1
|
Zhang X, Sha Y, Wu Y, Guan H, Yang X, Wang W, Zhang W, Liu Y, Zhu L, Li Q. Targeting endothelial cells: A novel strategy for pulmonary fibrosis treatment. Eur J Pharmacol 2025; 997:177472. [PMID: 40054716 DOI: 10.1016/j.ejphar.2025.177472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Endothelial cells (ECs) are a monolayer of flat cells lining the inner surfaces of blood and lymphatic vessels. They play a key role in many physiological and pathological processes. Specifically, they maintain vascular permeability and structural stability and participate in immune responses, inflammation, coagulation, and other vital functions. ECs play a decisive role in various age-related diseases; however, their involvement in pulmonary fibrosis (PF) remains poorly understood. PF refers to a group of chronic interstitial lung diseases characterised by progressive scarring of the pulmonary parenchyma, primarily caused by aberrant tissue repair mechanisms. These changes lead to irreversible loss of lung function. Although the exact pathophysiological mechanism underlying PF has not yet been elucidated, recent studies have indicated that ECs may play a pivotal role in PF. This review outlines the involvement of pulmonary vascular ECs in PF, focusing on the regulation of vascular remodelling and endothelial barrier integrity and on the maintenance of angiogenesis through EC-specific markers, such as vascular endothelial growth factor. This review also explores processes such as endothelial-to-mesenchymal transition, immune cell interactions, anti-EC antibody reactions, metabolic dysregulation, and cellular senescence. By elucidating recent advancements in understanding the role of ECs in PF and examining drugs targeting ECs for the treatment of PF, this study provides novel insights into the pathological mechanisms of PF and the development of endothelium-based therapeutic agents.
Collapse
Affiliation(s)
- Xin Zhang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuxia Sha
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yu Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Haiyang Guan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xu Yang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Wenjin Wang
- Medical College, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Wenlong Zhang
- Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yunyun Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lili Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qing Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Jia L, Ma M, Xiong W, Zhu J, Cai Y, Chen Y, Jin J, Gao M. Evaluating the Anti-inflammatory Potential of JN-KI3: The Therapeutic Role of PI3Kγ-Selective Inhibitors in Asthma Treatment. Inflammation 2025:10.1007/s10753-024-02180-6. [PMID: 39776396 DOI: 10.1007/s10753-024-02180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma. There are few studies reporting on the therapeutic effects of PI3Kγ-selective inhibitors in asthma disease. In this study, we investigated the anti-inflammatory and therapeutic effects of PI3Kγ-selective inhibitor JN-KI3 for treating asthma by utilizing both in vivo and in vitro approaches, thereby proving that PI3Kγ-selective inhibitors could be valuable in the treatment of asthma. In RAW264.7 macrophages, JN-KI3 effectively suppressed C5a-induced Akt phosphorylation in a concentration-dependent manner, with no discernible toxicity observed in RAW264.7 cells. Furthermore, JN-KI3 can inhibit the PI3K/Akt signaling pathway in lipopolysaccharide-induced RAW264.7 cells, leading to the suppression of transcription and expression of the classical inflammatory cytokines in a concentration-dependent manner. Finally, an ovalbumin-induced murine asthma model was constructed to evaluate the initial therapeutic effect of JN-KI3 for treating asthma. Oral administration of JN-KI3 inhibited the infiltration of inflammatory cells and the expression of T-helper type 2 cytokines in bronchoalveolar lavage fluid, which was associated with the suppression of the PI3K signaling pathway. Lung tissue and immunohistochemical studies demonstrated that JN-KI3 inhibited the accumulation of inflammatory cells around the bronchus and blood vessels, as well as the secretion of mucus and excessive deposition of collagen around the airway. In addition, it reduced the infiltration of white blood cells into the lungs. In summary, JN-KI3 shows promise as a candidate for the treatment of asthma. Our study also suggests that the inhibitory effects of PI3Kγ on inflammation could offer an additional therapeutic strategy for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengyun Ma
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Mingzhu Gao
