1
|
Goncharov AP, Dicusari Elissaiou C, Ben Aharon Farzalla E, Akhvlediani G, Vashakidze N, Kharaishvili G. Signalling pathways in a nutshell: from pathogenesis to therapeutical implications in prostate cancer. Ann Med 2025; 57:2474175. [PMID: 40372974 PMCID: PMC12082737 DOI: 10.1080/07853890.2025.2474175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 05/17/2025] Open
Abstract
From tumorigenesis to the establishment of local or metastatic high-grade tumours, an integral part of the cellular lifespan relies on various signalling pathways. Particular pathways that allow cells to proliferate by creating a network of new blood vessels have been documented, whereas other pathways are primarily involved with a migration to distant body parts, partially through the process of epithelial-mesenchymal transition (EMT). This review will discuss the different signalling pathways, such as TGF-β, Cripto-1, Wnt pathways, Hedgehog, Notch and NF-κB pathways, and how they promote tumour initiation and progression by influencing diverse cellular processes and EMT in general and in benign and malignant prostate tumours. This review will discuss only the critical pathways. Therefore, many other types of signalling pathways which are related to prostate cancer will not be discussed. Possibilities for further investigation will be mentioned, as many underlying mechanisms involved in these pathways have potential as targets in future tumour therapy. This review will also introduce some novel clinical trials relating to the inhibition of signalling pathways and their clinical outcomes.
Collapse
Affiliation(s)
- Aviv Philip Goncharov
- Department of Clinical and Molecular Pathology, Palacky University, Olomouc, Czech Republic
- Department of Oncology, University Hospital, Olomouc, Czech Republic
| | | | | | - Giorgi Akhvlediani
- Faculty of Medicine, Georgian-American University, Tbilisi, Georgia
- American Hospital in Tbilisi, Tbilisi, Georgia
- Faculty of Medicine, University of Georgia, Tbilisi, Georgia
| | - Nino Vashakidze
- Department of Clinical and Molecular Pathology, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Human Morphology and Pathology, Medical Faculty, David Tvildiani Medical University, Tbilisi, Georgia
- Department of Clinical and Molecular Pathology, University Hospital, Olomouc, Czech Republic
| |
Collapse
|
2
|
Bi K, Li J, Yang J, Qiu S, Zhang K, Wang H, Hu K, Chen L, Xu Y, Meng Q. The function of β-catenin and GSK-3β in Procambarus clarkii Wnt signaling pathway during Spiroplasma eriocheiris infection. Int J Biol Macromol 2025; 313:144269. [PMID: 40381786 DOI: 10.1016/j.ijbiomac.2025.144269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Wnt signaling pathway plays an important role in both the regulation of host innate immunity and the nervous system. In this study, two key genes in the Wnt signaling pathway, β-catenin and GSK-3β, were first characterized from Procambarus clarkii, and significantly upregulated in hemocytes during Spiroplasma eriocheiris infection. At the cellular level, overexpression of Pcβ-catenin in Drosophila S2 cells significantly increased the cell viability and reactive oxygen species (ROS) production, decreased the cell necrosis and intracellular S. eriocheiris replication, while PcGSK-3β overexpression exerted an opposite effect. The Co-IP results revealed that PcGSK-3β could interact with Pcβ-catenin. Further, co-transfection of PcGSK-3β and Pcβ-catenin into S2 cells markedly reduced the cell survival and ROS level upon S. eriocheiris infection. At the individual level, knockdown of Pcβ-catenin significantly induced the apoptosis of hemocytes and increased the mortality of the crayfish following S. eriocheiris infection. Conversely, PcGSK-3β deficiency significantly elevated the ROS level in hemocytes thereby enhancing the resistance of P. clarkii to S. eriocheiris infection. In conclusion, this study has proved the regulation mechanism of Wnt signaling pathway in response to S. eriocheiris infection, which may contribute to our understanding of innate immunity in invertebrates.
Collapse
Affiliation(s)
- Keran Bi
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Jiajia Li
- Key Laboratory of Genetic Breeding and cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlong Yang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Suyue Qiu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Kun Zhang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Haibo Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Kai Hu
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Luyao Chen
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Yu Xu
- Key Laboratory of Genetic Breeding and cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Monfries C, Carter S, Ataliotis P, Bseisu A, Shaikh M, Hernández-Bejarano M, Fourteia M, Maftei MI, Young RM, Wilson SW, Gestri G, Cavodeassi F. frizzled 5 mutant zebrafish are genetically sensitised to developing microphthalmia and coloboma. Dis Model Mech 2025; 18:dmm052284. [PMID: 40401611 DOI: 10.1242/dmm.052284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025] Open
Abstract
Microphthalmia and coloboma are structural malformations of the eyes that arise from defective morphogenesis and are among the most severe defects associated with paediatric blindness. Frizzled class receptor 5 (FZD5) is a Wnt receptor expressed in the developing eye, and individuals with variants in FZD5 exhibit microphthalmia/coloboma, supporting a role for this receptor in human eye formation. Here, we show that zebrafish fzd5 mutants homozygous for complete loss-of-function or predicted dominant-negative alleles display no obvious eye defects during embryogenesis. Rather, they develop eye defects comparable to those described in humans only upon simultaneous abrogation of additional genes associated with ocular malformations. Thus, eye development can occur normally in the absence of Fzd5 in zebrafish, but mutants are sensitised to developing eye malformations. By exploiting the sensitised nature of the fzd5 mutants, we further identified angio-associated migratory cell protein (aamp) as a novel gene involved in eye morphogenesis. Overall, our study confirms the importance of considering multiple genetic contributions when searching for the molecular aetiology of ocular malformations in humans.
Collapse
Affiliation(s)
- Clinton Monfries
- St George's School of Health and Medical Sciences, City St George's University of London, London SW17 0RE, UK
| | - Stephen Carter
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Paris Ataliotis
- St George's School of Health and Medical Sciences, City St George's University of London, London SW17 0RE, UK
| | - Aya Bseisu
- St George's School of Health and Medical Sciences, City St George's University of London, London SW17 0RE, UK
| | - Mahum Shaikh
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Mohammed Fourteia
- St George's School of Health and Medical Sciences, City St George's University of London, London SW17 0RE, UK
| | - Mara Ioana Maftei
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rodrigo M Young
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Center for Integrative Biology, Universidad Mayor, 8580745 Huechuraba, Santiago, Chile
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- St George's School of Health and Medical Sciences, City St George's University of London, London SW17 0RE, UK
| |
Collapse
|
4
|
Haantjes RR, Strik J, de Visser J, Postma M, van Amerongen R, van Boxtel AL. Towards an integrated view and understanding of embryonic signalling during murine gastrulation. Cells Dev 2025:204028. [PMID: 40316255 DOI: 10.1016/j.cdev.2025.204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
At the onset of mammalian gastrulation, secreted signalling molecules belonging to the Bmp, Wnt, Nodal and Fgf signalling pathways induce and pattern the primitive streak, marking the start for the cellular rearrangements that generate the body plan. Our current understanding of how signalling specifies and organises the germ layers in three dimensions, was mainly derived from genetic experimentation using mouse embryos performed over many decades. However, the exact spatiotemporal sequence of events is still poorly understood, both because of a lack of tractable models that allow for real time visualisation of signalling and differentiation and because of the molecular and cellular complexity of these early developmental events. In recent years, a new wave of in vitro embryo models has begun to shed light on the dynamics of signalling during primitive streak formation. Here we discuss the similarities and differences between a widely adopted mouse embryo model, termed gastruloids, and real embryos from a signalling perspective. We focus on the gene regulatory networks that underlie signalling pathway interactions and outline some of the challenges ahead. Finally, we provide a perspective on how embryo models may be used to advance our understanding of signalling dynamics through computational modelling.
