1
|
Gurgo C, Fenizia C, McKinnon K, Hsia RC, Franchini G. Expression of HIV from a 1-LTR circular DNA in the absence of integration. Retrovirology 2025; 22:2. [PMID: 40098202 PMCID: PMC11912779 DOI: 10.1186/s12977-025-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Like all retroviruses, two kinds of viral DNA are present in the nucleus of HIV-infected cells: integrated DNA and a pool of unintegrated DNA containing linear and circular forms. For the most part, it has been difficult to examine the role of the unintegrated DNA forms in the viral life cycle in the presence of the integrated form, or to distinguish the respective contributions of the two circular DNA forms in the context of the unintegrated DNA. RESULTS In our approach, we constructed a 1-LTR circular form of HIV in order to study its expression in isolation from the other forms; we derived a linear genomic HIV DNA lacking the 5'-LTR (1-LTRHIV) from a molecular clone of HIV. This linear form is transcriptionally incompetent, but via circularization becomes a transcriptionally competent 1-LTR circle. When transfected into cells lacking CD4 where neither the spread of virus nor reinfection can occur, the linear or in vitro circularized form produces a fully infectious HIV. Virus expression is stable throughout cell division as measured on a per cell basis by flow cytometry. A progressive accumulation of copies of the circular form is observed in the presence of the cell growth inhibitor aphidicolin, suggestive of episomal amplification, for which we propose a model. CONCLUSION We demonstrate in this study that production of infectious virus is initiated and completed by the 1-LTR episomal form of HIV DNA in the absence of reinfection and integration. In addition, we show that the 1-LTR episomal form replicates in the absence of an origin of replication, and we propose a model for its amplification. In line with the work of others but following a different approach, we provide support for a potential role of episomal forms in HIV persistence. Our data highlight the biological complexity of HIV replication and the potential of the episomal form to contribute to the persistence of HIV.
Collapse
Affiliation(s)
- Corrado Gurgo
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Katherine McKinnon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ru-Ching Hsia
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. eLife 2022; 11:76004. [PMID: 35852143 PMCID: PMC9467514 DOI: 10.7554/elife.76004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.
Collapse
Affiliation(s)
- Colin LaMont
- Max Planck Institute for Dynamics and Self-Organization
| | | | | | | | | | | |
Collapse
|
4
|
Lai M, Maori E, Quaranta P, Matteoli G, Maggi F, Sgarbanti M, Crucitta S, Pacini S, Turriziani O, Antonelli G, Heeney JL, Freer G, Pistello M. CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Proviral DNA Circles with Reformed Long Terminal Repeats. J Virol 2021; 95:e0135821. [PMID: 34549986 PMCID: PMC8577360 DOI: 10.1128/jvi.01358-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 12/03/2022] Open
Abstract
Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs. These extrachromosomal elements were recovered and probed for residual activity through their transfection in uninfected cells. We discovered that they can be transcriptionally active in the presence of Tat and Rev. Although confirming that gene editing is a powerful tool to eradicate HIV-1 infection, this work highlights that, to achieve this goal, the LTRs must be cleaved in several pieces to avoid residual activity and minimize the risk of reintegration in the context of genomic instability, possibly caused by the off-target activity of Cas9. IMPORTANCE The excision of HIV-1 provirus from the host cell genome has proven feasible in vitro and, to some extent, in vivo. Among the different approaches, CRISPR/Cas9 is the most promising tool for gene editing. The present study underlines the remarkable effectiveness of CRISPR/Cas9 in removing the HIV-1 provirus from infected cells and investigates the fate of the excised HIV-1 genome. This study demonstrates that the free provirus may persist in the cell after editing and in appropriate circumstances may reactivate. As an episome, it might be transcriptionally active, especially in the presence of Tat and Rev. The persistence of the HIV-1 episome was strongly decreased by gene editing with multiple targets. Although gene editing has the potential to eradicate HIV-1 infection, this work highlights a potential issue that warrants further investigation.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eyal Maori
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paola Quaranta
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giulia Matteoli
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Stefania Crucitta
- Pharmacology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Pacini
- Hematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jonathan L. Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Giulia Freer
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
5
|
de Armas LR, Pallikkuth S, Rinaldi S, Pahwa R, Pahwa S. Implications of Immune Checkpoint Expression During Aging in HIV-Infected People on Antiretroviral Therapy. AIDS Res Hum Retroviruses 2020; 35:1112-1122. [PMID: 31578868 DOI: 10.1089/aid.2019.0135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Immune checkpoint molecules (ICMs) regulate T cell responses. In chronic viral infections and cancer, where antigens can persistently stimulate the immune system, ICMs can serve as a barrier to effective immune responses. The role of ICMs in the setting of systemic low-grade inflammation as in aging and antiretroviral therapy (ART)-suppressed HIV infection is not known. In this study, we made use of stored samples from the FLORAH cohort of HIV-infected ART-suppressed adults (age range 19-77 years.) and age-matched HIV-uninfected controls. We measured the expression levels of ICMs: PD-1, LAG-3, TIGIT, TIM-3, and 2B4 on resting CD4 and CD8 T cells and maturation subsets. To determine how expression of these molecules can affect T cell function, we stimulated peripheral blood mononuclear cell with HIV Gag or p09/H1N1 antigen and performed intracellular cytokine staining by multiparameter flow cytometry. ICMs were expressed at higher levels in CD8 compared with CD4. PD-1 was the only molecule that remained significantly higher in HIV-infected individuals compared with controls. LAG-3 expression increased with age in CD4 and CD8 T cells. 2B4 expression on CD8 T cells was negatively associated with IL-2 production but showed no effect on CD4 T cell function. TIM-3 expression was negatively associated with IL-21 production in CD4 and CD8 T cells and also negatively correlated with flu vaccine responses in HIV-negative individuals. Taken altogether, this study demonstrates the marked variation in ICM expression in T cells among adults and sheds light on the biology of these molecules and their effects on antigen-specific T cell functions. Overall, our results point to TIM-3 as a potential biomarker for immune function in HIV+ individuals on ART.
Collapse
Affiliation(s)
- Lesley R. de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
6
|
Orlandi C, Canovari B, Bozzano F, Marras F, Pasquini Z, Barchiesi F, De Maria A, Magnani M, Casabianca A. A comparative analysis of unintegrated HIV-1 DNA measurement as a potential biomarker of the cellular reservoir in the blood of patients controlling and non-controlling viral replication. J Transl Med 2020; 18:204. [PMID: 32429953 PMCID: PMC7236182 DOI: 10.1186/s12967-020-02368-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The persistence of HIV-1 in reservoir cells is one of the major obstacles to eradicating the virus in infected individuals receiving combination antiretroviral therapy (ART). HIV-1 persists in infected cells as a stable integrated genome and more labile unintegrated DNA (uDNA), which includes linear, 1-LTR and 2-LTR circular DNA. 2-LTR circle DNA, although less abundant, is considered a surrogate marker of recent infection events and is currently used instead of the other unintegrated species as a diagnostic tool. This pilot study aimed to investigate how to best achieve the measurement of uDNA. METHODS A comparative analysis of two qPCR-based methods (U-assay and 2-LTR assay) was performed on the blood of 12 ART-naïve, 14 viremic and 29 aviremic On-ART patients and 20 untreated spontaneous controllers (HIC), sampled at a single time point. RESULTS The U-assay, which quantified all unintegrated DNA species, showed greater sensitivity than the 2-LTR assay (up to 75%, p < 0.0001), especially in viremic subjects, in whom other forms, in addition to 2-LTR circles, may also accumulate due to active viral replication. Indeed, in aviremic On-ART samples, the U-assay unexpectedly measured uDNA in a higher proportion of samples (76%, 22/29) than the 2-LTR assay (41%, 12/29), (p = 0.0164). A trend towards lower uDNA levels was observed in aviremic vs viremic On-ART patients, reaching significance when we combined aviremic On-ART and HIC (controllers) vs Off-ART and viremic On-ART subjects (non-controllers) (p = 0.0003), whereas 2-LTR circle levels remained constant (p ≥ 0.2174). These data were supported by the high correlation found between uDNA and total DNA (r = 0.69, p < 0.001). CONCLUSIONS The great advantage of the U-assay is that, unlike the 2-LTR assay, it allows the accurate evaluation of the totality of uDNA that can still be measured even during successful ART when plasma viremia is below the cut-off of common clinical tests (< 50 copies/mL) and 2-LTR circles are more likely to be under the quantification limit. UDNA measurement in blood cells may be used as a biomarker to reveal a so far hidden or underestimated viral reservoir. The potential clinical relevance of uDNA quantification may lead to improvements in diagnostic methods to support clinical strategies.
