI obtained from Bayesian mixed log-binomial models. RESULTS Nine (0.16; 95% BCI = 0.08-0.28) and 38 (0.69; 95% BCI = 0.56-0.80) cats had at least one positive RT-qPCR and at least one positive serological test result, respectively. No risk factor was associated with the prevalence of SARS-CoV-2 serum antibodies. The prevalence of clinical signs suggestive of COVID-19 in cats, mainly sneezing, was 2.12 (95% BCI = 1.03-3.98) times higher amongst cats with detectable viral RNA compared to those without. CONCLUSIONS We showed that cats develop antibodies to SARS-CoV-2 when exposed to recent human cases, but detection of viral RNA on swabs is rare, even when sampling occurs soon after confirmation of a human case. Moreover, cats with detectable levels of virus showed clinical signs more often than cats without signs, which can be useful for the management of such cases.
Collapse
Affiliation(s)
- Laurence Daigle
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada.
| | - Hattaw Khalid
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center - FRQ, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Julie Arsenault
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Dorothee Bienzle
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah-Kim Bisson
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marie-Claude Blais
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - José Denis-Robichaud
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Independent Researcher, Amqui, QC, Canada
| | - Caroline Forest
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Valérie Grenier St-Sauveur
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Marika Koszegi
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Jennifer MacNicol
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Nicolas Nantel-Fortier
- Molecular Diagnostic Laboratory (MDL), Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Charlotte Nury
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
| | - Natalie Prystajecky
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erin Fraser
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Hélène Carabin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| | - Cécile Aenishaenslin
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Qc, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Qc, Canada
| |
Collapse
|
9
|
Selyemová D, Antolová D, Mangová B, Jarošová J, Ličková M, Havlíková SF, Sláviková M, Tarageľová VR, Derdáková M. Cats as a sentinel species for human infectious diseases - toxoplasmosis, trichinellosis, and COVID-19. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100196. [PMID: 39055483 PMCID: PMC11269282 DOI: 10.1016/j.crpvbd.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
In this study, serological screening for Toxoplasma gondii, Trichinella spp., and SARS-CoV-2 in domestic cats was conducted, aiming to identify their exposure to the mentioned pathogens and to assess the risk of potential human infection. In total, serum samples from 481 (310 owned and 171 shelter cats) were collected in Bratislava from September 2020 to September 2021, a period that included the initial outbreak wave of the COVID-19 pandemic. The study showed a 37.4% (135/441) seroprevalence of T. gondii with a slightly lower seropositivity in shelter cats (35.9%; 61/170) than in owned cats (38.4%; 104/271), but this difference was not statistically significant. Overall, the seroprevalence of Trichinella spp. was 2.0% (9/441), with animals from shelters being positive but not significantly more often (2.9%; 5/170) than owned cats (1.5%; 4/271). SARS-CoV-2 antibodies were detected in 2.7% (13/481) of cat sera (2.9% in shelter cats; 2.6% in owned cats). Among ten samples positive by virus neutralisation assay, two were positive for the B.1 variant. The presence of the SARS-CoV-2 virus in buccal and rectal swabs (n = 239) was not detected. The seroprevalence of almost 40% for T. gondii in cats suggests a non-negligible risk of human infection. The study confirmed the possibility of Trichinella spp. infection in cats, and thus the possibility of infection spreading between the sylvatic and synanthropic cycle via this animal species. The presented results also showed that the SARS-CoV-2 virus is likely to circulate in cat populations in Slovakia, not only in cats that may have been in contact with infected persons, but also in shelter cats.
Collapse
Affiliation(s)
- Diana Selyemová
- Institute of Zoology, SAS, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| | - Daniela Antolová
- Institute of Parasitology, SAS, Hlinkova 3, 040 01, Košice, Slovakia
| | - Barbara Mangová
- Institute of Zoology, SAS, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| | - Júlia Jarošová
- Institute of Parasitology, SAS, Hlinkova 3, 040 01, Košice, Slovakia
| | - Martina Ličková
- Biomedical Research Center, SAS, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Sabína Fumačová Havlíková
- Biomedical Research Center, SAS, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, SAS, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | | | - Markéta Derdáková
- Institute of Zoology, SAS, Dúbravská Cesta 9, 845 06, Bratislava, Slovakia
| |
Collapse
|
10
|
Jiménez de Oya N, Calvo-Pinilla E, Mingo-Casas P, Escribano-Romero E, Blázquez AB, Esteban A, Fernández-González R, Pericuesta E, Sánchez-Cordón PJ, Martín-Acebes MA, Gutiérrez-Adán A, Saiz JC. Susceptibility and transmissibility of SARS-CoV-2 variants in transgenic mice expressing the cat angiotensin-converting enzyme 2 (ACE-2) receptor. One Health 2024; 18:100744. [PMID: 38725960 PMCID: PMC11079394 DOI: 10.1016/j.onehlt.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The emergence of SARS-CoV-2 in 2019 and its rapid spread throughout the world has caused the largest pandemic of our modern era. The zoonotic origin of this pathogen highlights the importance of the One Health concept and the need for a coordinated response to this kind of threats. Since its emergence, the virus has caused >7 million deaths worldwide. However, the animal source for human outbreaks remains unknown. The ability of the virus to jump between hosts is facilitated by the presence of the virus receptor, the highly conserved angiotensin-converting enzyme 2 (ACE2), found in various mammals. Positivity for SARS-CoV-2 has been reported in various species, including domestic animals and livestock, but their potential role in bridging viral transmission to humans is still unknown. Additionally, the virus has evolved over the pandemic, resulting in variants with different impacts on human health. Therefore, suitable animal models are crucial to evaluate the susceptibility of different mammalian species to this pathogen and the adaptability of different variants. In this work, we established a transgenic mouse model that expresses the feline ACE2 protein receptor (cACE2) under the human cytokeratin 18 (K18) gene promoter's control, enabling high expression in epithelial cells, which the virus targets. Using this model, we assessed the susceptibility, pathogenicity, and transmission of SARS-CoV-2 variants. Our results show that the sole expression of the cACE2 receptor in these mice makes them susceptible to SARS-CoV-2 variants from the initial pandemic wave but does not enhance susceptibility to omicron variants. Furthermore, we demonstrated efficient contact transmission of SARS-CoV-2 between transgenic mice that express either the feline or the human ACE2 receptor.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA-CSIC. Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130 Valdeolmos, Madrid, Spain
| | - Patricia Mingo-Casas
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| | - Ana Esteban
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, INIA-CSIC. Av. Puerta de Hierro, 18, Madrid 28040, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA-CSIC. Av. Puerta de Hierro, 18, Madrid 28040, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal, INIA-CSIC. Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130 Valdeolmos, Madrid, Spain
| | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA-CSIC. Av. Puerta de Hierro, 18, Madrid 28040, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC). Ctra. de La Coruña, km 7, 5, Madrid 28040, Spain
| |
Collapse
|
11
|
Yang R, Han P, Han P, Li D, Zhao R, Niu S, Liu K, Li S, Tian WX, Gao GF. Molecular basis of hippopotamus ACE2 binding to SARS-CoV-2. J Virol 2024; 98:e0045124. [PMID: 38591877 PMCID: PMC11092335 DOI: 10.1128/jvi.00451-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.