Collapse
Affiliation(s)
- Rhanna R Haantjes
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Jeske Strik
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525GA Nijmegen, the Netherlands.
| | - Joëlle de Visser
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Marten Postma
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Schubert A, Mongkolsittisilp A, Kobitski A, Schulz M, Voloshanenko O, Schaffrinski M, Winkler N, Neßling M, Richter K, Kranz D, Nienhaus K, Jäger D, Trümper L, Büntzel J, Binder C, Nienhaus GU, Boutros M. WNT5a export onto extracellular vesicles studied at single-molecule and single-vesicle resolution. FEBS J 2025. [PMID: 40165582 DOI: 10.1111/febs.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/17/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025]
Abstract
WNT signaling governs development, homeostasis, and aging of cells and tissues, and is frequently dysregulated in pathophysiological processes such as cancer. WNT proteins are hydrophobic and traverse the intercellular space between the secreting and receiving cells on various carriers, including extracellular vesicles (EVs). Here, we address the relevance of different EV fractions and other vehicles for WNT5a protein, a non-canonical WNT ligand that signals independently of beta-catenin. Its highly context-dependent roles in cancer (either tumor-suppressive or tumor-promoting) have been attributed to two distinct isoforms, WNT5a Short (WNT5aS) and WNT5a Long (WNT5aL), resulting from different signal peptide cleavage sites. To explore possible differences in secretion and extracellular transport, we developed fusion constructs with the fluorescent proteins (FPs) mScarlet and mOxNeonGreen. Functional reporter assays revealed that both WNT5a isoforms inhibit canonical WNT signaling, and EVs produced by WNT5a-bearing tumor cells, carrying either of the WNT5a isoforms, induced invasiveness of the luminal A breast cancer cell line MCF7. We used fluorescence intensity distribution analysis (FIDA) and fluorescence correlation spectroscopy (FCS) to characterize at single-molecule sensitivity WNT5aL-bearing entities secreted by HEK293T cells. Importantly, we found that most WNT5aL proteins remained monomeric in the supernatant after ultracentrifugation; only a minor fraction was EV-bound. We further determined the average sizes of the EV fractions and the average number of WNT5aL proteins per EV. Our detailed biophysical analysis of the physical nature of the EV populations is an important step toward understanding context-dependent WNT cargo loading and signaling in future studies.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany
| | | | - Andrei Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Matthias Schulz
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Oksana Voloshanenko
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Meike Schaffrinski
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Nadine Winkler
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Michelle Neßling
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Richter
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Kranz
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Judith Büntzel
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Claudia Binder
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute for Human Genetics, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Murcia-Belmonte V, Liu Y, Shamsi S, Shaw S, Collie-Duguid E, Herrera E, Collinson JM, Vargesson N, Erskine L. Identification of lens-regulated genes driving anterior eye development. Dev Biol 2025; 520:91-107. [PMID: 39814158 DOI: 10.1016/j.ydbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal. Lens-regulated genes implicated in periocular mesenchyme, cornea and anterior optic cup development were identified, including factors not previously implicated in eye development. Unexpectedly, transcriptomic differences were identified in retinas from male versus female chicken embryos, suggesting sexual dimorphism from early stages. In situ hybridisation of embryonic chicken eyes and analyses of datasets from embryonic mouse and adult human eyes confirmed expression of candidate genes, including multiple WNT genes, in tissues important for anterior eye development and function. Remarkably, pharmacological activation of canonical WNT signalling restored eye development and size in the absence of the lens. These analyses have identified candidate genes and biological pathways involved in eye development, providing avenues for new research in this area.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - Yanlin Liu
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sadia Shamsi
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: All Wales Medical Genomics Service, Cardiff and Vale University Health Board, University Hospital of Wales, CF14 4XW, UK
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), Campus San Juan, Av. Ramón y Cajal S/n, Alicante, 03550, Spain
| | - J Martin Collinson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Lynda Erskine
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
7
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
8
|
Razzaq S, Fatima I, Moafian Z, Rahdar A, Fathi-Karkan S, Kharaba Z, Shirzad M, Khan A, Pandey S. Nanomedicine innovations in colon and rectal cancer: advances in targeted drug and gene delivery systems. Med Oncol 2025; 42:113. [PMID: 40097759 DOI: 10.1007/s12032-025-02670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has revolutionized cancer diagnostics and therapy, offering unprecedented possibilities to overcome the constraints of conventional treatments. This study provides a detailed overview of the current progress and difficulties in the creation of nanostructured materials, with a specific emphasis on their use in drug and gene delivery systems. The study examines tactics that attempt to improve the effectiveness and safety of chemotherapeutic drugs such as doxorubicin (Dox) by focusing on the potential of antibody-drug conjugates and functionalized nanoparticles. Moreover, it clarifies the challenges encountered in administering nanoparticles orally for gastrointestinal treatments, emphasizing the crucial physicochemical properties that affect their behavior in the gastrointestinal system. This study highlights the transformational potential of nanostructured materials in precision oncology by examining advanced breakthroughs such cell membrane-camouflaged nanoparticles and inorganic nanoparticles designed for gastrointestinal disorders. The text investigates the processes involved in the absorption of nanoparticles and their destruction in lysosomes, revealing the many methods in which enterocytes take up these particles. This study strongly supports the use of advanced nanoparticle-based methods to reduce the harmful effects on the whole body and improve the effectiveness of therapy, based on a thorough examination of current experiments on animals and humans. The main objective of this paper is to provide a fundamental comprehension that will stimulate more investigation and practical use in the field of cancer nanomedicine, advancing its boundaries.
Collapse
Affiliation(s)
- Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zeinab Moafian
- Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran.
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India.
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
9
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025; 8:266-286. [PMID: 39808166 PMCID: PMC11871115 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityCairoEgypt
| | - A. Dinesh Raja
- Department of PharmaceuticsKMCH College of PharmacyCoimbatoreIndia
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, HyderabadIndia
| | - Chandan Nayak
- Department of Pharmaceutics, School of PharmacyArka Jain UniversityJharkhandIndia
| | - Senthilkumar Balakrishnan
- Department of PharmaceuticsJKKMMRF‐Annai JKK Sampoorani Ammal College of PharmacyKomarapalayamNamakkalIndia
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of PharmacyGopal Narayan Singh UniversitySasaramIndia
| | - Saswati Panigrahi
- Department of Pharmaceutical ChemistrySt. John Institute of Pharmacy and ResearchVevoorPalgharIndia
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhakaBangladesh
| |
Collapse
|
10
|
Xie B, Millar M, Arthurs C, Johal N, Fry C, Ahmed A. Expression of Wnt signaling proteins in rare congenital bladder disorders. J Pediatr Urol 2025; 21:2-10. [PMID: 39500676 DOI: 10.1016/j.jpurol.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 02/03/2025]
Abstract
INTRODUCTION AND AIMS Congenital bladder anomalies are rare and are a leading cause of end stage renal failure in children. The Wnt signaling pathway, important during embryonic development, has been implicated in the pathogenesis of these conditions through regulation of gene expression, including essential transcription factors. We investigated the expression of four Wnt transcriptional targets, namely, Pygopus 1 (Pygo1), Connexin 43 (Cx43), FRA1 and TCF7L1 in three rare congenital bladder disorders: bladder exstrophy (BE), neurogenic bladder (NGB) and posterior urethral valves (PUV). METHODS Bladder tissue samples were collected from patients at the Great Ormond Street Hospital for Sick Children, London, UK, with control (normally-functioning bladder, N = 9), BE (N = 15), NGB (N = 6) and PUV (N = 5). Histological analysis was performed using the van Gieson stain to differentiate smooth muscle (SM) and connective tissue (CT) compartments. An unbiased, automated, semi-quantitative immunofluorescence analysis was performed to measure the labelling intensity of four Wnt-related proteins in tissue from these four groups. RESULTS AND DISCUSSION There was a significant (p < 0.05) increase in the expression of Pygo1 in the smooth muscle of all anomalies examined and also in the connective tissue in PUV compared to control. Cx43 also showed overexpression in the smooth muscle across all conditions; however, there was a reduced expression in NGB and an increase in PUV in connective tissue. TCF7L1 showed a significant decrease in both tissue compartments for NGB, whereas FRA1 expression remained unchanged across all anomalies. We also measured colocalization of Wnt-related proteins. TCF7L1 exhibited increased colocalization with Pygo1 and FRA1 in exstrophy compared to control. These results suggest a complex dysregulation of the Wnt pathway in congenital bladder disorders. CONCLUSION Wnt signaling-related proteins show dysregulation in congenital bladder disorders compared to control tissue. Understanding these mechanisms should help towards non-invasive early diagnosis, drug target discovery and development of treatment strategies for these conditions.
Collapse
Affiliation(s)
- Boyu Xie
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, Great Maze Pond, King's College London, London SE1 9RT, UK
| | - Michael Millar
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Callum Arthurs
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, Great Maze Pond, King's College London, London SE1 9RT, UK
| | - Navroop Johal
- Department of Urology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Christopher Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Aamir Ahmed
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, Great Maze Pond, King's College London, London SE1 9RT, UK; Department of Cell and Developmental Biology, Rockefeller Building, University Street, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
11
|
Liu B, Liu R, Zhang X, Tian L, Li Z, Yu J. Ubiquitin-conjugating enzyme E2T confers chemoresistance of colorectal cancer by enhancing the signal propagation of Wnt/β-catenin pathway in an ERK-dependent manner. Chem Biol Interact 2025; 406:111347. [PMID: 39667421 DOI: 10.1016/j.cbi.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy is a major therapeutic option for colorectal cancer; however, the frequently acquired chemoresistance greatly limits the treatment efficacy of chemotherapeutic agents. Ubiquitin-conjugating enzyme E2T (UBE2T) is emerging as a key player in the development of therapy resistance. However, whether UBE2T participates in the acquisition of chemoresistance in colorectal cancer remains undetermined. The present work aimed to specify the role of UBE2T in the development of chemoresistance in colorectal cancer and decipher any potential underlying mechanisms. Significant up-regulation of UBE2T was observed in the clinical specimens of chemoresistant colorectal cancer patients compared with chemosensitive patients. Compared with parental cells, the levels of UBE2T were also dramatically elevated in oxaliplatin (OXA)- and 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Knockout of UBE2T rendered OXA- and 5-FU-resistant cells sensitive to OXA and 5-FU, respectively. Re-expression of UBE2T restored the chemoresistance of UBE2T-knockout OXA- and 5-FU-resistant cells. Mechanistically, phosphorylated GSK-3β, active β-catenin, c-myc and cyclin D1 levels were decreased in UBE2T-knockout OXA- and 5-FU-resistant cells, which were reversed by the re-expression of UBE2T. Moreover, knockout of UBE2T reduced the activation of ERK. The inhibition of ERK reversed the promotion effect of UBE2T on Wnt/β-catenin pathway. In vivo xenograft experiments demonstrated that knockout of UBE2T rendered the subcutaneous tumors formed by OXA-resistant cells sensitive to OXA. To conclude, UBE2T confers chemoresistance of colorectal cancer by boosting the signal propagation of the Wnt/β-catenin pathway in an ERK-dependent manner. Therefore, UBE2T could be a potential target for overcoming chemoresistance in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ultrasound, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China.