Collapse
Affiliation(s)
- Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Benedetta Canovari
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | | | - Francesco Marras
- Division of Infectious Diseases, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy
| | - Zeno Pasquini
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Barchiesi
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea De Maria
- Division of Infectious Diseases, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy
- Department of Health Sciences, DISSAL, University of Genova, Genoa, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
7
|
Khoury G, Mackenzie C, Ayadi L, Lewin SR, Branlant C, Purcell DFJ. Tat IRES modulator of tat mRNA (TIM-TAM): a conserved RNA structure that controls Tat expression and acts as a switch for HIV productive and latent infection. Nucleic Acids Res 2020; 48:2643-2660. [PMID: 31875221 PMCID: PMC7049722 DOI: 10.1093/nar/gkz1181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
Tat protein is essential to fully activate HIV transcription and processing of viral mRNA, and therefore determines virus expression in productive replication and the establishment and maintenance of latent infection. Here, we used thermodynamic and structure analyses to define a highly conserved sequence-structure in tat mRNA that functions as Tat IRES modulator of tat mRNA (TIM-TAM). By impeding cap-dependent ribosome progression during authentic spliced tat mRNA translation, TIM-TAM stable structure impacts on timing and level of Tat protein hence controlling HIV production and infectivity along with promoting latency. TIM-TAM also adopts a conformation that mediates Tat internal ribosome entry site (IRES)-dependent translation during the early phases of infection before provirus integration. Our results document the critical role of TIM-TAM in Tat expression to facilitate virus reactivation from latency, with implications for HIV treatment and drug development.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia.,Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Charlene Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lilia Ayadi
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3010, Australia
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR7365 CNRS Université Lorraine, Vandoeuvre-lès-Nancy 54505, France
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity - The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Pallikkuth S, Bolivar H, Fletcher MA, Babic DZ, De Armas LR, Gupta S, Termini JM, Arheart KL, Stevenson M, Tung FY, Fischl MA, Pahwa S, Stone GW. A therapeutic HIV-1 vaccine reduces markers of systemic immune activation and latent infection in patients under highly active antiretroviral therapy. Vaccine 2020; 38:4336-4345. [PMID: 32387010 DOI: 10.1016/j.vaccine.2020.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
HIV infection is characterized by chronic immune activation and the establishment of a pool of latently infected cells. Antiretroviral therapy (ART) can suppress viral load to undetectable levels in peripheral blood by standard measure, however immune activation/chronic inflammation and latent infection persist and affect quality of life. We have now shown that a novel therapeutic HIV vaccine consisting of replication-defective HIV (HIVAX), given in the context of viral suppression under ART, can reduce both immune activation/chronic inflammation and latent infection. Immune activation, as measured by percent of CD8 + HLA-DR + CD38 + T cells, approached levels of healthy controls at week 16 following vaccination. Reduced immune activation was accompanied by a reduction in pro-inflammatory cytokines and peripheral α4β7 + plasmacytoid DC (a marker of mucosal immune activation). Levels of both HIV-1 DNA and 2-LTR circles were reduced at week 16 following vaccination, suggesting HIVAX can impact HIV-1 latency and reduce viral replication. Surprisingly, reduced immune activation/chronic inflammation was accompanied by an increase in the percent of memory CD4 + T cells expressing markers PD-1 and TIM-3. In addition, evaluation of HIV-1 Gag-specific CD4 + T cells for expression of 96 T cell related genes pre- and post-therapy revealed increased expression of a number of genes involved in the regulation of immune activation, T cell activation, and antiviral responses. Overall this study provides evidence that vaccination with HIVAX in subjects under long term antiviral suppression can reduce immune activation/chronic inflammation and latent infection (Clinicaltrials.gov, identifier NCT01428596).
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary A Fletcher
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dunja Z Babic
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lesley R De Armas
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sachin Gupta
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James M Termini
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences and the Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mario Stevenson
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Margaret A Fischl
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Geoffrey W Stone
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Caetano DG, Côrtes FH, Bello G, de Azevedo SSD, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. A case report of HIV-1 superinfection in an HIV controller leading to loss of viremia control: a retrospective of 10 years of follow-up. BMC Infect Dis 2019; 19:588. [PMID: 31277590 PMCID: PMC6612226 DOI: 10.1186/s12879-019-4229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/03/2022] Open
Abstract
Background HIV controllers (HICs) are a rare group of HIV-1-infected individuals able to naturally control viral replication. Several studies have identified the occurrence of HIV dual infections in seropositive individuals leading to disease progression. In HICs, however, dual infections with divergent outcomes in pathogenesis have been described. Case presentation Here, we present a case report of a HIC diagnosed in late 1999 who displayed stable CD4+ T cell levels and low plasmatic viral load across 12 years of follow-up. In early 2013, the patient started to present an increase in viral load, reaching a peak of 10,000 copies/ml in early 2014, followed by an oscillation of viremia at moderate levels in the following years. The genetic diversity of env proviral quasispecies from peripheral blood mononuclear cells (PBMCs) was studied by single genome amplification (SGA) at six timepoints across 2009–2017. Phylogenetic analyses of env sequences from 2009 and 2010 samples showed the presence of a single subtype B variant (called B1). Analyses of sequences from 2011 and after revealed an additional subtype B variant (called B2) and a subsequent dominance shift in the proviral quasispecies frequencies, with the B2 variant becoming the most frequent from 2014 onwards. Latent syphilis related to unprotected sexual intercourse was diagnosed a year before the first detection of B2, evidencing risk behavior and supporting the superinfection hypothesis. Immunologic analyses revealed an increase in CD8+ and CD4+ T cell immune activation following viremia increase and minor T cell subset alterations during follow-up. HIV-specific T cell responses remained low throughout the follow-up period. Conclusions Altogether, these results show that loss of viremia control in the HIC was associated with superinfection. These data alert to the negative consequences of reinfection on HIV pathogenesis, even in patients with a long history of viremia control and an absence of disease progression, reinforcing the need for continued use of adequate prevention strategies.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Suwellen Sardinha Dias de Azevedo
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Larissa Melo Villela
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Valdiléa Gonçalves Veloso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| |
Collapse
|
10
|
Bull ME, McKernan JL, Styrchak S, Kraft K, Hitti J, Cohn SE, Tapia K, Deng W, Holte S, Mullins JI, Coombs RW, Frenkel LM. Phylogenetic Analyses Comparing HIV Sequences from Plasma at Virologic Failure to Cervix Versus Blood Sequences from Antecedent Antiretroviral Therapy Suppression. AIDS Res Hum Retroviruses 2019; 35:557-566. [PMID: 30892052 DOI: 10.1089/aid.2018.0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Identifying tissue sources of HIV that rebound following "failure" of antiretroviral therapy (ART) is critical to evaluating cure strategies. To assess the role of the uterine cervix and peripheral blood mononuclear cells (PBMC) as viral reservoirs, nearest-neighbor phylogenetic analyses compared genetic relatedness of tissue sequences during ART suppression to those detected in plasma at viral rebound. Blood and genital tract specimens from a natural history cohort of HIV-infected women were collected over 5 years. HIV DNA sequences extracted from PBMC and cervical biopsies during ART suppression and plasma RNA from rebound (defined as HIV RNA >3 log10 copies/mL) were derived by single-genome amplification. Phylogenetic and nearest-neighbor analyses of HIV env sequences and drug resistance in pol sequences were compared between tissues. Nine instances of plasma viral rebound (median HIV RNA 3.6 log10 c/mL; IQR: 3.1-3.8) were detected in 7 of 57 women. Nearest-neighbor analyses found rebound plasma sequences were closer to uterine cervical sequences in 4/9 (44%), closer to PBMC in 3/9 (33%), and ambiguous in 2/9 (22%) cases. Rebound plasma clades (n = 27) shared identical sequences in seven instances with the cervix versus two with PBMC. Novel drug resistance mutations were detected in 4/9 (44%) rebounds. The observed tendency for greater sharing of identical HIV variants and greater nearest-neighbor association between rebounding plasma and uterine cervical versus PBMC sequences suggests that the uterine cervix may be a relevant HIV reservoir. The cervix, a readily accessible tissue in women that can be repeatedly sampled, could help assess the HIV reservoir when evaluating cure strategies.
Collapse
Affiliation(s)
- Marta E. Bull
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Jennifer L. McKernan
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Sheila Styrchak
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Kelli Kraft
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Jane Hitti
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Susan E. Cohn
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Kenneth Tapia
- Department of Global Health and University of Washington, Seattle, Washington
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Sarah Holte
- Department of Global Health and University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - James I. Mullins
- Department of Global Health and University of Washington, Seattle, Washington
- Department of Microbiology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Seattle, Washington
- Department of Medicine University of Washington, Seattle, Washington
| | - Robert W. Coombs
- Department of Laboratory Medicine and Seattle, Washington
- Department of Medicine University of Washington, Seattle, Washington
| | - Lisa M. Frenkel
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health and University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Seattle, Washington
| |
Collapse
|
11
|
Thomas J, Ruggiero A, Procopio FA, Pantaleo G, Paxton WA, Pollakis G. Comparative analysis and generation of a robust HIV-1 DNA quantification assay. J Virol Methods 2018; 263:24-31. [PMID: 30326210 DOI: 10.1016/j.jviromet.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
HIV-1 infection cannot be cured due to the presence of the latent reservoir (LR). Novel cure or treatment strategies, such as "shock and kill" or therapeutic vaccination, aim to reduce or eradicate the LR. Cure strategies utilise robust DNA quantification assays to measure the change in the LR in low copy scenarios. No standard assay exists, which impedes the reliable comparison of results from different therapy and vaccine trials and HIV-1 total DNA quantification methods have not been previously compared. The HIV-1 long terminal repeat (LTR) has been shown to be the best target for DNA quantification. We have analysed two HIV-1 quantification assays, both able to differentiate between the variant HIV-1 DNA forms via the use of pre-amplification and primers targeting LTR. We identify a strong correlation (r=0.9759, P<0.0001) between assays which is conserved in low copy samples (r=0.8220, P<0.0001) indicating that these assays may be used interchangeably. The RvS assay performed significantly (P=0.0021) better than the CV assay when quantifying HIV-1 total DNA in patient CD4+ T lymphocytes. Sequence analysis demonstrated that viral diversity can limit DNA quantification, however in silico analysis of the primers indicated that within the target region nucleotide miss-matches appear infrequently. Further in silico analysis using up to-date sequence information led to the improvement of primers and enabled us to establish a more broadly specific assay with significantly higher HIV-1 DNA quantification capacity in patient samples (p=0.0057, n=17).