Collapse
Affiliation(s)
- Ruirui Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runchu Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
12
|
Suwanpakdee S, Ketchim N, Thongdee M, Chaiwattanarungruengpaisan S, Tangsudjai S, Wiriyarat W, Julapanthong P, Trakoolchaisri W, Buamas S, Sakcamduang W, Okada PA, Puthavathana P, Paungpin W. Sero-epidemiological investigation and cross-neutralization activity against SARS-CoV-2 variants in cats and dogs, Thailand. Front Vet Sci 2024; 11:1329656. [PMID: 38770189 PMCID: PMC11103004 DOI: 10.3389/fvets.2024.1329656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Epidemiological data on SARS-CoV-2 infection in companion animals have been thoroughly investigated in many countries. However, information on the neutralizing cross-reactivity against SARS-CoV-2 variants in companion animals is still limited. Here, we explored the neutralizing antibodies against SARS-CoV-2 in cats and dogs between May 2020 and December 2021 during the first wave (a Wuhan-Hu-1-dominant period) and the fourth wave (a Delta-dominant period) of the Thailand COVID-19 outbreak. Archival plasma samples of 1,304 cats and 1,795 dogs (total = 3,099) submitted for diagnosis and health checks were collected at the Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom. A microneutralization test was used to detect neutralizing antibodies against the ancestral Wuhan-Hu-1 and the Delta variants. A plasma sample with neutralizing titers ≥10 was considered positive. Our results showed relatively low seroprevalence with seropositive samples detected in 8 out of 3,099 individuals (0.26, 95% CI 0.11-0.51%). Among these cases, SARS-CoV-2 neutralizing antibodies from both the ancestral Wuhan-Hu-1 and the Delta variants were found in three out of eight cases in two cats (n = 2) and one dog (n = 1). Furthermore, neutralizing antibodies specific to only the ancestral Wuhan-Hu-1 variant were exclusively found in one cat (n = 1), while antibodies against only the Delta variant were detected in four dogs (n = 4). Additionally, the neutralizing cross-activities against SARS-CoV-2 variants (Alpha, Beta, and Omicron BA.2) were observed in the seropositive cats with limited capacity to neutralize the Omicron BA.2 variant. In summary, the seropositivity among cats and dogs in households with an unknown COVID-19 status was relatively low in Thailand. Moreover, the neutralizing antibodies against SARS-CoV-2 found in the seropositive cats and dogs had limited or no ability to neutralize the Omicron BA.2 variant. Thus, monitoring SARS-CoV-2 infection and sero-surveillance, particularly in cats, is imperative for tracking virus susceptibility to the emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sarin Suwanpakdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Natthaphat Ketchim
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Siriporn Tangsudjai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pruksa Julapanthong
- Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Wachira Trakoolchaisri
- Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Supakit Buamas
- Prasu-Arthorn Veterinary Teaching Hospital, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Mūrniece G, Šteingolde Ž, Cvetkova S, Valciņa O, Zrelovs Ņ, Brīvība M, Kloviņš J, Birzniece L, Megnis K, Fridmanis D, Bērziņš A, Kovaļčuka L, Kovaļenko K. Prevalence of SARS-CoV-2 in domestic cats (Felis catus) during COVID-19 pandemic in Latvia. Vet Med Sci 2024; 10:e1338. [PMID: 38140758 PMCID: PMC10951624 DOI: 10.1002/vms3.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The causative agent of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is of zoonotic origin and has shown reverse zoonotic transmissibility. OBJECTIVES The aim of this cross-sectional study was to investigate the serological and molecular prevalence of SARS-CoV-2 infection in the domestic cat (Felis catus) population from Latvia in natural conditions and subsequently perform viral genome analysis. METHODS Oropharyngeal and rectal swabs and blood samples were collected from 273 domestic cats during the second wave of COVID-19 infection in Latvia. Molecular prevalence was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR). Serum samples were analysed via double antigen enzyme-linked immunosorbent assay targeting the antibody against the nucleocapsid protein of SARS-CoV-2. Positive swab samples were analysed using whole viral genome sequencing and subsequent phylogenetic analysis of the whole genome sequencing data of the samples was performed. RESULTS The overall SARS-CoV-2 RT-PCR positivity and seroprevalence was 1.1% (3/273) and 2.6% (7/273), respectively. The SARS-CoV-2 genome sequences from three RT-PCR positive cats were assigned to the three common lineages (PANGOLIN lineage S.1.; B.1.177.60. and B.1.1.7.) circulating in Latvia during the particular period of time. CONCLUSIONS These findings indicate that feline infection with SARS-CoV-2 occurred during the second wave of the COVID-19 pandemic in Latvia, yet the overall prevalence was low. In addition, it seems like no special 'cat' pre-adaptations were necessary for successful infection of cats by the common lineages of SARS-CoV-2.
Collapse
Affiliation(s)
- Gundega Mūrniece
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| | - Žanete Šteingolde
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Svetlana Cvetkova
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Olga Valciņa
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | | | - Monta Brīvība
- Latvian Biomedical Research and Study CentreRigaLatvia
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study CentreRigaLatvia
| | | | | | | | - Aivars Bērziņš
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
- Institute of Food SafetyAnimal Health and Environment “BIOR”RigaLatvia
| | - Līga Kovaļčuka
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| | - Kaspars Kovaļenko
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| |
Collapse
|
14
|
Chakraborty C, Bhattacharya M, Islam MA, Zayed H, Ohimain EI, Lee SS, Bhattacharya P, Dhama K. Reverse Zoonotic Transmission of SARS-CoV-2 and Monkeypox Virus: A Comprehensive Review. J Microbiol 2024; 62:337-354. [PMID: 38777985 DOI: 10.1007/s12275-024-00138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Elijah Ige Ohimain
- Microbiology Department, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
15
|
Seekings AH, Shipley R, Byrne AMP, Shukla S, Golding M, Amaya-Cuesta J, Goharriz H, Vitores AG, Lean FZX, James J, Núñez A, Breed A, Frost A, Balzer J, Brown IH, Brookes SM, McElhinney LM. Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in Domestic Dogs and Zoo Tigers in England and Jersey during 2021. Viruses 2024; 16:617. [PMID: 38675958 PMCID: PMC11053977 DOI: 10.3390/v16040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Rebecca Shipley
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Shweta Shukla
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Megan Golding
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joan Amaya-Cuesta
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Hooman Goharriz
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ana Gómez Vitores
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Fabian Z. X. Lean
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alistair Breed
- Government of Jersey, Infrastructure Housing and Environment, Howard Davis Farm, La Route de la Trinité, Trinity, Jersey JE3 5JP, UK
| | - Andrew Frost
- One Health, Animal Health and Welfare Advice Team, Animal and Plant Health Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Jörg Balzer
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Humboldtstraße 2, 70806 Kornwestheim, Germany
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
16
|
Thieulent CJ, Carossino M, Peak L, Wolfson W, Balasuriya UBR. Development and validation of multiplex one-step qPCR/RT-qPCR assays for simultaneous detection of SARS-CoV-2 and pathogens associated with feline respiratory disease complex. PLoS One 2024; 19:e0297796. [PMID: 38517847 PMCID: PMC10959388 DOI: 10.1371/journal.pone.0297796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/12/2024] [Indexed: 03/24/2024] Open
Abstract
Feline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1) for the detection of four viral targets and FRA_2 for the detection of three bacteria associated with FRDC. Both multiplex assays demonstrated high specificity, efficiency (93.51%-107.8%), linearity (> 0.998), analytical sensitivity (≤ 15 genome copies/μl), repeatability (coefficient of variation [CV] < 5%), and reproducibility (CV < 6%). Among the 63 clinical specimens collected from FRDC-suspected cats, 92.1% were positive for at least one pathogen and co-infection was detected in 57.1% of samples. Mycoplasma felis (61.9%) was the most found pathogen, followed by feline herpesvirus-1 (30.2%), Chlamydia felis (28.7%) and feline calicivirus (27.0%). SARS-CoV-2 was detected in two specimens. In summary, this new panel of qPCR/RT-qPCR assays constitutes a useful and reliable tool for the rapid detection of SARS-CoV-2 and viral and bacterial pathogens associated with FRDC in cats.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
17
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
18
|
Chaiyawong S, Charoenkul K, Jairak W, Udom K, Chamsai E, Techakriengkrai N, Suwannakarn K, Amonsin A. Serological Evidence of SARS-CoV-2 Exposure in Domestic Dogs and Cats, Thailand: Detection of SARS-CoV-2 Omicron Variant in Dogs Living in COVID-19-Positive Households. Transbound Emerg Dis 2024; 2024:9938523. [PMID: 40303161 PMCID: PMC12016992 DOI: 10.1155/2024/9938523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 05/02/2025]
Abstract
SARS-CoV-2 causes the coronavirus disease 2019 (COVID-19) pandemic. Cross-species transmission of SARS-CoV-2 from humans to domestic animals has been reported. In this study, we conducted a serological survey and molecular investigation of SARS-CoV-2 infection in domestic dogs and cats in Bangkok and the vicinities from January 2021 to August 2022. A total of 2,664 serum samples were examined for antibodies against SARS-CoV-2 using nucleocapsid protein-based ELISA (NP-ELISA). Our result showed 2.28% (33/1,446) seropositivity in dogs and 1.81% (22/1,218) in cats. The positive NP-ELISA serum samples were confirmed using a surrogate virus neutralization test (sVNT). Of 55 seropositive samples by NP-ELISA, two dogs and 19 cats were confirmed seropositive by sVNT. Our result supported the serological evidence of SARS-CoV-2 exposure in domestic dogs and cats. We also investigated SARS-CoV-2 infection by real-time RT-PCR in 156 domestic dogs and cats in COVID-19-positive households. Our result showed active SARS-CoV-2 infection in a dog living with COVID-19 positive owner. Genetic and phylogenetic analysis of the SARS-CoV-2 from the dog and its owner confirmed the SARS-CoV-2 variant Omicron BA.2. It is the first report of SARS-CoV-2 Omicron variant in pet living in COVID-19-positive household in Thailand.
