1
|
Deval S, Nathan VS, Venkataraman S, Rao PL, Kar PP, Srivastava A, Subbiah M. Accessory viral protein, V, of Newcastle Disease Virus binds dsRNA to facilitate immune evasion. Virusdisease 2025; 36:68-80. [PMID: 40290766 PMCID: PMC12022205 DOI: 10.1007/s13337-024-00908-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/23/2024] [Indexed: 04/30/2025] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus known to infect more than 250 bird species across the globe. NDV is enveloped and carries a negative-sense RNA genome that codes for six structural proteins and two accessory proteins expressed through a unique co-transcriptional RNA editing mechanism. One of the accessory viral proteins, V protein, is multifunctional and a well-known interferon (IFN) antagonist. The overexpression of V protein is known to enhance viral production kinetics during NDV infection. In this study, we elucidated the events that lead to this augmented viral replication. The V protein overexpression downregulated the expression of host RNA sensor, namely MDA5. Furthermore, during the over-expression of V protein in NDV infected cells, the V protein aggregated in the perinuclear region, co-localizing and binding with the replicating dsRNA. Our structural studies and in silico predictions suggest that V protein binding with dsRNA interferes and competes with MDA5 for binding to dsRNA, eventually disrupting the IFN induction and facilitating the viral replication. This study reports a novel mechanism of host immune evasion by the accessory V protein. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00908-4.
Collapse
Affiliation(s)
- Sunny Deval
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana India
| | | | | | - P. L. Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana India
| | | | - Anand Srivastava
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Hyderabad, Telangana India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana India
| |
Collapse
|
2
|
Brynes A, Zhang Y, Williams JV. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. J Virol 2024; 98:e0110424. [PMID: 39412256 PMCID: PMC11575145 DOI: 10.1128/jvi.01104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions (K. M. Edwards et al., N Engl J Med 368:633-643, 2013, https://doi.org/10.1056/NEJMoa1204630; A. R. Falsey et al., J Infect Dis 187:785-790, 2003, https://doi.org/10.1086/367901; J. S. Kahn, Clin Microbiol Rev 19:546-557, 2006, https://doi.org/10.1128/CMR.00014-06; N. Shafagati and J. Williams, F1000Res 7:135, 2018, https://doi.org/10.12688/f1000research.12625.1). HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro in part by preventing STAT1 phosphorylation (A. K. Hastings et al., Virology (Auckl) 494:248-256, 2016, https://doi.org/10.1016/j.virol.2016.04.022). HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for the inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wild-type, but not ΔSH virus, blocked IL-6-mediated STAT3 activation. Furthermore, JAK1 protein (but not RNA) was significantly reduced in cells infected with wild-type, but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by the addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.IMPORTANCEHuman metapneumovirus (HMPV) is a common cause of severe respiratory illness, especially in children and older adults, in whom it is a leading cause of hospitalization. Prior research suggests that severe HMPV infection is driven by a strong immune response to the virus, especially by inflammatory immune signals like interferons (IFN). HMPV produces a small hydrophobic (SH) protein that is known to block IFN signaling, but the mechanism by which it functions and its ability to inhibit other important immune signals remains unexplored. This paper demonstrates that SH can inhibit another related immune signal, IL-6, and that SH depletes JAKs, which are critical proteins involved in both IL-6 and IFN signaling. A robust understanding of how HMPV and related viruses interfere with immune signals important for disease could pave the way for future treatments aimed at mitigating severe infections.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Brynes A, Zhang Y, Williams JV. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593594. [PMID: 38798421 PMCID: PMC11118450 DOI: 10.1101/2024.05.10.593594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions 1,2,3,4. HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors in vitro, in part by preventing STAT1 phosphorylation5. HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling, and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wildtype, but not ΔSH virus, blocked IL-6 mediated STAT3 activation. Further, JAK1 protein (but not RNA) was significantly reduced in cells infected with wildtype but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Chang YK, Lin YJ, Cheng CY, Tsai PC, Wang CY, Nielsen BL, Liu HJ. Nucleocytoplasmic shuttling of BEFV M protein-modulated by lamin A/C and chromosome maintenance region 1 through a transcription-, carrier- and energy-dependent pathway. Vet Microbiol 2024; 291:110026. [PMID: 38364467 DOI: 10.1016/j.vetmic.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.
Collapse
Affiliation(s)
- Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC; Depertment of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Jyum Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan, ROC; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC; Rong Hsing Research Center for Translational Medicine, National Chung Hsing, Taiwan, ROC.
| |
Collapse
|
6
|
Jain J, Chaudhary Y, Gaur SK, Tembhurne P, Sekar SC, Dhanavelu M, Sehrawat S, Kaul R. Peste des petits ruminants virus non-structural V and C proteins interact with the NF-κB p65 subunit and modulate pro-inflammatory cytokine gene induction. J Gen Virol 2023; 104. [PMID: 37831061 DOI: 10.1099/jgv.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is known to induce transient immunosuppression in infected small ruminants by modulating several cellular pathways involved in the antiviral immune response. Our study shows that the PPRV-coded non-structural proteins C and V can interact with the cellular NF-κB p65 subunit. The PPRV-C protein interacts with the transactivation domain (TAD) while PPRV-V interacts with the Rel homology domain (RHD) of the NF-κB p65 subunit. Both viral proteins can suppress the NF-κB transcriptional activity and NF-κB-mediated transcription of cellular genes. PPRV-V protein expression can significantly inhibit the nuclear translocation of NF-κB p65 upon TNF-α stimulation, whereas PPRV-C does not affect it. The NF-κB-mediated pro-inflammatory cytokine gene expression is significantly downregulated in cells expressing PPRV-C or PPRV-V protein. Our study provides evidence suggesting a role of PPRV non-structural proteins V and C in the modulation of NF-κB signalling through interaction with the NF-κB p65 subunit.
Collapse
Affiliation(s)
- Juhi Jain
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | | | | | | | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Mohali, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
7
|
Wu X, Chen L, Sui C, Hu Y, Jiang D, Yang F, Miller LC, Li J, Cong X, Hrabchenko N, Lee C, Du Y, Qi J. 3C pro of FMDV inhibits type II interferon-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. Virol Sin 2023; 38:387-397. [PMID: 36921803 PMCID: PMC10311264 DOI: 10.1016/j.virs.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) has developed various strategies to antagonize the host innate immunity. FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms. The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γ signaling transduction. Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown. In this study, it was shown that FMDV replication was resistant to IFN-γ treatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes (ISGs). We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. 3Cpro expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences (GAS) promoter activity, without affecting the protein level, tyrosine phosphorylation, and homodimerization of STAT1. Finally, we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities. Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling.
Collapse
Affiliation(s)
- Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Chen
- College of Life Science, Shandong Normal University, Jinan, 250358, China
| | - Chao Sui
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology/National Foot and Mouth Disease Reference Laboratory/Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Laura C Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Nataliia Hrabchenko
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250358, China.
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
8
|
Becker N, Maisner A. Nipah Virus Impairs Autocrine IFN Signaling by Sequestering STAT1 and STAT2 into Inclusion Bodies. Viruses 2023; 15:554. [PMID: 36851768 PMCID: PMC9967463 DOI: 10.3390/v15020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism.
Collapse
Affiliation(s)
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| |
Collapse
|
9
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
10
|
Chen Q, Li L, Guo S, Liu Z, Liu L, Tan C, Chen H, Wang X. African swine fever virus pA104R protein acts as a suppressor of type I interferon signaling. Front Microbiol 2023; 14:1169699. [PMID: 37089552 PMCID: PMC10119599 DOI: 10.3389/fmicb.2023.1169699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
This study evaluates the role of the late viral protein, pA104R, in African swine fever virus immunosuppression. ASFV-encoded pA104R is a putative histone-like protein that is highly conserved throughout different virulent and non-virulent isolates. Previous studies have demonstrated that pA104R plays a vital role in the ASFV replication cycle and is a potential target for antiviral therapy. Here, we demonstrated that pA104R is a potent antagonist of type I interferon signaling. IFN-stimulated response element activity and subsequent transcription of co-transfected and endogenous interferon-stimulated genes were attenuated by pA104R treatment in HEK-293 T cells. Immunoprecipitation assay and reciprocal pull-down showed that pA104R does not interact directly with STAT1, STAT2, or IRF9. However, pA104R could inhibit IFN signaling by attenuating STAT1 phosphorylation, and we identified the critical amino acid residues (R/H69,72 and K/R92,94,97) involved through the targeted mutation functional assays. Although pA104R is a histone-like protein localized to the nucleus, it did not inhibit IFN signaling through its DNA-binding capacity. In addition, activation of the ISRE promoter by IRF9-Stat2(TA), a STAT1-independent pathway, was inhibited by pA104R. Further results revealed that both the transcriptional activation and recruitment of transcriptional stimulators by interferon-stimulated gene factor 3 were not impaired. Although we failed to determine a mechanism for pA104R-mediated IFN signaling inhibition other than attenuating the phosphorylation of STAT1, these results might imply a possible involvement of epigenetic modification by ASFV pA104R. Taken together, these findings support that pA104R is an antagonist of type I interferon signaling, which may interfere with multiple signaling pathways.