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Francesco A Procopio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
12
|
Caetano DG, Côrtes FH, Bello G, Teixeira SLM, Hoagland B, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. Next-generation sequencing analyses of the emergence and maintenance of mutations in CTL epitopes in HIV controllers with differential viremia control. Retrovirology 2018; 15:62. [PMID: 30201008 PMCID: PMC6131818 DOI: 10.1186/s12977-018-0444-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/05/2018] [Indexed: 01/10/2023] Open
Abstract
Background Despite the low level of viral replication in HIV controllers (HICs), studies have reported viral mutations related to escape from cytotoxic T-lymphocyte (CTL) response in HIV-1 plasma sequences. Thus, evaluating the dynamics of the emergence of CTL-escape mutants in HICs reservoirs is important for understanding viremia control. To analyze the HIV-1 mutational profile and dynamics of CTL-escape mutants in HICs, we selected 11 long-term non-progressor individuals and divided them into the following groups: (1) viremic controllers (VCs; n = 5) and (2) elite controllers (ECs; n = 6). For each individual, we used HIV-1 proviral DNA from PBMCs related to earliest (VE) and latest (VL) visits to obtain gag and nef sequences using the Illumina HiSeq system. The consensus of each mapped gene was used to assess viral divergence, and next-generation sequencing data were employed to identify SNPs and variations within and flanking CTL epitopes. Results Divergence analysis showed higher values for nef compared to gag among the HICs. EC and VC groups showed similar divergence rates for both genes. Analysis of the number of SNPs showed that VCs present more variability in both genes. Synonymous/non-synonymous mutation ratios were < 1 for gag among ECs and for nef among ECs and VCs, exhibiting a predominance of non-synonymous mutations. Such mutations were observed in regions encoding CTL-restricted epitopes in all individuals. All ECs presented non-synonymous mutations in CTL epitopes but generally at low frequency (< 1%); all VCs showed a high number of mutations, with significant frequency changes between VE and VL visits. A higher frequency of internal mutations was observed for gag epitopes, with significant changes across visits compared to Nef epitopes, indicating a pattern associated with differential genetic pressure. Conclusions The high genetic conservation of HIV-1 gag and nef among ECs indicates that the higher level of viremia control restricts the evolution of both genes. Although viral replication levels in HICs are low or undetectable, all individuals exhibited CTL epitope mutations in proviral gag and nef variants, indicating that potential CTL escape mutants are present in HIC reservoirs and that situations leading to a disequilibrium of the host-virus relationship can result in the spread of CTL-escape variants. Electronic supplementary material The online version of this article (10.1186/s12977-018-0444-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sylvia Lopes Maia Teixeira
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Laboratório de Pesquisa Clínica em DST e Aids, Instituto Nacional de Infectologia Evandro Chagas (INI)-FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST e Aids, Instituto Nacional de Infectologia Evandro Chagas (INI)-FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea Gonçalves Veloso
- Laboratório de Pesquisa Clínica em DST e Aids, Instituto Nacional de Infectologia Evandro Chagas (INI)-FIOCRUZ, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
13
|
Abstract
OBJECTIVE The functional polarization of CD4 T cells determines their antimicrobial effector profile, but may also impact the susceptibility to infection with HIV-1. Here, we analyzed the susceptibility of CD4 T cells with different functional polarization to infection with X4 and R5-tropic HIV-1. METHODS CD4 T cells with a Th1, Th2, Th17, and Th9 polarization were subjected to in-vitro infection assays with X4, R5, or vesicular stomatitis virus-G protein-pseudotyped HIV-1. In addition, we sorted differentially polarized CD4 T-cell subsets from individuals treated with antiretroviral therapy and analyzed the tropism of viral env sequences. RESULTS Th9-polarized CD4 T cells and, to a lesser extent, Th2-polarized CD4 T cells expressed higher surface levels of CXCR4, and are more permissive to X4-tropic infection in vitro. In contrast, Th1 and Th17 CD4 T cells exhibited stronger surface expression of CCR5, and were more susceptible to infection with R5-tropic viruses. Correspondingly, the distribution of X4-tropic viral sequences in antiretroviral therapy-treated HIV-1-infected patients was biased toward Th9/Th2 cells, whereas R5-tropic sequences were more frequently observed in Th17 cells. CONCLUSION CD4 T-cell polarization is associated with a distinct susceptibility to X4 and R5-tropic HIV-1 infection.
Collapse
|
14
|
High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay. EBioMedicine 2017; 20:217-229. [PMID: 28529033 PMCID: PMC5478213 DOI: 10.1016/j.ebiom.2017.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/25/2023] Open
Abstract
Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs) increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent) infection. We therefore developed a microfluidic single-cell-in-droplet (scd)PCR assay to directly measure the number of CD4+ T cells that produce unspliced (us)RNA and multiply spliced (ms)RNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin) or T cell receptor (TCR) stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4 + T-cells in a single experiment. The scdPCR method was then applied to CD4+ T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous—increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies.
A common approach to HIV cure involves reactivating HIV-infected cells. Developed single cell assay to directly quantify HIV transcriptionally reactivated cells. Single cell effects of latency reversing agents on HIV reactivation are heterogeneous. Bulk cell-associated HIV RNA levels are divergent from the number of RNA-producing cells. Assay allows for single-cell quantification of genomic DNA and mRNA following target cell identification. We designed and implemented a microfluidic, single-cell assay to directly measure the number of individual cells from individuals on antiretroviral therapy that produce HIV-1 RNA. The assay also allows for single-cell quantification of human genomic DNA and messenger RNA following identification and isolation of actively HIV-1-infected cells. The ability to directly measure transcriptional activity of HIV-1 in individual cells followed by downstream characterization of human and viral genetic information within these cells has the potential to provide a greater mechanistic understanding of experimental strategies to purge residual HIV-1 reservoirs.
Collapse
|
15
|
de Azevedo SSD, Caetano DG, Côrtes FH, Teixeira SLM, Dos Santos Silva K, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Bello G. Highly divergent patterns of genetic diversity and evolution in proviral quasispecies from HIV controllers. Retrovirology 2017; 14:29. [PMID: 28464889 PMCID: PMC5414336 DOI: 10.1186/s12977-017-0354-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 11/24/2022] Open
Abstract
Background Ongoing intra-host HIV-1 evolution has been shown in individuals that naturally suppress the viremia to low levels (HIV controllers) by the analysis of the RNA in plasma compartment. Detection of evolution at the DNA proviral compartment in HIV controllers, however, has been more challenging and the precise correlation between the systemic viral suppression level and rate of reservoir’s reseeding in those individuals is not fully understood. In this sense, we examined the proviral DNA quasispecies by single genome amplification of the env gene in a cohort of 23 HIV controllers from Brazil, divided in three groups, according to the level of systemic viral suppression: (1) elite controllers with persistent undetectable viral load (PEC, n = 6); (2) elite controllers with occasional episodes of transient (51–400 copies/mL) viremia (EEC, n = 7); and (3) viremic controllers with persistent low-level (80–2000 copies/mL) viremia (VC, n = 10). Results The HIV-1 diversity of the PBMC-associated proviral quasispecies in EC was significantly (P < 0.01) lower than in VC, but not significantly different between PEC and EEC groups. We detected a considerable variation in the average pairwise nucleotide distance and proportion of unique sequences in the HIV-1 proviral quasispecies of PEC and EEC. Some PEC and EEC displayed highly homogenous proviral populations with large clusters of identical sequences, while others exhibited relatively diverse proviral populations with a high proportion of unique sequences comparable to VC subjects. The long-term (10–15 years) follow-up of the HIV-1 proviral populations revealed a complete evolutionary stasis in one PEC and measurable divergence rates in one EEC [3.1 (1.2–5.6) × 10−3 substitutions/site/year and one VC [2.9 (0.7–5.1) × 10−3 substitutions/site/year]. Conclusions There is no simple relationship between systemic viral suppression and intra-host proviral diversity or rate of reservoir’s reseeding in chronically infected HIV controllers. Our results demonstrate that very divergent patterns of intra-host viral diversity and divergence could be detected in the setting of natural suppression of HIV-1 replication and that ongoing evolution and reseeding of the PBMC proviral reservoir occurs in some elite controllers. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suwellen S D de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Diogo Gama Caetano
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda H Côrtes
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sylvia L M Teixeira
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Karina Dos Santos Silva
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Valdilea G Veloso
- Instituto Nacional de Infectologia Evandro Chagas - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza G Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| |
Collapse
|
16
|
Ruggiero A, Malatinkova E, Rutsaert S, Paxton WA, Vandekerckhove L, De Spiegelaere W. Utility of integrated HIV-1 DNA quantification in cure studies. Future Virol 2017. [DOI: 10.2217/fvl-2016-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous HIV-1 curative strategies have been proposed to eradicate the virus reservoir pool that remains integrated within target cells, despite successful antiretroviral therapy. To test the impact of such interventions on this reservoir, a universal marker of persistence is needed. Quantifying integrated HIV-1 DNA load has been proposed as a strong virological marker. In this paper, we provide a detailed description of the most commonly used assays to quantify integrated HIV-1 DNA and applications in relevant clinical studies produced over the last 20 years with a major focus on the recent literature. We discuss the potential for using this marker of virological persistence and the technical limitations that need to be addressed.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - William A Paxton
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Belgium
| |
Collapse
|
17
|
Puertas MC, Noguera-Julian M, Massanella M, Pou C, Buzon MJ, Clotet B, Stevenson M, Paredes R, Blanco J, Martinez-Picado J. Lack of concordance between residual viremia and viral variants driving de novo infection of CD4(+) T cells on ART. Retrovirology 2016; 13:51. [PMID: 27484989 PMCID: PMC4970251 DOI: 10.1186/s12977-016-0282-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022] Open
Abstract
Background In most patients, current antiretroviral therapy (ART) regimens can rapidly reduce plasma viral load. However, even after years of effective treatment, a significant proportion of patients show residual plasma viremia below the clinical detection limit. Although residual viremia might be associated with increased chronic immune activation and morbidity, its origin and its potential role in the replenishment of the viral reservoir during suppressive ART is not completely understood. We performed an in-depth genetic analysis of the total and episomal cell-associated viral DNA (vDNA) repertoire in purified CD4+ T cell subsets of three HIV-infected individuals, and used phylogenetic analysis to explore its relationship with plasma viruses. Results The predominant proviral reservoir was established in naïve or memory (central and transitional) CD4+ T cell subsets in patients harboring X4- or R5-tropic viruses, respectively. Regardless of the viral tropism, most plasma viruses detected under suppressive ART resembled the proviral reservoir identified in effector and transitional memory CD4+ T-cell subsets in blood, suggesting that residual viremia originates from these cells in either blood or lymphoid tissue. Most importantly, sequences in episomal vDNA in CD4+ T-cells were not well represented in residual viremia. Conclusions Viral tropism determines the differential distribution of viral reservoir among CD4+ T-cell subsets. In spite of viral tropism, the effector and transitional memory CD4+ T-cells subsets are the main source of residual viremia during suppressive ART, even though their contribution to the total proviral pool is small. However, the lack of concordance between residual viremia and viral variants driving de novo infection of CD4+ T cells on ART may reflect the predominance of defective plasma HIV RNA genomes. These findings highlight the need for monitoring the multiple viral RNA/DNA persistence markers, based on their differential contribution to viral persistence. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria C Puertas
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Noguera-Julian
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Marta Massanella
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du CHUM et Université de Montréal, Montreal, Canada
| | - Christian Pou
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Maria J Buzon
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,"Lluita Contra la Sida" Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Mario Stevenson
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roger Paredes
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,"Lluita Contra la Sida" Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain. .,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
18
|
Lifson MA, Ozen MO, Inci F, Wang S, Inan H, Baday M, Henrich TJ, Demirci U. Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Adv Drug Deliv Rev 2016; 103:90-104. [PMID: 27262924 PMCID: PMC4943868 DOI: 10.1016/j.addr.2016.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 is a major global epidemic that requires sophisticated clinical management. There have been remarkable efforts to develop new strategies for detecting and treating HIV-1, as it has been challenging to translate them into resource-limited settings. Significant research efforts have been recently devoted to developing point-of-care (POC) diagnostics that can monitor HIV-1 viral load with high sensitivity by leveraging micro- and nano-scale technologies. These POC devices can be applied to monitoring of antiretroviral therapy, during mother-to-child transmission, and identification of latent HIV-1 reservoirs. In this review, we discuss current challenges in HIV-1 diagnosis and therapy in resource-limited settings and present emerging technologies that aim to address these challenges using innovative solutions.