Collapse
Affiliation(s)
- Supassama Chaiyawong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamonpan Charoenkul
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waleemas Jairak
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitikhun Udom
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekkapat Chamsai
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Hu B, Guo H, Si H, Shi Z. Emergence of SARS and COVID-19 and preparedness for the next emerging disease X. Front Med 2024; 18:1-18. [PMID: 38561562 DOI: 10.1007/s11684-024-1066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
Severe acute respiratory syndrome (SARS) and Coronavirus disease 2019 (COVID-19) are two human Coronavirus diseases emerging in this century, posing tremendous threats to public health and causing great loss to lives and economy. In this review, we retrospect the studies tracing the molecular evolution of SARS-CoV, and we sort out current research findings about the potential ancestor of SARS-CoV-2. Updated knowledge about SARS-CoV-2-like viruses found in wildlife, the animal susceptibility to SARS-CoV-2, as well as the interspecies transmission risk of SARS-related coronaviruses (SARSr-CoVs) are gathered here. Finally, we discuss the strategies of how to be prepared against future outbreaks of emerging or re-emerging coronaviruses.
Collapse
Affiliation(s)
- Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengli Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
20
|
Sims M, Helal Z, Levin M, Rittenhouse T, Hawley J, Risatti GR. Suburban Population of Bobcats (Lynx rufus) in Connecticut, USA, Tested Negative for SARS-CoV-2, November 2021-February 2022. J Wildl Dis 2024; 60:193-197. [PMID: 37924242 DOI: 10.7589/jwd-d-23-00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 11/06/2023]
Abstract
A SARS-CoV-2 genomic and serologic survey was performed in a population of bobcats (Lynx rufus) inhabiting the state of Connecticut, USA. Wild animal populations are becoming established in densely populated cities with increased likelihood of direct or indirect contact with humans, as well as with household cats and dogs. Wild-caught bobcats (n=38) tested negative for SARS-CoV-2 genomic RNA by reverse-transcription quantitative PCR and for virus-neutralizing antibodies by ELISA, suggesting that either the species is not susceptible to SARS-CoV-2 or that the surveyed population has not yet been exposed to a source of infectious virus. However, this limited survey cannot rule out that human-to-bobcat or unknown reservoir-to-bobcat transmission of the virus occurs in nature.
Collapse
Affiliation(s)
- Maureen Sims
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
- These authors contributed equally
| | - Zeinab Helal
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
- These authors contributed equally
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
| | - Tracy Rittenhouse
- Department of Natural Resources and the Environment, College of Agriculture, Health and Natural Resources, Wildlife and Fisheries Conservation Center, University of Connecticut, Wilfred B. Young Bldg., 1376 Storrs Road, Storrs, Connecticut 06269-4087, USA
| | - Jason Hawley
- Connecticut Department of Energy and Environmental Protection, Wildlife Division, 79 Elm Street, Hartford, Connecticut 06106-5127, USA
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Atwater Lab Bldg., 61 North Eagleville Road, Unit 3089, Storrs, Connecticut 06269-3089, USA
| |
Collapse
|
21
|
Salajegheh Tazerji S, Gharieb R, Ardestani MM, Akhtardanesh B, Kabir F, Vazir B, Duarte PM, Saberi N, Khaksar E, Haerian S, Fawzy M. The risk of pet animals in spreading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and public health importance: An updated review. Vet Med Sci 2024; 10:e1320. [PMID: 38066661 PMCID: PMC10766024 DOI: 10.1002/vms3.1320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 01/06/2024] Open
Abstract
Since the outbreak of SARS-CoV-2 was first identified in 2019, it has been reported that the virus could infect a variety of animals either naturally or experimentally. This review discusses the occurrence SARS-CoV-2 in dogs and cats and the role of these animals in transmitting coronavirus disease 2019 (COVID-19) to their owners. The data were collected from epidemiological studies and case reports that focused on studying the occurrence of SARS-CoV-2 in pet animals and their owners. Epidemiological studies and case reports indicate that dogs and cats are infected with SARS-CoV-2 either naturally or experimentally; however, the global number of naturally infected animals is far lower than the number of people who have COVID-19. These studies demonstrate that pet animals acquire the infection from direct contact with COVID-19-infected owners. Currently, there are no studies reporting that dogs and cats can transmit SARS-CoV-2 to other animals and humans, under natural conditions. The emergence of SARS-CoV-2 infection in companion animals (dogs and cats) in different countries worldwide raises concerns that pets are at higher risk for spreading and transmitting SARS-CoV-2 to humans and other animals, which poses a hazard to the public health. Therefore, investigating the role of dogs and cats in the transmission and epidemiology of SARS-CoV-2 will help us to design and implement appropriate preventive measures against the further transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
- Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Rasha Gharieb
- Department of Zoonoses, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
| | | | - Baharak Akhtardanesh
- Department of Clinical Science, Faculty of Veterinary MedicineShahid Bahonar UniversityKermanIran
| | - Farrokhreza Kabir
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Bita Vazir
- Department of Basic Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal BioscienceFederal Rural University of Pernambuco (UFRPE)RecifePernambucoBrazil
| | - Niloufar Saberi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Khaksar
- Department of Clinical Science, Faculty of Veterinary Medicine, Garmsar BranchIslamic Azad UniversityGarmsarIran
| | - Sadegh Haerian
- Department of Clinical Science, Faculty of Veterinary Medicine, Karaj BranchIslamic Azad UniversityKarajIran
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
22
|
Fernández-Bastit L, Vergara-Alert J, Segalés J. Transmission of severe acute respiratory syndrome coronavirus 2 from humans to animals: is there a risk of novel reservoirs? Curr Opin Virol 2023; 63:101365. [PMID: 37793299 DOI: 10.1016/j.coviro.2023.101365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic virus able to infect humans and multiple nonhuman animal species. Most natural infections in companion, captive zoo, livestock, and wildlife species have been related to a reverse transmission, raising concern about potential generation of animal reservoirs due to human-animal interactions. To date, American mink and white-tailed deer are the only species that led to extensive intraspecies transmission of SARS-CoV-2 after reverse zoonosis, leading to an efficient spread of the virus and subsequent animal-to-human transmission. Viral host adaptations increase the probability of new SARS-CoV-2 variants' emergence that could cause a major global health impact. Therefore, applying the One Health approach is crucial to prevent and overcome future threats for human, animal, and environmental fields.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
23
|
Mabry ME, Fanelli A, Mavian C, Lorusso A, Manes C, Soltis PS, Capua I. The panzootic potential of SARS-CoV-2. Bioscience 2023; 73:814-829. [PMID: 38125826 PMCID: PMC10728779 DOI: 10.1093/biosci/biad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Carla Mavian
- Emerging Pathogens Institute and with the Department of Pathology, University of Florida, Gainesville, Florida, United States
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Costanza Manes
- Department of Wildlife Ecology and Conservation and with the One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
- School of International Advanced Studies, Johns Hopkins University, Bologna, Italy
| |
Collapse
|
24
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
25
|
Kuroda Y, Watanabe K, Yamamoto T, Suzuki H, Park ES, Ishijima K, Tatemoto K, Virhuez-Mendoza M, Inoue Y, Harada M, Nishino A, Sekizuka T, Kuroda M, Fujimoto T, Ishihara G, Horie R, Kawamoto K, Maeda K. Pet Animals Were Infected with SARS-CoV-2 from Their Owners Who Developed COVID-19: Case Series Study. Viruses 2023; 15:2028. [PMID: 37896805 PMCID: PMC10612050 DOI: 10.3390/v15102028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among pets owned by coronavirus disease 2019 (COVID-19) patients has been reported around the world. However, how often the animals are exposed to SARS-CoV-2 by their owners is still unclear. We have collected swab samples from COVID-19 patients' pets and performed real-time RT-PCR to detect the viral genome. In total, 8 of 53 dogs (15.1%) and 5 of 34 cats (14.7%) tested positive for the SARS-CoV-2 N gene. The result of a virus neutralization (VN) test also showed VN antibodies in four cats and six dogs. Our results indicate that the virus often passed from infected owners to their pets, which then excreted the virus despite having no or mild clinical signs.
