1
|
Li S, Lund-Andersen P, Wang SH, Ytreberg FM, Naik MT, Patel JS, Rowley PA. The identification of a novel interaction site for the human immunodeficiency virus capsid on nucleoporin 153. J Gen Virol 2025; 106:002104. [PMID: 40366356 PMCID: PMC12078792 DOI: 10.1099/jgv.0.002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) can infect non-dividing cells by passing through the selective permeability barrier of the nuclear pore complex. The viral capsid is essential for successfully delivering the HIV-1 genome into the nucleus. Nucleoporin 153 (NUP153) interacts with the HIV-1 capsid via a C-terminal capsid-binding motif (hereafter named CbM.1) to licence HIV-1 nuclear ingress. Deletion or mutation of CbM.1 in NUP153 causes a reduction in capsid interaction but does not prevent HIV-1 nuclear ingress or completely block capsid interaction. This paper combines molecular modelling with biochemical and HIV infection assays to identify capsid-binding motif 2 (CbM.2) in the C-terminus of NUP153 that is similar in sequence to CbM.1. CbM.2 has an FG dipeptide motif predicted to interact with a hydrophobic pocket in capsid protein (CA) hexamers similar to CbM.1. CA hexamers can interact with CbM.2, and the deletion of both CbM.1 and CbM.2 results in a lower capsid interaction than a single CbM.1 deletion. The loss of CbM.1 is complemented by CbM.2, an interaction dependent on the FG motif. In the context of the nuclear pore complex, a loss-of-function mutation in CbM.1 reduces HIV nuclear ingress as measured by transduction and 2-LTR circles, whereas the mutation of CbM.2 causes a large increase in 2-LTR circles. Our results highlighted a previously unidentified FG dipeptide-containing motif (CbM.2) in NUP153 that binds the HIV-1 capsid at the common hydrophobic pocket on CA hexamers.
Collapse
Affiliation(s)
- Shunji Li
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Peik Lund-Andersen
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
- Department of Physics, University of Idaho, Moscow, ID 83844, USA
| | - Mandar T. Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jagdish Suresh Patel
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA
| | - Paul Andrew Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
2
|
Chen H, Charles PD, Gu Q, Liberatori S, Robertson DL, Palmarini M, Wilson SJ, Mohammed S, Castello A. Omics Analyses Uncover Host Networks Defining Virus-Permissive and -Hostile Cellular States. Mol Cell Proteomics 2025; 24:100966. [PMID: 40204275 DOI: 10.1016/j.mcpro.2025.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
The capacity of host cells to sustain or restrict virus infection is influenced by their proteome. Understanding the compendium of proteins defining cellular permissiveness is key to many questions in fundamental virology. Here, we apply a multi-omic approach to determine the proteins that are associated with highly permissive, intermediate, and hostile cellular states. We observed two groups of differentially regulated genes: (i) with robust changes in mRNA and protein levels and (ii) with protein/RNA discordances. While many of the latter are classified as interferon-stimulated genes (ISGs), most exhibit no antiviral effects in overexpression screens. This suggests that IFN-dependent protein changes can be better indicators of antiviral function than mRNA levels. Phosphoproteomics revealed an additional regulatory layer involving non-signaling proteins with altered phosphorylation. Indeed, we confirmed that several permissiveness-associated proteins with changes in abundance or phosphorylation regulate infection fitness. Altogether, our study provides a comprehensive and systematic map of the cellular alterations driving virus susceptibility.
Collapse
Affiliation(s)
- Honglin Chen
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | | | - Sam J Wilson
- Cambridge Institute of Therapeutic Immunol & Infect Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Oxfordshire, UK; Department of Chemistry, University of Oxford, Oxford, UK.
| | - Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
3
|
Flick H, Venbakkam A, Singh PK, Layish B, Huang SW, Radhakrishnan R, Kvaratskhelia M, Engelman AN, Kane M. Interplay between the cyclophilin homology domain of RANBP2 and MX2 regulates HIV-1 capsid dependencies on nucleoporins. mBio 2025; 16:e0264624. [PMID: 39853118 PMCID: PMC11898759 DOI: 10.1128/mbio.02646-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2ΔCyp cells. Importantly, although MX2 still localized to the nuclear pore complex in RANBP2ΔCyp cells, antiviral activity against HIV-1 was decreased. By generating cells expressing specific point mutations in the RANBP2-Cyp domain, we determined that the effect of the RANBP2-Cyp domain on MX2 anti-HIV-1 activity is due to direct interactions between RANBP2 and CA. We further determined that CypA and RANBP2-Cyp have similar effects on HIV-1 integration targeting. Finally, we found that the Nup requirements for HIV infection and MX2 activity were altered in cells lacking the RANBP2-Cyp domain. These findings demonstrate that the RANBP2-Cyp domain affects viral infection and MX2 sensitivity by altering CA-specific interactions with cellular factors that affect nuclear import and integration targeting. IMPORTANCE Human immunodeficiency virus 1 (HIV-1) entry into the nucleus is an essential step in viral replication that involves complex interactions between the viral capsid (CA) and multiple cellular proteins, including nucleoporins (Nups) such as RANBP2. Nups also mediate the function of the antiviral protein myxovirus resistance 2 (MX2); however, determining the precise role of Nups in HIV infection has proved challenging due to the complex nature of the nuclear pore complex (NPC) and significant pleiotropic effects elicited by Nup depletion. We have used precise gene editing to assess the role of the cyclophilin domain of RANBP2 in HIV-1 infection and MX2 activity. We find that this domain affects viral infection, nucleoporin requirements, MX2 sensitivity, and integration targeting in a CA-specific manner, providing detailed insights into how RANBP2 contributes to HIV-1 infection.