Collapse
Affiliation(s)
- Qichao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
- *Correspondence: Xiangru Wang,
| |
Collapse
|
11
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
12
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
13
|
Xiang Q, Yang Z, Nicholas J. STAT and Janus kinase targeting by human herpesvirus 8 interferon regulatory factor in the suppression of type-I interferon signaling. PLoS Pathog 2022; 18:e1010676. [PMID: 35776779 PMCID: PMC9307175 DOI: 10.1371/journal.ppat.1010676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/22/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma (KS)-associated herpesvirus, is involved etiologically in AIDS-associated KS, primary effusion lymphoma (PEL), and multicentric Castleman’s disease, in which both viral latent and lytic functions are important. HHV-8 encodes four viral interferon regulatory factors (vIRFs) that are believed to contribute to viral latency (in PEL cells, at least) and/or to productive replication via suppression of cellular antiviral and stress signaling. Here, we identify vIRF-1 interactions with signal transducer and activator of transcription (STAT) factors 1 and 2, interferon (IFN)-stimulated gene factor 3 (ISGF3) cofactor IRF9, and associated signal transducing Janus kinases JAK1 and TYK2. In naturally infected PEL cells and in iSLK epithelial cells infected experimentally with genetically engineered HHV-8, vIRF-1 depletion or ablation, respectively, led to increased levels of active (phosphorylated) STAT1 and STAT2 in IFNβ-treated, and untreated, cells during lytic replication and to associated cellular-gene induction. In transfected 293T cells, used for mechanistic studies, suppression by vIRF-1 of IFNβ-induced phospho-STAT1 (pSTAT1) was found to be highly dependent on STAT2, indicating vIRF-1-mediated inhibition and/or dissociation of ISGF3-complexing, resulting in susceptibility of pSTAT1 to inactivating dephosphorylation. Indeed, coprecipitation experiments involving targeted precipitation of ISGF3 components identified suppression of mutual interactions by vIRF-1. In contrast, suppression of IFNβ-induced pSTAT2 was effected by regulation of STAT2 activation, likely via detected inhibition of TYK2 and its interactions with STAT2 and IFN type-I receptor (IFNAR). Our identified vIRF-1 interactions with IFN-signaling mediators STATs 1 and 2, co-interacting ISGF3 component IRF9, and STAT-activating TYK2 and the suppression of IFN signaling via ISGF3, TYK2-STAT2 and TYK2-IFNAR disruption and TYK2 inhibition represent novel mechanisms of vIRF function and HHV-8 evasion from host-cell defenses. Viral interferon regulatory factors (vIRFs) encoded by Kaposi’s sarcoma- and lymphoma-associated human herpesvirus 8 (HHV-8) are mediators of protection from cellular antiviral responses and therefore are considered to be pivotal for successful de novo infection, latency establishment and maintenance, and productive (lytic) replication. Identification and characterization of their interactions with cellular proteins, the functional consequences of these interactions, and the operation of these mechanisms in the context of infection has the potential to enable the development of novel antiviral strategies targeted to these interactions and mechanisms. In this report we identify vIRF-1 interactions with transcription factors STAT1 and STAT2, the co-interacting component, IRF9, of the antiviral interferon (IFN)-induced transcription complex ISGF3, and the ability of vIRF-1 to inhibit activation and functional associations of IFN-I receptor- and STAT1/2-kinase TYK2, suppress STAT1/2 activation, and dissociate STAT1 from IFN-induced ISGF3 to blunt IFN signaling and promote STAT1 inactivation. These interactions and activities, which mediate suppression of innate cellular defenses against virus replication, represent novel properties among vIRFs and could potentially be exploited for antiviral and therapeutic purposes.
Collapse
Affiliation(s)
- Qiwang Xiang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zunlin Yang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
15
|
Manokaran G, Audsley MD, Funakoda H, David CT, Garnham KA, Rawlinson SM, Deffrasnes C, Ito N, Moseley GW. Deactivation of the antiviral state by rabies virus through targeting and accumulation of persistently phosphorylated STAT1. PLoS Pathog 2022; 18:e1010533. [PMID: 35576230 PMCID: PMC9135343 DOI: 10.1371/journal.ppat.1010533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/26/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022] Open
Abstract
Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to ‘disarming’ of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1. Following viral infection, the host activates multiple antiviral defenses. The ability of viruses to overcome these defenses is critical to disease. The earliest antiviral response involves the production of interferon messenger molecules. Interferons act on infected cells to inhibit viral proliferation, as well as on non-infected cells to establish an antiviral state before infection and so limit viral spread through the host organism. Many strategies used by viruses to overcome the former are well understood, but mechanisms important to the latter, and their importance to disease, are less well defined. In this study, we investigated how rabies virus overcomes a pre-established antiviral state in target cells. We found that the capacity to disable the antiviral state correlates with the ability to cause disease, and involves binding of a viral protein to cellular signaling proteins, which our data indicate are responsible for the maintenance of a prolonged antiviral state. This advances our understanding of antiviral responses, and identifies a key step in lethal infection by rabies virus that causes approximately 60,000 human deaths per year. The findings may contribute to new approaches for the development of vaccines or antivirals.
Collapse
Affiliation(s)
- Gayathri Manokaran
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Michelle D. Audsley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Haruka Funakoda
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Katherine A. Garnham
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Celine Deffrasnes
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- * E-mail: (NI); (GWM)
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- * E-mail: (NI); (GWM)
| |
Collapse
|
16
|
STAT1 and Its Crucial Role in the Control of Viral Infections. Int J Mol Sci 2022; 23:ijms23084095. [PMID: 35456913 PMCID: PMC9028532 DOI: 10.3390/ijms23084095] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The signal transducer and activator of transcription (STAT) 1 protein plays a key role in the immune response against viruses and other pathogens by transducing, in the nucleus, the signal from type I, type II and type III IFNs. STAT1 activates the transcription of hundreds of genes, some of which have been well characterized for their antiviral properties. STAT1 gene deletion in mice and complete STAT1 deficiency in humans both cause rapid death from severe infections. STAT1 plays a key role in the immunoglobulin class-switch recombination through the upregulation of T-bet; it also plays a key role in the production of T-bet+ memory B cells that contribute to tissue-resident humoral memory by mounting an IgG response during re-infection. Considering the key role of STAT1 in the antiviral immune response, many viruses, including dangerous viruses such as Ebola and SARS-CoV-2, have developed different mechanisms to inhibit this transcription factor. The search for drugs capable of targeting the viral proteins implicated in both viral replication and IFN/STAT1 inhibition is important for the treatment of the most dangerous viral infections and for future viral pandemics, as shown by the clinical results obtained with Paxlovid in patients infected with SARS-CoV-2.