Collapse
Affiliation(s)
- Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kei Watanabe
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hiroki Suzuki
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Eun-sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Milagros Virhuez-Mendoza
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yusuke Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Ayano Nishino
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, NIID, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, NIID, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tsuguto Fujimoto
- Department of Fungal Infection, NIID, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Genki Ishihara
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Ryo Horie
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Kosuke Kawamoto
- Anicom Specialty Medical Institute Inc., Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
26
|
Han P, Meng Y, Zhang D, Xu Z, Li Z, Pan X, Zhao Z, Li L, Tang L, Qi J, Liu K, Gao GF. Structural basis of white-tailed deer, Odocoileus virginianus, ACE2 recognizing all the SARS-CoV-2 variants of concern with high affinity. J Virol 2023; 97:e0050523. [PMID: 37676003 PMCID: PMC10537675 DOI: 10.1128/jvi.00505-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/01/2023] [Indexed: 09/08/2023] Open
Abstract
SARS-CoV-2 has been expanding its host range, among which the white-tailed deer (WTD), Odocoileus virginianus, became the first wildlife species infected on a large scale and might serve as a host reservoir for variants of concern (VOCs) in case no longer circulating in humans. In this study, we comprehensively assessed the binding of the WTD angiotensin-converting enzyme 2 (ACE2) receptor to the spike (S) receptor-binding domains (RBDs) from the SARS-CoV-2 prototype (PT) strain and multiple variants. We found that WTD ACE2 could be broadly recognized by all of the tested RBDs. We further determined the complex structures of WTD ACE2 with PT, Omicron BA.1, and BA.4/5 S trimer. Detailed structural comparison revealed the important roles of RBD residues on 486, 498, and 501 sites for WTD ACE2 binding. This study deepens our understanding of the interspecies transmission mechanisms of SARS-CoV-2 and further addresses the importance of constant monitoring on SARS-CoV-2 infections in wild animals. IMPORTANCE Even if we manage to eliminate the virus among humans, it will still circulate among wildlife and continuously be transmitted back to humans. A recent study indicated that WTD may serve as reservoir for nearly extinct SARS-CoV-2 strains. Therefore, it is critical to evaluate the binding abilities of SARS-CoV-2 variants to the WTD ACE2 receptor and elucidate the molecular mechanisms of binding of the RBDs to assess the risk of spillback events.
Collapse
Affiliation(s)
- Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Yumin Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zhiyuan Li
- College of Veterinary Medicine, China Agricultural University , Beijing, China
| | - Xiaoqian Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Lingfeng Tang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Beijing Life Science Academy , Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
27
|
Jones S, Tyson GB, Orton RJ, Smollett K, Manna F, Kwok K, Suárez NM, Logan N, McDonald M, Bowie A, Filipe ADS, Willett BJ, Weir W, Hosie MJ. SARS-CoV-2 in Domestic UK Cats from Alpha to Omicron: Swab Surveillance and Case Reports. Viruses 2023; 15:1769. [PMID: 37632111 PMCID: PMC10459977 DOI: 10.3390/v15081769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.
Collapse
Affiliation(s)
- Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Federica Manna
- Bath Vet Referrals, Rosemary Lodge Veterinary Hospital, Wellsway, Bath BA2 5RL, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Andrea Bowie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK (W.W.)
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (G.B.T.)
| |
Collapse
|
28
|
Tyson GB, Jones S, Montreuil-Spencer C, Logan N, Scott S, Sasvari H, McDonald M, Marshall L, Murcia PR, Willett BJ, Weir W, Hosie MJ. Increase in SARS-CoV-2 Seroprevalence in UK Domestic Felids Despite Weak Immunogenicity of Post-Omicron Variants. Viruses 2023; 15:1661. [PMID: 37632004 PMCID: PMC10458763 DOI: 10.3390/v15081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Throughout the COVID-19 pandemic, SARS-CoV-2 infections in domestic cats have caused concern for both animal health and the potential for inter-species transmission. Cats are known to be susceptible to the Omicron variant and its descendants, however, the feline immune response to these variants is not well defined. We aimed to estimate the current seroprevalence of SARS-CoV-2 in UK pet cats, as well as characterise the neutralising antibody response to the Omicron (BA.1) variant. A neutralising seroprevalence of 4.4% and an overall seroprevalence of 13.9% was observed. Both purebred and male cats were found to have the highest levels of seroprevalence, as well as cats aged between two and five years. The Omicron variant was found to have a lower immunogenicity in cats than the B.1, Alpha and Delta variants, which reflects previous reports of immune and vaccine evasion in humans. These results further underline the importance of surveillance of SARS-CoV-2 infections in UK cats as the virus continues to evolve.
Collapse
Affiliation(s)
- Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Chloe Montreuil-Spencer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Hagar Sasvari
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Leigh Marshall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Duijvestijn MBHM, Schuurman NNMP, Vernooij JCM, van Leeuwen MAJM, Bosch BJ, van den Brand JMA, Wagenaar JA, van Kuppeveld FJM, Egberink HF, Verhagen JH. Serological Survey of Retrovirus and Coronavirus Infections, including SARS-CoV-2, in Rural Stray Cats in The Netherlands, 2020-2022. Viruses 2023; 15:1531. [PMID: 37515217 PMCID: PMC10385588 DOI: 10.3390/v15071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Stray cats can host (zoonotic) viral pathogens and act as a source of infection for domestic cats or humans. In this cross-sectional (sero)prevalence study, sera from 580 stray cats living in 56 different cat groups in rural areas in The Netherlands were collected from October 2020 to July 2022. These were used to investigate the prevalence of the cat-specific feline leukemia virus (FeLV, n = 580), the seroprevalence of the cat-specific feline viruses feline immunodeficiency virus (FIV, n = 580) and feline coronavirus (FCoV, n = 407), and the zoonotic virus severe acute respiratory coronavirus-2 (SARS-CoV-2, n = 407) using enzyme-linked immunosorbent assays (ELISAs). ELISA-positive results were confirmed using Western blot (FIV) or pseudovirus neutralization test (SARS-CoV-2). The FIV seroprevalence was 5.0% (95% CI (Confidence Interval) 3.4-7.1) and ranged from 0-19.0% among groups. FIV-specific antibodies were more often detected in male cats, cats ≥ 3 years and cats with reported health problems. No FeLV-positive cats were found (95% CI 0.0-0.6). The FCoV seroprevalence was 33.7% (95% CI 29.1-38.5) and ranged from 4.7-85.7% among groups. FCoV-specific antibodies were more often detected in cats ≥ 3 years, cats with reported health problems and cats living in industrial areas or countryside residences compared to cats living at holiday parks or campsites. SARS-CoV-2 antibodies against the subunit 1 (S1) and receptor binding domain (RBD) protein were detected in 2.7% (95% CI 1.4-4.8) of stray cats, but sera were negative in the pseudovirus neutralization test and therefore were considered SARS-CoV-2 suspected. Our findings suggest that rural stray cats in The Netherlands can be a source of FIV and FCoV, indicating a potential risk for transmission to other cats, while the risk for FeLV is low. However, suspected SARS-CoV-2 infections in these cats were uncommon. We found no evidence of SARS-CoV-2 cat-to-cat spread in the studied stray cat groups and consider the likelihood of spillover to humans as low.