Collapse
Affiliation(s)
- Haley Flick
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ananya Venbakkam
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Pittsburgh, Pennsylvania, USA
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bailey Layish
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
5
|
Tough RH, McLaren PJ. Chromosome 1 variants associated with decreased HIV set-point viral load correlate with PRKAB2 expression changes. Front Genet 2025; 16:1551171. [PMID: 40115816 PMCID: PMC11922826 DOI: 10.3389/fgene.2025.1551171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
A previous study investigated a genomic region on chromosome 1 associated with reduced human immunodeficiency virus type 1 (HIV) set-point viral load, implicating CHD1L as a novel HIV inhibitory factor. However, given that regulatory variants can influence expression of multiple nearby genes, further work is necessary to determine the impact of genetic variants on other genes in the region. This study evaluates the potential for genetic regulation of PRKAB2, a gene located upstream of CHD1L and encoding the β2 regulatory subunit of the AMPK complex, and for downstream impacts on HIV pathogenesis. Using genotype and gene expression data from the Gene Expression Omnibus repository and Genotype-Tissue Expression database, we observed cell-type-specific correlations between CHD1L and PRKAB2 expression, with a strong positive association in whole blood and negative correlation in monocytes. Notably, we found that individuals with HIV set-point viral load associated variants exhibited significantly reduced PRKAB2 expression in imputed whole blood models and ex vivo monocytes. Functional analyses using PRKAB2 -/- induced pluripotent stem cells suggest that PRKAB2 loss-of-function may influence CHD1L expression, and genes regulating cytokine activity, growth factor signaling, and pluripotency pathways associated with HIV infection. These results suggest that gene expression changes driven by HIV set-point viral load associated variants in the chromosome 1 impact multiple genes and, by influencing expression of PRKAB2, may result in altered expression of critical immune signaling processes. These findings advance our understanding of the contribution of host genetics on HIV pathogenesis and identifies new targets for ex vivo functional studies.
Collapse
Affiliation(s)
- Riley H Tough
- Sexually Transmitted and Blood-Borne Infections Division, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Paul J McLaren
- Sexually Transmitted and Blood-Borne Infections Division, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Xu K, Zhang X, Asam K, Quach BC, Page GP, Konkle‐Parker D, Martinez C, Lahiri CD, Topper EF, Cohen MH, Kassaye SG, DeHovitz J, Kuniholm MH, Archin NM, Valizadeh A, Tien PC, Marconi VC, Hancock DB, Johnson EO, Aouizerat BE. Aberrant DNA methylation of genes regulating CD4+ T cell HIV-1 reservoir in women with HIV. Clin Transl Med 2025; 15:e70267. [PMID: 40070009 PMCID: PMC11896887 DOI: 10.1002/ctm2.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The HIV-1 reservoir in CD4+ T cells (HRCD4) pose a major challenge to curing HIV, with many of its mechanisms still unclear. HIV-1 DNA integration and immune responses may alter the host's epigenetic landscape, potentially silencing HIV-1 replication. METHODS This study used bisulphite capture DNA methylation sequencing in CD4+ T cells from the blood of 427 virally suppressed women with HIV to identify differentially methylated sites and regions associated with HRCD4. RESULTS The average total HRCD4 size was 1409 copies per million cells, with most proviruses defective and only a small proportion intact. The study identified 245 differentially methylated CpG sites and 85 regions linked to HRCD4 size, with 52% of significant sites in intronic regions. Genes associated with HRCD4 were involved in viral replication, HIV-1 latency and cell growth and apoptosis. HRCD4 size was inversely related to DNA methylation of interferon signalling genes and positively associated with methylation at known HIV-1 integration sites. HRCD4-associated genes were enriched on the pathways related to immune defence, transcription repression and host-virus interactions. CONCLUSIONS These findings suggest that HIV-1 reservoir is linked to aberrant DNA methylation in CD4+ T cells, offering new insights into epigenetic mechanisms of HIV-1 latency and potential molecular targets for eradication strategies. KEY POINTS Study involved 427 women with HIV. Identified 245 aberrant DNA methylation sites and 85 methylation regions in CD4+ T cells linked to the HIV-1 reservoir. Highlighted genes are involved in viral replication, immune defence, and host genome integration. Findings suggest potential molecular targets for eradication strategies.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, School of MedicineYale UniversityNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Xinyu Zhang
- Department of Psychiatry, School of MedicineYale UniversityNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Kesava Asam
- Department of Oral and Maxillofacial SurgeryNew York UniversityNew YorkNew YorkUSA
- Translational Research CenterNew York UniversityNew YorkNew YorkUSA
| | - Bryan C. Quach
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
| | - Grier P. Page
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
- Fellow Program, RTI International, Research Triangle ParkNorth CarolinaUSA
| | - Deborah Konkle‐Parker
- Schools of Nursing, Medicine, and Population HealthUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Claudia Martinez
- Miller School of Medicine, Division of Cardiovascular MedicineUniversity of MiamiMiamiFloridaUSA
| | - Cecile D. Lahiri
- Department of Medicine, Division of Infectious DiseasesEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth F. Topper
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mardge H. Cohen
- Department of Medicine, Stroger HospitalCook County Health SystemChicagoIllinoisUSA
| | - Seble G. Kassaye
- Department of Medicine, Division of Infectious DiseasesGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Jack DeHovitz
- Department of Medicine, Division of Infectious DiseasesDownstate Health Sciences UniversityBrooklynNew YorkUSA
| | - Mark H. Kuniholm
- Department of Epidemiology and BiostatisticsUniversity at Albany, State University of New YorkRensselaerNew YorkUSA
| | - Nancie M. Archin