- Department of Clinical Research Center for Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, 214000, Jiangsu, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Liang X, Hu Y, Li X, Xu X, Chen Z, Han Y, Han Y, Lang G. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia. Neurochem Int 2025; 182:105917. [PMID: 39675432 DOI: 10.1016/j.neuint.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) is a signaling protein that is constitutively expressed in immune competent cells and plays a crucial role in cell proliferation, apoptosis, migration, deformation, and immunology. Several studies have shown that high expression of PI3Kγ can inhibit the occurrence of inflammation in microglia while also regulating the polarization of microglia to inhibit inflammation and enhance microglial migration and phagocytosis. It is well known that the regulation of microglial polarization, migration, and phagocytosis is key to the treatment of most neurodegenerative diseases. Therefore, in this article, we review the important regulatory role of PI3Kγ in microglia to provide a basis for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinghua Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xinyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| | - Xi Xu
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Zhonglan Chen
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yalin Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Yingying Han
- The Special Key Laboratory of Oral Diseases Research Institution of Higher Education in Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China; Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
4
|
Redente EF. The Hidden Link between Chronic Kidney Disease and Lung Injury. Am J Respir Cell Mol Biol 2024; 71:628-629. [PMID: 39137327 PMCID: PMC11622630 DOI: 10.1165/rcmb.2024-0326ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Elizabeth F Redente
- Department of Pediatrics National Jewish Health Denver, Colorado
- Department of Medicine University of Colorado School of Medicine Aurora, Colorado
| |
Collapse
|
5
|
Yang X, Bai H, Yuan X, Yang X, Liu Y, Guo M, Hu N, Jiang B, Lian Z, Ma Z, Wang J, Sun X, Zhang T, Su D, Wu Y, Li J, Wang F, Wang Z, Wang L, Liu X, Song X. A highly selective PI3Kδ inhibitor BGB-10188 shows superior preclinical anti-tumor activities and decreased on-target side effects on colon. Neoplasia 2024; 57:101053. [PMID: 39260132 PMCID: PMC11415975 DOI: 10.1016/j.neo.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
PI3Kδ is a key signal transduction molecule in normal and malignant B cells, as well as in T-regulatory cells, making it a promising target for treatment of hematologic malignancies through both direct killing and anti-tumor immunity regulation. BGB-10188 is a highly selective inhibitor of PI3Kδ, showing more than 3000 folds selectivity over other PI3K isoforms and no significant inhibition across tested kinases. BGB-10188 potently inhibited PI3Kδ with IC50s ranging from 1.7-16 nM through various in vitro assays and showed a long-lasting and strong target inhibition in mouse B cells in vivo. BGB-10188 showed significant antitumor effects in human B cell lymphoma xenograft models as single agent or in combination with the BTK inhibitor zanubrutinib. BGB-10188 showed significant Treg inhibition in blood but not in colon, along with less drug accumulation in colon compared with idelalisib, which is an approved PI3Kdelta inhibitor with high incidence of gastrointestinal side effects in clinic. In summary, BGB-10188 is a novel PI3Kδ inhibitor with high selectivity, potency and improved safety profile shown in preclinical studies, which is showing the potential as a best-in-class PI3Kδ inhibitor.
Collapse
Affiliation(s)
- Xiao Yang
- BeiGene Global Research, Beijing 102206, PR China
| | - Huichen Bai
- BeiGene Global Research, Beijing 102206, PR China
| | - Xi Yuan
- BeiGene Global Research, Beijing 102206, PR China
| | | | - Ye Liu
- BeiGene Global Research, Beijing 102206, PR China
| | - Mingming Guo
- BeiGene Global Research, Beijing 102206, PR China
| | - Nan Hu
- BeiGene Global Research, Beijing 102206, PR China
| | - Beibei Jiang
- BeiGene Global Research, Beijing 102206, PR China
| | - Zeqin Lian
- BeiGene Global Research, Beijing 102206, PR China
| | - Zhilong Ma
- BeiGene Global Research, Beijing 102206, PR China
| | | | - Xuebing Sun
- BeiGene Global Research, Beijing 102206, PR China
| | | | - Dan Su
- BeiGene Global Research, Beijing 102206, PR China
| | - Yue Wu
- BeiGene Global Research, Beijing 102206, PR China
| | - Jing Li
- BeiGene Global Research, Beijing 102206, PR China
| | - Fan Wang
- BeiGene Global Research, Beijing 102206, PR China
| | - Zhiwei Wang
- BeiGene Global Research, Beijing 102206, PR China
| | - Lai Wang
- BeiGene Global Research, Beijing 102206, PR China
| | - Xuesong Liu
- BeiGene Global Research, Beijing 102206, PR China
| | - Xiaomin Song
- BeiGene Global Research, Beijing 102206, PR China.
| |
Collapse
|
6
|
Yin X, Wang J, Ge M, Feng X, Zhang G. Designing Small Molecule PI3Kγ Inhibitors: A Review of Structure-Based Methods and Computational Approaches. J Med Chem 2024; 67:10530-10547. [PMID: 38988222 DOI: 10.1021/acs.jmedchem.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.