Collapse
Affiliation(s)
- Mirjam B H M Duijvestijn
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Nancy N M P Schuurman
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Johannes C M Vernooij
- Division of Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | | | - Berend-Jan Bosch
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Herman F Egberink
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Josanne H Verhagen
- Clinical Infectiology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
30
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
31
|
Pusterla N. Equine Coronaviruses. Vet Clin North Am Equine Pract 2023; 39:55-71. [PMID: 36737293 DOI: 10.1016/j.cveq.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In equids, equine coronavirus has been associated with diarrhea in foals and lethargy, fever, anorexia, and occasional gastrointestinal signs in adult horses. Although horses seem to be susceptible to the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) based on the high homology to the ACE-2 receptor, they seem to be incidental hosts because of occasional SARS-CoV-2 spillover from humans. However, until more clinical and seroepidemiological data are available, it remains important to monitor equids for possible transmission from humans with clinical or asymptomatic COVID-19.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
32
|
High seroprevalence of SARS-CoV-2 antibodies in household cats and dogs of Lebanon. Res Vet Sci 2023; 157:13-16. [PMID: 36842247 PMCID: PMC9942449 DOI: 10.1016/j.rvsc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
The COVID-19 pandemic has been declared in late 2019. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Flu-like symptoms and acute respiratory illnesses are the main manifestations of the disease. Recent studies have confirmed the susceptibility of domestic animals to SARS-CoV-2 infection. However, the seroprevalence of SARS-CoV-2 in household pets and the importance of pets in the epidemiology of this infection remain unknown. In Lebanon, there is no epidemiological data regarding SARS-CoV-2 infection in companion animals. Thus, this investigation aimed to determine the seroprevalence of SARS-CoV-2 antibodies in household pets of Lebanon during the COVID-19 pandemic. A cross-sectional study was carried out between April 2020 and February 2021. Blood samples from 145 cats and 180 dogs were collected from 12 veterinary clinics located in the North, Mount, and Beirut governorates. A validated ELISA assay was used to detect the anti- SARS-CoV-2 in the sera of the tested animals. An overall seroprevalence of 16.92% (55/325) was reported; 13.79% seroprevalence was found in cats (20/145) and 19.44% (35/180) in dogs. The young age and the cold season were significantly associated with an increased seropositivity rate to SARS-CoV-2 infection (P < 0.01). These results confirm the circulation of SARS-CoV-2 in household pets, in various geographical regions in Lebanon. Although, there is a lack of evidence to suggest that naturally infected pets could transmit the SARS-CoV-2 infection. Yet, owners diagnosed with COVID-19 should limit their contact with their animals during the course of the disease to curb the risk of transmission.
Collapse
|
33
|
Dunowska M. Cross-species transmission of coronaviruses with a focus on severe acute respiratory syndrome coronavirus 2 infection in animals: a review for the veterinary practitioner. N Z Vet J 2023:1-13. [PMID: 36927253 DOI: 10.1080/00480169.2023.2191349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractIn 2019 a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from an unidentified source and spread rapidly among humans worldwide. While many human infections are mild, some result in severe clinical disease that in a small proportion of infected people is fatal. The pandemic spread of SARS-CoV-2 has been facilitated by efficient human-to-human transmission of the virus, with no data to indicate that animals contributed to this global health crisis. However, a range of domesticated and wild animals are also susceptible to SARS-CoV-2 infection under both experimental and natural conditions. Humans are presumed to be the source of most animal infections thus far, although natural transmission between mink and between free-ranging deer has occurred, and occasional natural transmission between cats cannot be fully excluded. Considering the ongoing circulation of the virus among people, together with its capacity to evolve through mutation and recombination, the risk of the emergence of animal-adapted variants is not negligible. If such variants remain infectious to humans, this could lead to the establishment of an animal reservoir for the virus, which would complicate control efforts. As such, minimising human-to-animal transmission of SARS-CoV-2 should be considered as part of infection control efforts. The aim of this review is to summarise what is currently known about the species specificity of animal coronaviruses, with an emphasis on SARS-CoV-2, in the broader context of factors that facilitate cross-species transmission of viruses.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
34
|
Mesquita FP, Noronha Souza PF, Aragão DR, Diógenes EM, da Silva EL, Amaral JL, Freire VN, de Souza Collares Maia Castelo-Branco D, Montenegro RC. In silico analysis of ACE2 from different animal species provides new insights into SARS-CoV-2 species spillover. Future Virol 2023:10.2217/fvl-2022-0187. [PMID: 37064326 PMCID: PMC10096339 DOI: 10.2217/fvl-2022-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 04/18/2023]
Abstract
Aim: This study aimed to analyze the phylogenetic relationships between the ACE2 of humans and other animals and investigate the potential interaction between SARS-CoV-2 RBD and ACE2 of different species. Materials & methods: The phylogenetic construction and molecular interactions were assessed using computational models. Results & conclusion: Despite the evolutionary distance, 11 species had a perfect fit for the interaction between their ACE2 and SARS-CoV-2 RBD (Chinchilla lanigera, Neovison vison, Rhinolophus sinicus, Emballonura alecto, Saccopteryx bilineata, Numida meleagris). Among them, the avian N. meleagris was reported for the first time in this study as a probable SARS-CoV-2 host due to the strong molecular interactions. Therefore, predicting potential hosts for SARS-CoV-2 for understanding the epidemiological cycle and proposal of surveillance strategies.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, 60440-9003, Brazil
| | - Dyane Rocha Aragão
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
| | - Expedito Maia Diógenes
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, 60430-1404, Brazil
| | - Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
| | - Jackson Lima Amaral
- Department of Biochemistry & Molecular Biology, Federal University of Ceará, Fortaleza, 60440-9003, Brazil
| | | | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, 60430-1404, Brazil
- Author for correspondence: Tel.: +55 (85) 3366 8033;
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research & Development Center (N.P.D.M.), Federal University of Ceará, Fortaleza, 60430-2752, Brazil
- Author for correspondence: Tel.: +55 (85) 3366 8033;
| |
Collapse
|
35
|
Kadi H, Kurucay HN, Elhag AE, Dogan F, Yildirim S, Tutuncu H, Muftuoglu B, Tamer C, Okur Gumusova S, Yazici Z, Mesquita JR, Albayrak H. A one-year extensive molecular survey on SARS-CoV-2 in companion animals of Turkey shows a lack of evidence for viral circulation in pet dogs and cats. Vet Anim Sci 2023; 19:100280. [PMID: 36582670 PMCID: PMC9792910 DOI: 10.1016/j.vas.2022.100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current evidence have now demonstrated that SARS-CoV-2 infects a wide array of mammalian animals; however, the full range of hosts and the viral circulation in companion animals remains to be clarified. In this context, as no such evidenced cases have been reported from Turkey, we aimed to screen for SARS-CoV-2 nucleic acid in housed dogs and cats clinically evaluated for respiratory symptoms and reared in different locations of Samsun province in the black sea region of Turkey from July 2020 to July 2021. Nasal swabs were collected from a total of 415 pets (65 cats and 350 dogs) aged between 1 and 9 years old. All the specimens were tested for SARS-CoV-2 RNA presence by real-time RT-PCR targeting two genomic regions of SARS-CoV-2, but none showed positive results. Our findings suggest that SARS-CoV-2 does not circulate in local pets and is not responsible for respiratory symptoms. However, further comprehensive molecular and serological surveys are required to have a better picture of the zoonotic, reverse zoonotic and pathogenic consequences of the ongoing COVID-19 pandemic in Turkey.
Collapse
Affiliation(s)
- Hamza Kadi
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Hanne Nur Kurucay
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Ahmed Eisa Elhag
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary Sciences, University of Gadarif, P.O.Box.449, 32211, Al Qadarif, Sudan
| | - Fatih Dogan
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Serdar Yildirim
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Hakan Tutuncu
- Department of Virology, Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, 55200 Atakum, Samsun, Turkey
| | - Bahadir Muftuoglu
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Cuneyt Tamer
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Semra Okur Gumusova
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Harun Albayrak
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| |
Collapse
|
36
|
Low Prevalence of SARS-CoV-2 Antibodies in Canine and Feline Serum Samples Collected during the COVID-19 Pandemic in Hong Kong and Korea. Viruses 2023; 15:v15020582. [PMID: 36851796 PMCID: PMC9967295 DOI: 10.3390/v15020582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide since its emergence in 2019. Knowing the potential capacity of the virus to adapt to other species, the serological surveillance of SARS-CoV-2 infection in susceptible animals is important. Hong Kong and Seoul are two of Asia's most densely populated urban cities, where companion animals often live in close contact with humans. Sera collected from 1040 cats and 855 dogs during the early phase of the pandemic in Hong Kong and Seoul were tested for SARS-CoV-2 antibodies using an ELISA that detects antibodies against the receptor binding domain of the viral spike protein. Positive sera were also tested for virus neutralizing antibodies using a surrogate virus neutralization (sVNT) and plaque reduction neutralization test (PRNT). Among feline sera, 4.51% and 2.54% of the samples from Korea and Hong Kong, respectively, tested ELISA positive. However, only 1.64% of the samples from Korea and 0.18% from Hong Kong tested positive by sVNT, while only 0.41% of samples from Korea tested positive by PRNT. Among canine samples, 4.94% and 6.46% from Korea and Hong Kong, respectively, tested positive by ELISA, while only 0.29% of sera from Korea were positive on sVNT and no canine sera tested positive by PRNT. These results confirm a low seroprevalence of SARS-CoV-2 exposure in companion animals in Korea and Hong Kong. The discordance between the RBD-ELISA and neutralization tests may indicate possible ELISA cross-reactivity with other coronaviruses, especially in canine sera.