- UNC HIV Cure CenterUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
- Department of Medicine, Division of Infectious DiseasesUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Amir Valizadeh
- Department of Psychiatry, School of MedicineYale UniversityNew HavenConnecticutUSA
- VA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Phyllis C. Tien
- Department of MedicineUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Vincent C. Marconi
- Department of Medicine, Division of Infectious DiseasesEmory University School of MedicineAtlantaGeorgiaUSA
- Hubert Department of Global Health, Rollins School of Public HealthAtlantaGeorgiaUSA
- Atlanta VA Medical CenterDecaturGeorgiaUSA
| | - Dana B. Hancock
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
| | - Eric O. Johnson
- GenOmics and Translational Research CenterRTI International, Research Triangle ParkNorth CarolinaUSA
- Fellow Program, RTI International, Research Triangle ParkNorth CarolinaUSA
| | - Bradley E. Aouizerat
- Department of Oral and Maxillofacial SurgeryNew York UniversityNew YorkNew YorkUSA
- Translational Research CenterNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
7
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM. Cell Rep 2025; 44:115245. [PMID: 39864060 PMCID: PMC11912512 DOI: 10.1016/j.celrep.2025.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of FG-peptide binding is conserved with HIV-1, this study reveals distinctive features of the HIV-2 CA lattice, including differing structural character at regions of host factor interactions and divergence in the mechanism of formation of CA hexamers and pentamers. This study extends our understanding of HIV capsids and highlights an approach facilitating the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Szewczyk-Roszczenko O, Roszczenko P, Vassetzky Y, Sjakste N. Genotoxic consequences of viral infections. NPJ VIRUSES 2025; 3:5. [PMID: 40295867 PMCID: PMC11772741 DOI: 10.1038/s44298-024-00087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/24/2024] [Indexed: 04/30/2025]
Abstract
Viral diseases continually threaten human health as evolving pathogens introduce new risks. These infections can lead to complications across organ systems, with impacts varying by virus type, infection severity, and individual immune response. This review examines the genotoxic stress caused by viral infections and its pathological consequences in humans.
Collapse
Affiliation(s)
- Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Yegor Vassetzky
- Chromatin Dynamics and Metabolism in Cancer, CNRS UMR9018 Institut Gustave Roussy, Univeristé Paris Saclay, 39, rue Camille-Desmoulins, 94805, Villejuif, France.
| | - Nikolajs Sjakste
- Department of Pharmacy, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 1, LV1004, Riga, Latvia.
| |
Collapse
|
10
|
Rahmouni M, Clerc SL, Spadoni JL, Labib T, Tison M, Medina-Santos R, Bensussan A, Tamouza R, Deleuze JF, Zagury JF. Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS. BMC Immunol 2025; 26:1. [PMID: 39762745 PMCID: PMC11702083 DOI: 10.1186/s12865-024-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC). METHODS A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR. RESULTS Two thousand six hundred twenty-six SNPs were associated with EC (p<5.10-8), all located within the Major Histocompatibility Complex (MHC) region. Stepwise regression analysis narrowed this list to 17 SNPs. In parallel, 22 HLA class I and II alleles were associated with EC. Through meticulous mapping of the LD between all identified signals and employing reciprocal covariate analyses, we delineated a final set of 6 independent SNPs and 3 HLA class I gene alleles that accounted for most of the associations observed with EC. Our study revealed the presence of cumulative haploblock effects (SNP rs9264942 contributing to the HLA-B*57:01 effect) and that several HLA allele associations were in fact caused by SNPs in linkage disequilibrium (LD). Upon investigating SNPs in LD with the selected 6 SNPs and 3 HLA class I alleles for their impact on protein function (either damaging or differential expression), we identified several compelling mechanisms potentially explaining EC among which: a multi-action mechanism of HLA-B*57:01 involving MICA mutations and MICB differential expression overcoming the HIV-1 blockade of NK cell response, and overexpression of ZBTB12 with a possible anti-HIV-1 effect through HERV-K interference; a deleterious mutation in PPP1R18 favoring viral budding associated with rs1233396. CONCLUSION Our results show that MHC influence on EC likely extends beyond traditional HLA class I or class II allele associations, encompassing other MHC SNPs with various biological impacts. They point to the key role of NK cells in preventing HIV-1 infection. Our analysis shows that HLA-B*57:01 is indeed associated with partially functional MICA/MICB proteins which could also explain this marker's involvement in other diseases such as psoriasis. More broadly, our findings suggest that within any HLA class I and II association in diseases, there may exist distinct causal SNPs within this crucial, gene-rich, and LD-rich MHC region.
Collapse
Affiliation(s)
- Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Maxime Tison
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France
| | | | - Ryad Tamouza
- Laboratoire Neuro-Psychiatrie translationnelle, Université Paris Est Créteil, INSERM U955, IMRB, Créteil, F-94010, France
| | | | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.
| |
Collapse
|
11
|
Morling KL, ElGhazaly M, Milne RSB, Towers GJ. HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity. J Gen Virol 2025; 106. [PMID: 39804283 DOI: 10.1099/jgv.0.002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection. Central to this process is the HIV capsid. The last 10 years have seen a transformation in the way we understand HIV capsid structure and function. We review key discoveries and present our latest thoughts on the capsid as a dynamic regulator of innate immune evasion and chromatin targeting. We also consider the accessory proteins Vpr and Vpx because they are incorporated into particles where they collaborate with capsids to manipulate defensive cellular responses to infection. We argue that effective regulation of capsid uncoating and evasion of innate immunity define pandemic potential and viral pathogenesis, and we review how comparison of different HIV lineages can reveal what makes pandemic lentiviruses special.