Collapse
|
17
|
Fung SY, Siu KL, Lin H, Chan CP, Yeung ML, Jin DY. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1. Cell Biosci 2022; 12:36. [PMID: 35317858 PMCID: PMC8939493 DOI: 10.1186/s13578-022-00770-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background SARS-CoV-2 is the causative agent of COVID-19. Overproduction and release of proinflammatory cytokines are the underlying cause of severe COVID-19. Treatment of this condition with JAK inhibitors is a double-edged sword, which might result in the suppression of proinflammatory cytokine storm and the concurrent enhancement of viral infection, since JAK signaling is essential for host antiviral response. Improving the current JAK inhibitor therapy requires a detailed molecular analysis on how SARS-CoV-2 modulates interferon (IFN)-induced activation of JAK-STAT signaling. Results In this study, we focused on the molecular mechanism by which SARS-CoV-2 NSP13 helicase suppresses IFN signaling. Expression of SARS-CoV-2 NSP13 alleviated transcriptional activity driven by type I and type II IFN-responsive enhancer elements. It also prevented nuclear translocation of STAT1 and STAT2. The suppression of NSP13 on IFN signaling occurred at the step of STAT1 phosphorylation. Nucleic acid binding-defective mutant K345A K347A and NTPase-deficient mutant E375A of NSP13 were found to have largely lost the ability to suppress IFN-β-induced STAT1 phosphorylation and transcriptional activation, indicating the requirement of the helicase activity for NSP13-mediated inhibition of STAT1 phosphorylation. NSP13 did not interact with JAK1 nor prevent STAT1-JAK1 complex formation. Mechanistically, NSP13 interacted with STAT1 to prevent JAK1 kinase from phosphorylating STAT1. Conclusion SARS-CoV-2 NSP13 helicase broadly suppresses IFN signaling by targeting JAK1 phosphorylation of STAT1.
Collapse
Affiliation(s)
- Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Huayue Lin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Ching-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Man Lung Yeung
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China.
| |
Collapse
|
18
|
Siering O, Cattaneo R, Pfaller CK. C Proteins: Controllers of Orderly Paramyxovirus Replication and of the Innate Immune Response. Viruses 2022; 14:v14010137. [PMID: 35062341 PMCID: PMC8778822 DOI: 10.3390/v14010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/07/2023] Open
Abstract
Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55906, USA
- Correspondence: (R.C.); (C.K.P.)
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
- Correspondence: (R.C.); (C.K.P.)
| |
Collapse
|
19
|
Lal S, Raffel C. Protocols to Manufacture an Oncolytic Measles Virus-Sensitive Immunocompetent Mouse Model of Medulloblastoma. Methods Mol Biol 2022; 2423:165-177. [PMID: 34978698 DOI: 10.1007/978-1-0716-1952-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oncolytic virotherapy translational research in the current era is heavily focused on the interaction of the immune system and tumor microenvironment with oncolytic viruses. Preclinical xenograft studies using human cells in immunodeficient mouse models does not serve this purpose. As a consequence, developing syngeneic immunocompetent murine cancer models sensitive to infection and growth of specific oncolytic viruses is required. The group 3 subtype of medulloblastoma, among the four molecular subgroups-WNT, SHH, Group 3, and Group 4, has the worst prognosis and the poorest outcome. Sadly, current treatments cause long-term toxicity and morbidity to survivors adversely affecting their quality of life. Alternate effective therapy with less side effects is urgently needed. We have shown that oncolytic measles virus (MV) is effective against localized as well as CSF-disseminated medulloblastoma in immunodeficient mouse models. To study the interaction of immune system with oncolytic measles virotherapy, we have developed a murine group 3 medulloblastoma cell line (CSCG) that is infectible by MV, is killed by MV, allows replication of MV, and is tumorigenic in the brain of syngeneic transgenic immune-competent mice. Intratumoral injection of MV results in significant prolongation of survival in mice bearing CSCG tumors in the brain. This model provides the first suitable platform to examine therapeutic regimens of MV therapy for MB tumors in the presence of intact immune system. Here, we describe our lab protocols to develop this cell line and the mouse model.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Corey Raffel
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Barik S. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Int J Mol Sci 2022; 23:ijms23010489. [PMID: 35008916 PMCID: PMC8745392 DOI: 10.3390/ijms23010489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
21
|
Definition of the immune evasion-replication interface of rabies virus P protein. PLoS Pathog 2021; 17:e1009729. [PMID: 34237115 PMCID: PMC8291714 DOI: 10.1371/journal.ppat.1009729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated. While direct data on the binding interface of the PCTD for STAT1 is available, the lack of direct structural data on the sites that bind N protein limits our understanding of this interaction hub. The PCTD was proposed to bind via two sites to a flexible loop of N protein (Npep) that is not visible in crystal structures, but no direct analysis of this interaction has been reported. Here we use Nuclear Magnetic Resonance, and molecular modelling to show N protein residues, Leu381, Asp383, Asp384 and phosphor-Ser389, are likely to bind to a ‘positive patch’ of the PCTD formed by Lys211, Lys214 and Arg260. Furthermore, in contrast to previous predictions we identify a single site of interaction on the PCTD by this Npep. Intriguingly, this site is proximal to the defined STAT1 binding site that includes Ile201 to Phe209. However, cell-based assays indicate that STAT1 and N protein do not compete for P protein. Thus, it appears that interactions critical to replication and immune evasion can occur simultaneously with the same molecules of P protein so that the binding of P protein to activated STAT1 can potentially occur without interrupting interactions involved in replication. These data suggest that replication complexes might be directly involved in STAT1 antagonism. For viruses to infect cells and generate progeny, they must be able to mediate replication, while simultaneously evading the innate immune system. Viruses with small genomes often achieve this through multifunctional proteins that have roles in both replication and immune evasion, such as the phosphoprotein (P protein) of rabies virus. P protein is an essential cofactor in genome replication and transcription, dependent on the well-folded C-terminal domain (PCTD), which binds to the nucleoprotein (N protein) when complexed with RNA. The PCTD can also bind and antagonize signal transducers and activators of transcription (STAT) proteins, that are essential for activating antiviral mechanisms. Here we show using Nuclear Magnetic Resonance spectroscopy and cell-based assays, that the STAT1-binding and N-binding interfaces are proximal but, nevertheless, it appears that the same molecule of PCTD can simultaneously bind STAT1 and N protein. These data suggest that P-protein-STAT1 interaction, critical to immune evasion, can occur without interrupting interactions underlying replication, and so replication complexes might be directly involved in STAT1 antagonism.
Collapse
|
22
|
Harrison AR, Todd S, Dearnley M, David CT, Green D, Rawlinson SM, Au GG, Marsh GA, Moseley GW. Antagonism of STAT3 signalling by Ebola virus. PLoS Pathog 2021; 17:e1009636. [PMID: 34166464 PMCID: PMC8224886 DOI: 10.1371/journal.ppat.1009636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Many viruses target signal transducers and activators of transcription (STAT) 1 and 2 to antagonise antiviral interferon signalling, but targeting of signalling by other STATs/cytokines, including STAT3/interleukin 6 that regulate processes important to Ebola virus (EBOV) haemorrhagic fever, is poorly defined. We report that EBOV potently inhibits STAT3 responses to interleukin-6 family cytokines, and that this is mediated by the interferon-antagonist VP24. Mechanistic analysis indicates that VP24 effects a unique strategy combining distinct karyopherin-dependent and karyopherin-independent mechanisms to antagonise STAT3-STAT1 heterodimers and STAT3 homodimers, respectively. This appears to reflect distinct mechanisms of nuclear trafficking of the STAT3 complexes, revealed for the first time by our analysis of VP24 function. These findings are consistent with major roles for global inhibition of STAT3 signalling in EBOV infection, and provide new insights into the molecular mechanisms of STAT3 nuclear trafficking, significant to pathogen-host interactions, cell physiology and pathologies such as cancer. Ebola virus (EBOV) continues to pose a significant risk to human health globally, causing ongoing disease outbreaks with case-fatality rates between 40 and 65%. Suppression of immune responses is a critical component of EBOV haemorrhagic fever, but understanding of EBOV impact on signalling by cytokines other than interferon is limited. We find that infectious EBOV inhibits interleukin-6 cytokine signalling via antagonism of STAT3. The antagonistic strategy uniquely combines two distinct mechanisms, which appear to reflect differing nuclear trafficking mechanisms of critical STAT3 complexes. This provides fundamental insights into the mechanisms of pathogenesis of a lethal virus, and biology of STAT3, a critical player in immunity, development, growth and cancer.