Collapse
Affiliation(s)
- Xiaoming Yin
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Jiaying Wang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Minghao Ge
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Xue Feng
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
| | - Guogang Zhang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| |
Collapse
|
7
|
Sun TT, Chen KX, Tao Y, Zhang GW, Zeng L, Lin M, Huang J, Hu Y. Effect of flow-optimized pressure control ventilation-volume guaranteed (PCV-VG) on postoperative pulmonary complications: a consort study. J Cardiothorac Surg 2024; 19:425. [PMID: 38978064 PMCID: PMC11229334 DOI: 10.1186/s13019-024-02881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Postoperative pulmonary complications (PPCs) after one-lung ventilation (OLV) significantly impact patient prognosis and quality of life. OBJECTIVE To study the impact of an optimal inspiratory flow rate on PPCs in thoracic surgery patients. METHODS One hundred eight elective thoracic surgery patients were randomly assigned to 2 groups in this consort study (control group: n = 53 with a fixed inspiratory expiratory ratio of 1:2; and experimental group [flow rate optimization group]: n = 55). Measurements of Ppeak, Pplat, PETCO2, lung dynamic compliance (Cdyn), respiratory rate, and oxygen concentration were obtained at the following specific time points: immediately after intubation (T0); immediately after starting OLV (T1); 30 min after OLV (T2); and 10 min after 2-lung ventilation (T4). The PaO2:FiO2 ratio was measured using blood gas analysis 30 min after initiating one-lung breathing (T2) and immediately when OLV ended (T3). The lung ultrasound score (LUS) was assessed following anesthesia and resuscitation (T5). The occurrence of atelectasis was documented immediately after the surgery. PPCs occurrences were noted 3 days after surgery. RESULTS The treatment group had a significantly lower total prevalence of PPCs compared to the control group (3.64% vs. 16.98%; P = 0.022). There were no notable variations in peak airway pressure, airway plateau pressure, dynamic lung compliance, PETCO2, respiratory rate, and oxygen concentration between the two groups during intubation (T0). Dynamic lung compliance and the oxygenation index were significantly increased at T1, T2, and T4 (P < 0.05), whereas the CRP level and number of inflammatory cells decreased dramatically (P < 0.05). CONCLUSION Optimizing inspiratory flow rate and utilizing pressure control ventilation -volume guaranteed (PCV-VG) mode can decrease PPCs and enhance lung dynamic compliance in OLV patients.
Collapse
Affiliation(s)
- Ting Ting Sun
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Ke Xin Chen
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Yong Tao
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Gong Wei Zhang
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Li Zeng
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Min Lin
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Jing Huang
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China
| | - Yue Hu
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), No.120, Chengbei Street, Dongsheng Street, Shuangliu District, Chengdu, 610200, China.
| |
Collapse
|
8
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
9
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
10
|
Attenuation of Ventilation-Enhanced Epithelial–Mesenchymal Transition through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model. Int J Mol Sci 2023; 24:ijms24065538. [PMID: 36982609 PMCID: PMC10053679 DOI: 10.3390/ijms24065538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Mechanical ventilation (MV) used in patients with acute lung injury (ALI) induces lung inflammation and causes fibroblast proliferation and excessive collagen deposition—a process termed epithelial–mesenchymal transition (EMT). Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating EMT during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, EMT, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase EMT through the PI3K-γ pathway. C57BL/6 mice, either wild-type or PI3K-γ-deficient, were exposed to 6 or 30 mL/kg MV for 5 h after receiving 5 mg/kg AS605240 intraperitoneally 5 days after bleomycin administration. We found that, after bleomycin exposure in wild-type mice, high-tidal-volume MV induced substantial increases in inflammatory cytokine production, oxidative loads, Masson’s trichrome staining level, positive staining of α-smooth muscle actin, PI3K-γ expression, and bronchial epithelial apoptosis (p < 0.05). Decreased respiratory function, antioxidants, and staining of the epithelial marker Zonula occludens-1 were also observed (p < 0.05). MV-augmented bleomycin-induced pulmonary fibrogenesis and epithelial apoptosis were attenuated in PI3K-γ-deficient mice, and we found pharmacological inhibition of PI3K-γ activity through AS605240 (p < 0.05). Our data suggest that MV augmented EMT after bleomycin-induced ALI, partially through the PI3K-γ pathway. Therapy targeting PI3K-γ may ameliorate MV-associated EMT.
Collapse
|
11
|
Yue YL, Zhang MY, Liu JY, Fang LJ, Qu YQ. The role of autophagy in idiopathic pulmonary fibrosis: from mechanisms to therapies. Ther Adv Respir Dis 2022; 16:17534666221140972. [PMID: 36468453 PMCID: PMC9726854 DOI: 10.1177/17534666221140972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with an extremely poor prognosis. Autophagy is a fundamental intracellular process involved in maintaining cellular homeostasis and regulating cell survival. Autophagy deficiency has been shown to play an important role in the progression of pulmonary fibrosis. This review focused on the six steps of autophagy, as well as the interplay between autophagy and other seven pulmonary fibrosis related mechanisms, which include extracellular matrix deposition, myofibroblast differentiation, epithelial-mesenchymal transition, pulmonary epithelial cell dysfunction, apoptosis, TGF-β1 pathway, and the renin-angiotensin system. In addition, this review also summarized autophagy-related signaling pathways such as mTOR, MAPK, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling during the development of IPF. Furthermore, this review also illustrated the commonly used autophagy detection methods, the currently approved antifibrotic drugs pirfenidone and nintedanib, and several prospective compounds targeting autophagy for the treatment of IPF.