Collapse
Affiliation(s)
- Kate L Morling
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| | | | | | - Greg J Towers
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| |
Collapse
|
12
|
Anter JM, Yakimovich A. Artificial Intelligence Methods in Infection Biology Research. Methods Mol Biol 2025; 2890:291-333. [PMID: 39890733 DOI: 10.1007/978-1-0716-4326-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite unprecedented achievements, the domain-specific application of artificial intelligence (AI) in the realm of infection biology was still in its infancy just a couple of years ago. This is largely attributable to the proneness of the infection biology community to shirk quantitative techniques. The so-called "sorting machine" paradigm was prevailing at that time, meaning that AI applications were primarily confined to the automation of tedious laboratory tasks. However, fueled by the severe acute respiratory syndrome coronavirus 2 pandemic, AI-driven applications in infection biology made giant leaps beyond mere automation. Instead, increasingly sophisticated tasks were successfully tackled, thereby ushering in the transition to the "Swiss army knife" paradigm. Incentivized by the urgent need to subdue a raging pandemic, AI achieved maturity in infection biology and became a versatile tool. In this chapter, the maturation of AI in the field of infection biology from the "sorting machine" paradigm to the "Swiss army knife" paradigm is outlined. Successful applications are illustrated for the three data modalities in the domain, that is, images, molecular data, and language data, with a particular emphasis on disentangling host-pathogen interactions. Along the way, fundamental terminology mentioned in the same breath as AI is elaborated on, and relationships between the subfields these terms represent are established. Notably, in order to dispel the fears of infection biologists toward quantitative methodologies and lower the initial hurdle, this chapter features a hands-on guide on software installation, virtual environment setup, data preparation, and utilization of pretrained models at its very end.
Collapse
Affiliation(s)
- Jacob Marcel Anter
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany
| | - Artur Yakimovich
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany.
- Institute of Computer Science, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
13
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Mudibo EO, Bogaert J, Tigoi C, Ngari MM, Singa BO, Lancioni CL, Diallo AH, Mbale E, Mupere E, Mukisa J, Thitiri J, Timbwa M, Omer E, Ngao N, Musyimi R, Kahindi E, Bamouni RM, Bandsma RHJ, Kelly P, Prendergast AJ, McGrath CJ, Tickell KD, Walson JL, Berkley JA, Njunge JM, Gonzales GB. Systemic biological mechanisms underpin poor post-discharge growth among severely wasted children with HIV. Nat Commun 2024; 15:10299. [PMID: 39604330 PMCID: PMC11603168 DOI: 10.1038/s41467-024-54717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
In sub-Saharan Africa, children with severe malnutrition (SM) and HIV have substantially worse outcomes than children with SM alone, facing higher mortality risk and impaired nutritional recovery post-hospitalisation. Biological mechanisms underpinning this risk remain incompletely understood. This case-control study nested within the CHAIN cohort in Kenya, Uganda, Malawi, and Burkina Faso examined effect of HIV on six months post-discharge growth among children with SM and those at risk of malnutrition, assessed proteomic signatures associated with HIV in these children, and investigated how these systemic processes impact post-discharge growth in children with SM. Using SomaScanTM assay, 7335 human plasma proteins were quantified. Linear mixed models identified HIV-associated biological processes and their associations with post-discharge growth. Using structural equation modelling, we examined directed paths explaining how HIV influences post-discharge growth. Here, we show that at baseline, HIV is associated with lower anthropometry. Additionally, HIV is associated with protein profiles indicating increased complement activation and decreased insulin-like growth factor signalling and bone mineralisation. HIV indirectly affects post-discharge growth by influencing baseline anthropometry and modulating proteins involved in bone mineralisation and humoral immune responses. These findings suggest specific biological pathways linking HIV to poor growth, offering insights for targeted interventions in this vulnerable population.
Collapse
Affiliation(s)
- Evans O Mudibo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya.
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Jasper Bogaert
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Caroline Tigoi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Moses M Ngari
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Benson O Singa
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Abdoulaye Hama Diallo
- Department of Public Health, University Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Department of Public Health, Centre Muraz Research Institute, Bobo-Dioulasso, Burkina Faso
| | - Emmie Mbale
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ezekiel Mupere
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Department of Molecular Biology Makerere University College of Health Sciences, Kampala, Uganda
| | - Johnstone Thitiri
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Molline Timbwa
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Elisha Omer
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Narshion Ngao
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Robert Musyimi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | - Eunice Kahindi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
| | | | - Robert H J Bandsma
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul Kelly
- Blizard Institute, Queen Mary University of London, London, UK
- Department of Medicine, Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Christine J McGrath
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Kirkby D Tickell
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Judd L Walson
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- Departments of International Health, Pediatrics and Medicine, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya.
| | - Gerard Bryan Gonzales
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
- The Childhood Acute Illness and Nutrition Network, Nairobi, Kenya.