Collapse
Affiliation(s)
- Angela R. Harrison
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shawn Todd
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Megan Dearnley
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Cassandra T. David
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Diane Green
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gough G. Au
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Abstract
The Nipah virus (NiV) phosphoprotein (P) gene encodes four proteins. Three of these-P, V, and W-possess a common N-terminal domain but distinct C termini. These proteins interact with immune modulators. Previous studies demonstrated that P, V, and W bind STAT1 and STAT4 and that V also interacts with STAT2 but not with STAT3. The STAT1 and STAT2 interactions block interferon (IFN)-induced STAT tyrosine phosphorylation. To more fully characterize the interactions of P, V, and W with the STATs, we screened for interaction of each viral protein with STATs 1 to 6 by coimmunoprecipitation. We demonstrate that NiV P, V, and W interact with STAT4 through their common N-terminal domain and block STAT4 activity, based on a STAT4 response element reporter assay. Although none of the NiV proteins interact with STAT3 or STAT6, NiV V, but not P or W, interacts with STAT5 through its unique C terminus. Furthermore, the interaction of NiV V with STAT5 was not disrupted by overexpression of the N-terminal binding STAT1 or the C-terminal binding MDA5. NiV V also inhibits a STAT5 response element reporter assay. Residues 114 to 140 of the common N-terminal domain of the NiV P gene products were found to be sufficient to bind STAT1 and STAT4. Analysis of STAT1-STAT3 chimeras suggests that the P gene products target the STAT1 SH2 domain. When fused to GST, the 114-140 peptide is sufficient to decrease STAT1 phosphorylation in IFN-β-stimulated cells, suggesting that this peptide could potentially be fused to heterologous proteins to confer inhibition of STAT1- and STAT4-dependent responses.IMPORTANCE How Nipah virus (NiV) antagonizes innate immune responses is incompletely understood. The P gene of NiV encodes the P, V, and W proteins. These proteins have a common N-terminal sequence that is sufficient to bind to STAT1 and STAT2 and block IFN-induced signal transduction. This study sought to more fully understand how P, V, and W engage with the STAT family of transcription factors to influence their functions. The results identify a novel interaction of V with STAT5 and demonstrate V inhibition of STAT5 function. We also demonstrate that the common N-terminal residues 114 to 140 of P, V, and W are critical for inhibition of STAT1 and STAT4 function, map the interaction to the SH2 region of STAT1, and show that a fusion construct with this peptide significantly inhibits cytokine-induced STAT1 phosphorylation. These data clarify how these important virulence factors modulate innate antiviral defenses.
Collapse
|
24
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
25
|
Harrison AR, Lieu KG, Larrous F, Ito N, Bourhy H, Moseley GW. Lyssavirus P-protein selectively targets STAT3-STAT1 heterodimers to modulate cytokine signalling. PLoS Pathog 2020; 16:e1008767. [PMID: 32903273 PMCID: PMC7480851 DOI: 10.1371/journal.ppat.1008767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Many viruses target signal transducer and activator of transcription (STAT) 1 to antagonise antiviral interferon signalling, but targeting of STAT3, a pleiotropic molecule that mediates signalling by diverse cytokines, is poorly understood. Here, using lyssavirus infection, quantitative live cell imaging, innate immune signalling and protein interaction assays, and complementation/depletion of STAT expression, we show that STAT3 antagonism is conserved among P-proteins of diverse pathogenic lyssaviruses and correlates with pathogenesis. Importantly, P-protein targeting of STAT3 involves a highly selective mechanism whereby P-protein antagonises cytokine-activated STAT3-STAT1 heterodimers, but not STAT3 homodimers. RT-qPCR and reporter gene assays indicate that this results in specific modulation of interleukin-6-dependent pathways, effecting differential antagonism of target genes. These data provide novel insights into mechanisms by which viruses can modulate cellular function to support infection through discriminatory targeting of immune signalling complexes. The findings also highlight the potential application of selective interferon-antagonists as tools to delineate signalling by particular STAT complexes, significant not only to pathogen-host interactions but also cell physiology, development and cancer.
Collapse
Affiliation(s)
- Angela R. Harrison
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim G. Lieu
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Florence Larrous
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
| | - Gregory W. Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
The Measles Virus V Protein Binding Site to STAT2 Overlaps That of IRF9. J Virol 2020; 94:JVI.01169-20. [PMID: 32581091 DOI: 10.1128/jvi.01169-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/25/2022] Open
Abstract
Measles virus (MeV) is a highly immunotropic and contagious pathogen that can even diminish preexisting antibodies and remains a major cause of childhood morbidity and mortality worldwide despite the availability of effective vaccines. MeV is one of the most extensively studied viruses with respect to the mechanisms of JAK-STAT antagonism. Of the three proteins translated from the MeV P gene, P and V are essential for inactivation of this pathway. However, the lack of data from direct analyses of the underlying interactions means that the detailed molecular mechanism of antagonism remains unresolved. Here, we prepared recombinant MeV V protein, which is responsible for human JAK-STAT antagonism, and a panel of variants, enabling the biophysical characterization of V protein, including direct V/STAT1 and V/STAT2 interaction assays. Unambiguous direct interactions between the host and viral factors, in the absence of other factors such as Jak1 or Tyk2, were observed, and the dissociation constants were quantified for the first time. Our data indicate that interactions between the C-terminal region of V and STAT2 is 1 order of magnitude stronger than that of the N-terminal region of V and STAT1. We also clarified that these interactions are completely independent of each other. Moreover, results of size exclusion chromatography demonstrated that addition of MeV-V displaces STAT2-core, a rigid region of STAT2 lacking the N- and C-terminal domains, from preformed complexes of STAT2-core/IRF-associated domain (IRF9). These results provide a novel model whereby MeV-V can not only inhibit the STAT2/IRF9 interaction but also disrupt preassembled interferon-stimulated gene factor 3.IMPORTANCE To evade host immunity, many pathogenic viruses inactivate host Janus kinase signal transducer and activator of transcription (STAT) signaling pathways using diverse strategies. Measles virus utilizes P and V proteins to counteract this signaling pathway. Data derived largely from cell-based assays have indicated several amino acid residues of P and V proteins as important. However, biophysical properties of V protein or its direct interaction with STAT molecules using purified proteins have not been studied. We have developed novel molecular tools enabling us to identify a novel molecular mechanism for immune evasion whereby V protein disrupts critical immune complexes, providing a clear strategy by which measles virus can suppress interferon-mediated antiviral gene expression.
Collapse
|
27
|
Yang Y, Zhou D, Zhao B, Cao Y, Yu J, Yan H, Zhao W, Zhang E, Yang J, Zhong M, Hu Q, Deng L, Yan H. Immunoglobulin A Targeting on the N-Terminal Moiety of Viral Phosphoprotein Prevents Measles Virus from Evading Interferon-β Signaling. ACS Infect Dis 2020; 6:844-856. [PMID: 32119519 DOI: 10.1021/acsinfecdis.9b00427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) can inhibit intracellular viral replication during its transport across the epithelial cells. We find a monoclonal IgA antibody 7F1-IgA against the N-terminal moiety of the phosphoprotein (PNT) of measles virus (MV), which inhibits the intracellular replication of MV in Caco-2 cells but not in interferon-deficient Vero-pIgR cells. Transcytosis of 7F1-IgA across the MV-infected Caco-2 cells enhances the production of interferon-β (IFN-β) and the expression of IFN-stimulated genes, rendering Caco-2 cells with higher antiviral immunity. 7F1-IgA specifically interacts with MV phosphoprotein inside the MV-infected Caco-2 cell and prevents MV phosphoprotein from inhibiting the phosphorylation of JAK1 and STAT1. The intraepithelial interaction between 7F1-IgA and the viral phosphoprotein results in an earlier and stronger phosphorylation of JAK1 and STAT1 and, consequently, a more efficient nuclear translocation of STAT1 for the activation of the type I interferon pathway. Thus, IgA against phosphoprotein prevents a virus from evading type I IFN signaling and confers host epithelial cells efficient innate antiviral immunity, which potentiates a new antiviral target and an antiviral strategy.