| | - Xiaolong Zhang
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| |
Collapse
|
12
|
Irfan M, Kim JH, Sreekumar S, Chung S. RNA sequencing reveals key factors modulating TNFα-stimulated odontoblast-like differentiation of dental pulp stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632294. [PMID: 39868289 PMCID: PMC11761799 DOI: 10.1101/2025.01.09.632294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Inflammation is a complex host response to harmful infections or injuries, playing both beneficial and detrimental roles in tissue regeneration. Notably, clinical dentinogenesis associated with caries development occurs within an inflammatory environment. Reparative dentinogenesis is closely linked to intense inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs) into the dentin lineage. Understanding how inflammatory responses influence DPSCs is essential for elucidating the mechanisms underlying dentin and pulp regeneration. Given the limited data on this process, a broad approach is employed here to gain a deeper understanding of the complex mechanisms involved and to identify downstream signaling targets. This study aims to investigate the role of inflammation and the complement receptor C5L2 in the odontoblastic differentiation of DPSCs and the associated transcriptomic changes using poly-A RNA sequencing (RNA-seq). RNA-seq techniques provide insight into the transcriptome of a cell, offering higher coverage and greater resolution of its dynamic nature. Following inflammatory stimulation, DPSCs exhibit significantly altered gene profiles, including marked upregulation of key odontogenic genes, highlighting the critical role of inflammation in dentinogenesis. We demonstrate that TNFα-treated odontoblast-like differentiating DPSCs, under C5L2 modulation, exhibit significant differential gene expression and transcriptomic changes. The data presented may provide new avenues for experimental approaches to uncover pathways in dentinogenesis by identifying specific transcription factors and gene profiles.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Ji Hyun Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Sreelekshmi Sreekumar
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| |
Collapse
|
13
|
Karami N, Taei A, Eftekhari-Yazdi P, Hassani F. Signaling pathway regulators in preimplantation embryos. J Mol Histol 2024; 56:57. [PMID: 39729177 DOI: 10.1007/s10735-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest. This issue is particularly evident in assisted reproductive technologies, such as in vitro fertilization, where embryonic arrest is frequently observed. A detailed understanding of these pathways enhances insight into the fundamental mechanisms underlying cellular processes and their contributions to embryonic development. The significance of elucidating signaling pathways and their regulatory factors in preimplantation development cannot be overstated. The application of this knowledge in laboratory settings has the potential to support strategies for modeling developmental stages and diseases, drug screening, therapeutic discovery, and reducing embryonic arrest. Furthermore, using various factors, small molecules, and pharmacological agents can enable the development or optimization of culture media for enhanced embryonic viability. While numerous pathways influence preimplantation development, this study examines several critical signaling pathways in this contex.
Collapse
Affiliation(s)
- Narges Karami
- MSc., Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.
| |
Collapse
|
14
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Yu T, Chen M, Wen J, Liu J, Li K, Jin L, Yue J, Yang Z, Xi J. The effects of all-trans retinoic acid on prednisolone-induced osteoporosis in zebrafish larvae. Bone 2024; 189:117261. [PMID: 39303930 DOI: 10.1016/j.bone.2024.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Glucocorticoids (GCs) are extensively used as anti-inflammatory and immunosuppressive medications in the long-term treatment of rheumatic disorders, respiratory diseases, renal diseases, and organ transplantation. Prolonged use of GCs can reduce bone mineral density, leading to osteoporosis (Glucocorticoid Induced Osteoporosis, GIOP) and fracture. All-trans retinoic acid (ATRA) is an active vitamin A metabolite that regulates embryonic development and adult organ function. ATRA has been found in studies to enhance osteogenesis. To examine the interventional effects of ATRA on GIOP and the mechanisms of ATRA activities, we first performed bioinformatic analysis to identify potential gene targets of ATRA. Zebrafish larvae were recruited as experimental animals, and the frequently used GC, prednisolone, was administered to larvae to construct a GIOP model. We evaluated the influence of exogenous ATRA on the activities of bone metabolic enzymes, the expression of genes linked to osteoblasts and osteoclasts, and the restoration of bone mineral density and bone mass in GIOP zebrafish larvae. Furthermore, we studied the influence of RBM14, a transcriptional coactivator and negative reciprocal factor of ATRA, on the regulation of osteoblastic gene expression during the anti-GIOP process of ATRA using the morpholino knockdown approach. The findings of bone metabolic enzyme activity (alkaline phosphatase, ALP and tartrate-resistant acid phosphatase, TRAP) and expression assays of osteoblastic marker genes (Runx2a, Runx2b, SP7, Csf1a, RANKL, and CTSK) indicated that ATRA had bidirectional effects on osteogenesis. However, in the GIOP model, ATRA reversed the GIOP-induced osteoporosis phenotype by inhibiting the GIOP-induced suppression of osteoblastic metabolic enzyme (ALP) activities and osteoblastic marker gene expression (Runx2a, Runx2b, and SP7), and this antagonism was concentration-dependent. We also observed that ATRA inhibited RBM14 expression in zebrafish larvae, while ATRA alone and RBM14 knockdown showed a consistent induction of osteoblast marker gene expression, implying that ATRA's inhibitory effect on RBM14 expression may underlie ATRA's osteogenic effects. Based on these data, we postulated that ATRA may ameliorate GIOP by decreasing RBM14 expression, thereby enhancing osteoblastic marker gene expression.
Collapse
Affiliation(s)
- Ting Yu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Manci Chen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jing Wen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Lei Jin
- Wuhan Wuchang Hospital, Wuhan, Hubei 430063, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| | - Zheqiong Yang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China.
| | - Jinlei Xi
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
16
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Lhomond G, Schubert M, Croce J. Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis. PLoS Biol 2024; 22:e3002880. [PMID: 39531468 DOI: 10.1371/journal.pbio.3002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/20/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin during early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production and that the longest duration is required for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity after their specification to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.
Collapse
Affiliation(s)
- Guy Lhomond
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Jenifer Croce
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| |
Collapse
|
18
|
Qi B, Wang HY, Ma X, Chi YF, Gui C. Exploring the predictive values of SERP4 and FRZB in dilated cardiomyopathy based on an integrated analysis. BMC Cardiovasc Disord 2024; 24:577. [PMID: 39425025 PMCID: PMC11487873 DOI: 10.1186/s12872-024-04255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate potential hub genes for dilated cardiomyopathy (DCM). METHODS Five DCM-related microarray datasets were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were used for identification. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, disease ontology, gene ontology annotation and protein-protein interaction (PPI) network analysis were then performed, while a random forest was constructed to explore central genes. Artificial neural networks were used to compare with known genes and to develop new diagnostic models. 240 population blood samples were collected and expression of hub genes was verified in these samples using RT-PCR and demonstrated by Nomogram. RESULTS After differential analysis, 33 genes were statistically significant (adjusted P < 0.05). Functional enrichment of these differential genes resulted in 85 Gene Ontology (GO) functions identified and 6 pathways enriched for the KEGG pathway. PPI networks and molecular complex assays identified 10 hub genes (adjusted P < 0.05). Random forest identified SMOC2 and SFRP4 as the most important, followed by FCER1G and FRZB. NeuraHF models (SMOC2, SFRP4, FCER1G and FRZB) were selected by artificial neural network model and had better diagnostic efficacy for the onset of DCM, compared with the traditional KG-DCM models (MYH7, ACTC1, TTN and LMNA). Finally, SFRP4 and FRZB were expressed higher in DCM verified by RT-PCR and as a factor for DCM identified by Nomogram. CONCLUSIONS We performed an integrated analysis and identified SFRP4 and FRZB as a new factor for DCM. But the exact mechanism still needs further experimental verification.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Hai-Yan Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xiao Ma
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yu-Feng Chi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Chun Gui
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
19
|
Xia Y, Yu X, Yuan Z, Yang Y, Liu Y. Whole-Transcriptome Analysis Reveals Potential CeRNA Regulatory Mechanism in Takifugu rubripes against Cryptocaryon irritans Infection. BIOLOGY 2024; 13:788. [PMID: 39452097 PMCID: PMC11504436 DOI: 10.3390/biology13100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Cryptocaryon irritans (C. irritans) is a proto-ciliate parasite that infects marine fishes, including the cultured species Takifugu rubripes (T. rubripes), causing disease and potential mortality. In host organisms, infection by parasites triggers an immune response that is modulated by regulatory elements including proteins and non-coding RNAs. In this study, the whole transcriptome RNA sequencing of T. rubripes gill tissue before and after infection with C. irritans was performed to reveal the competitive endogenous RNA (ceRNA) regulatory network. Histomorphology revealed gill segment swelling and parasitic invasion in the infected group. The analysis identified 18 differentially expressed miRNAs (DEMs), 214 lncRNAs (DELs), 2501 genes (DEGs), and 7 circRNAs (DECs) in the infected group. Gene Ontology (GO) enrichment analysis revealed that these genes were notably enriched in the Wnt signaling pathway and mTOR signaling pathway. The co-expression networks (lncRNA/circRNA-miRNA-mRNA) were constructed based on correlation analysis of the differentially expressed RNAs. Further analysis suggested that the LOC105418663-circ_0000361-fru-miR-204a-fzd3a ceRNA axis was potentially involved in the regulation of immune responses against C. irritans infection. Finally, the expression levels of DEG, DEL, and DEM were validated. This study reveals the regulatory mechanism of a candidate ceRNA network, providing insights into the potential mechanism of T. rubripes' infection with C. irritans.