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Choi J, Speckhart K, Tsai B, DiMaio D. Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry. mBio 2024; 15:e0281124. [PMID: 39431827 PMCID: PMC11559006 DOI: 10.1128/mbio.02811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Rab GTPases control intracellular vesicular transport, including retrograde trafficking of human papillomavirus (HPV) during cell entry, guiding the virus from the endosome to the trans-Golgi network (TGN), the Golgi apparatus, and eventually the nucleus. Rab proteins have been identified that act prior to the arrival of HPV at the TGN, but Rab proteins operating in later stages of entry remain elusive. Here, we report that knockdown of Rab6a impairs HPV entry by preventing HPV exit from the TGN and impeding intra-Golgi transport of the incoming virus. Rab6a supports HPV trafficking by facilitating the association of HPV with dynein, a motor protein complex, and BICD2, a dynein adaptor, in the TGN. L2 can bind directly to GTP-Rab6a in vitro, and excess of either GTP-Rab6a or GDP-Rab6 inhibits HPV entry, suggesting that cycling between GDP-Rab6 and GTP-Rab6 is critical. Notably, Rab6a is crucial for HPV-BICD2 and HPV-dynein association in the TGN of infected cells but not in the endosome. Our findings reveal important features of the molecular basis of HPV infection, including the discovery that HPV uses different mechanisms to engage dynein at different times during entry, and identify potential targets for therapeutic approaches to inhibit HPV infection. IMPORTANCE Human papillomaviruses (HPVs) are small, non-enveloped DNA viruses that cause approximately 5% of human cancer. Like most other DNA viruses, HPV traffics to the nucleus during virus entry to successfully infect cells. We show here that HPV utilizes a cellular enzyme, Rab6a, during virus entry to engage the dynein molecular motor for transport along microtubules. Rab6a is required for complex formation between the HPV L2 capsid protein, dynein, and the dynein adaptor BICD2 in the trans-Golgi network (TGN). This complex is required for transport of the incoming virus out of the TGN as it journeys to the nucleus. Our findings identify potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kaitlyn Speckhart
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Boulay A, Quevarec E, Malet I, Nicastro G, Chamontin C, Perrin S, Henriquet C, Pugnière M, Courgnaud V, Blaise M, Marcelin AG, Taylor IA, Chaloin L, Arhel NJ. A new class of capsid-targeting inhibitors that specifically block HIV-1 nuclear import. EMBO Mol Med 2024; 16:2918-2945. [PMID: 39358603 PMCID: PMC11555092 DOI: 10.1038/s44321-024-00143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.
Collapse
Affiliation(s)
- Aude Boulay
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Emmanuel Quevarec
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Isabelle Malet
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Célia Chamontin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Suzon Perrin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Valérie Courgnaud
- RNA viruses and host factors, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier, 34293, Cedex 5, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Anne-Geneviève Marcelin
- Department of Virology, INSERM, Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS 9004, 34293, Montpellier, France.
| |
Collapse
|
17
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
18
|
Jang S, Bedwell G, Singh S, Yu H, Arnarson B, Singh P, Radhakrishnan R, Douglas A, Ingram Z, Freniere C, Akkermans O, Sarafianos S, Ambrose Z, Xiong Y, Anekal P, Montero Llopis P, KewalRamani V, Francis A, Engelman A. HIV-1 usurps mixed-charge domain-dependent CPSF6 phase separation for higher-order capsid binding, nuclear entry and viral DNA integration. Nucleic Acids Res 2024; 52:11060-11082. [PMID: 39258548 PMCID: PMC11472059 DOI: 10.1093/nar/gkae769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro. Akin to FG mutant CPSF6, infection of cells expressing MCD-deleted CPSF6 uncharacteristically arrested at the nuclear rim. While heterologous MCDs effectively substituted for CPSF6 MCD function during HIV-1 infection, Arg-Ser domains from related SR proteins were largely ineffective. While MCD-deleted and wildtype CPSF6 proteins displayed similar capsid binding affinities, the MCD imparted LLPS-dependent higher-order binding and co-aggregation with capsids in vitro and in cellulo. NS depletion reduced CPSF6 puncta formation without significantly affecting integration into NS-proximal chromatin, and appending the MCD onto a heterologous capsid binding protein partially restored virus nuclear penetration and integration targeting in CPSF6 knockout cells. We conclude that MCD-dependent CPSF6 condensation with capsids underlies post-nuclear incursion for viral DNA integration and HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satya P Singh
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Hyun Jae Yu
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Bjarki Arnarson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - AidanDarian W Douglas
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Zachary M Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Onno Akkermans
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Praju V Anekal
- MicRoN Core, Harvard Medical School, Boston, MA 02215, USA
| | | | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ashwanth C Francis
- Institute of Molecular Biophysics, Department of Biological Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Schynkel T, Snippenberg WV, Verniers K, Jang GM, Krogan NJ, Mestdagh P, Vandekerckhove L, Trypsteen W. Interactome of the HIV-1 proteome and human host RNA. EMBO Rep 2024; 25:4078-4090. [PMID: 39122863 PMCID: PMC11387401 DOI: 10.1038/s44319-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The human immunodeficiency virus (HIV-1) is highly dependent on a variety of host factors. Beside proteins, host RNA molecules are reported to aid HIV-1 replication and latency maintenance. Here, we implement multiple workflows of native RNA immunoprecipitation and sequencing (nRIPseq) to determine direct host RNA interaction partners of all 18 HIV-1 (poly)proteins. We identify 1,727 HIV-1 protein - human RNA interactions in the Jurkat cell line and 1,558 interactions in SupT1 cells for a subset of proteins, and discover distinct cellular pathways that seem to be used or controlled by HIV-1 on the RNA level: Tat binds mRNAs of proteins involved in the super elongation complex (AFF1-4, Cyclin-T1). Correlation of the interaction scores (based on binding abundancy) allows identifying the highest confidence interactions, for which we perform a small-scale knockdown screen that leads to the identification of three HIV-1 protein binding RNA interactors involved in HIV-1 replication (AFF2, H4C9 and RPLP0).
Collapse
Affiliation(s)
- Tinus Schynkel
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, Ghent, 9000, Belgium
| | - Willem van Snippenberg
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, Ghent, 9000, Belgium
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, 9000, Belgium
| | - Kimberly Verniers
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, 9000, Belgium
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, 9000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, Ghent, 9000, Belgium.
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, Ghent, 9000, Belgium.
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, 9000, Belgium.
| |
Collapse
|
20
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
21
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
22
|
Pradel B, Cantaloube G, Villares M, Deffieu MS, Robert-Hebmann V, Lucansky V, Faure M, Chazal N, Gaudin R, Espert L. LC3B conjugation machinery promotes autophagy-independent HIV-1 entry in CD4 + T lymphocytes. Autophagy 2024; 20:1825-1836. [PMID: 38566318 PMCID: PMC11262235 DOI: 10.1080/15548627.2024.2338573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.