Collapse
|
37
|
Santaniello A, Perruolo G, Cristiano S, Agognon AL, Cabaro S, Amato A, Dipineto L, Borrelli L, Formisano P, Fioretti A, Oriente F. SARS-CoV-2 Affects Both Humans and Animals: What Is the Potential Transmission Risk? A Literature Review. Microorganisms 2023; 11:microorganisms11020514. [PMID: 36838479 PMCID: PMC9959838 DOI: 10.3390/microorganisms11020514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In March 2020, the World Health Organization Department declared the coronavirus (COVID-19) outbreak a global pandemic, as a consequence of its rapid spread on all continents. The COVID-19 pandemic has been not only a health emergency but also a serious general problem as fear of contagion and severe restrictions put economic and social activity on hold in many countries. Considering the close link between human and animal health, COVID-19 might infect wild and companion animals, and spawn dangerous viral mutants that could jump back and pose an ulterior threat to us. The purpose of this review is to provide an overview of the pandemic, with a particular focus on the clinical manifestations in humans and animals, the different diagnosis methods, the potential transmission risks, and their potential direct impact on the human-animal relationship.
Collapse
Affiliation(s)
- Antonio Santaniello
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Giuseppe Perruolo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cristiano
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
- Correspondence: (A.S.); (S.C.); Tel.: +39-081-253-6134 (A.S.)
| | - Ayewa Lawoe Agognon
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Serena Cabaro
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Amato
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Production, Federico II University of Naples, 80134 Naples, Italy
| | - Francesco Oriente
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
38
|
Guo R, Wolff C, Prada JM, Mughini-Gras L. When COVID-19 sits on people's laps: A systematic review of SARS-CoV-2 infection prevalence in household dogs and cats. One Health 2023; 16:100497. [PMID: 36778083 PMCID: PMC9896854 DOI: 10.1016/j.onehlt.2023.100497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
During the COVID-19 pandemic, questions were raised about whether SARS-CoV-2 can infect pets and the potential risks posed to and by their human owners. We performed a systematic review of studies on SARS-CoV-2 infection prevalence in naturally infected household dogs and cats conducted worldwide and published before January 2022. Data on SARS-CoV-2 infection prevalence, as determined by either molecular or serological methods, and accompanying information, were summarized. Screening studies targeting the general dog or cat populations were differentiated from those targeting households with known COVID-19-positive people. Studies focusing on stray, sheltered or working animals were excluded. In total, 17 studies were included in this review. Fourteen studies investigated cats, 13 investigated dogs, and 10 investigated both. Five studies reported molecular prevalence, 16 reported seroprevalence, and four reported both. All but two studies started and ended in 2020. Studies were conducted in eight European countries (Italy, France, Spain, Croatia, Germany, the Netherlands, UK, Poland), three Asian countries (Iran, Japan, China) and the USA. Both molecular and serological prevalence in the general pet population were usually below 5%, but exceeded 10% when COVID-19 positive people were known to be present in the household. A meta-analysis provided pooled seroprevalence estimates in the general pet population: 2.75% (95% Confidence Interval [CI]: 1.56-4.79%) and 0.82% (95% CI: 0.26-2.54%) for cats and dogs, respectively. This review highlighted the need for a better understanding of the possible epizootic implications of the COVID-19 pandemic, as well as the need for global standards for SARS-CoV-2 detection in pets.
Collapse
Affiliation(s)
- Ruoshui Guo
- Utrecht University, Utrecht, the Netherlands
| | | | | | - Lapo Mughini-Gras
- Utrecht University, Utrecht, the Netherlands,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands,Corresponding author at: National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Antonie van Leeuwenhoeklaan 9, 3721MA Bilthoven, Utrecht, the Netherlands.
| |
Collapse
|
39
|
El-Tholoth M, Hussein M, Mohammed D, Al-Rasheedi M, Al-Qubaisi H, Al-Blooshi A, Al-Ahbabi M, Al-Dhaheri Z, Al-Blooshi K, Al-Herbawi M, Abo Elfadl EA, Seboussi R. Serological Investigation on the Presence of Feline Coronavirus (FCoV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Domestic Cats Living with COVID-19 Positive Owners in the UAE, 2022. Animals (Basel) 2023; 13:ani13030493. [PMID: 36766382 PMCID: PMC9913769 DOI: 10.3390/ani13030493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Feline coronavirus (FCoV) is widely circulating among domestic cats (Felis catus). The zoonotic origin of the emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the biological characteristics of CoVs, including the ability to cross interspecies barriers, facilitate its emergence in different animals, including cats' populations. The current study is the first to report the serological investigation on the presence of FCoV and SARS-CoV-2 in domestic cats living with COVID-19-positive owners in the UAE. A total of 83 sera were collected from domestic cats living with COVID-19-positive owners (by RT-qPCR). The cats were sampled during the period between February and May 2022 in Al-Ain and Abu Dhabi Cities, UAE. Detection of FCoV and SARS-CoV-2 was carried out by enzyme-linked immunosorbent assay (ELISA). FCoV antibodies were detected in 54 samples (65%). The frequencies of FCoV were significantly higher in purebred cats (48%; 40/83) and in the cat group with outdoor access (49.4%; 41/83). SARS-CoV-2 seroprevalence in collected sera revealed 8 samples (9.6%) with positive results. Four samples (4.8%) showed positive results for both FCoV and SARS-CoV-2 antibodies. In conclusion, FCoV is widely circulating within cats' populations involved in the study. The antibodies for SARS-CoV-2 were detected in cats' populations but at a low prevalence rate. COVID-19-positive people should avoid close contact with their cats. Future serological testing of large cats' populations is crucial for providing a good understanding of COVID-19 dynamics in cats.
Collapse
Affiliation(s)
- Mohamed El-Tholoth
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or
| | - Mahmoud Hussein
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Dina Mohammed
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Majed Al-Rasheedi
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Hamad Al-Qubaisi
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Abdullah Al-Blooshi
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Mohammed Al-Ahbabi
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Zayed Al-Dhaheri
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Khalifa Al-Blooshi
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| | - Majd Al-Herbawi
- Animal Development & Health Department, Ministry of Climate Change and Environment (MOCCAE), Dubai P.O. Box 1509, United Arab Emirates
| | - Eman A. Abo Elfadl
- Department of Animal Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rabiha Seboussi
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain P.O. Box 17155, United Arab Emirates
| |
Collapse
|
40
|
Panzera Y, Mirazo S, Baz M, Techera C, Grecco S, Cancela F, Fuques E, Condon E, Calleros L, Camilo N, Fregossi A, Vaz I, Pessina P, Deshpande N, Pérez R, Benech A. Detection and genome characterisation of SARS-CoV-2 P.6 lineage in dogs and cats living with Uruguayan COVID-19 patients. Mem Inst Oswaldo Cruz 2023; 117:e220177. [PMID: 36651456 PMCID: PMC9870267 DOI: 10.1590/0074-02760220177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.