Collapse
Affiliation(s)
- Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Xiaoqing Yu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Zhen Yuan
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
20
|
Grätz L, Voss JH, Schulte G. Class-Wide Analysis of Frizzled-Dishevelled Interactions Using BRET Biosensors Reveals Functional Differences among Receptor Paralogs. ACS Sens 2024; 9:4626-4636. [PMID: 39213612 PMCID: PMC11443525 DOI: 10.1021/acssensors.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wingless/Int-1 (WNT) signaling is mediated by WNT binding to 10 Frizzleds (FZD1-10), which propagate the signal inside the cell by interacting with different transducers, most prominently the phosphoprotein Dishevelled (DVL). Despite recent progress, questions about WNT/FZD selectivity and paralog-dependent differences in the FZD/DVL interaction remain unanswered. Here, we present a class-wide analysis of the FZD/DVL interaction using the DEP domain of DVL as a proxy in bioluminescence resonance energy transfer (BRET) techniques. Most FZDs engage in a constitutive high-affinity interaction with DEP. Stimulation of unimolecular FZD/DEP BRET sensors with different ligands revealed that most paralogs are dynamic in the FZD/DEP interface, showing distinct profiles in terms of ligand selectivity and signal kinetics. This study underlines mechanistic differences in terms of how allosteric communication between FZDs and their main signal transducer DVL occurs. Moreover, the unimolecular sensors represent the first receptor-focused biosensors to surpass the requirements for high-throughput screening, facilitating FZD-targeted drug discovery.
Collapse
Affiliation(s)
- Lukas Grätz
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Jan H Voss
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| | - Gunnar Schulte
- Department of Physiology & Pharmacology, Section of Receptor Biology & Signaling, Biomedicum, Karolinska Institutet, S-17165 Stockholm, Sweden
| |
Collapse
|
21
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
22
|
Stewart RA, Ding Z, Jeon US, Goodman LB, Tran JJ, Zientko JP, Sabu M, Cadigan KM. Wnt target gene activation requires β-catenin separation into biomolecular condensates. PLoS Biol 2024; 22:e3002368. [PMID: 39316611 PMCID: PMC11460698 DOI: 10.1371/journal.pbio.3002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays numerous essential roles in animal development and tissue/stem cell maintenance. The activation of genes regulated by Wnt/β-catenin signaling requires the nuclear accumulation of β-catenin, a transcriptional co-activator. β-catenin is recruited to many Wnt-regulated enhancers through direct binding to T-cell factor/lymphoid enhancer factor (TCF/LEF) family transcription factors. β-catenin has previously been reported to form phase-separated biomolecular condensates (BMCs), which was implicated as a component of β-catenin's mechanism of action. This function required aromatic amino acid residues in the intrinsically disordered regions (IDRs) at the N- and C-termini of the protein. In this report, we further explore a role for β-catenin BMCs in Wnt target gene regulation. We find that β-catenin BMCs are miscible with LEF1 BMCs in vitro and in cultured cells. We characterized a panel of β-catenin mutants with different combinations of aromatic residue mutations in human cell culture and Drosophila melanogaster. Our data support a model in which aromatic residues across both IDRs contribute to BMC formation and signaling activity. Although different Wnt targets have different sensitivities to loss of β-catenin's aromatic residues, the activation of every target examined was compromised by aromatic substitution. These mutants are not defective in nuclear import or co-immunoprecipitation with several β-catenin binding partners. In addition, residues in the N-terminal IDR with no previously known role in signaling are clearly required for the activation of various Wnt readouts. Consistent with this, deletion of the N-terminal IDR results in a loss of signaling activity, which can be rescued by the addition of heterologous IDRs enriched in aromatic residues. Overall, our work supports a model in which the ability of β-catenin to form biomolecular condensates in the nucleus is tightly linked to its function as a transcriptional co-regulator.
Collapse
Affiliation(s)
- Richard A. Stewart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhihao Ding
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ung Seop Jeon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lauren B. Goodman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeannine J. Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Zientko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Malavika Sabu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ken M. Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
23
|
Ahmad S, Attisano L. Wnt5a Promotes Axon Elongation in Coordination with the Wnt-Planar Cell Polarity Pathway. Cells 2024; 13:1268. [PMID: 39120298 PMCID: PMC11312420 DOI: 10.3390/cells13151268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.
Collapse
Affiliation(s)
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| |
Collapse
|
24
|
Li SY, Xue ST, Li ZR. Osteoporosis: Emerging targets on the classical signaling pathways of bone formation. Eur J Pharmacol 2024; 973:176574. [PMID: 38642670 DOI: 10.1016/j.ejphar.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.
Collapse
Affiliation(s)
- Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
25
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
26
|
Radak M, Fallahi H. Cell-cell communication in stem cells and cancer: Alone but in touch. Fundam Clin Pharmacol 2024; 38:479-488. [PMID: 38228866 DOI: 10.1111/fcp.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Cellular communication and signaling pathways are fundamental regulators of stem cell and cancer cell behaviors. This review explores the intricate interplay of these pathways in governing cellular behaviors, focusing on their implications for diseases, particularly cancer. OBJECTIVES This comprehensive review aims to elucidate the significance of cellular signaling pathways in regulating the behavior of stem cells and cancer cells. It delves into the alterations in these pathways, their impact on cell fate, and their implications for developing diseases, notably cancer. The objective is to underscore the importance of understanding these signaling pathways for developing targeted therapeutic strategies. METHODS The review critically analyzes existing literature and research findings concerning the roles of signaling pathways in stem cell behavior regulation, emphasizing their parallels and disparities in cancer cells. It synthesizes information on both direct and indirect modes of cell communication to delineate the complexity of signaling networks. RESULTS Direct and indirect modes of cell communication intricately regulate the complex signaling pathways governing stem cell behaviors, influencing differentiation potential and tissue regeneration. Alterations in these pathways significantly impact stem cell fate, contributing to disease pathogenesis, including cancer. Understanding these signaling cascades offers insights into developing targeted therapies, particularly cancer treatment. CONCLUSION Understanding the regulation of signaling pathways in stem cells and the specialized subset of cancer stem cells holds promise for innovative therapeutic approaches. By targeting aberrant signaling pathways, tailored interventions may improve treatment outcomes. This review underscores the critical role of signaling pathways in cellular behaviors, offering a pathway toward developing novel, more effective therapies for diverse diseases and disorders.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
27
|
Cardoso JCR, Mc Shane JC, Li Z, Peng M, Power DM. Revisiting the evolution of Family B1 GPCRs and ligands: Insights from mollusca. Mol Cell Endocrinol 2024; 586:112192. [PMID: 38408601 DOI: 10.1016/j.mce.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Jennifer C Mc Shane
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Zhi Li
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
28
|
Zhang C, Luo X, Wei M, Jing B, Wang J, Lin L, Shi B, Zheng Q, Li C. Lithium chloride promotes mesenchymal-epithelial transition in murine cutaneous wound healing via inhibiting CXCL9 and IGF2. Exp Dermatol 2024; 33:e15078. [PMID: 38610097 DOI: 10.1111/exd.15078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Cutaneous wound healing is a challenge in plastic and reconstructive surgery. In theory, cells undergoing mesenchymal transition will achieve re-epithelialization through mesenchymal-epithelial transition at the end of wound healing. But in fact, some pathological stimuli will inhibit this biological process and result in scar formation. If mesenchymal-epithelial transition can be activated at the corresponding stage, the ideal wound healing may be accomplished. Two in vivo skin defect mouse models and dermal-derived mesenchymal cells were used to evaluate the effect of lithium chloride in wound healing. The mesenchymal-epithelial transition was detected by immunohistochemistry staining. In vivo, differentially expressed genes were analysed by transcriptome analyses and the subsequent testing was carried out. We found that lithium chloride could promote murine cutaneous wound healing and facilitate mesenchymal-epithelial transition in vivo and in vitro. In lithium chloride group, scar area was smaller and the collagen fibres are also orderly arranged. The genes related to mesenchyme were downregulated and epithelial mark genes were activated after intervention. Moreover, transcriptome analyses suggested that this effect might be related to the inhibition of CXCL9 and IGF2, subsequent assays demonstrated it. Lithium chloride can promote mesenchymal-epithelial transition via downregulating CXCL9 and IGF2 in murine cutaneous wound healing, the expression of IGF2 is regulated by β-catenin. It may be a potential promising therapeutic drug for alleviating postoperative scar and promoting re-epithelialization in future.