Collapse
Affiliation(s)
- Baptiste Pradel
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Guilhem Cantaloube
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Maïka S. Deffieu
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Véronique Robert-Hebmann
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Vincent Lucansky
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Jessenius Faculty of Medicine in Martin (JFMED CU), Department of Pathophysiology, Comenius University in Bratislava, Martin, Slovakia
| | - Mathias Faure
- CIRI, University of Lyon, Inserm U1111, Claude Bernard University Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Nathalie Chazal
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Raphaël Gaudin
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| |
Collapse
|
23
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
24
|
Crobu MG, Ravanini P, Impaloni C, Martello C, Bargiacchi O, Di Domenico C, Faolotto G, Macaluso P, Mercandino A, Riggi M, Quaglia V, Andreoni S, Pirisi M, Smirne C. Hepatitis C Virus as a Possible Helper Virus in Human Hepatitis Delta Virus Infection. Viruses 2024; 16:992. [PMID: 38932284 PMCID: PMC11209499 DOI: 10.3390/v16060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies reported that the hepatitis C virus (HCV) could help disseminate the hepatitis D virus (HDV) in vivo through hepatitis B virus (HBV)-unrelated ways, but with essentially inconclusive results. To try to shed light on this still-debated topic, 146 anti-HCV-positive subjects (of whom 91 HCV/HIV co-infected, and 43 with prior HCV eradication) were screened for anti-HDV antibodies (anti-HD), after careful selection for negativity to any serologic or virologic marker of current or past HBV infection. One single HCV/HIV co-infected patient (0.7%) tested highly positive for anti-HD, but with no positive HDV-RNA. Her husband, in turn, was a HCV/HIV co-infected subject with a previous contact with HBV. While conducting a thorough review of the relevant literature, the authors attempted to exhaustively describe the medical history of both the anti-HD-positive patient and her partner, believing it to be the key to dissecting the possible complex mechanisms of HDV transmission from one subject to another, and speculating that in the present case, it may have been HCV itself that behaved as an HDV helper virus. In conclusion, this preliminary research, while needing further validation in large prospective studies, provided some further evidence of a role of HCV in HDV dissemination in humans.
Collapse
Affiliation(s)
- Maria Grazia Crobu
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
- Clinical Biochemistry Laboratory, Department of Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Paolo Ravanini
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Clotilde Impaloni
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Claudia Martello
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Olivia Bargiacchi
- Unit of Infectious Diseases, Maggiore della Carità Hospital, 28100 Novara, Italy;
| | - Christian Di Domenico
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Giulia Faolotto
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Paola Macaluso
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Alessio Mercandino
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Miriam Riggi
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Vittorio Quaglia
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Stefano Andreoni
- Laboratory of Molecular Virology, Maggiore della Carità Hospital, 28100 Novara, Italy; (M.G.C.); (P.R.); (C.I.); (C.M.); (C.D.D.); (G.F.); (P.M.); (A.M.); (M.R.); (V.Q.); (S.A.)
| | - Mario Pirisi
- Internal Medicine Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Carlo Smirne
- Internal Medicine Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
25
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Rathore U, Haas P, Easwar Kumar V, Hiatt J, Haas KM, Bouhaddou M, Swaney DL, Stevenson E, Zuliani-Alvarez L, McGregor MJ, Turner-Groth A, Ochieng' Olwal C, Bediako Y, Braberg H, Soucheray M, Ott M, Eckhardt M, Hultquist JF, Marson A, Kaake RM, Krogan NJ. CRISPR-Cas9 screen of E3 ubiquitin ligases identifies TRAF2 and UHRF1 as regulators of HIV latency in primary human T cells. mBio 2024; 15:e0222223. [PMID: 38411080 PMCID: PMC11005436 DOI: 10.1128/mbio.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.
Collapse
Affiliation(s)
- Ujjwal Rathore
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Paige Haas
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Vigneshwari Easwar Kumar
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Joseph Hiatt
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Medical Scientist Training Program, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, California, USA
| | - Kelsey M. Haas
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Danielle L. Swaney
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Erica Stevenson
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Lorena Zuliani-Alvarez
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Michael J. McGregor
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | | | - Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Hannes Braberg
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Margaret Soucheray
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, USA
| | - Manon Eckhardt
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander Marson
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
- Diabetes Center, University of California, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Robyn M. Kaake
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
27
|
Poyraz L, Colbran LL, Mathieson I. Predicting Functional Consequences of Recent Natural Selection in Britain. Mol Biol Evol 2024; 41:msae053. [PMID: 38466119 PMCID: PMC10962637 DOI: 10.1093/molbev/msae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Ancient DNA can directly reveal the contribution of natural selection to human genomic variation. However, while the analysis of ancient DNA has been successful at identifying genomic signals of selection, inferring the phenotypic consequences of that selection has been more difficult. Most trait-associated variants are noncoding, so we expect that a large proportion of the phenotypic effects of selection will also act through noncoding variation. Since we cannot measure gene expression directly in ancient individuals, we used an approach (Joint-Tissue Imputation [JTI]) developed to predict gene expression from genotype data. We tested for changes in the predicted expression of 17,384 protein coding genes over a time transect of 4,500 years using 91 present-day and 616 ancient individuals from Britain. We identified 28 genes at seven genomic loci with significant (false discovery rate [FDR] < 0.05) changes in predicted expression levels in this time period. We compared the results from our transcriptome-wide scan to a genome-wide scan based on estimating per-single nucleotide polymorphism (SNP) selection coefficients from time series data. At five previously identified loci, our approach allowed us to highlight small numbers of genes with evidence for significant shifts in expression from peaks that in some cases span tens of genes. At two novel loci (SLC44A5 and NUP85), we identify selection on gene expression not captured by scans based on genomic signatures of selection. Finally, we show how classical selection statistics (iHS and SDS) can be combined with JTI models to incorporate functional information into scans that use present-day data alone. These results demonstrate the potential of this type of information to explore both the causes and consequences of natural selection.