Collapse
Affiliation(s)
- Yanina Panzera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay,+ Corresponding author:
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay,Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Claudia Techera
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Sofía Grecco
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Florencia Cancela
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Eddie Fuques
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Emma Condon
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Lucía Calleros
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Natalia Camilo
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Andrea Fregossi
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Inés Vaz
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| | - Paula Pessina
- Universidad de la República, Facultad de Veterinaria, Laboratorio Clínico del Hospital Veterinario, Montevideo, Uruguay
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Ruben Pérez
- Universidad de la República, Facultad de Ciencias, Instituto de Biología, Departamento de Biología Animal, Sección Genética Evolutiva, Montevideo, Uruguay
| | - Alejandro Benech
- Universidad de la República, Facultad de Veterinaria, Unidad de Clínica y Hospital Veterinario, Montevideo, Uruguay
| |
Collapse
|
41
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Pourbagher-Shahri AM, Mohammadi G, Ghazavi H, Forouzanfar F. Susceptibility of domestic and companion animals to SARS-CoV-2: a comprehensive review. Trop Anim Health Prod 2023; 55:60. [PMID: 36725815 PMCID: PMC9891761 DOI: 10.1007/s11250-023-03470-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large global outbreak. The reports of domestic animals' infection with SARS-CoV-2 raise concerns about the virus's longer-lasting spread, the establishment of a new host reservoir, or even the evolution of a new virus, as seen with COVID-19. In this review, we focus on the susceptibility of domestic animals, especially companion animals, towards SARS-CoV-2 in light of existing studies of natural infection, experimental infection, and serological surveys. Susceptibility of domestic and companion animals to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Hamdy ME, El‐Deeb AH, Hagag NM, Shahein MA, Liyanage NPM, Shalaan M, Hussein HA. SARS-CoV-2 infection of companion animals in Egypt and its risk of spillover. Vet Med Sci 2022; 9:13-24. [PMID: 36516308 PMCID: PMC9857097 DOI: 10.1002/vms3.1029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reverse zoonoses occur because of interactions between humans and animals. Homology of ACE-2 cell receptors in different hosts and high mutation rate of SARS-CoV-2 enhance viral transmission among species. OBJECTIVES This study aimed to investigate spillover of SARS-CoV-2 between humans and companion animals. METHODS A cross-sectional study was constructed using nasopharyngeal/oropharyngeal swabs, serum and blood samples collected from 66 companion animals (33 cats and 33 dogs) that were in contact with SARS-CoV-2-positive owners from December 2020 to March 2021. Swabs were screened by rRT-PCR and some positive cases were confirmed by partial spike gene sequencing. Clinical pathology and pathological studies were also performed. RESULTS Our findings revealed that 30% of cats (10/33) and 24% of dogs (8/33) were SARS-CoV-2 positive. While 33% of these animals were asymptomatic (6/18), 28% showed mild respiratory signs (5/18) and 39% displayed severe respiratory signs (7/18) including 4 dead cats 40% (4/10). Partial spike gene sequencing of 6 positive samples collected in December 2020 were identical to SARS-CoV-2 that was detected in humans in Egypt in that time frame. Clinical pathology findings revealed thrombocytopenia, lymphocytopenia, as well as elevated levels of D-dimer, LDH, CRP, and ferritin. Post-mortem and histopathological examinations illustrated multisystemic effects. CONCLUSIONS There is a potential occurrence of SARS-CoV-2 spillover between humans and pet animals. IMPACTS The present study highlighted the potential occurrence of SARS-CoV-2 spillover between humans and their companion animals. Biosecurity measures should be applied to decrease spread of SARS-CoV-2 among humans and pet animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research InstituteAgriculture Research CentreGizaEgypt
| | - Ayman H. El‐Deeb
- Department of VirologyFaculty of Veterinary Medicine, Cairo UniversityGizaEgypt,Department of VirologyFaculty of Veterinary MedicineKing Salman International UniversitySouth SinaiEgypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research InstituteAgriculture Research CentreGizaEgypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research InstituteAgriculture Research CentreGizaEgypt
| | - Namal P. M. Liyanage
- Department of Microbial Infection and Immunity, College of MedicineOhio State UniversityColumbusOhioUSA,Department of Veterinary Biosciences, College of Veterinary MedicineOhio State UniversityColumbusOhioUSA
| | - Mohamed Shalaan
- Faculty of Veterinary MedicineDepartment of PathologyCairo UniversityGizaEgypt
| | - Hussein A. Hussein
- Department of VirologyFaculty of Veterinary Medicine, Cairo UniversityGizaEgypt
| |
Collapse
|
45
|
Panei CJ, Bravi ME, Moré G, De Felice L, Unzaga JM, Salina M, Rivero FD, Di Lullo D, Pecoraro M, Alvarez D, Castro E, Fuentealba NA. Serological evidence of SARS-CoV-2 infection in pets naturally exposed during the COVID-19 outbreak in Argentina. Vet Immunol Immunopathol 2022; 254:110519. [PMID: 36434944 PMCID: PMC9664835 DOI: 10.1016/j.vetimm.2022.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has rapidly spread worldwide. The monitoring of animals has shown that certain species may be susceptible to be infected with the virus. The present study aimed to evaluate the presence of SARS-CoV-2 antibodies by ELISA and virus neutralization (VN) in pets from owners previously confirmed as COVID-19-positive in Argentina. Serum samples of 38 pets (seven cats and 31 dogs) were obtained for SARS-CoV-2 antibody detection. Three out of the seven cats and 14 out of the 31 dogs were positive for SARS-CoV-2 by ELISA, and one cat and six dogs showed the presence of neutralizing antibodies in which the cat and two of the six dogs showed high titers. Another dog from which three serum samples had been obtained within eight months from the diagnosis of its owner showed the presence of antibodies at different times by both ELISA and VN. However, the results showed that the antibodies decreased slightly from the first to the third sample. Our results provide evidence that SARS-CoV-2 infection in pets living with COVID-19-positive humans from Argentina during the outbreak of SARS-CoV-2 can be detected by serology assay.
Collapse
Affiliation(s)
- Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - María Emilia Bravi
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Gastón Moré
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorena De Felice
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina
| | - Juan Manuel Unzaga
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina
| | - Marcos Salina
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| | - Fernando David Rivero
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Villa El Zanjón, Ruta Nacional Nº 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - David Di Lullo
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Villa El Zanjón, Ruta Nacional Nº 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - Marcelo Pecoraro
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina,Escuela de Bio y Nanotecnologías (EByN), UNSAM, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina,Instituto de Virología e Innovaciones Tecnológicas (IVIT), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA) - CONICET, Argentina
| | - Nadia Analía Fuentealba
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina,Corresponding author at: Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Wang A, Zhu X, Chen Y, Sun Y, Liu H, Ding P, Zhou J, Liu Y, Liang C, Yin J, Zhang G. Serological survey of SARS-CoV-2 in companion animals in China. Front Vet Sci 2022; 9:986619. [PMID: 36532346 PMCID: PMC9748147 DOI: 10.3389/fvets.2022.986619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 08/09/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be transmitted from human to companion animals. The national wide serological surveillance against SARS-CoV-2 was conducted among pet animals, mainly in cats and dogs, 1 year after the first outbreak of COVID-19 in China. All sera were tested for SARS-CoV-2 IgG antibodies using an indirect enzyme linked immunosorbent assay (ELISA) based on the receptor binding domain (RBD) of spike protein. This late survey takes advantage of the short duration of the serological response in these animals to track recent episode of transmission. A total of 20,592 blood samples were obtained from 25 provinces across 7 geographical regions. The overall seroprevalence of SARS-CoV-2 infections in cats was 0.015% (2/13397; 95% confidence intervals (CI): 0.0, 0.1). The virus infections in cats were only detected in Central (Hubei, 0.375%) and Eastern China (Zhejiang, 0.087%) with a seroprevalence estimated at 0.090 and 0.020%, respectively. In dogs, the seroprevalence of SARS-CoV-2 infections was 0.014% (1/7159; 95% CI: 0.0, 0.1) in the entire nation, seropositive samples were limited to Beijing (0.070%) of Northern China with a prevalence of 0.054%. No seropositive cases were discovered in other geographic regions, nor in other companion animals analyzed in this study. These data reveal the circulation of SARS-CoV-2 in companion animals, although transmission of the virus to domestic cats and dogs is low in China, continuous monitoring is helpful for the better understand of the virus transmission status and the effect on animals.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Yaning Sun
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiajia Yin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Mollentze N, Keen D, Munkhbayar U, Biek R, Streicker DG. Variation in the ACE2 receptor has limited utility for SARS-CoV-2 host prediction. eLife 2022; 11:e80329. [PMID: 36416537 PMCID: PMC9683784 DOI: 10.7554/elife.80329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022] Open
Abstract
Transmission of SARS-CoV-2 from humans to other species threatens wildlife conservation and may create novel sources of viral diversity for future zoonotic transmission. A variety of computational heuristics have been developed to pre-emptively identify susceptible host species based on variation in the angiotensin-converting enzyme 2 (ACE2) receptor used for viral entry. However, the predictive performance of these heuristics remains unknown. Using a newly compiled database of 96 species, we show that, while variation in ACE2 can be used by machine learning models to accurately predict animal susceptibility to sarbecoviruses (accuracy = 80.2%, binomial confidence interval [CI]: 70.8-87.6%), the sites informing predictions have no known involvement in virus binding and instead recapitulate host phylogeny. Models trained on host phylogeny alone performed equally well (accuracy = 84.4%, CI: 75.5-91.0%) and at a level equivalent to retrospective assessments of accuracy for previously published models. These results suggest that the predictive power of ACE2-based models derives from strong correlations with host phylogeny rather than processes which can be mechanistically linked to infection biology. Further, biased availability of ACE2 sequences misleads projections of the number and geographic distribution of at-risk species. Models based on host phylogeny reduce this bias, but identify a very large number of susceptible species, implying that model predictions must be combined with local knowledge of exposure risk to practically guide surveillance. Identifying barriers to viral infection or onward transmission beyond receptor binding and incorporating data which are independent of host phylogeny will be necessary to manage the ongoing risk of establishment of novel animal reservoirs of SARS-CoV-2.