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mianxing Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bingshuai Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lanling Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Takahashi H, Hisata K, Iguchi R, Kikuchi S, Ogasawara M, Satoh N. scRNA-seq analysis of cells comprising the amphioxus notochord. Dev Biol 2024; 508:24-37. [PMID: 38224933 DOI: 10.1016/j.ydbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cephalochordates occupy a key phylogenetic position for deciphering the origin and evolution of chordates, since they diverged earlier than urochordates and vertebrates. The notochord is the most prominent feature of chordates. The amphioxus notochord features coin-shaped cells bearing myofibrils. Notochord-derived hedgehog signaling contributes to patterning of the dorsal nerve cord, as in vertebrates. However, properties of constituent notochord cells remain unknown at the single-cell level. We examined these properties using Iso-seq analysis, single-cell RNA-seq analysis, and in situ hybridization (ISH). Gene expression profiles broadly categorize notochordal cells into myofibrillar cells and non-myofibrillar cells. Myofibrillar cells occupy most of the central portion of the notochord, and some cells extend the notochordal horn to both sides of the ventral nerve cord. Some notochord myofibrillar genes are not expressed in myotomes, suggesting an occurrence of myofibrillar genes that are preferentially expressed in notochord. On the other hand, non-myofibrillar cells contain dorsal, lateral, and ventral Müller cells, and all three express both hedgehog and Brachyury. This was confirmed by ISH, although expression of hedgehog in ventral Müller cells was minimal. In addition, dorsal Müller cells express neural transmission-related genes, suggesting an interaction with nerve cord. Lateral Müller cells express hedgehog and other signaling-related genes, suggesting an interaction with myotomes positioned lateral to the notochord. Ventral Müller cells also expressed genes for FGF- and EGF-related signaling, which may be associated with development of endoderm, ventral to the notochord. Lateral Müller cells were intermediate between dorsal/ventral Müller cells. Since vertebrate notochord contributes to patterning and differentiation of ectoderm (nerve cord), mesoderm (somite), and endoderm, this investigation provides evidence that an ancestral or original form of vertebrate notochord is present in extant cephalochordates.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan.
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 262-8522, Japan
| | - Sakura Kikuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 262-8522, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
30
|
Gautam V, Rawat K, Sandhu A, Medhi B, Bhatia A, Kharbanda PS, Saha L. Evaluation of Wnt/β-catenin signaling and its modulators in repeated dose lithium-pilocarpine rat model of status epilepticus: An acute phase study. Eur J Pharmacol 2024; 966:176375. [PMID: 38307381 DOI: 10.1016/j.ejphar.2024.176375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The role of the Wnt/β-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of β-catenin and GSK-3β, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3β inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/β-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3β and β-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.
Collapse
Affiliation(s)
- Vipasha Gautam
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Kajal Rawat
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | | | - Lekha Saha
- Department of Pharmacology, PGIMER Chandigarh, 160012, India.
| |
Collapse
|
31
|
Wang S, Wang Y, Hu X, Zhou Y, Yang Z, Hou J, Liu F, Liu Q, Mabrouk I, Yu J, Li X, Xue G, Sun Y. Dermal FOXO3 activity in response to Wnt/β-catenin signaling is required for feather follicle development of goose embryos (Anser cygnoides). Poult Sci 2024; 103:103424. [PMID: 38330682 PMCID: PMC10865040 DOI: 10.1016/j.psj.2024.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Feather is an important economic trait of poultry, and growth and development state of feathers plays an important role in the economic value of poultry. Dermal fibroblasts are required for structural integrity of the skin and for feather follicle development. How FOXO3 affects feather follicle development as skin tissues change during goose embryo (Anser cygnoides) development and growth is not well understood. Here, we demonstrate that in vitro culture of single feathers and skin tissue results in changes in feather morphological structure by adding drugs to the culture medium that affect FOXO3 expression. We used feather follicles to show that during growth, the root location of feathers, the dermis layer, affects cell proliferation and apoptosis and regulates the expression of major genes in the Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway through the activity of FOXO3 in dermal fibroblasts. Feathers and dorsal skin tissues develop the correct structure, but feather length and width and feather follicle diameter change significantly (p < 0.05) without significant changes in feather follicle density (p > 0.05). Transfected dermal fibroblasts also showed that FOXO3 affected the formation and development of feather follicles in the embryonic stage by regulating the Wnt/β-catenin signaling pathway. Therefore, this study reveals the critical role of dermal fibroblast-FOXO3-induced Wnt/β-catenin signaling in promoting the formation and development of embryonic feather follicles.
Collapse
Affiliation(s)
- Sihui Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiangman Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiyi Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiahui Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
32
|
Tran THN, Takada R, Krayukhina E, Maruno T, Mii Y, Uchiyama S, Takada S. Soluble Frizzled-related proteins promote exosome-mediated Wnt re-secretion. Commun Biol 2024; 7:254. [PMID: 38429359 PMCID: PMC10907715 DOI: 10.1038/s42003-024-05881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Wnt proteins are thought to be transported in several ways in the extracellular space. For instance, they are known to be carried by exosomes and by Wnt-carrier proteins, such as sFRP proteins. However, little is known about whether and/or how these two transport systems are related. Here, we show that adding sFRP1 or sFRP2, but not sFRP3 or sFRP4, to culture medium containing Wnt3a or Wnt5a increases re-secretion of exosome-loaded Wnt proteins from cells. This effect of sFRP2 is counteracted by heparinase, which removes sugar chains on heparan sulfate proteoglycans (HSPGs), but is independent of LRP5/6, Wnt co-receptors essential for Wnt signaling. Wnt3a and Wnt5a specifically dimerize with sFRP2 in culture supernatant. Furthermore, a Wnt3a mutant defective in heterodimerization with sFRP2 impairs the ability to increase exosome-mediated Wnt3a re-secretion. Based on these results, we propose that Wnt heterodimerization with its carrier protein, sFRP2, enhances Wnt accumulation at sugar chains on HSPGs on the cell surface, leading to increased endocytosis and exosome-mediated Wnt re-secretion. Our results suggest that the range of action of Wnt ligands is controlled by coordination of different transport systems.
Collapse
Affiliation(s)
- Thi Hong Nguyen Tran
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Elena Krayukhina
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Takahiro Maruno
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
33
|
Kluge V, Kappelmann-Fenzl M, Fischer S, Zimmermann T, Pommer M, Kuphal S, Bosserhoff AK. Alternative Wnt-signaling axis leads to a break of oncogene-induced senescence. Cell Death Dis 2024; 15:166. [PMID: 38388496 PMCID: PMC10883971 DOI: 10.1038/s41419-024-06550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Oncogene-induced senescence (OIS) is an important process that suppresses tumor development, but the molecular mechanisms of OIS are still under investigation. It is known that BRAFV600E-mutated melanocytes can overcome OIS and develop melanoma, but the underlying mechanism is largely unknown. Using an established OIS model of primary melanocytes transduced with BRAFV600E, YAP activity was shown to be induced in OIS as well as in melanoma cells compared to that in normal epidermal melanocytes. This led to the assumption that YAP activation itself is not a factor involved in the disruption of OIS. However, its role and interaction partners potentially change. As Wnt molecules are known to be important in melanoma progression, these molecules were the focus of subsequent studies. Interestingly, activation of Wnt signaling using AMBMP resulted in a disruption of OIS in BRAFV600E-transduced melanocytes. Furthermore, depletion of Wnt6, Wnt10b or β-catenin expression in melanoma cells resulted in the induction of senescence. Given that melanoma cells do not exhibit canonical Wnt/β-catenin activity, alternative β-catenin signaling pathways may disrupt OIS. Here, we discovered that β-catenin is an interaction partner of YAP on DNA in melanoma cells. Furthermore, the β-catenin-YAP interaction changed the gene expression pattern from senescence-stabilizing genes to tumor-supportive genes. This switch is caused by transcriptional coactivation via the LEF1/TEAD interaction. The target genes with binding sites for LEF1 and TEAD are involved in rRNA processing and are associated with poor prognosis in melanoma patients. This study revealed that an alternative YAP-Wnt signaling axis is an essential molecular mechanism leading to OIS disruption in melanocytes.