Collapse
Affiliation(s)
- Lin Poyraz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Chu J, Zheng R, Chen H, Chen Y, Lin Y, Li J, Wei W, Chen R, Deng P, Su J, Jiang J, Ye L, Liang H, An S. Dynamic m 6 A profiles reveal the role of YTHDC2-TLR2 signaling axis in Talaromyces marneffei infection. J Med Virol 2024; 96:e29466. [PMID: 38344929 DOI: 10.1002/jmv.29466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-β. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.
Collapse
Affiliation(s)
- Jiemei Chu
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Ruili Zheng
- Department of Laboratory Medicine, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Hubin Chen
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Yaxin Chen
- Frontiers Science Center for Disease-related Molecular Network, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Lin
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingyi Li
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongfeng Chen
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Peixue Deng
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinming Su
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sanqi An
- Life Sciences Institute & Guangxi Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
29
|
Dickson CF, Hertel S, Tuckwell AJ, Li N, Ruan J, Al-Izzi SC, Ariotti N, Sierecki E, Gambin Y, Morris RG, Towers GJ, Böcking T, Jacques DA. The HIV capsid mimics karyopherin engagement of FG-nucleoporins. Nature 2024; 626:836-842. [PMID: 38267582 PMCID: PMC10881392 DOI: 10.1038/s41586-023-06969-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.
Collapse
Affiliation(s)
- C F Dickson
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - S Hertel
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - A J Tuckwell
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - N Li
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - J Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - S C Al-Izzi
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Physics, University of New South Wales, Sydney, New South Wales, Australia
| | - N Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - E Sierecki
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Y Gambin
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - R G Morris
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Physics, University of New South Wales, Sydney, New South Wales, Australia
| | - G J Towers
- Infection and Immunity, University College London, London, UK
| | - T Böcking
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - D A Jacques
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
30
|
Heuschkel MJ, Bach C, Meiss-Heydmann L, Gerges E, Felli E, Giannone F, Pessaux P, Schuster C, Lucifora J, Baumert TF, Verrier ER. JAK1 promotes HDV replication and is a potential target for antiviral therapy. J Hepatol 2024; 80:220-231. [PMID: 37925078 DOI: 10.1016/j.jhep.2023.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND & AIMS Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.
Collapse
Affiliation(s)
- Margaux J Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Charlotte Bach
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Laura Meiss-Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emma Gerges
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emanuele Felli
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fabio Giannone
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrick Pessaux
- Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Julie Lucifora
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France; Institut hospitalo-universitaire (IHU), Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.
| |
Collapse
|
31
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
32
|
Wuchty S, White AK, Olthof AM, Drake K, Hume AJ, Olejnik J, Aguiar-Pulido V, Mühlberger E, Kanadia RN. Minor intron-containing genes as an ancient backbone for viral infection? PNAS NEXUS 2024; 3:pgad479. [PMID: 38274120 PMCID: PMC10810330 DOI: 10.1093/pnasnexus/pgad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Minor intron-containing genes (MIGs) account for <2% of all human protein-coding genes and are uniquely dependent on the minor spliceosome for proper excision. Despite their low numbers, we surprisingly found a significant enrichment of MIG-encoded proteins (MIG-Ps) in protein-protein interactomes and host factors of positive-sense RNA viruses, including SARS-CoV-1, SARS-CoV-2, MERS coronavirus, and Zika virus. Similarly, we observed a significant enrichment of MIG-Ps in the interactomes and sets of host factors of negative-sense RNA viruses such as Ebola virus, influenza A virus, and the retrovirus HIV-1. We also found an enrichment of MIG-Ps in double-stranded DNA viruses such as Epstein-Barr virus, human papillomavirus, and herpes simplex viruses. In general, MIG-Ps were highly connected and placed in central positions in a network of human-host protein interactions. Moreover, MIG-Ps that interact with viral proteins were enriched with essential genes. We also provide evidence that viral proteins interact with ancestral MIGs that date back to unicellular organisms and are mainly involved in basic cellular functions such as cell cycle, cell division, and signal transduction. Our results suggest that MIG-Ps form a stable, evolutionarily conserved backbone that viruses putatively tap to invade and propagate in human host cells.
Collapse
Affiliation(s)
- Stefan Wuchty
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Institute of Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33134, USA
| | - Alisa K White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Anouk M Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Kyle Drake
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Adam J Hume
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA 02118, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Rahul N Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
33
|
Ponce-Cusi R, Bravo L, Paez KJ, Pinto JA, Pilco-Ferreto N. Host-Pathogen Interaction: Biology and Public Health. Methods Mol Biol 2024; 2751:3-18. [PMID: 38265706 DOI: 10.1007/978-1-0716-3617-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Interactions between host and pathogenic microorganisms are common in nature and have a significant impact on host health, often leading to several types of infections. These interactions have evolved as a result of the ongoing battle between the host's defense mechanisms and the pathogens' invasion strategies. In this chapter, we will explore the evolution of host-pathogen interactions, explore their molecular mechanisms, examine the different stages of interaction, and discuss the development of pharmacological treatments. Understanding these interactions is crucial for improving public health, as it enables us to develop effective strategies to prevent and control infectious diseases. By gaining insights into the intricate dynamics between pathogens and their hosts, we can work towards reducing the burden of such diseases on society.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Escuela Profesional de Medicina, Facultad de Ciencias de la Salud, Universidad Nacional de Moquegua, Moquegua, Peru.