Collapse
Affiliation(s)
- Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dihan Zhou
- The Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong 510623, China
- The Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Cao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Li Deng
- The Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong 510623, China
- The Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Huimin Yan
- The Joint Laboratory for Translational Precision Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong 510623, China
- The Joint Laboratory for Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Duan GQ, Zheng X, Li WK, Zhang W, Li Z, Tan W. The Association Between VDR and GC Polymorphisms and Lung Cancer Risk: A Systematic Review and Meta-Analysis. Genet Test Mol Biomarkers 2020; 24:285-295. [DOI: 10.1089/gtmb.2019.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Guang-qing Duan
- Postgraduate Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Xiao Zheng
- Postgraduate Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Wei-kang Li
- Postgraduate Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Wei Zhang
- Postgraduate Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Zhao Li
- Postgraduate Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Wei Tan
- Postgraduate Department of Internal Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
29
|
Ayasoufi K, Pfaller CK. Seek and hide: the manipulating interplay of measles virus with the innate immune system. Curr Opin Virol 2020; 41:18-30. [PMID: 32330821 DOI: 10.1016/j.coviro.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/17/2023]
Abstract
The innate immune system is the first line of defense against infections with pathogens. It provides direct antiviral mechanisms to suppress the viral life cycle at multiple steps. Innate immune cells are specialized to recognize pathogen infections and activate and modulate adaptive immune responses through antigen presentation, co-stimulation and release of cytokines and chemokines. Measles virus, which causes long-lasting immunosuppression and immune-amnesia, primarily infects and replicates in innate and adaptive immune cells, such as dendritic cells, macrophages, T cells and B cells. To achieve efficient replication, measles virus has evolved multiple mechanisms to manipulate innate immune responses by both stimulation and blocking of specific signals necessary for antiviral immunity. This review will highlight our current knowledge in this and address open questions.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Mayo Clinic, Department of Immunology, 200 First Street SW, Rochester, MN 55905, United States
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| |
Collapse
|
30
|
Lu X, Liu J, Yan J, Wu H, Feng H. Identification and characterization of IRF9 from black carp Mylopharyngodon piceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103528. [PMID: 31654647 DOI: 10.1016/j.dci.2019.103528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Interferon regulatory factor 9 (IRF9) plays a crucial role in JAK-STAT signaling in human and mammal. However, the relationship between IRF9 and STAT1 in teleost fish remains largely unknown. The previous study has elucidated that two STAT1 isoforms (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) play an important role during the innate immune activation initiated by grass carp reovirus (GCRV). In this paper, black carp IRF9 (bcIRF9) has been identified and characterized. bcIRF9 was distributed majorly in the nucleus and the linker domain (LD) of bcIRF9 was vital for its nuclear localization. bcIRF9 showed ISRE-inducing activity in reporter assay and presented antiviral activity against GCRV in plaque assay, in which both DNA binding domain (DBD) and LD of bcIRF9 were essential for its antiviral signaling. bcIRF9 was identified to interact with both bcSTAT1a and bcSTAT1b in the co-immunoprecipitation assay. It was interesting that bcIRF9-mediated antiviral signaling was up-regulated by bcSTAT1a; however, down-regulated by bcSTAT1b. Thus, our data support the conclusion that bcIRF9 plays an important role in the innate immune defense against GCRV, in which two STAT1 proteins function differently.
Collapse
Affiliation(s)
- Xingyu Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
31
|
Kitagawa Y, Yamaguchi M, Kohno M, Sakai M, Itoh M, Gotoh B. Respirovirus C protein inhibits activation of type I interferon receptor-associated kinases to block JAK-STAT signaling. FEBS Lett 2019; 594:864-877. [PMID: 31705658 DOI: 10.1002/1873-3468.13670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
Respirovirus C protein blocks the type I interferon (IFN)-stimulated activation of the JAK-STAT pathway. It has been reported that C protein inhibits IFN-α-stimulated tyrosine phosphorylation of STATs, but the underlying mechanism is poorly understood. Here, we show that the C protein of Sendai virus (SeV), a member of the Respirovirus genus, binds to the IFN receptor subunit IFN-α/β receptor subunit (IFNAR)2 and inhibits IFN-α-stimulated tyrosine phosphorylation of the upstream receptor-associated kinases, JAK1 and TYK2. Analysis of various SeV C mutant (Cm) proteins demonstrates the importance of the inhibitory effect on receptor-associated kinase phosphorylation for blockade of JAK-STAT signaling. Furthermore, this inhibitory effect and the IFNAR2 binding capacity are observed for all the respirovirus C proteins examined. Our results suggest that respirovirus C protein inhibits activation of the receptor-associated kinases JAK1 and TYK2 possibly through interaction with IFNAR2.
Collapse
Affiliation(s)
- Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Mayu Yamaguchi
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Miki Kohno
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Madoka Sakai
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Masae Itoh
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
32
|
Lal S, Carrera D, Phillips JJ, Weiss WA, Raffel C. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol 2019; 20:1606-1615. [PMID: 29912438 DOI: 10.1093/neuonc/noy089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Oncolytic measles virus (MV) is effective in xenograft models of many tumor types in immune-compromised mice. However, no murine cell line exists that is tumorigenic, grows in immune-competent mice, and is killed by MV. The lack of such a model prevents an examination of the effect of the immune system on MV oncotherapy. Methods Cerebellar stem cells from human CD46-transgenic immunocompetent mice were transduced to express Sendai virus C-protein, murine C-Myc, and Gfi1b proteins. The resultant cells were injected into the brain of NSG mice, and a cell line, called CSCG, was prepared from the resulting tumor. Results CSCG cells are highly proliferative, and express stem cell markers. These cells are permissive for replication of MV and are killed by the virus in a dose- and time-dependent manner. CSCG cells form aggressive tumors that morphologically resemble medulloblastoma when injected into the brains of immune-competent mice. On the molecular level, CSCG tumors overexpress natriuretic peptide receptor 3 and gamma-aminobutyric acid type A receptor alpha 5, markers of Group 3 medulloblastoma. A single intratumoral injection of MV‒green fluorescent protein resulted in complete tumor regression and prolonged survival of animals compared with treatments with phosphate buffered saline (P = 0.0018) or heat-inactivated MV (P = 0.0027). Conclusions This immune-competent model provides the first platform to test therapeutic regimens of oncolytic MV for Group 3 medulloblastoma in the presence of anti-measles immunity. The strategy presented here can be used to make MV-sensitive murine models of any human tumor for which the driving mutations are known.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Diego Carrera
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - William A Weiss
- Department of Neurology, Pediatrics, and Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Corey Raffel
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| |
Collapse
|
33
|
Immune Modulation and Immune-Mediated Pathogenesis of Emerging Tickborne Banyangviruses. Vaccines (Basel) 2019; 7:vaccines7040125. [PMID: 31547199 PMCID: PMC6963857 DOI: 10.3390/vaccines7040125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
In the last decade, the emergence of several, novel tickborne viruses have caused significant disease in humans. Of interest are the tickborne banyangviruses: Severe fever with thrombocytopenia syndrome virus (SFTSV), Heartland virus (HRTV), and Guertu virus (GTV). SFTSV and HRTV infection in humans cause viral hemorrhagic fever-like disease leading to mortality rates ranging from 6–30% of the cases. The systemic inflammatory response syndrome (SIRS) associated with SFTSV infection is hypothesized to contribute significantly to pathology seen in patients. Despite the severe disease caused by HRTV and SFTSV, there are no approved therapeutics or vaccines. Investigation of the immune response during and following infection is critical to the generation of fully protective vaccines and/or supportive treatments, and overall understanding of viral immune evasion mechanisms may aid in the development of a new class of therapeutics.