Collapse
Affiliation(s)
- Viola Kluge
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Tom Zimmermann
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michaela Pommer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
34
|
Ospina-Ch MV, Acevedo-Godoy M, Perdomo SJ, Chila-Moreno L, Lafaurie GI, Romero-Sánchez C. Gene variants for the WNT pathway are associated with severity in periodontal disease. Clin Oral Investig 2024; 28:135. [PMID: 38319382 PMCID: PMC10847211 DOI: 10.1007/s00784-023-05436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVE Studies of Wnt variants-related to bone resorption in periodontitis are limited. The aim of this study was to establish the genotype and allele frequency of gene variants associated with the Wnt pathway in systemically healthy individuals with and without periodontitis (PD). MATERIALS AND METHODS One hundred fifty-seven systemically healthy individuals were evaluated, 90 with PD and 67 without PD. Periodontal clinical indexes, serological and clinical indices of inflammation, and the following variants associated with the Wnt pathway: DKK, SOST, LRP5, and KREMEN were analyzed by high resolution melting and confirmed by Sanger sequencing. RESULTS In the PD-free group, 67.2% of the individuals presented the variant for DKKrs1896367 (p = 0.008) and 82.6% had the variant for KREMEN rs132274 (p = 0.016). The heterozygous variant for the DKK rs1896367 polymorphism was associated with the absence of PD and lower severity OR: 0.33 (CI95% 0.15-0.70) and OR: 0.24 (CI95% 0.11-0.53), respectively. Similarly, KREMEN rs132274 was the homozygous variant associated with the absence of PD (OR: 0.33 (CI95% 0.13-0.88)). On the contrary, 85.6% of individuals with PD presented a variant for DKK rs1896368 (p = 0.042), all suffering severe forms of periodontitis. CONCLUSION The presence of DKKrs1896367 and KREMENrs132274 variants in individuals without PD suggests that these single nucleotide polymorphisms could be protective factors for bone loss in PD. A very interesting finding is that the DKKrs1896368 variant was found in a high percentage of severe cases, suggesting that the presence of this variant may be related to the severe bone loss observed in PD.
Collapse
Affiliation(s)
- María-Victoria Ospina-Ch
- School of Dentistry, Periodontics and Oral Medicine Program, Universidad El Bosque, Av. Cra. 9 #131A-02, Bogotá, Colombia
| | - Mónica Acevedo-Godoy
- Rheumatology and Immunology Department Hospital Militar Central/School of Medicine, Clinical Immunology Group, Universidad Militar Nueva Granada, Transversal 3ª # 49-00, Bogotá, Colombia
- Universidad El Bosque, Facultad de Ciencias, Maestría de Ciencias Básicas Biomédicas, Av. Cra. 9 #131A-02, Bogotá, Colombia
| | - Sandra J Perdomo
- School of Dentistry, Cellular and Molecular Immunology Group/ INMUBO, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Lorena Chila-Moreno
- Rheumatology and Immunology Department Hospital Militar Central/School of Medicine, Clinical Immunology Group, Universidad Militar Nueva Granada, Transversal 3ª # 49-00, Bogotá, Colombia
- School of Dentistry, Cellular and Molecular Immunology Group/ INMUBO, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Gloria I Lafaurie
- Universidad El Bosque, School of Dentistry, Unit of Oral Basic Investigation, UIBO Av. Cra. 9 #131A-02, Bogotá, Colombia
| | - Consuelo Romero-Sánchez
- School of Dentistry, Periodontics and Oral Medicine Program, Universidad El Bosque, Av. Cra. 9 #131A-02, Bogotá, Colombia.
- Rheumatology and Immunology Department Hospital Militar Central/School of Medicine, Clinical Immunology Group, Universidad Militar Nueva Granada, Transversal 3ª # 49-00, Bogotá, Colombia.
- School of Dentistry, Cellular and Molecular Immunology Group/ INMUBO, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
| |
Collapse
|
35
|
Naraoka Y, Mabuchi Y, Kiuchi M, Kumagai K, Hisamatsu D, Yoneyama Y, Takebe T, Akazawa C. Quality Control of Stem Cell-Based Cultured Meat According to Specific Differentiation Abilities. Cells 2024; 13:135. [PMID: 38247826 PMCID: PMC10814720 DOI: 10.3390/cells13020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The demand for stem cell-based cultured meat as an alternative protein source is increasing in response to global food scarcity. However, the definition of quality controls, including appropriate growth factors and cell characteristics, remains incomplete. Cluster of differentiation (CD) 29 is ubiquitously expressed in bovine muscle tissue and is a marker of progenitor cells in cultured meat. However, CD29+ cells are naturally heterogeneous, and this quality control issue must be resolved. In this study, the aim was to identify the subpopulation of the CD29+ cell population with potential utility in cultured meat production. The CD29+ cell population exhibited heterogeneity, discernible through the CD44 and CD344 markers. CD29+CD44-CD344- cells displayed the ability for long-term culture, demonstrating high adipogenic potential and substantial lipid droplet accumulation, even within 3D cultures. Conversely, CD29+CD44+ cells exhibited rapid proliferation but were not viable for prolonged culture. Using cells suitable for adipocyte and muscle differentiation, we successfully designed meat buds, especially those rich in fat. Collectively, the identification and comprehension of distinct cell populations within bovine tissues contribute to quality control predictions in meat production. They also aid in establishing a stable and reliable cultured meat production technique.
Collapse
Grants
- JPMJMI18CB Japan Science and Technology Agency
- JP21H03328 Ministry of Education, Culture, Sports, Science and Technology
- JP19K19986 Ministry of Education, Culture, Sports, Science and Technology
- JP22K17699 Ministry of Education, Culture, Sports, Science and Technology
- no number Otsuka Holdings Co., Ltd.
Collapse
Affiliation(s)
- Yuna Naraoka
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.N.); (Y.M.); (M.K.); (K.K.); (D.H.)
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.N.); (Y.M.); (M.K.); (K.K.); (D.H.)
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, 1-1-4, Hanedakuko, Ota-ku, Tokyo 144-0041, Japan
| | - Mai Kiuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.N.); (Y.M.); (M.K.); (K.K.); (D.H.)
| | - Kyoko Kumagai
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.N.); (Y.M.); (M.K.); (K.K.); (D.H.)
| | - Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.N.); (Y.M.); (M.K.); (K.K.); (D.H.)
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (Y.Y.); (T.T.)
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (Y.Y.); (T.T.)
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Division of Developmental Biology, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.N.); (Y.M.); (M.K.); (K.K.); (D.H.)
| |
Collapse
|
36
|
Wakizaka K, Kamiyama T, Kakisaka T, Orimo T, Nagatsu A, Aiyama T, Shichi S, Taketomi A. Expression of Wnt5a and ROR2, Components of the Noncanonical Wnt-Signaling Pathway, is Associated with Tumor Differentiation in Hepatocellular Carcinoma. Ann Surg Oncol 2024; 31:262-271. [PMID: 37814183 PMCID: PMC10695870 DOI: 10.1245/s10434-023-14402-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Wnt5a is the key ligand of the noncanonical Wnt pathway, and receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a receptor associated with Wnt5a. The association between the noncanonical Wnt-signaling pathway and carcinogenesis in hepatocellular carcinoma (HCC) is unclear. This study investigated the significance of ROR2 expression in HCC. METHODS The study examined ROR2 expression in liver cancer cell lines. Immunohistochemical staining of ROR2 was performed on 243 resected HCC specimens. The study investigated ROR2 expression and its association with clinicopathologic factors and prognosis. RESULTS Findings showed that ROR2 was expressed in well-differentiated Huh7 and HepG2 cells, but not in poorly differentiated HLE and HLF cells. Expression of ROR2 was positive in 147 (60.5%) and negative in 96 (39.5%) HCC specimens. A significant association was shown between ROR2 negativity and high alpha-fetoprotein (AFP) level (P = 0.006), poor differentiation (P = 0.015), and Wnt5a negativity (P = 0.024). The 5-year overall survival (OS) rate for the ROR2-negative group (64.2 %) tended to be worse than for the ROR2-positive group (73.8%), but the difference was not significant (P = 0.312). The 5-year OS rate was 78.7% for the ROR2+Wnt5a+ group, 71.3 % for the ROR2+Wnt5a- group, 80.8% for the ROR2-Wnt5a+ group, and 60.5 % for the ROR2-Wnt5a- group. The OS in the ROR2-Wnt5a- group was significantly poorer than in the ROR2+Wnt5a+ group (P = 0.030). The multivariate analysis showed that Wnt5a-ROR2- was an independent prognostic factor (hazard ratio, 2.058; 95% confidence interval, 1.013-4.180; P = 0.045). CONCLUSIONS The combination of ROR2 and Wnt5a may be a prognostic indicator for HCC. The Wnt5a/ROR2 signal pathway may be involved in the differentiation of HCC. This pathway may be a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Kazuki Wakizaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Surgery, Seiwa Memorial Hospital, Sapporo, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Aiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Shichi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
37
|
Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S. Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 2024; 625:126-133. [PMID: 38123680 PMCID: PMC10764289 DOI: 10.1038/s41586-023-06850-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.