Collapse
Affiliation(s)
- Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mehmet Ozgun Ozen
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - ShuQi Wang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; Medicine Faculty, Zirve University, Gaziantep, Turkey
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
19
|
Short Intracellular HIV-1 Transcripts as Biomarkers of Residual Immune Activation in Patients on Antiretroviral Therapy. J Virol 2016; 90:5665-5676. [PMID: 27030274 DOI: 10.1128/jvi.03158-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HIV-1 patients continue to remain at an abnormal immune status despite prolonged combination antiretroviral therapy (cART), which results in an increased risk of non-AIDS-related diseases. Given the growing recognition of the importance of understanding and controlling the residual virus in patients, additional virological markers to monitor infected cells are required. However, viral replication in circulating cells is much poorer than that in lymph nodes, which results in the absence of markers to distinguish these cells from uninfected cells in the blood. In this study, we identified prematurely terminated short HIV-1 transcripts (STs) in peripheral blood mononuclear cells (PBMCs) as an efficient intracellular biomarker to monitor viral activation and immune status in patients with cART-mediated full viral suppression in plasma. STs were detected in PBMCs obtained from both treated and untreated patients. ST levels in untreated patients generally increased with disease progression and decreased after treatment initiation. However, some patients exhibited sustained high levels of ST and low CD4(+) cell counts despite full viral suppression by treatment. The levels of STs strongly reflected chronic immune activation defined by coexpression of HLA-DR and CD38 on CD8(+) T cells, rather than circulating proviral load. These observations represent evidence for a relationship between viral persistence and host immune activation, which in turn results in the suboptimal increase in CD4(+) cells despite suppressive antiretroviral therapy. This cell-based measurement of viral persistence contributes to an improved understanding of the dynamics of viral persistence in cART patients and will guide therapeutic approaches targeting viral reservoirs. IMPORTANCE Combination antiretroviral therapy (cART) suppresses HIV-1 load to below the detectable limit in plasma. However, the virus persists, and patients remain at an abnormal immune status, which results in an increased risk of non-AIDS-related complications. To achieve a functional cure for HIV-1 infection, activities of viral reservoirs must be quantified and monitored. However, latently infected cells are difficult to be monitored. Here, we identified prematurely terminated short HIV-1 transcripts (STs) as an efficient biomarker for monitoring viral activation and immune status in patients with cART-mediated full viral suppression in plasma. This cell-based measurement of viral persistence will contribute to our understanding of the impact of residual virus on chronic immune activation in HIV-1 patients during cART.
Collapse
|
20
|
Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth. PLoS Pathog 2016; 12:e1005472. [PMID: 26938995 PMCID: PMC4777389 DOI: 10.1371/journal.ppat.1005472] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. Current HIV-1 research aims to find a cure for HIV-1, either by pursuing viral eradication or by attempting to attain an immune-mediated functional cure. For the purpose of interpreting the findings of these eradication strategies, a validated representative biomarker of the replication-competent latent HIV-1 reservoir is urgently needed. In this study we have evaluated several cell-associated HIV-1 persistence markers, and we have measured replication-competent reservoir using the viral outgrowth assay (VOA). The results show a correlation between the pool of HIV-1 DNA and the replication-competent reservoir. Our data show that the pool of HIV-1 DNA (total or integrated HIV-1 DNA) can predict the amount of replication-competent latent HIV-1 in patients receiving treatment. Hence, PCR based assays quantifying integrated and/or total HIV-1 DNA can play an important role in future studies aiming at HIV-1 eradication.
Collapse
|
21
|
Maldarelli F. The role of HIV integration in viral persistence: no more whistling past the proviral graveyard. J Clin Invest 2016; 126:438-47. [PMID: 26829624 DOI: 10.1172/jci80564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV.
Collapse
|
22
|
Salemi M, Rife B. Phylogenetics and Phyloanatomy of HIV/SIV Intra-Host Compartments and Reservoirs: The Key Role of the Central Nervous System. Curr HIV Res 2016; 14:110-20. [PMID: 26511341 PMCID: PMC9199530 DOI: 10.2174/1570162x13666151029102413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/10/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ability of the human immunodeficiency virus type 1 (HIV-1) to persist in anatomic compartments and cellular reservoirs is a major obstacle for eradication of replicationcompetent virus in the infected host. APPROACH We extensively review recent advancements in phylogenetic and phylogeographic techniques that provide a unique opportunity for studies of intra-host HIV-1 compartmentalization and the detection of potential reservoirs. CONCLUSION We show that infected macrophages in the central nervous system (CNS) harbor viral subpopulations that play a key role in the emergence of escape variants and viral rebound following discontinuation of antiretroviral therapy. An HIV cure, therefore, cannot be achieved without the effective targeting of the virus in the CNS, for which in depth knowledge of viral population dynamics contributing to the development and maintenance of latent reservoirs is critical.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, USA.
| | | |
Collapse
|
23
|
Peripheral T Follicular Helper Cells Are the Major HIV Reservoir within Central Memory CD4 T Cells in Peripheral Blood from Chronically HIV-Infected Individuals on Combination Antiretroviral Therapy. J Virol 2015; 90:2718-28. [PMID: 26676775 DOI: 10.1128/jvi.02883-15] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In this study, we examined the peripheral blood (PB) central memory (TCM) CD4(+) T cell subsets designated peripheral T follicular helper cells (pTfh cells) and non-pTfh cells to assess HIV permissiveness and persistence. Purified pTfh and non-pTfh cells from healthy HIV-negative donors were tested for HIV permissiveness using green fluorescent protein (GFP)-expressing HIV-1NL4-3/Ba-L, followed by viral reactivation using beads coated with anti-CD3/anti-CD28 monoclonal antibodies. The role of pTfh cells in HIV persistence was analyzed in 12 chronically HIV-1 infected patients before and 48 weeks after initiation of raltegravir-containing combination antiretroviral therapy (cART). Total cellular HIV-1 DNA and episomes containing two copies of the viral long terminal repeat (2LTR circles) were analyzed in using droplet digital PCR in the purified pTfh and non-pTfh cells. Activation-inducible HIV p24 expression was determined by flow cytometry. Results indicate that pTfh cells, in particular PD1(+) pTfh cells, showed greater permissiveness for HIV infection than non-pTfh cells. At week 48 on cART, HIV DNA levels were unchanged from pre-cART levels, although a significant decrease in 2LTR circles was observed in both cell subsets. Inducible HIV p24 expression was higher in pTfh cells than in non-pTfh cells, with the highest frequencies in the PD1(+) CXCR3(-) pTfh cell subset. Frequencies of HLADR(+) CD38(+) activated CD4 T cells correlated with 2LTR circles in pTfh and non-pTfh cells at both time points and with p24(+) cells at entry. In conclusion, among CD4 TCM cells in PB of aviremic patients on cART, pTfh cells, in particular the PD1(+) CXCR3(-) subset, constitute a major HIV reservoir that is sustained by ongoing residual immune activation. The inducible HIV p24 assay is useful for monitoring HIV reservoirs in defined CD4 T cell subsets. IMPORTANCE Identification of the type and nature of the cellular compartments of circulating HIV reservoirs is important for targeting of HIV cure strategies. In lymph nodes (LN), a subset of CD4 T cells called T follicular helper (Tfh) cells are preferentially infected by HIV. Central memory (TCM) CD4 T cells are the major cellular reservoir for HIV in peripheral blood and contain a subset of CD4 TCM cells expressing chemokine receptor CXCR5 similar in function to LN Tfh cells termed peripheral Tfh (pTfh) cells. We found that the circulating pTfh cells are highly susceptible to HIV infection and that in HIV-infected patients, HIV persists in these cells following plasma virus suppression with potent cART. These pTfh cells, which constitute a subset of TCM CD4 T cells, can be readily monitored in peripheral blood to assess HIV persistence.