Collapse
Affiliation(s)
- Nardus Mollentze
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Deborah Keen
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Uuriintuya Munkhbayar
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Roman Biek
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Daniel G Streicker
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
48
|
Stanojevic S, Radojicic S, Misic D, Srejić D, Vasiljevic DV, Prokic K, Ilić N. Frequency of SARS-CoV-2 infection in dogs and cats: Results of a retrospective serological survey in Šumadija District, Serbia. Prev Vet Med 2022; 208:105755. [PMID: 36126551 PMCID: PMC9467926 DOI: 10.1016/j.prevetmed.2022.105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
It has long been known that coronaviruses cause various infectious diseases in animals. Although SARS-CoV-2 is genetically related to viruses isolated from Rhinolophus bats, the exact origin, mode of transmission, and how the human species has become the epidemiological reservoir of the virus have not yet been established with certainty. Although the main route of transmission is human-to-human, there are considerable numbers of reported cases of infection in animal species, predominantly among pet animals. The aim of this retrospective study was to assess SARS-CoV-2 seropositivity in dogs and cats during the COVID-19 pandemic in Šumadija District, Serbia. We used serology to identify household contacts of pet animals with infected pet owners and the degree of association. The study presented in this paper is also the first study of this type in Serbia. The results of a retrospective serosurvey, which was conducted in dogs and cats with different exposure risk factors, were analyzed to find the possible modes of transmission between humans and animals. The relative frequency of SARS-CoV-2 infection in dogs was 1.45% bounded with a 95% confidence interval (CI) of 0.0007-7.73%, while in cats, it was 5.56% (95% CI: 0.77-4.13%). The relative frequency of SARS-CoV-2 infection in pet owners was 11% (95% CI: 6.25-18.63%). In pets that were in close contact with COVID-19 positive owners, the seropositivity was found to be 9%. Out of a total of five stray dogs and cats tested, seropositivity was observed in two animals. Detected SARS-CoV-2 infection in pets shows that these animals are susceptible to infection and that the most common means of virus transmission to pets is through contact with diseased owners. However, the presence of infection in stray dogs and cats is not clear and needs further research.
Collapse
Affiliation(s)
- Slavoljub Stanojevic
- Directorate of National Reference Laboratories, Batajnicki Drum 10, 11080 Zemun, Serbia,Corresponding author
| | - Sonja Radojicic
- University of Belgrade, Faculty of Veterinary Medicine, Department of Infectious Animal Diseases and Diseases of Bees, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dusan Misic
- Wroclaw University of Environmental and Life Sciences, Department of Functional Foods Development, Chelmonskiego Street, 37,51-630 Wroclaw, Poland
| | - Damjan Srejić
- KragujVet Veterinary Clinic, Luja Pastera 2, 34000 Kragujevac, Serbia
| | - Dragan V. Vasiljevic
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, Kragujevac, Serbia,Public Health Institute Kragujevac, Center for Hygiene and Human Ecology, Nikole Pasica 1, 34000 Kragujevac, Serbia
| | - Kristina Prokic
- Public Health Institute Kragujevac, Center for Hygiene and Human Ecology, Nikole Pasica 1, 34000 Kragujevac, Serbia
| | - Nevenka Ilić
- Public Health Institute Kragujevac, Center for Hygiene and Human Ecology, Nikole Pasica 1, 34000 Kragujevac, Serbia
| |
Collapse
|
49
|
Kleinerman G, Gross S, Topol S, Ariel E, Volokh G, Melloul S, Mergy SE, Malamud Y, Gilboa S, Gal Y, Weiss L, Richt JA, Decaro N, Eskandar S, Arieli Y, Gingis E, Sachter Y, Chaim L. Low serological rate of SARS-CoV-2 in cats from military bases in Israel. Comp Immunol Microbiol Infect Dis 2022; 90-91:101905. [PMID: 36356507 PMCID: PMC9632235 DOI: 10.1016/j.cimid.2022.101905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
Abstract
Domestic cats are susceptible to SARS-CoV-2 infection and can transmit the virus to other felines. A high number of COVID-19 human cases within the military personnel and a high density of stray cats living close to soldiers raised the need to perform active animal surveillance. We validated a novel quantitative serological microarray for use in cats, that enables simultaneous detection of IgG and IgM responses; in addition, molecular genetic SARS-CoV-2 detection was performed. Three out of 131 cats analyzed, showed IgG antibodies against SARS-CoV-2 RBD and S2P (2.3 %). None of cats were positive for SARS-CoV-2 RNA by RT-PCR. SARS-CoV-2 infection rate in soldiers ranged from 4.7 % to 16 % (average rate=8.9 %). Further investigations on a larger cohort are necessary, in the light of the emerging new viral variants in other animal species and in humans.
Collapse
Affiliation(s)
- Gabriela Kleinerman
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel.
| | - Saar Gross
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Shira Topol
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Ella Ariel
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Gerry Volokh
- Emek HaMaayanot Regional Veterinary Service, Emek Beit She'an 11710, Israel
| | - Sivan Melloul
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Shani Etty Mergy
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yaakov Malamud
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Sagi Gilboa
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yoav Gal
- Chemical, Biological, Radiological and Nucleal Defense Diviosion, Israeli Ministry of Defense, HaKiria, Tel Aviv 61909, Israel
| | - Libby Weiss
- Chemical, Biological, Radiological and Nucleal Defense Diviosion, Israeli Ministry of Defense, HaKiria, Tel Aviv 61909, Israel
| | - Juergen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nicola Decaro
- Department of VeterinaryMedicine, University of Bari, 70010 Valenzano, Bari, Italy
| | - Shadi Eskandar
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yarden Arieli
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Efrat Gingis
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Yacov Sachter
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| | - Lavie Chaim
- Preventive medicine branch, Medical Corps, Israel Defense Forces, Tel Hashomer Camp, 5510802, Qriat Ono, Israel
| |
Collapse
|
50
|
Rajendran M, Babbitt GA. Persistent cross-species SARS-CoV-2 variant infectivity predicted via comparative molecular dynamics simulation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220600. [PMID: 36340517 PMCID: PMC9626255 DOI: 10.1098/rsos.220600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Widespread human transmission of SARS-CoV-2 highlights the substantial public health, economic and societal consequences of virus spillover from wildlife and also presents a repeated risk of reverse spillovers back to naive wildlife populations. We employ comparative statistical analyses of a large set of short-term molecular dynamic (MD) simulations to investigate the potential human-to-bat (genus Rhinolophus) cross-species infectivity allowed by the binding of SARS-CoV-2 receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2) across the bat progenitor strain and emerging human strain variants of concern (VOC). We statistically compare the dampening of atom motion across protein sites upon the formation of the RBD/ACE2 binding interface using various bat versus human target receptors (i.e. bACE2 and hACE2). We report that while the bat progenitor viral strain RaTG13 shows some pre-adaption binding to hACE2, it also exhibits stronger affinity to bACE2. While early emergent human strains and later VOCs exhibit robust binding to both hACE2 and bACE2, the delta and omicron variants exhibit evolutionary adaption of binding to hACE2. However, we conclude there is a still significant risk of mammalian cross-species infectivity of human VOCs during upcoming waves of infection as COVID-19 transitions from a pandemic to endemic status.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|