Collapse
|
34
|
Mandary MB, Masomian M, Poh CL. Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. Int J Mol Sci 2019; 20:E4657. [PMID: 31546962 PMCID: PMC6770471 DOI: 10.3390/ijms20184657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Malihe Masomian
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
35
|
Pentagalloylglucose Inhibits the Replication of Rabies Virus via Mediation of the miR-455/SOCS3/STAT3/IL-6 Pathway. J Virol 2019; 93:JVI.00539-19. [PMID: 31243136 DOI: 10.1128/jvi.00539-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
Our previous study showed that pentagalloylglucose (PGG), a naturally occurring hydrolyzable phenolic tannin, possesses significant anti-rabies virus (RABV) activity. In BHK-21 cells, RABV induced the overactivation of signal transducer and activator of transcription 3 (STAT3) by suppressing the expression of suppressor of cytokine signaling 3 (SOCS3). Inhibition of STAT3 by niclosamide, small interfering RNA, or exogenous expression of SOCS3 all significantly suppressed the replication of RABV. Additionally, RABV-induced upregulation of microRNA 455-5p (miR-455-5p) downregulated SOCS3 by directly binding to the 3' untranslated region (UTR) of SOCS3. Importantly, PGG effectively reversed the expression of miR-455-5p and its following SOCS3/STAT3 signaling pathway. Finally, activated STAT3 elicited the expression of interleukin-6 (IL-6), thereby contributing to RABV-associated encephalomyelitis; however, PGG restored the level of IL-6 in vitro and in vivo in a SOCS3/STAT3-dependent manner. Altogether, these data identify a new miR-455-5p/SOCS3/STAT3 signaling pathway that contributes to viral replication and IL-6 production in RABV-infected cells, with PGG exerting its antiviral effect by inhibiting the production of miR-455-5p and the activation of STAT3.IMPORTANCE Rabies virus causes lethal encephalitis in mammals and poses a serious public health threat in many parts of the world. Numerous strategies have been explored to combat rabies; however, their efficacy has always been unsatisfactory. We previously reported a new drug, PGG, which possesses a potent inhibitory activity on RABV replication. Herein, we describe the underlying mechanisms by which PGG exerts its anti-RABV activity. Our results show that RABV induces overactivation of STAT3 in BHK-21 cells, which facilitates viral replication. Importantly, PGG effectively inhibits the activity of STAT3 by disrupting the expression of miR-455-5p and increases the level of SOCS3 by directly targeting the 3' UTR of SOCS3. Furthermore, the downregulated STAT3 inhibits the production of IL-6, thereby contributing to a reduction in the inflammatory response in vivo Our study indicates that PGG effectively inhibits the replication of RABV by the miR-455-5p/SOCS3/STAT3/IL-6-dependent pathway.
Collapse
|
36
|
Li P, Zhu Z, Zhang X, Dang W, Li L, Du X, Zhang M, Wu C, Xue Q, Liu X, Zheng H, Nan Y. The Nucleoprotein and Phosphoprotein of Peste des Petits Ruminants Virus Inhibit Interferons Signaling by Blocking the JAK-STAT Pathway. Viruses 2019; 11:v11070629. [PMID: 31288481 PMCID: PMC6669484 DOI: 10.3390/v11070629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is associated with global peste des petits ruminants resulting in severe economic loss. Peste des petits ruminants virus dampens host interferon-based signaling pathways through multiple mechanisms. Previous studies deciphered the role of V and C in abrogating IFN-β production. Moreover, V protein directly interacted with signal transducers and activators of transcription 1 (STAT1) and STAT2 resulting in the impairment of host IFN responses. In our present study, PPRV infection inhibited both IFN-β- and IFN-γ-induced activation of IFN-stimulated response element (ISRE) and IFN-γ-activated site (GAS) element, respectively. Both N and P proteins, functioning as novel IFN response antagonists, markedly suppressed IFN-β-induced ISRE and IFN-γ-induced GAS promoter activation to impair downstream upregulation of various interferon-stimulated genes (ISGs) and prevent STAT1 nuclear translocation. Specifically, P protein interacted with STAT1 and subsequently inhibited STAT1 phosphorylation, whereas N protein neither interacted with STAT1 nor inhibited STAT1 phosphorylation as well as dimerization, suggesting that the N and P protein antagonistic effects were different. Though they differed in their relationship to STAT1, both proteins blocked JAK-STAT signaling, severely negating the host antiviral immune response. Our study revealed a new mechanism employed by PPRV to evade host innate immune response, providing a platform to study the interaction of paramyxoviruses and host response.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Linlin Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Miaotao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing100081, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
37
|
Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V. PLoS Pathog 2019; 15:e1007605. [PMID: 30768648 PMCID: PMC6395005 DOI: 10.1371/journal.ppat.1007605] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/28/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Measles virus (MeV) is dual-tropic: it replicates first in lymphatic tissues and then in epithelial cells. This switch in tropism raises the question of whether, and how, intra-host evolution occurs. Towards addressing this question, we adapted MeV either to lymphocytic (Granta-519) or epithelial (H358) cells. We also passaged it consecutively in both human cell lines. Since passaged MeV had different replication kinetics, we sought to investigate the underlying genetic mechanisms of growth differences by performing deep-sequencing analyses. Lymphocytic adaptation reproducibly resulted in accumulation of variants mapping within an 11-nucleotide sequence located in the middle of the phosphoprotein (P) gene. This sequence mediates polymerase slippage and addition of a pseudo-templated guanosine to the P mRNA. This form of co-transcriptional RNA editing results in expression of an interferon antagonist, named V, in place of a polymerase co-factor, named P. We show that lymphocytic-adapted MeV indeed produce minimal amounts of edited transcripts and V protein. In contrast, parental and epithelial-adapted MeV produce similar levels of edited and non-edited transcripts, and of V and P proteins. Raji, another lymphocytic cell line, also positively selects V-deficient MeV genomes. On the other hand, in epithelial cells V-competent MeV genomes rapidly out-compete the V-deficient variants. To characterize the mechanisms of genome re-equilibration we rescued four recombinant MeV carrying individual editing site-proximal mutations. Three mutations interfered with RNA editing, resulting in almost exclusive P protein expression. The fourth preserved RNA editing and a standard P-to-V protein expression ratio. However, it altered a histidine involved in Zn2+ binding, inactivating V function. Thus, the lymphocytic environment favors replication of V-deficient MeV, while the epithelial environment has the opposite effect, resulting in rapid and thorough cyclical quasispecies re-equilibration. Analogous processes may occur in natural infections with other dual-tropic RNA viruses. Key questions in infectious disease are how pathogens adapt to different cells of their hosts, and how the interplay between the virus and host factors controls the outcome of infection. Human measles virus (MeV) and related animal morbilliviruses provide important models of pathogenesis because they are dual-tropic: they replicate first in immune cells for spread through the body, and then in epithelial cells for transmission. We sought here to define the underlying molecular and evolutionary processes that allow MeV to spread rapidly in either lymphocytic or epithelial cells. We discovered unexpectedly rapid and thorough genome adaptation to these two tissues. Genome variants that cannot express functional V protein, an innate immunity control protein, are rapidly selected in lymphocytic cells. These variants express only the P protein, a polymerase co-factor, instead of expressing P and V at similar levels. Upon passaging in epithelial cells, V-competent MeV genome variants rapidly re-gain dominance. These results suggest that cyclical quasispecies re-equilibration may occur in acute MeV infections of humans, and that suboptimal variants in one environment constitute a low frequency reservoir for adaptation to the other, where they become dominant.
Collapse
|
38
|
Chiang HS, Liu HM. The Molecular Basis of Viral Inhibition of IRF- and STAT-Dependent Immune Responses. Front Immunol 2019; 9:3086. [PMID: 30671058 PMCID: PMC6332930 DOI: 10.3389/fimmu.2018.03086] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023] Open
Abstract
The antiviral innate immunity is the first line of host defense against virus infections. In mammalian cells, viral infections initiate the expression of interferons (IFNs) in the host that in turn activate an antiviral defense program to restrict viral replications by induction of IFN stimulated genes (ISGs), which are largely regulated by the IFN-regulatory factor (IRF) family and signal transducer and activator of transcription (STAT) family transcription factors. The mechanisms of action of IRFs and STATs involve several post-translational modifications, complex formation, and nuclear translocation of these transcription factors. However, many viruses, including human immunodeficiency virus (HIV), Zika virus (ZIKV), and herpes simplex virus (HSV), have evolved strategies to evade host defense, including alteration in IRF and STAT post-translational modifications, disturbing the formation and nuclear translocation of the transcription complexes as well as proteolysis/degradation of IRFs and STATs. In this review, we discuss and summarize the molecular mechanisms by which how viral components may target IRFs and STATs to antagonize the establishment of antiviral host defense. The underlying host-viral interactions determine the outcome of viral infection. Gaining mechanistic insight into these processes will be crucial in understanding how viral replication can be more effectively controlled and in developing approaches to improve virus infection outcomes.