Collapse
|
24
|
Malatinkova E, De Spiegelaere W, Bonczkowski P, Kiselinova M, Vervisch K, Trypsteen W, Johnson M, Verhofstede C, de Looze D, Murray C, Kinloch-de Loes S, Vandekerckhove L. Impact of a decade of successful antiretroviral therapy initiated at HIV-1 seroconversion on blood and rectal reservoirs. eLife 2015; 4:e09115. [PMID: 26439007 PMCID: PMC4657623 DOI: 10.7554/elife.09115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Persistent reservoirs remain the major obstacles to achieve an HIV-1 cure. Prolonged early antiretroviral therapy (ART) may reduce the extent of reservoirs and allow for virological control after ART discontinuation. We compared HIV-1 reservoirs in a cross-sectional study using polymerase chain reaction-based techniques in blood and tissue of early-treated seroconverters, late-treated patients, ART-naïve seroconverters, and long-term non-progressors (LTNPs) who have spontaneous virological control without treatment. A decade of early ART reduced the total and integrated HIV-1 DNA levels compared with later treatment initiation, but not reaching the low levels found in LTNPs. Total HIV-1 DNA in rectal biopsies did not differ between cohorts. Importantly, lower viral transcription (HIV-1 unspliced RNA) and enhanced immune preservation (CD4/CD8), reminiscent of LTNPs, were found in early compared to late-treated patients. This suggests that early treatment is associated with some immunovirological features of LTNPs that may improve the outcome of future interventions aimed at a functional cure. DOI:http://dx.doi.org/10.7554/eLife.09115.001 Many people with HIV infections are able to live relatively normal lives thanks to major advances in drug therapies. A cure, however, remains elusive. One reason for this is that the virus can hide in certain types of human cells, where it is protected from the immune system and the effects of “antiretroviral” drugs. This creates reservoirs of virus particles in the body that can quickly multiply and spread if treatment stops. Some people who become infected with HIV are able to contain the virus without the help of drug treatments. These individuals – known as long-term non-progressors – do not become ill and only have low numbers of HIV particles in reservoirs. People who receive treatment early in the course of an HIV infection also have fewer viruses in reservoirs and are less likely to develop severe illness. Therefore, it might be possible to develop a “functional” cure that may not completely eliminate the virus from the body, but would prevent illness and allow the individuals to eventually stop taking antiretroviral drugs. Now, Malatinkova, De Spiegelaere et al. studied samples from 84 patients with HIV-1 to find how much effect an early start to treatment has on the amount of the virus in reservoirs. People who started treatment soon after infection had lower levels of HIV-1 in their blood than people who started treatment later (even after 10 years of treatment). However, patients that started treatment early had higher levels of HIV-1 in the blood than the patients who were long-term non-progressors. All the patients had similar levels of HIV-1 in tissue samples taken from the rectum, regardless of when they started treatment. The experiments suggest that HIV-1 reservoirs form very soon after infection. Malatinkova, De Spiegelaere et al. found that in addition to reducing reservoirs of HIV-1, an early start to drug treatment reduced the ability of the virus to make copies of its genetic code. People who started treatment earlier also had healthier immune cells. Together, the experiments support the benefits of starting drug treatments as soon as possible after a person is infected with HIV-1. It is important to further characterize thoroughly the viral reservoir in patients with limited HIV-1 reservoirs and to look for other immune factors involved in virus control, in the search for a functional cure of HIV. DOI:http://dx.doi.org/10.7554/eLife.09115.002
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Pawel Bonczkowski
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Maja Kiselinova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Karen Vervisch
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Margaret Johnson
- Division of Infection and Immunity, Royal Free Hospital, London, United Kingdom
| | - Chris Verhofstede
- AIDS Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Danny de Looze
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Charles Murray
- Department of Gastroenterology, Royal Free Hospital, London, United Kingdom
| | | | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
25
|
Th1/17 Polarization of CD4 T Cells Supports HIV-1 Persistence during Antiretroviral Therapy. J Virol 2015; 89:11284-93. [PMID: 26339043 DOI: 10.1128/jvi.01595-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The ability to persist long term in latently infected CD4 T cells represents a characteristic feature of HIV-1 infection and the predominant barrier to efforts aiming at viral eradication and cure. Yet, increasing evidence suggests that only small subsets of CD4 T cells with specific developmental and maturational profiles are able to effectively support HIV-1 long-term persistence. Here, we analyzed how the functional polarization of CD4 T cells shapes and structures the reservoirs of HIV-1-infected cells. We found that CD4 T cells enriched for a Th1/17 polarization had elevated susceptibilities to HIV-1 infection in ex vivo assays, harbored high levels of HIV-1 DNA in persons treated with antiretroviral therapy, and made a disproportionately increased contribution to the viral reservoir relative to their contribution to the CD4 T memory cell pool. Moreover, HIV-1 DNA levels in Th1/17 cells remained stable over many years of antiretroviral therapy, resulting in a progressively increasing contribution of these cells to the viral reservoir, and phylogenetic studies suggested preferential long-term persistence of identical viral sequences during prolonged antiretroviral treatment in this cell compartment. Together, these data suggest that Th1/17 CD4 T cells represent a preferred site for HIV-1 DNA long-term persistence in patients receiving antiretroviral therapy. IMPORTANCE Current antiretroviral therapy is very effective in suppressing active HIV-1 replication but does not fully eliminate virally infected cells. The ability of HIV-1 to persist long term despite suppressive antiretroviral combination therapy represents a perplexing aspect of HIV-1 disease pathogenesis, since most HIV-1 target cells are activated, short-lived CD4 T cells. This study suggests that CD4 T helper cells with Th1/17 polarization have a preferential role as a long-term reservoir for HIV-1 infection during antiretroviral therapy, possibly because these cells may imitate some of the functional properties traditionally attributed to stem cells, such as the ability to persist for extremely long periods of time and to repopulate their own pool size through homeostatic self-renewal. These observations support the hypothesis that HIV-1 persistence is driven by small subsets of long-lasting stem cell-like CD4 T cells that may represent particularly promising targets for clinical strategies aiming at HIV-1 eradication and cure.
Collapse
|
26
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
27
|
Shimura K, Miyazato P, Oishi S, Fujii N, Matsuoka M. Impact of HIV-1 infection pathways on susceptibility to antiviral drugs and on virus spread. Virology 2015; 484:364-376. [PMID: 26186575 DOI: 10.1016/j.virol.2015.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 11/19/2022]
Abstract
The infection routes of HIV-1 can affect several viral properties, including dissemination, pathogenesis, and immune evasion. In this study, we evaluated the inhibitory activity of a wide variety of anti-HIV drugs, focusing on the impact that different infection pathways have on their efficacy. Compared to cell-free infection, inhibitory activities were reduced in cell-to-cell productive transmission for all drugs tested. We detected weak reporter-expressing target cells after cell-to-cell transmission in the presence of integrase strand transfer inhibitors (INSTIs). Further analysis revealed that this expression was mainly due to unintegrated circular HIV (cHIV) DNAs, consisting of 1-LTR and 2-LTR circles. When in vitro-constructed cHIV DNAs were introduced into cells, the production of infectious and intercellular transmittable virions was observed, suggesting that cHIV DNA could be a source of infectious virus. These results highlight some advantages of the cell-to-cell infection mode for viral expansion, particularly in the presence of anti-retroviral drugs.
Collapse
Affiliation(s)
- Kazuya Shimura
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| | - Paola Miyazato
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
HIV controllers with different viral load cutoff levels have distinct virologic and immunologic profiles. J Acquir Immune Defic Syndr 2015; 68:377-385. [PMID: 25564106 DOI: 10.1097/qai.0000000000000500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanisms behind natural control of HIV replication are still unclear, and several studies pointed that elite controllers (ECs) are a heterogeneous group. METHODS We performed analyses of virologic, genetic, and immunologic parameters of HIV-1 controllers groups: (1) ECs (viral load, <80 copies/mL); (2) ebbing elite controllers (EECs; transient viremia/blips); and viremic controllers (VCs; detectable viremia, <5000 copies/mL). Untreated noncontrollers (NCs), patients under suppressive highly active antiretroviral therapy (HAART), and HIV-1-negative individuals were analyzed as controls. RESULTS Total and integrated HIV-1 DNA for EC were significantly lower than for NC and HAART groups. 2-LTR circles were detected in EEC (3/5) and VC (6/7) but not in EC. Although EC and EEC maintain normal T-cell counts over time, some VC displayed negative CD4 T-cell slopes. VC and EEC showed a higher percentage of activated CD8 T cells and microbial translocation than HIV-1-negative controls. EC displayed a weaker Gag/Nef IFN-γ T-cell response and a significantly lower proportion of anti-HIV IgG antibodies than EEC, VC, and NC groups. CONCLUSION Transient/persistent low-level viremia in HIV controllers may have an impact on immunologic and virologic profiles. Classified HIV controller patients taking into account their virologic profile may decrease the heterogeneity of HIV controllers cohorts, which may help to clarify the mechanisms associated to the elite control of HIV.