Collapse
Affiliation(s)
- Yue-Liang Yue
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Yu Liu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Jun Fang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
12
|
Jiang Y, Pan Q, Zhu X, Liu J, Liu Z, Deng Y, Liu W, Liu Y. Knockdown of CCR3 gene inhibits Proliferation, migration and degranulation of eosinophils in mice by downregulating the PI3K/Akt pathway. Int Immunopharmacol 2022; 113:109439. [DOI: 10.1016/j.intimp.2022.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
|
13
|
Exploring PI3Kγ binding preference with Eganelisib, Duvelisib, and Idelalisib via energetic, pharmacophore and dissociation pathway analyses. Comput Biol Med 2022; 147:105642. [DOI: 10.1016/j.compbiomed.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
14
|
Abdellatif M, Eisenberg T, Heberle AM, Thedieck K, Kroemer G, Sedej S. Cardiac PI3K p110α attenuation delays aging and extends lifespan. Cell Stress 2022; 6:72-75. [PMID: 36447531 PMCID: PMC9662025 DOI: 10.15698/cst2022.08.270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is a key component of the insulin signaling pathway that controls cellular me-tabolism and growth. Loss-of-function mutations in PI3K signaling and other downstream effectors of the insulin signaling pathway extend the lifespan of various model organisms. However, the pro-longevity effect appears to be sex-specific and young mice with reduced PI3K signaling have increased risk of cardiac disease. Hence, it remains elusive as to whether PI3K inhibition is a valid strategy to delay aging and extend healthspan in humans. We recently demonstrated that reduced PI3K activity in cardiomyocytes delays cardiac growth, causing subnormal contractility and cardiopulmonary functional capacity, as well as increased risk of mortality at young age. In stark contrast, in aged mice, experi-mental attenuation of PI3K signaling reduced the age-dependent decline in cardiac function and extended maximal lifespan, suggesting a biphasic effect of PI3K on cardiac health and survival. The cardiac anti-aging effects of reduced PI3K activity coincided with enhanced oxida-tive phosphorylation and required increased autophagic flux. In humans, explanted failing hearts showed in-creased PI3K signaling, as indicated by increased phos-phorylation of the serine/threonine-protein kinase AKT. Hence, late-life cardiac-specific targeting of PI3K might have a therapeutic potential in cardiac aging and related diseases.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France
- BioTechMed Graz, 8010 Graz, Austria
| | - Tobias Eisenberg
- BioTechMed Graz, 8010 Graz, Austria
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Alexander Martin Heberle
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signalingg, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
- Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 7015, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
Identifying Active Compounds and Mechanisms of Citrus changshan-Huyou Y. B. Chang against URTIs-Associated Inflammation by Network Pharmacology in Combination with Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2156157. [PMID: 35873643 PMCID: PMC9300271 DOI: 10.1155/2022/2156157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Purpose. The ripe fruits of Citrus changshan-huyou, known as Quzhou Fructus Aurantii (QFA), have been commonly used for respiratory diseases. The purpose of this study was to investigate their active compounds and demonstrate their mechanism in the treatment of upper respiratory tract infections (URTIs) through network pharmacology and molecular docking. Methods. The prominent compounds of QFA were acquired from TCMSP database. Their targets were retrieved from SwissTargetPrediction database, and target genes associated with URTIs were collected from DisGeNET and GeneCards databases. The target protein-protein interaction (PPI) network was constructed by using STRING database and Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were enriched. Visual compound-target-pathway network was established with Cytoscape. The effects of compounds were verified on the inhibitory activities against phosphoinositide 3-kinases (PI3Ks). Finally, the molecular docking was carried out to confirm the binding affinity of the bioactive compounds and target proteins. Results. Five important active compounds, naringenin (NAR), tangeretin (TAN), luteolin (LUT), hesperetin (HES), and auraptene (AUR), were obtained. The enrichment analysis demonstrated that the pathways associated with inflammation mainly contained PI3K/Akt signalling pathway, TNF signalling pathway, and so on. The most important targets covering inflammation-related proteins might be PI3Ks. In vitro assays and molecular docking exhibited that TAN, LUT, and AUR acted as PI3Kγ inhibitors. Conclusion. The results revealed that QFA could treat URTIs through a multi-compound, multi-target, multi-pathway network, in which TAN, LUT, and AUR acted as PI3Kγ inhibitors, probably contributing to a crucial role in treatment of URTIs.
Collapse
|