Collapse
Affiliation(s)
- Chengting Zhang
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
38
|
Rawat K, Gautam V, Sandhu A, Bhatia A, Saha L. Differential Regulation of Wnt/β-catenin Signaling in Acute and Chronic Epilepsy in Repeated Low Dose Lithium-Pilocarpine Rat Model of Status Epilepticus. Neuroscience 2023; 535:36-49. [PMID: 37913863 DOI: 10.1016/j.neuroscience.2023.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Epilepsy is a chronic neurological complication characterized by unprovoked seizure episodes due to the imbalance between excitatory and inhibitory neurons. The epileptogenesis process has been reported to be involved in chronic epilepsy however, the mechanism underlying epileptogenesis remains unclear. Recent studies have shown the possible involvement of Wnt/β-catenin signaling in the neurogenesis and neuronal reorganization in epileptogenesis. In this study, we used repeated low dose lithium-pilocarpine model of status epilepsy (SE) to study the involvement of Wnt/β-catenin signaling at acute and chronic stages post SE induction. The acute study ranged from day 0 to day 28 post SE induction and the chronic study ranged from day 0 to day 56 post SE induction. Several neurobehavioral parameters and seizure score and seizure frequency was analysed until the end of the study. The proteins involved in the regulation of Wnt/β-catenin signaling and downstream cascading were analysed using western blot and quantitative real-time PCR analysis. The Wnt/β-catenin pathway was found inactive in acute SE, while the same was found activated at the chronic stage. Our findings suggest that the activated Wnt/β-catenin signaling in chronic epilepsy might be the possible mechanism underlying epileptogenesis as indicated by increased neuronal count, increased synaptic density, astrogliosis and apoptosis in chronic epilepsy. These findings can help target the Wnt/β-catenin pathway differentially depending upon the type of epilepsy. The acute stage characterized by SE can be improved by targeting GSK-3β levels and the chronic stage characterized by temporal lobe epilepsy can be improved by targeting β-catenin and disheveled proteins.
Collapse
Affiliation(s)
- Kajal Rawat
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Lekha Saha
- Department of Pharmacology, Research Block B, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
39
|
Li C, Cheng B, Yang X, Tong G, Wang F, Li M, Wang X, Wang S. SOX8 promotes tumor growth and metastasis through FZD6-dependent Wnt/β-catenin signaling in colorectal carcinoma. Heliyon 2023; 9:e22586. [PMID: 38046159 PMCID: PMC10686890 DOI: 10.1016/j.heliyon.2023.e22586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
SOX8 plays an important role in several physiological processes. Its expression is negatively associated with overall survival in patients with colorectal carcinoma (CRC), suggesting SOX8 is a potential prognostic factor for this disease. However, the role of SOX8 in CRC remains largely unknown. In this study, our data showed that SOX8 expression was upregulated in CRC cell lines and tumor tissues. Stable knockdown of SOX8 in CRC cell lines dramatically reduced cell proliferation, migration, and invasion. Furthermore, the knockdown of SOX8 decreased the phospho-GSK3β level and suppressed Frizzled-6 (FZD6) transcription; restoration of FZD6 expression partially abolished the effect of SOX8 on Wnt/β-catenin signaling and promote CRC cell proliferation. In conclusion, our findings suggested that SOX8 served as an oncogene in CRC through the activation of FZD6-dependent Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Chen Li
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Boran Cheng
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaodong Yang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Gangling Tong
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fen Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Mengqing Li
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiangyu Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Shubin Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| |
Collapse
|
40
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
41
|
Zhang L, Adu IK, Zhang H, Wang J. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Int Urol Nephrol 2023; 55:2527-2538. [PMID: 36964322 DOI: 10.1007/s11255-023-03569-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND The WNT/β-catenin system is an evolutionarily conserved signaling pathway that plays a crucial role in morphogenesis and cell tissue formation during embryogenesis. Although usually suppressed in adulthood, it can be reactivated during organ damage and regeneration. Transient activation of the WNT/β-catenin pathway stimulates tissue regeneration after acute kidney injury, while persistent (uncontrolled) activation can promote the development of chronic kidney disease (CKD). CKD-MBD is a clinical syndrome that develops with systemic mineral and bone metabolism disorders caused by CKD, characterized by abnormal bone mineral metabolism and/or extraosseous calcification, as well as cardiovascular disease associated with CKD, including vascular stiffness and calcification. OBJECTIVE This paper aims to comprehensively review the WNT/β-catenin signaling pathway in relation to CKD-MBD, focusing on its components, regulatory molecules, and regulatory mechanisms. Additionally, this review highlights the challenges and opportunities for using small molecular compounds to target the WNT/β-catenin signaling pathway in CKD-MBD therapy. METHODS We conducted a comprehensive literature review using various scientific databases, including PubMed, Scopus, and Web of Science, to identify relevant articles. We searched for articles that discussed the WNT/β-catenin signaling pathway, CKD-MBD, and their relationship. We also reviewed articles that discussed the components of the WNT/β-catenin signaling pathway, its regulatory molecules, and regulatory mechanisms. RESULTS The WNT/β-catenin signaling pathway plays a crucial role in CKD-MBD by promoting vascular calcification and bone mineral metabolism disorders. The pathway's components include WNT ligands, Frizzled receptors, and LRP5/6 co-receptors, which initiate downstream signaling cascades leading to the activation of β-catenin. Several regulatory molecules, including GSK-3β, APC, and Axin, modulate β-catenin activation. The WNT/β-catenin signaling pathway also interacts with other signaling pathways, such as the BMP pathway, to regulate CKD-MBD. CONCLUSIONS The WNT/β-catenin signaling pathway is a potential therapeutic target for CKD-MBD. Small molecular compounds that target the components or regulatory molecules of the pathway may provide a promising approach to treat CKD-MBD. However, more research is needed to identify safe and effective compounds and to determine the optimal dosages and treatment regimens.
Collapse
Affiliation(s)
- Lingbo Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Isaac Kumi Adu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
- Department of Internal Medicine, Kings and Queens University College and Teaching Hospital, Akosombo, Ghana
| | - Haifeng Zhang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Jiancheng Wang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China.
| |
Collapse
|
42
|
Tang X, Cao C, Liang Y, Han L, Tu B, Yu M, Wan M. Adipose-Derived Stem Cell Exosomes Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicle Growth by Activating Wnt/ β-Catenin Pathway. Stem Cells Int 2023; 2023:5548112. [PMID: 37810630 PMCID: PMC10551537 DOI: 10.1155/2023/5548112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
The most prevalent type of alopecia is androgenetic alopecia (AGA), which has a high prevalence but no effective treatment. Elevated dihydrotestosterone (DHT) level in the balding area was usually thought to be critical in the pathophysiology of AGA. The canonical Wnt/β-catenin signaling pathway plays a key role in promoting hair follicle development and sustaining the hair follicle cycle. Adipose-derived stem cell exosomes (ADSC-Exos) are widely used in the field of regenerative medicine due to the advantages of being cell free and immune privileged. Still, few studies have reported the therapeutic effect on hair disorders. As a result, we sought to understand how ADSC-Exos affected hair growth and explore the possibility that ADSC-Exos could counteract the hair-growth-inhibiting effects of DHT. This research using human hair follicle organs, in vitro dermal papilla cells, and in vivo animal models showed that ADSC-Exos not only encouraged healthy hair growth but also counteracted the inhibitory effects of DHT on hair growth. Additionally, we discovered that ADSC-Exos increased Ser9 phosphorylated glycogen synthase kinase-3β levels and facilitated nuclear translocation of β-catenin, which may have been blocked by the specific Wnt/β-catenin signaling pathway inhibitor dickkopf-related protein 1. Our findings suggested that ADSC-Exos are essential for hair regeneration, which is anticipated to open up new therapeutic possibilities for clinical alopecia, particularly for the treatment of AGA.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Cuixiang Cao
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Yunxiao Liang
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Le Han
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Bin Tu
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Miao Yu
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Miaojian Wan
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| |
Collapse
|
43
|
Zhong J, Han C, Chen P, Liu R. SGAE: single-cell gene association entropy for revealing critical states of cell transitions during embryonic development. Brief Bioinform 2023; 24:bbad366. [PMID: 37833841 DOI: 10.1093/bib/bbad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
The critical point or pivotal threshold of cell transition occurs in early embryonic development when cell differentiation culminates in its transition to specific cell fates, at which the cell population undergoes an abrupt and qualitative shift. Revealing such critical points of cell transitions can track cellular heterogeneity and shed light on the molecular mechanisms of cell differentiation. However, precise detection of critical state transitions proves challenging when relying on single-cell RNA sequencing data due to their inherent sparsity, noise, and heterogeneity. In this study, diverging from conventional methods like differential gene analysis or static techniques that emphasize classification of cell types, an innovative computational approach, single-cell gene association entropy (SGAE), is designed for the analysis of single-cell RNA-seq data and utilizes gene association information to reveal critical states of cell transitions. More specifically, through the translation of gene expression data into local SGAE scores, the proposed SGAE can serve as an index to quantitatively assess the resilience and critical properties of genetic regulatory networks, consequently detecting the signal of cell transitions. Analyses of five single-cell datasets for embryonic development demonstrate that the SGAE method achieves better performance in facilitating the characterization of a critical phase transition compared with other existing methods. Moreover, the SGAE value can effectively discriminate cellular heterogeneity over time and performs well in the temporal clustering of cells. Besides, biological functional analysis also indicates the effectiveness of the proposed approach.