Collapse
|
29
|
Jiao YM, Weng WJ, Gao QS, Zhu WJ, Cai WP, Li LH, Li HJ, Gao YQ, Wu H. Hepatitis C therapy with interferon-α and ribavirin reduces the CD4 cell count and the total, 2LTR circular and integrated HIV-1 DNA in HIV/HCV co-infected patients. Antiviral Res 2015; 118:118-22. [PMID: 25823618 DOI: 10.1016/j.antiviral.2015.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
This study investigated whether treatment with IFN-α and ribavirin (RBV) reduces 2LTR circular HIV DNA in addition to the total and integrated HIV DNA. Two groups of patients were enrolled. Group 1 comprised HIV/HCV co-infected patients who were treated with highly active antiretroviral therapy (HAART), IFN-α and RBV for 48 weeks. After the 48 weeks of treatment, IFN-α and RBV treatment was discontinued and HAART was continued. Group 2 comprised HIV-infected patients who were treated with HAART. Real-time polymerase chain reaction (RT-PCR) was used to quantify the levels of HIV-1 DNA. We found that compared with Group 2 patients, Group 1 patients exhibited an obvious decrease in the CD4 cell count and the total DNA, 2LTR circular DNA, and integrated HIV DNA after 48 weeks of treatment. After the discontinuation of IFN-α and RBV treatment in Group 1 patients, the levels of HIV DNA recovered. Therefore, we concluded that treatment with IFN-α and ribavirin (RBV) reduces 2LTR circular HIV DNA.
Collapse
Affiliation(s)
- Yan-mei Jiao
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China
| | - Wen-jia Weng
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China
| | - Quan-sheng Gao
- Laboratory of the Animal Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Wei-jun Zhu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-ping Cai
- Guangzhou Eighth People's Hospital, No. 627 Dongfeng East Road, Guangzhou 510060, China
| | - Ling-hua Li
- Guangzhou Eighth People's Hospital, No. 627 Dongfeng East Road, Guangzhou 510060, China
| | - Hong-jun Li
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China.
| | - Yan-qing Gao
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China.
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing 100069, China.
| |
Collapse
|
30
|
Accurate quantification of episomal HIV-1 two-long terminal repeat circles by use of optimized DNA isolation and droplet digital PCR. J Clin Microbiol 2014; 53:699-701. [PMID: 25502524 DOI: 10.1128/jcm.03087-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Episomal HIV-1 two-long terminal repeat (2-LTR) circles are considered markers for ongoing viral replication. Two sample processing procedures were compared to accurately quantify 2-LTR in patients by using droplet digital PCR (ddPCR). Here, we show that plasmid isolation with a spiked non-HIV plasmid for normalization enables more accurate 2-LTR quantification than genomic DNA isolation.
Collapse
|
31
|
Hassan MA, Saeij JP. Incorporating alternative splicing and mRNA editing into the genetic analysis of complex traits. Bioessays 2014; 36:1032-40. [PMID: 25171292 PMCID: PMC4280019 DOI: 10.1002/bies.201400079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nomination of candidate genes underlying complex traits is often focused on genetic variations that alter mRNA abundance or result in non-conservative changes in amino acids. Although inconspicuous in complex trait analysis, genetic variants that affect splicing or RNA editing can also generate proteomic diversity and impact genetic traits. Indeed, it is known that splicing and RNA editing modulate several traits in humans and model organisms. Using high-throughput RNA sequencing (RNA-seq) analysis, it is now possible to integrate the genetics of transcript abundance, alternative splicing (AS) and editing with the analysis of complex traits. We recently demonstrated that both AS and mRNA editing are modulated by genetic and environmental factors, and potentially engender phenotypic diversity in a genetically segregating mouse population. Therefore, the analysis of splicing and RNA editing can expand not only the regulatory landscape of transcriptome and proteome complexity, but also the repertoire of candidate genes for complex traits.
Collapse
Affiliation(s)
- Musa A. Hassan
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| | - Jeroen P.J. Saeij
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| |
Collapse
|
32
|
Alidjinou EK, Bocket L, Hober D. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods. ACTA ACUST UNITED AC 2014; 63:53-9. [PMID: 25201144 DOI: 10.1016/j.patbio.2014.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes.
Collapse
Affiliation(s)
- E K Alidjinou
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - L Bocket
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - D Hober
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France.
| |
Collapse
|
33
|
Sebastian NT, Collins KL. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells and future directions. Expert Rev Anti Infect Ther 2014; 12:1187-201. [PMID: 25189526 DOI: 10.1586/14787210.2014.956094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Current therapy for HIV effectively suppresses viral replication and prolongs life, but the infection persists due, at least in part, to latent infection of long-lived cells. One favored strategy toward a cure targets latent virus in resting memory CD4(+) T cells by stimulating viral production. However, the existence of an additional reservoir in bone marrow hematopoietic progenitor cells has been detected in some treated HIV-infected people. This review describes approaches investigators have used to reactivate latent proviral genomes in resting CD4(+) T cells and hematopoietic progenitor cells. In addition, the authors review approaches for clearance of these reservoirs along with other important topics related to HIV eradication.
Collapse
Affiliation(s)
- Nadia T Sebastian
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
34
|
Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol 2014; 88:10056-65. [PMID: 24965451 DOI: 10.1128/jvi.01046-14] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.
Collapse
|
35
|
Buzon MJ, Sun H, Li C, Shaw A, Seiss K, Ouyang Z, Martin-Gayo E, Leng J, Henrich TJ, Li JZ, Pereyra F, Zurakowski R, Walker BD, Rosenberg ES, Yu XG, Lichterfeld M. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med 2014; 20:139-42. [PMID: 24412925 PMCID: PMC3959167 DOI: 10.1038/nm.3445] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
Cellular HIV-1 reservoirs that persist despite antiretroviral treatment are incompletely defined. We show that during suppressive antiretroviral therapy, CD4(+) T memory stem cells (TSCM cells) harbor high per-cell levels of HIV-1 DNA and make increasing contributions to the total viral CD4(+) T cell reservoir over time. Moreover, we conducted phylogenetic studies that suggested long-term persistence of viral quasispecies in CD4(+) TSCM cells. Thus, HIV-1 may exploit the stem cell characteristics of cellular immune memory to promote long-term viral persistence.
Collapse
Affiliation(s)
- Maria J Buzon
- 1] Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Hong Sun
- 1] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA. [2] Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chun Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Amy Shaw
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katherine Seiss
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Jin Leng
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Timothy J Henrich
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Florencia Pereyra
- 1] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA. [2] Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ryan Zurakowski
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Bruce D Walker
- 1] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Eric S Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Spatial modeling of HIV cryptic viremia and 2-LTR formation during raltegravir intensification. J Theor Biol 2013; 345:61-9. [PMID: 24378646 DOI: 10.1016/j.jtbi.2013.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/31/2013] [Accepted: 12/16/2013] [Indexed: 11/21/2022]
Abstract
Combination Antiretroviral Therapy (cART) can suppress plasma HIV below the limit of detection in normal assays. Recently reported results suggest that viral replication may continue in some patients, despite undetectable levels in the blood. It has been suggested that the appearance of the circularized episomal HIV DNA artifact 2-LTR following treatment intensification with the integrase inhibitor raltegravir is a marker of ongoing viral replication. Other work has suggested that lymphoid organs may be a site of reduced antiviral penetration and increased viral production. In this study we model the hypothesis that this ongoing replication occurs in lymphoid follicle sanctuary sites and investigate the patterns of 2-LTR formation expected after raltegravir application. Experimental data is used to estimate the reaction and diffusion parameters in the model, and Monte-Carlo simulations are used to explore model behavior subject to variation in these rates. The results suggest that conditions for the formation of an observed transient peak in 2-LTR formation following raltegravir intensification include a sanctuary site diameter larger than 0.2mm, a viral basic reproductive ratio within the site larger than 1, and a total volume of active sanctuary sites above 20mL. Significant levels of uncontrolled replication can occur in the sanctuary sites without measurable changes in the plasma viral load. By contrast, subcritical replication (where the basic reproductive ratio of the virus is less than 1 in all sites) always results in monotonic increases of measured 2-LTR following raltegravir intensification, occurring at levels below the limit of detection.
Collapse
|
37
|
Bona R, Baroncelli S, D'Ettorre G, Andreotti M, Ceccarelli G, Filati P, Leone P, Blasi M, Michelini Z, Galluzzo CM, Mallano A, Vullo V, Cara A. Effects of raltegravir on 2-long terminal repeat circle junctions in HIV type 1 viremic and aviremic patients. AIDS Res Hum Retroviruses 2013; 29:1365-9. [PMID: 23802629 DOI: 10.1089/aid.2013.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although 2-long terminal repeat (2-LTR) circles are only a fraction of the total viral DNA in infected cells, sequence analysis of 2-LTR circles reveals critical information regarding viral DNA synthesis and the nature of actively replicating virus. It was observed that a large proportion of the 2-LTR circular molecules in the peripheral blood mononuclear cell (PBMC) DNA of infected individuals are mutated at the circle junction. The integrase inhibitor raltegravir (RAL) blocks the strand transfer step of the integration of HIV-1; as a consequence of abortive integration a significant increase of episomal 2-LTR circles is observed. Moreover, it was demonstrated that in patients treated with highly active retroviral therapy (HAART) changes in 2-LTR concentration did not affect junction sequences and flanking regions of 2-LTR. Here we evaluated whether RAL therapy could have a differential impact on the 2-LTR circle junctional sequences in patients with different virological profiles at the time of starting RAL therapy. Sequence analysis indicates that RAL acts differently in the two populations.