Collapse
Affiliation(s)
- Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Helene Minyi Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Pfaller CK, Donohue RC, Nersisyan S, Brodsky L, Cattaneo R. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 2018; 16:e2006577. [PMID: 30496178 PMCID: PMC6264153 DOI: 10.1371/journal.pbio.2006577] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
The interferon (IFN)-mediated innate immune response is the first line of defense against viruses. However, an IFN-stimulated gene, the adenosine deaminase acting on RNA 1 (ADAR1), favors the replication of several viruses. ADAR1 binds double-stranded RNA and converts adenosine to inosine by deamination. This form of editing makes duplex RNA unstable, thereby preventing IFN induction. To better understand how ADAR1 works at the cellular level, we generated cell lines that express exclusively either the IFN-inducible, cytoplasmic isoform ADAR1p150, the constitutively expressed nuclear isoform ADAR1p110, or no isoform. By comparing the transcriptome of these cell lines, we identified more than 150 polymerase II transcripts that are extensively edited, and we attributed most editing events to ADAR1p150. Editing is focused on inverted transposable elements, located mainly within introns and untranslated regions, and predicted to form duplex RNA structures. Editing of these elements occurs also in primary human samples, and there is evidence for cross-species evolutionary conservation of editing patterns in primates and, to a lesser extent, in rodents. Whereas ADAR1p150 rarely edits tightly encapsidated standard measles virus (MeV) genomes, it efficiently edits genomes with inverted repeats accidentally generated by a mutant MeV. We also show that immune activation occurs in fully ADAR1-deficient (ADAR1KO) cells, restricting virus growth, and that complementation of these cells with ADAR1p150 rescues virus growth and suppresses innate immunity activation. Finally, by knocking out either protein kinase R (PKR) or mitochondrial antiviral signaling protein (MAVS)—another protein controlling the response to duplex RNA—in ADAR1KO cells, we show that PKR activation elicits a stronger antiviral response. Thus, ADAR1 prevents innate immunity activation by cellular transcripts that include extensive duplex RNA structures. The trade-off is that viruses take advantage of ADAR1 to elude innate immunity control. The innate immune response is a double-edged sword. It must protect the host from pathogens while avoiding accidental recognition of “self” molecular patterns, which can lead to autoimmune reactions. Double-stranded RNA is among the most potent inducers of cellular stress and interferon responses. We characterize here a mechanism that prevents autoimmune activation and show that an RNA virus, measles virus, can exploit it to elude innate immune responses. This mechanism relies on the enzyme adenosine deaminase acting on RNA 1 (ADAR1), which converts adenosine residues within duplex RNA structures to inosine. We identify duplex RNA structures in the 3′ untranslated regions of over 150 cellular transcripts and show that they are heavily edited in ADAR1-expressing cells. We detect the same type of editing in duplex RNA–forming defective genomes accidentally generated by measles virus. Loss of RNA editing causes strong innate immune responses and is detrimental to viral replication. Thus, by keeping the amount of duplex RNA in cells below an immune activation threshold, ADAR1 prevents autoimmunity while also favoring pathogens.
Collapse
Affiliation(s)
- Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan C. Donohue
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Stepan Nersisyan
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
- Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
40
|
Li J, Meng C, Ren T, Wang W, Zhang Y, Yuan W, Xu S, Sun Y, Tan L, Song C, Liao Y, Nair V, Munir M, Ding Z, Liu X, Qiu X, Ding C. Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein. J Virol Methods 2018; 260:88-97. [PMID: 30026051 DOI: 10.1016/j.jviromet.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 11/25/2022]
Abstract
Newcastle disease virus (NDV) V protein is crucial for viral interferon (IFN) antagonism and virulence, determining its host range restriction. However, little information is available on the B cell epitopes of V protein and the subcellular movement of V protein in the process of NDV infection. In this study, the monoclonal antibody (mAb) clone 3D7 against genotype VII NDV V protein was generated by immunizing mice with a purified recombinant His-tagged carboxyl-terminal domain (CTD) region of V protein. Fine epitope mapping analysis and B-cell epitope prediction indicated that mAb 3D7 recognized a linear epitope 152RGPAELWK159, which is located in the V protein CTD region. Sequence alignment showed that the mAb clone 3D7-recognized epitope is highly conserved among Class II genotype VII NDV strains, but not among other genotypes, suggesting it could serve as a genetic marker to differentiate NDV genotypes. Furthermore, the movement of V protein during NDV replication in infected cells were determined by using this mAb. It was found that V protein localized around the nucleus during virus replication. The establishment of V protein-specific mAb and identification of its epitope extend our understanding of the antigenic characteristics of V protein and provide a basis for the development of epitope-based diagnostic assays.
Collapse
Affiliation(s)
- Jihong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tingting Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yaodan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Weifeng Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shuqin Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | | | | | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
41
|
Chang Z, Wang Y, Zhou X, Long JE. STAT3 roles in viral infection: antiviral or proviral? Future Virol 2018; 13:557-574. [PMID: 32201498 PMCID: PMC7079998 DOI: 10.2217/fvl-2018-0033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which can be activated by cytokines, growth factor receptors, and nonreceptor-like tyrosine kinase. An activated STAT3 translocates into the nucleus and combines with DNA to regulate the expression of target genes involved in cell proliferation, differentiation, apoptosis and metastasis. Recent studies have shown that STAT3 plays important roles in viral infection and pathogenesis. STAT3 exhibits a proviral function in several viral infections, including those of HBV, HCV, HSV-1, varicella zoster virus, human CMV and measles virus. However, in some circumstances, STAT3 has an antiviral function in other viral infections, such as enterovirus 71, severe acute respiratory syndrome coronavirus and human metapneumovirus. This review summarizes the roles of STAT3 in viral infection and pathogenesis, and briefly discusses the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- Zhangmei Chang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China
| | - Yan Wang
- Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| | - Xin Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| |
Collapse
|
42
|
Possible role of the Nipah virus V protein in the regulation of the interferon beta induction by interacting with UBX domain-containing protein1. Sci Rep 2018; 8:7682. [PMID: 29769705 PMCID: PMC5955904 DOI: 10.1038/s41598-018-25815-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/17/2018] [Indexed: 02/08/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes lethal encephalitis in humans. We previously reported that the V protein, one of the three accessory proteins encoded by the P gene, is one of the key determinants of the pathogenesis of NiV in a hamster infection model. Satterfield B.A. et al. have also revealed that V protein is required for the pathogenicity of henipavirus in a ferret infection model. However, the complete functions of NiV V have not been clarified. In this study, we identified UBX domain-containing protein 1 (UBXN1), a negative regulator of RIG-I-like receptor signaling, as a host protein that interacts with NiV V. NiV V interacted with the UBX domain of UBXN1 via its proximal zinc-finger motif in the C-terminal domain. NiV V increased the level of UBXN1 protein by suppressing its proteolysis. Furthermore, NiV V suppressed RIG-I and MDA5-dependent interferon signaling by stabilizing UBXN1 and increasing the interaction between MAVS and UBXN1 in addition to directly interrupting the activation of MDA5. Our results suggest a novel molecular mechanism by which the induction of interferon is potentially suppressed by NiV V protein via UBXN1.
Collapse
|
43
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key regulator of numerous physiological functions, including the immune response. As pathogens elicit an acute phase response with concerted activation of STAT3, they are confronted with two evolutionary options: either curtail it or employ it. This has important consequences for the host, since abnormal STAT3 function is associated with cancer development and other diseases. This review provides a comprehensive outline of how human viruses cope with STAT3-mediated inflammation and how this affects the host. Finally, we discuss STAT3 as a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
44
|
Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O'Farrelly C, Borrow P, Bergin C, Stevenson NJ. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction. EBioMedicine 2018; 30:203-216. [PMID: 29580840 PMCID: PMC5952252 DOI: 10.1016/j.ebiom.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 01/12/2023] Open
Abstract
Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be essential for Vif-mediated proteasomal degradation of STAT1 and STAT3. These results reveal a target for HIV-1-Vif and demonstrate how HIV-1 impairs the anti-viral activity of Type 1 IFNs, possibly explaining why both endogenous and therapeutic IFN-α fail to activate more effective control over HIV infection.
Collapse
Affiliation(s)
- Siobhan Gargan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suaad Ahmed
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rebecca Mahony
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ciaran Bannan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Silvia Napoletano
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Cliona O'Farrelly
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Colm Bergin
- School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Nigel J Stevenson
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
45
|
Upon Infection, Cellular WD Repeat-Containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication. J Virol 2018; 92:JVI.01726-17. [PMID: 29237839 DOI: 10.1128/jvi.01726-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5-deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication.IMPORTANCE Measles virus is a human pathogen that remains a global concern, with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here, we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus.