Collapse
Affiliation(s)
- Jiayuan Zhong
- School of Mathematics and Big Data, Foshan University, Foshan 528000, China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
44
|
Paolini A, Sharipova D, Lange T, Abdelilah-Seyfried S. Wnt9 directs zebrafish heart tube assembly via a combination of canonical and non-canonical pathway signaling. Development 2023; 150:dev201707. [PMID: 37680191 PMCID: PMC10560569 DOI: 10.1242/dev.201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Tim Lange
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | | |
Collapse
|
45
|
Mikaeili H, Habib AM, Yeung CWL, Santana-Varela S, Luiz AP, Panteleeva K, Zuberi S, Athanasiou-Fragkouli A, Houlden H, Wood JN, Okorokov AL, Cox JJ. Molecular basis of FAAH-OUT-associated human pain insensitivity. Brain 2023; 146:3851-3865. [PMID: 37222214 PMCID: PMC10473560 DOI: 10.1093/brain/awad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023] Open
Abstract
Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.
Collapse
Affiliation(s)
- Hajar Mikaeili
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Charlix Wai-Lok Yeung
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Kseniia Panteleeva
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sana Zuberi
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Andrei L Okorokov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| |
Collapse
|
46
|
Ayad NM, Lakins JN, Ghagre A, Ehrlicher AJ, Weaver VM. Tissue tension permits β-catenin phosphorylation to drive mesoderm specification in human embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549074. [PMID: 37503095 PMCID: PMC10370032 DOI: 10.1101/2023.07.14.549074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The role of morphogenetic forces in cell fate specification is an area of intense interest. Our prior studies suggested that the development of high cell-cell tension in human embryonic stem cells (hESC) colonies permits the Src-mediated phosphorylation of junctional β-catenin that accelerates its release to potentiate Wnt-dependent signaling critical for initiating mesoderm specification. Using an ectopically expressed nonphosphorylatable mutant of β-catenin (Y654F), we now provide direct evidence that impeding tension-dependent Src-mediated β-catenin phosphorylation impedes the expression of Brachyury (T) and the epithelial-to-mesenchymal transition (EMT) necessary for mesoderm specification. Addition of exogenous Wnt3a or inhibiting GSK3β activity rescued mesoderm expression, emphasizing the importance of force dependent Wnt signaling in regulating mechanomorphogenesis. Our work provides a framework for understanding tension-dependent β-catenin/Wnt signaling in the self-organization of tissues during developmental processes including gastrulation.
Collapse
Affiliation(s)
- Nadia M.E. Ayad
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johnathon N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, Department of Anatomy and Cell Biology, Department of Biomedical Engineering, Department of Mechanical Engineering, Centre for Structural Biology, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
Silva P, Atukorallaya D. Characterising the Effect of Wnt/β-Catenin Signalling on Melanocyte Development and Patterning: Insights from Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:10692. [PMID: 37445870 DOI: 10.3390/ijms241310692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Zebrafish (Danio rerio) is a well-established model organism for studying melanocyte biology due to its remarkable similarity to humans. The Wnt signalling pathway is a conserved signal transduction pathway that plays a crucial role in embryonic development and regulates many aspects of the melanocyte lineage. Our study was designed to investigate the effect of Wnt signalling activity on zebrafish melanocyte development and patterning. Stereo-microscopic examinations were used to screen for changes in melanocyte count, specific phenotypic differences, and distribution in zebrafish, while microscopic software tools were used to analyse the differences in pigment dispersion of melanocytes exposed to LiCl (Wnt enhancer) and W-C59 (Wnt inhibitor). Samples exposed to W-C59 showed low melanocyte densities and defects in melanocyte phenotype and patterning, whereas LiCl exposure demonstrated a stimulatory effect on most aspects of melanocyte development. Our study demonstrates the crucial role of Wnt signalling in melanocyte lineage and emphasises the importance of a balanced Wnt signalling level for proper melanocyte development and patterning.
Collapse
Affiliation(s)
- Praneeth Silva
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
48
|
Pundkar C, Antony F, Kang X, Mishra A, Babu RJ, Chen P, Li F, Suryawanshi A. Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity. Heliyon 2023; 9:e16688. [PMID: 37313143 PMCID: PMC10258387 DOI: 10.1016/j.heliyon.2023.e16688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The aberrant activation of Wnt/β-catenin signaling in tumor cells and immune cells in the tumor microenvironment (TME) promotes malignant transformation, metastasis, immune evasion, and resistance to cancer treatments. The increased Wnt ligand expression in TME activates β-catenin signaling in antigen (Ag)-presenting cells (APCs) and regulates anti-tumor immunity. Previously, we showed that activation of Wnt/β-catenin signaling in dendritic cells (DCs) promotes induction of regulatory T cell responses over anti-tumor CD4+ and CD8+ effector T cell responses and promotes tumor progression. In addition to DCs, tumor-associated macrophages (TAMs) also serve as APCs and regulate anti-tumor immunity. However, the role of β-catenin activation and its effect on TAM immunogenicity in TME is largely undefined. In this study, we investigated whether inhibiting β-catenin in TME-conditioned macrophages promotes immunogenicity. Using nanoparticle formulation of XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we performed in vitro macrophage co-culture assays with melanoma cells (MC) or melanoma cell supernatants (MCS) to investigate the effect on macrophage immunogenicity. We show that XAV-Np-treatment of macrophages conditioned with MC or MCS significantly upregulates the cell surface expression of CD80 and CD86 and suppresses the expression of PD-L1 and CD206 compared to MC or MCS-conditioned macrophages treated with control nanoparticle (Con-Np). Further, XAV-Np-treated macrophages conditioned with MC or MCS significantly increased IL-6 and TNF-α production, with reduced IL-10 production compared to Con-Np-treated macrophages. Moreover, the co-culture of MC and XAV-Np-treated macrophages with T cells resulted in increased CD8+ T cell proliferation compared to Con-Np-treated macrophages. These data suggest that targeted β-catenin inhibition in TAMs represents a promising therapeutic approach to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
49
|
Zhang C, Tannous E, Thomas A, Jung N, Ma E, Zheng JJ. Dexamethasone Modulates the Dynamics of Wnt Signaling in Human Trabecular Meshwork Cells. Vision (Basel) 2023; 7:43. [PMID: 37368816 DOI: 10.3390/vision7020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Trabecular meshwork (TM) tissue is highly specialized, and its structural integrity is crucial for maintaining homeostatic intraocular pressure (IOP). The administration of glucocorticoids, such as dexamethasone (DEX), can perturb the TM structure and significantly increase IOP in susceptible individuals, resulting in ocular diseases such as steroid-induced glaucoma, a form of open-angle glaucoma. Although the exact mechanism involved in steroid-induced glaucoma remains elusive, increasing evidence suggests that DEX may act through various signaling cascades in TM cells. Despite uncertainty surrounding the specific process by which steroid-induced glaucoma occurs, there is growing evidence to indicate that DEX can impact multiple signaling pathways within TM cells. In this study, we examined the impact of DEX treatment on the Wnt signaling pathway in TM cells, given that Wnt signaling has been reported to play a crucial role in regulating extracellular matrix (ECM) levels in the TM. To further elucidate the role of Wnt signaling in the glaucomatous phenotype, we examined mRNA expression patterns between Wnt signaling markers AXIN2 and sFRP1 and DEX-mediated induction of myocilin (MYOC) mRNA and protein levels over 10 days in DEX-treated primary TM cells. We observed a sequential pattern of peak expression between AXIN2, sFRP1, and MYOC. Based on the study, we propose that sFRP1 upregulation could be a result of a negative feedback mechanism generated by stressed TM cells to suppress abnormal Wnt signaling activities.
Collapse
Affiliation(s)
- Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Elizabeth Tannous
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Alseena Thomas
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Natalia Jung
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Edmond Ma
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, REACH Biobank and Registry, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|