Collapse
Affiliation(s)
- Roberta Bona
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Baroncelli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza,” Rome, Italy
| | - Mauro Andreotti
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza,” Rome, Italy
| | - Piero Filati
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Pasqualina Leone
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Blasi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Clementina Maria Galluzzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Mallano
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza,” Rome, Italy
| | - Andrea Cara
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
38
|
An HIV-1 replication pathway utilizing reverse transcription products that fail to integrate. J Virol 2013; 87:12701-20. [PMID: 24049167 DOI: 10.1128/jvi.01939-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Integration is a central event in the replication of retroviruses, yet ≥ 90% of HIV-1 reverse transcripts fail to integrate, resulting in accumulation of unintegrated viral DNA in cells. However, understanding what role, if any, unintegrated viral DNA plays in the natural history of HIV-1 has remained elusive. Unintegrated HIV-1 DNA is reported to possess a limited capacity for gene expression restricted to early gene products and is considered a replicative dead end. Although the majority of peripheral blood CD4(+) T cells are refractory to infection, nonactivated CD4 T cells present in lymphoid and mucosal tissues are major targets for infection. Treatment with cytokine interleukin-2 (IL-2), IL-4, IL-7, or IL-15 renders CD4(+) T cells permissive to HIV-1 infection in the absence of cell activation and proliferation and provides a useful model for infection of resting CD4(+) T cells. We found that infection of cytokine-treated resting CD4(+) T cells in the presence of raltegravir or with integrase active-site mutant HIV-1 yielded de novo virus production following subsequent T cell activation. Infection with integration-competent HIV-1 naturally generated a population of cells generating virus from unintegrated DNA. Latent infection persisted for several weeks and could be activated to virus production by a combination of a histone deacetylase inhibitor and a protein kinase C activator or by T cell activation. HIV-1 Vpr was essential for unintegrated HIV-1 gene expression and de novo virus production in this system. Bypassing integration by this mechanism may allow the preservation of genetic information that otherwise would be lost.
Collapse
|
39
|
Iwami S, Koizumi Y, Ikeda H, Kakizoe Y. Quantification of viral infection dynamics in animal experiments. Front Microbiol 2013; 4:264. [PMID: 24058361 PMCID: PMC3767920 DOI: 10.3389/fmicb.2013.00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
Analyzing the time-course of several viral infections using mathematical models based on experimental data can provide important quantitative insights regarding infection dynamics. Over the past decade, the importance and significance of mathematical modeling has been gaining recognition among virologists. In the near future, many animal models of human-specific infections and experimental data from high-throughput techniques will become available. This will provide us with the opportunity to develop new quantitative approaches, combining experimental and mathematical analyses. In this paper, we review the various quantitative analyses of viral infections and discuss their possible applications.
Collapse
Affiliation(s)
- Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University Fukuoka, Japan
| | | | | | | |
Collapse
|
40
|
Dynamics of the HIV-1 latent reservoir after discontinuation of the intensification of antiretroviral treatment: results of two clinical trials. AIDS 2013; 27:2081-8. [PMID: 24384589 DOI: 10.1097/qad.0b013e328361d0e1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Antiretroviral therapy (ART) intensification has been shown to reduce the reservoir of latently infected CD4 T cells. However, it is currently unknown whether this effect is maintained after discontinuation of the intensifying drug. DESIGN The effect of ART intensification during 48 weeks with maraviroc or raltegravir in chronically HIV-1-infected patients was assessed in two previous clinical trials. In this study, we analysed this effect at week 24 after discontinuation of the intensifying drugs, at baseline and 48 weeks of intensification. METHODS We measured the latently infected memory CD4 T cells carrying replication-competent virus, 2-long terminal repeat (2-LTR) circles and CD4/CD8 T cells activation. RESULTS Fifteen patients were evaluated. After 48 weeks of intensification, HIV-1 reservoir size significantly decreased from 1.1 to 0.0 infectious units per million (IUPM) (P=0.004). After 24 weeks of drug discontinuation, the median size of the reservoir was still significantly lower than at baseline (P=0.008). 2-LTRs were undetectable in all individuals at baseline and after 48 weeks of intensification, continuing undetectable in all patients except two at week 24 after discontinuation (P=0.1). CD4 and CD8 T-cell activation significantly decreased at 48 weeks after intensification, without further increase after discontinuation. CONCLUSION The effects of ART intensification with maraviroc or raltegravir persist at least 24 weeks after discontinuation of the drug. In a global strategy, ART intensification should be considered as part of a combination approach to achieve a functional cure or HIV eradication.
Collapse
|
41
|
Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, Keating SM, Gallien S, Lin NH, Giguel FF, Lavoie L, Ho VT, Armand P, Soiffer RJ, Sagar M, LaCasce AS, Kuritzkes DR. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis 2013; 207:1694-702. [PMID: 23460751 PMCID: PMC3636784 DOI: 10.1093/infdis/jit086] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The long-term impact of allogeneic hematopoietic stem cell transplantation (HSCT) on human immunodeficiency virus type 1 (HIV-1) reservoirs in patients receiving combination antiretroviral therapy (cART) is largely unknown. METHODS We studied the effects of a reduced-intensity conditioning allogeneic HSCT from donors with wild-type-CCR5(+) cells on HIV-1 peripheral blood reservoirs in 2 patients heterozygous for the ccr5Δ32 mutation. In-depth analyses of the HIV-1 reservoir size in peripheral blood, coreceptor use, and specific antibody responses were performed on samples obtained before and up to 3.5 years after HSCT receipt. RESULTS Although HIV-1 DNA was readily detected in peripheral blood mononuclear cells (PBMCs) before and 2-3 months after HSCT receipt, HIV-1 DNA and RNA were undetectable in PBMCs, CD4(+) T cells, or plasma up to 21 and 42 months after HSCT. The loss of detectable HIV-1 correlated temporally with full donor chimerism, development of graft-versus-host disease, and decreases in HIV-specific antibody levels. CONCLUSIONS The ability of donor cells to engraft without evidence of ongoing HIV-1 infection suggests that HIV-1 replication may be fully suppressed during cART and does not contribute to maintenance of viral reservoirs in peripheral blood in our patients. HSCTs with wild-type-CCR5(+) donor cells can lead to a sustained reduction in the size of the peripheral reservoir of HIV-1.
Collapse
Affiliation(s)
- Timothy J. Henrich
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | - Zixin Hu
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | - Jonathan Z. Li
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | | | - Michael P. Busch
- Blood Systems Research Institute
- University of California–San Francisco, San Francisco
| | - Sheila M. Keating
- Blood Systems Research Institute
- University of California–San Francisco, San Francisco
| | - Sebastien Gallien
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Hopital Saint-Louis, Paris, France
| | - Nina H. Lin
- Harvard Medical School
- Divsision of Infectious Diseases, Massachusetts General Hospital
| | | | - Laura Lavoie
- Divsision of Infectious Diseases, Massachusetts General Hospital
| | - Vincent T. Ho
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Philippe Armand
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert J. Soiffer
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Manish Sagar
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| | - Ann S. LaCasce
- Harvard Medical School
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Daniel R. Kuritzkes
- Divison of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School
| |
Collapse
|
42
|
Kibirige C. The Use of Ultra-Sensitive Molecular Assays in HIV Cure-Related Research. JOURNAL OF AIDS & CLINICAL RESEARCH 2013; Suppl 6. [PMID: 25328815 PMCID: PMC4198944 DOI: 10.4172/2155-6113.s6-002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultra-sensitive laboratory assays based on the Polymerase Chain Reaction (PCR) are playing an increasingly important role in HIV cure-related research. This article reviews the different assays available and how they have evolved. There is a great need for their standardization and for the establishment of reference reagents and testing algorithms to evaluate potential HIV cure-related treatments.
Collapse
|
43
|
Luo R, Cardozo EF, Piovoso MJ, Wu H, Buzon MJ, Martinez-Picado J, Zurakowski R. Modelling HIV-1 2-LTR dynamics following raltegravir intensification. J R Soc Interface 2013; 10:20130186. [PMID: 23658114 PMCID: PMC3673152 DOI: 10.1098/rsif.2013.0186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A model of reservoir activation and viral replication is introduced accounting for the production of 2-LTR HIV-1 DNA circles following antiviral intensification with the HIV integrase inhibitor raltegravir, considering contributions of de novo infection events and exogenous sources of infected cells, including quiescent infected cell activation. The model shows that a monotonic increase in measured 2-LTR concentration post intensification is consistent with limited de novo infection primarily maintained by sources of infected cells unaffected by raltegravir, such as quiescent cell activation, while a transient increase in measured 2-LTR concentration is consistent with significant levels of efficient (R0 > 1) de novo infection. The model is validated against patient data from the INTEGRAL study and is shown to have a statistically significant fit relative to the null hypothesis of random measurement variation about a mean. We obtain estimates and confidence intervals for the model parameters, including 2-LTR half-life. Seven of the 13 patients with detectable 2-LTR concentrations from the INTEGRAL study have measured 2-LTR dynamics consistent with significant levels of efficient replication of the virus prior to treatment intensification.