Collapse
|
46
|
Inflammasome Antagonism by Human Parainfluenza Virus Type 3 C Protein. J Virol 2018; 92:JVI.01776-17. [PMID: 29187536 DOI: 10.1128/jvi.01776-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/02/2017] [Indexed: 01/21/2023] Open
Abstract
Human parainfluenza virus type 3 (HPIV3) is a negative-sense single-stranded RNA virus belonging to the Paramyxoviridae family. HPIV3 is a lung-tropic virus causing airway diseases, including pneumonia, croup, and bronchiolitis, during infancy and childhood. The activation of the inflammasome by pathogens results in the production of proinflammatory cytokines such as interleukin-1β (IL-1β) during infection. Thus, the inflammasome-mediated proinflammatory response plays a critical role in regulating the immune response and virus clearance. The inflammasome is a multimeric protein complex triggering caspase-1 activation. Activated caspase-1 cleaves pro-IL-1β into its mature (and active) secretory form. Our study revealed inflammasome activation in macrophages following HPIV3 infection. Specifically, the activation of the NLRP3/ASC inflammasome resulted in the production of mature IL-1β from HPIV3-infected cells. Furthermore, Toll-like receptor 2 (TLR2) activation (first signal) and potassium efflux (second signal) constituted two cellular events mediating inflammasome activation following HPIV3 infection. During our studies, we surprisingly identified the HPIV3 C protein as an antagonist of inflammasome activation. The HPIV3 C protein is an accessory protein encoded by the open reading frame of the viral phosphoprotein (P) gene. The HPIV3 C protein interacted with the NLRP3 protein and blocked inflammasome activation by promoting the proteasomal degradation of the NLRP3 protein. Thus, our studies report NLRP3/ASC inflammasome activation by HPIV3 via TLR2 signaling and potassium efflux. Furthermore, we have identified HPIV3 C as a viral component involved in antagonizing inflammasome activation.IMPORTANCE Human parainfluenza virus type 3 (HPIV3) is a paramyxovirus that causes respiratory tract diseases during infancy and childhood. Currently, there is no effective vaccine or antiviral therapy for HPIV3. Therefore, in order to develop anti-HPIV3 agents (therapeutics and vaccines), it is important to study the HPIV3-host interaction during the immune response. Inflammasomes play an important role in the immune response. Inflammasome activation by HPIV3 has not been previously reported. Our studies demonstrated inflammasome activation by HPIV3 in macrophages. Specifically, HPIV3 activated the NLRP3/ASC inflammasome by TLR2 activation and potassium efflux. C proteins of paramyxoviruses are accessory proteins encoded by the viral phosphoprotein gene. The role of the C protein in inflammasome regulation was unknown. Surprisingly, our studies revealed that the HPIV3 C protein antagonizes inflammasome activation. In addition, we highlighted for the first time a mechanism utilized by paramyxovirus accessory proteins to block inflammasome activation. The HPIV3 C protein interacted with the NLRP3 protein to trigger the proteasomal degradation of the NLRP3 protein.
Collapse
|
47
|
Nan Y, Wu C, Zhang YJ. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front Immunol 2017; 8:1758. [PMID: 29312301 PMCID: PMC5732261 DOI: 10.3389/fimmu.2017.01758] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
48
|
Klotz D, Baumgärtner W, Gerhauser I. Type I interferons in the pathogenesis and treatment of canine diseases. Vet Immunol Immunopathol 2017; 191:80-93. [PMID: 28895871 DOI: 10.1016/j.vetimm.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Type I interferons (IFNs) such as IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω represent cytokines, which are deeply involved in the regulation and activation of innate and adaptive immune responses. They possess strong antiviral, antiproliferative, and immunomodulatory activities allowing their use in the therapy of different viral diseases, neoplasms, and immune-mediated disorders, respectively. Initially, treatment strategies were based on nonspecific inducers of type I IFNs, which were soon replaced by different recombinant proteins. Drugs with type I IFNs as active agents are currently used in the treatment of hepatitis B and C virus infection, lymphoma, myeloid leukemia, renal carcinoma, malignant melanoma, and multiple sclerosis in humans. In addition, recombinant feline IFN-ω has been approved for the treatment of canine parvovirus, feline leukemia virus, and feline immunodeficiency virus infections. However, the role of type I IFNs in the pathogenesis of canine diseases remains largely undetermined so far, even though some share pathogenic mechanisms and clinical features with their human counterparts. This review summarizes the present knowledge of type I IFNs and down-stream targets such as Mx and 2',5'-oligoadenylate synthetase proteins in the pathogenesis of infectious and immune-mediated canine diseases. Moreover, studies investigating the potential use of type I IFNs in the treatment of canine lymphomas, melanomas, sarcomas, and carcinomas, canine distemper virus, parvovirus, and papillomavirus infections as well as immune-mediated keratoconjunctivitis sicca and atopic dermatitis are presented. A separate chapter is dedicated to the therapeutic potential of IFN-λ, a type III IFN, in canine diseases. However, further future studies are still needed to unravel the exact functions of the different subtypes of type I IFNs and their target genes in healthy and diseased dogs and the full potential action of type I IFNs as treatment strategy.
Collapse
Affiliation(s)
- Daniela Klotz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany; Center of Systems Neuroscience Hannover, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
49
|
Shang X, Wang J, Xu X, Ye M, Xia X. Molecular epidemiology study of measles viruses in Kunming area of China. Exp Ther Med 2017; 14:4167-4173. [PMID: 29067105 PMCID: PMC5647701 DOI: 10.3892/etm.2017.5033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 04/21/2017] [Indexed: 11/24/2022] Open
Abstract
The present study assessed the variation of measles viruses (MV) and its association with clinical manifestations in patients with MV. A total of 38 pediatric patients with MV at the acute infection stage were selected and 2 ml venous blood was collected from each of them. Serum immunoglobulin M antibodies were determined by ELISA. Urine specimens were collected from 30 of the 38 patients and associated genetic structures were detected by reverse-transcription polymerase chain reaction mapping. At the same time, clinical epidemiological manifestations were collected to perform an epidemiological analysis. The MV-positive rate within the cohort determined in serum was 100%. Seven MV strains were isolated from urine specimens of 30 patients and the positive rate was 23.33%. Four MV strains were randomly selected from the 7 strains and the results revealed that they were all of the H1a genotype. In addition, there was no significant correlation between clinical manifestation of pediatric patients with measles and the genotype of the MV. In conclusion, the preponderant genotype of MV in Kunming was H1a and there was obvious nucleotide or amino acid mutation. The clinical manifestation of MV infection in pediatric patients was not associated with the MV genotype.
Collapse
Affiliation(s)
- Xiaoli Shang
- Department of Pediatrics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Juan Wang
- Department of Genetics, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Maoqing Ye
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200025, P.R. China
| | - Xiaoling Xia
- Department of Pediatrics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
50
|
Arai T, Terao-Muto Y, Uchida S, Lin C, Honda T, Takenaka A, Ikeda F, Sato H, Yoneda M, Kai C. The P gene of rodent brain-adapted measles virus plays a critical role in neurovirulence. J Gen Virol 2017; 98:1620-1629. [PMID: 28708054 DOI: 10.1099/jgv.0.000842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In rare cases, measles virus (MV) in children leads to fatal neurological complications such as primary measles encephalitis, post-acute measles encephalitis, subacute sclerosing panencephalitis and measles inclusion-body encephalitis. To investigate the pathogenesis of MV-induced encephalitis, rodent brain-adapted MV strains CAM/RB and CAMR40 were generated. These strains acquired mutations to adapt to the rodent brain during 40 passages in rat brain. However, it is still unknown which genes confer the neurovirulence of MV. We previously established a rescue system for recombinant MVs possessing the backbone of wild-type strain HL, an avirulent strain in mice. In the present study, to identify the genes in CAMR40 that elicit neurovirulence, we generated chimeric recombinant MVs based on strain HL. As a result, recombinant wild-type MV in which the haemagglutinin (H) gene was substituted with that of CAMR40 caused a non-lethal mild disease in mice, while additional substitution of the HL phosphoprotein (P) gene with that of strain CAMR40 caused lethal severe neurological signs comparable to those of CAMR40. These results clearly indicated that, in addition to the H gene, the P gene is required for the neurovirulence of MV CAMR40.
Collapse
Affiliation(s)
- Tetsuro Arai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuri Terao-Muto
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shotaro Uchida
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Che Lin
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Honda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Akiko Takenaka
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fusako Ikeda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|