Collapse
Affiliation(s)
- Rutao Luo
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Mbonye UR, Gokulrangan G, Datt M, Dobrowolski C, Cooper M, Chance MR, Karn J. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. PLoS Pathog 2013; 9:e1003338. [PMID: 23658523 PMCID: PMC3642088 DOI: 10.1371/journal.ppat.1003338] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/20/2013] [Indexed: 11/26/2022] Open
Abstract
The HIV transactivator protein, Tat, enhances HIV transcription by recruiting P-TEFb from the inactive 7SK snRNP complex and directing it to proviral elongation complexes. To test the hypothesis that T-cell receptor (TCR) signaling induces critical post-translational modifications leading to enhanced interactions between P-TEFb and Tat, we employed affinity purification–tandem mass spectrometry to analyze P-TEFb. TCR or phorbal ester (PMA) signaling strongly induced phosphorylation of the CDK9 kinase at Ser175. Molecular modeling studies based on the Tat/P-TEFb X-ray structure suggested that pSer175 strengthens the intermolecular interactions between CDK9 and Tat. Mutations in Ser175 confirm that this residue could mediate critical interactions with Tat and with the bromodomain protein BRD4. The S175A mutation reduced CDK9 interactions with Tat by an average of 1.7-fold, but also completely blocked CDK9 association with BRD4. The phosphomimetic S175D mutation modestly enhanced Tat association with CDK9 while causing a 2-fold disruption in BRD4 association with CDK9. Since BRD4 is unable to compete for binding to CDK9 carrying S175A, expression of CDK9 carrying the S175A mutation in latently infected cells resulted in a robust Tat-dependent reactivation of the provirus. Similarly, the stable knockdown of BRD4 led to a strong enhancement of proviral expression. Immunoprecipitation experiments show that CDK9 phosphorylated at Ser175 is excluded from the 7SK RNP complex. Immunofluorescence and flow cytometry studies carried out using a phospho-Ser175-specific antibody demonstrated that Ser175 phosphorylation occurs during TCR activation of primary resting memory CD4+ T cells together with upregulation of the Cyclin T1 regulatory subunit of P-TEFb, and Thr186 phosphorylation of CDK9. We conclude that the phosphorylation of CDK9 at Ser175 plays a critical role in altering the competitive binding of Tat and BRD4 to P-TEFb and provides an informative molecular marker for the identification of the transcriptionally active form of P-TEFb. The release of the transcription elongation factor P-TEFb from the 7SK RNP complex and its binding to the HIV Tat transactivator protein enables the efficient transcription of HIV proviruses. In resting memory T-cells, which carry the bulk of the latent HIV viral pool, limiting the cellular levels of P-TEFb ensures that the provirus remains silenced unless the host cell is activated. Here we demonstrate that T-cell receptor (TCR) activation induces phosphorylation of Ser175, a residue which is located at the interface between CycT1, CDK9 and Tat. Phosphorylation of Ser175 occurs on free or 7SK-dissociated P-TEFb and genetic experiments indicate that this modification enhances P-TEFb interaction with Tat resulting in Tat-dependent reactivation of HIV proviral transcription. Modification of Ser175 appears critical for controlling the competitive binding of Tat and the bromodomain protein BRD4 to P-TEFb. Activation of P-TEFb in resting T-cells thus involves both the initial assembly of the 7SK snRNP complex and the subsequent mobilization of P-TEFb by cellular signaling and Tat. Therefore, pSer175 provides an informative molecular marker for the identification of the transcriptionally active form of P-TEFb that can be used to monitor the extent of T-cell activation during therapeutic interventions aimed at virus eradication.
Collapse
Affiliation(s)
- Uri R. Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Giridharan Gokulrangan
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Manish Datt
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Maxwell Cooper
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The persistence of HIV within infected CD4 T cells is a major obstacle to eradication, and assessment of the strategies to reduce HIV reservoirs is one of the major challenges. Measuring HIV reservoirs accurately will be necessary to assess those strategies. The objective of this review is to present the most recent studies that may help to define the best markers to measure HIV reservoirs. RECENT FINDINGS Recent findings have shown that multiple assays can be used to quantify the different analytes that reflect the HIV reservoirs. They have provided new insights, but lack of standardization has made cross-comparisons of data difficult. No single best assay for measuring HIV reservoirs has been identified and these assays often address different questions, such as the size of the reservoirs, the composition of the reservoirs, or the capacity of latent reservoirs to produce virus. A consensus on what values reflect robust conclusions will have to wait for the generation of additional results. SUMMARY In conclusion, there is a compelling need for investigators to optimize assays and share protocol reagents and specimens to permit the validation, comparison, and standardization of techniques. There is an important need for validated, high-throughput, sensitive, and accurate assays that can detect changes in HIV reservoir size in order to assess the impact of candidate therapies.
Collapse
Affiliation(s)
- Christine Rouzioux
- Department of Virology, Necker Hospital, Paris Descartes University, Paris-Sorbonne-Cité, Paris, France.
| | | |
Collapse
|
46
|
Pasternak AO, Lukashov VV, Berkhout B. Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology 2013; 10:41. [PMID: 23587031 PMCID: PMC3637491 DOI: 10.1186/1742-4690-10-41] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/10/2013] [Indexed: 12/27/2022] Open
Abstract
In most HIV-infected individuals adherent to modern antiretroviral therapy (ART), plasma viremia stays undetectable by clinical assays and therefore, additional virological markers for monitoring and predicting therapy responses and for measuring the degree of HIV persistence in patients on ART should be identified. For the above purposes, quantitation of cell-associated HIV biomarkers could provide a useful alternative to measurements of viral RNA in plasma. This review concentrates on cell-associated (CA) HIV RNA with the emphasis on its use as a virological biomarker. We discuss the significance of CA HIV RNA as a prognostic marker of disease progression in untreated patients and as an indicator of residual virus replication and the size of the dynamic viral reservoir in ART-treated patients. Potential value of this biomarker for monitoring the response to ART and to novel HIV eradication therapies is highlighted.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam-CINIMA, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | | | | |
Collapse
|
47
|
Sigal A, Baltimore D. As good as it gets? The problem of HIV persistence despite antiretroviral drugs. Cell Host Microbe 2013; 12:132-8. [PMID: 22901535 DOI: 10.1016/j.chom.2012.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficienty virus (HIV) infection is suppressed but not eliminated by antiretroviral drugs. Viral persistence in the face of therapy has been explained by viral latency, lowered effectiveness of drugs in some anatomical sites and cell types, and cell-to-cell spread. These mechanisms allow for drug-sensitive virus to persist despite treatment. Understanding the persistence mechanism at work at different times after infection, including the time of initial infection immediately following transmission when reservoirs are first formed, will reveal if we are at the limit of what can be achieved with the current therapy paradigm of suppressing ongoing virus replication with drugs. We discuss some of the possible reasons why HIV persists at different points on the infection timeline, focusing on the role ongoing replication may have in maintaining the infection despite drugs at early times postexposure.
Collapse
Affiliation(s)
- Alex Sigal
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
| | | |
Collapse
|
48
|
Mexas AM, Graf EH, Pace MJ, Yu JJ, Papasavvas E, Azzoni L, Busch MP, Di Mascio M, Foulkes AS, Migueles SA, Montaner LJ, O’Doherty U. Concurrent measures of total and integrated HIV DNA monitor reservoirs and ongoing replication in eradication trials. AIDS 2012; 26:2295-306. [PMID: 23014521 PMCID: PMC4692807 DOI: 10.1097/qad.0b013e32835a5c2f] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Interest in targeting HIV reservoirs is fueling trials that may decrease reservoir size and/or induce viral replication. Therefore, we aimed to develop strategies to sensitively measure changes in these parameters in patients on and off antiretroviral therapy (ART). Achieving these goals may help evaluate the effects of future clinical trials. DESIGN To determine the relationship between measurements of total and integrated HIV DNA and their role as markers of reservoir size and ongoing replication, these parameters were measured during the first year of ART, during long-term effective ART, and during a clinical trial aimed at targeting reservoirs. METHODS Total and integrated HIV DNA were measured in patient samples using quantitative PCR techniques. CD4(+)T cell counts and plasma viremia were also monitored. RESULTS Unintegrated HIV DNA became undetectable during the first year of ART. Total and integrated HIV DNA levels were generally equal in well controlled patients on ART, and low-level plasma viremia correlated best with integration measures. Finally, patients who controlled plasma viremia (<400 copies/ml) during interferon-α monotherapy exhibited a decrease in the level of integrated but not total HIV DNA and a rise in the ratio of total to integrated HIV DNA over time. CONCLUSION Our findings suggest that appearance of unintegrated HIV DNA reflects residual HIV expression and de-novo reverse transcription, providing insight into the mechanism by which interferon-α reduces the HIV reservoir. We conclude that concurrent measurements of total and integrated HIV DNA provide information regarding reservoir size and ongoing replication in trials targeting HIV.
Collapse
Affiliation(s)
- Angela M. Mexas
- Dept of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania. Philadelphia, PA 19104. USA
| | - Erin H. Graf
- Dept of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania. Philadelphia, PA 19104. USA
| | - Matthew J. Pace
- Dept of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania. Philadelphia, PA 19104. USA
| | - Jianqing J. Yu
- Dept of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania. Philadelphia, PA 19104. USA
| | - Emmanouil Papasavvas
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104. USA
| | - Livio Azzoni
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104. USA
| | - Michael P. Busch
- Blood Systems Research Institute, University of California, San Francisco, 270 Masonic Ave, San Franscisco, CA USA
| | | | - Andrea S. Foulkes
- Division of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003
| | | | - Luis J. Montaner
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104. USA
| | - Una O’Doherty
- Dept of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania. Philadelphia, PA 19104. USA
| |
Collapse
|
49
|
Pasternak AO, de Bruin M, Jurriaans S, Bakker M, Berkhout B, Prins JM, Lukashov VV. Modest nonadherence to antiretroviral therapy promotes residual HIV-1 replication in the absence of virological rebound in plasma. J Infect Dis 2012; 206:1443-52. [PMID: 22927449 DOI: 10.1093/infdis/jis502] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Modern antiretroviral therapy (ART) regimens are widely assumed to forgive modest nonadherence, because virological suppression in plasma is common at adherence levels of >70%. Yet, it is unknown whether human immunodeficiency virus type 1 (HIV-1) replication is completely suppressed at these levels of adherence. METHODS We longitudinally quantified levels of cell-associated HIV-1 RNA and DNA in 40 patients (median duration of successful ART before study initiation, 46 months), whose 1-week adherence to therapy prior to the sampling moments was measured electronically. RESULTS Patients were constantly 100% adherent (the optimal-adherence group), demonstrated improving adherence over time (the improving-adherence group), or neither of the above (the poor-adherence group). Adherence never decreased to <70% in any patient, and no rebound in plasma virological levels was observed. Nevertheless, poor adherence but not optimal or improving adherence caused a significant longitudinal increase in cell-associated HIV RNA levels (P = .006). Time-weighted changes and regression slopes of viral RNA load for the poor-adherence group were significantly higher than those for the optimal-adherence group (P < .01). CONCLUSIONS Because ART only blocks infection of new cells but not viral RNA transcription in cells infected before therapy initiation, the observed effects strongly suggest that modest nonadherence can cause new cycles of HIV-1 replication that are undetectable by commercial plasma viral load assays.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Williams JP, Frater J. Current understanding in HIV immunopathology and treatment. QJM 2012; 105:725-8. [PMID: 22294649 DOI: 10.1093/qjmed/hcs019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J P Williams
- Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | | |
Collapse
|