| | - Leny Bravo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Kevin J Paez
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Joseph A Pinto
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Nesstor Pilco-Ferreto
- Unidad de Posgrado. Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| |
Collapse
|
34
|
Bobkova MR. Cellular proteins as potential targets for antiretroviral therapy. Vopr Virusol 2023; 68:488-504. [PMID: 38156565 DOI: 10.36233/0507-4088-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The review article conducts an in-depth analysis of information gleaned from a comprehensive literature search across Scopus, Web of Science, and MedLine databases. The focal point of this search revolves around the identification and exploration of the mechanisms orchestrated by host cell factors in the replication cycle of the human immunodeficiency virus (HIV-1, Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1). The article delves into two primary categories of proteins, namely HIV dependence factors (such as CypA, LEDGF, TSG101) and restriction factors (including SERINС5, TRIM5α, APOBEC3G), providing illustrative examples. The current understanding of the functioning mechanisms of these proteins is elucidated, and an evaluation is presented on the potential development of drugs for treating HIV infection. These drugs aim to either inhibit or stimulate the activity of host factors, offering insights into promising avenues for future research and therapeutic advancements.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
35
|
Liu D, Bae YE, Zhu J, Zhang Z, Sun Y, Deng Y, Wu C, Wu L. Splicing transcriptome-wide association study to identify splicing events for pancreatic cancer risk. Carcinogenesis 2023; 44:741-747. [PMID: 37769343 DOI: 10.1093/carcin/bgad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
A large proportion of the heritability of pancreatic cancer risk remains elusive, and the contribution of specific mRNA splicing events to pancreatic cancer susceptibility has not been systematically evaluated. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies (Enet, LASSO and MCP) to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for pancreatic cancer risk by assessing 8275 pancreatic cancer cases and 6723 controls of European ancestry. Data from 305 subjects of whom the majority are of European descent in the Genotype-Tissue Expression Project (GTEx) were used and both cis-acting and promoter-enhancer interaction regions were considered to build these models. We identified nine splicing events of seven genes (ABO, UQCRC1, STARD3, ETAA1, CELA3B, LGR4 and SFT2D1) that showed an association of genetically predicted expression with pancreatic cancer risk at a false discovery rate ≤0.05. Of these genes, UQCRC1 and LGR4 have not yet been reported to be associated with pancreatic cancer risk. Fine-mapping analyses supported likely causal associations corresponding to six splicing events of three genes (P4HTM, ABO and PGAP3). Our study identified novel genes and splicing events associated with pancreatic cancer risk, which can improve our understanding of the etiology of this deadly malignancy.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian 364012, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
36
|
Bergeman MH, Velarde K, Glenn HL, Hogue IB. Herpes Simplex Virus 1 (HSV-1) Uses the Rab6 Post-Golgi Secretory Pathway For Viral Egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571414. [PMID: 38168379 PMCID: PMC10760111 DOI: 10.1101/2023.12.13.571414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Herpes Simplex Virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles, and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host Rab6 post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and regulates vesicle trafficking and exocytosis at the plasma membrane. HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The Rab6a secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms.
Collapse
Affiliation(s)
- Melissa H. Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Honor L. Glenn
- Center for Structural Discovery, Biodesign Institute, Arizona State University
| | - Ian B. Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
37
|
Tang Y, Behrens RT, St Gelais C, Wu S, Vivekanandan S, Razin E, Fang P, Wu L, Sherer N, Musier-Forsyth K. Human lysyl-tRNA synthetase phosphorylation promotes HIV-1 proviral DNA transcription. Nucleic Acids Res 2023; 51:12111-12123. [PMID: 37933844 PMCID: PMC10711549 DOI: 10.1093/nar/gkad941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Yingke Tang
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Ryan T Behrens
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Corine St Gelais
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Siqi Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| | - Saravanan Vivekanandan
- Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore and The Hebrew University of Jerusalem (NUS–HUJ), Singapore
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Israel
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, Institute for Molecular Virology, & Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, Ohio State University, Columbus, OH, USA
- Center for RNA Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Rani AQ, Bonam SR, Zhou J, Li J, Hu H, Liu X. BRD4 as a potential target for human papillomaviruses associated cancer. J Med Virol 2023; 95:e29294. [PMID: 38100650 PMCID: PMC11315413 DOI: 10.1002/jmv.29294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Around 99% of cervical cancer and 5%-10% of human cancer are associated with human papillomaviruses (HPV). Notably, the life-cycle of HPV begins by low-level infection of the basal cells of the stratified epithelium, where the viral genomes are replicated and passed on to the daughter proliferating basal cells. The production of new viral particles remains restricted to eventually differentiated cells. HPVs support their persistent infectious cycle by hijacking pivotal pathways and cellular processes. Bromodomain-containing protein 4 (BRD4) is one of the essential cellular factors involved in multiple stages of viral transcription and replication. In this review, we demonstrate the role of BRD4 in the multiple stages of HPV infectious cycle. Also, we provide an overview of the intense research about the cellular functions of BRD4, the mechanism of action of bromodomain and extra terminal inhibitors, and how it could lead to the development of antiviral/anticancer therapies.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Marquez M, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, autophagy, and YB-1 independent manner. PLoS One 2023; 18:e0287829. [PMID: 37910521 PMCID: PMC10619827 DOI: 10.1371/journal.pone.0287829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3% without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
41
|
Lu JF, Luo S, Tang H, Liang JH, Zhao YF, Hu Y, Yang GJ, Chen J. Micropterus salmoides rhabdovirus enters cells via clathrin-mediated endocytosis pathway in a pH-, dynamin-, microtubule-, rab5-, and rab7-dependent manner. J Virol 2023; 97:e0071423. [PMID: 37735152 PMCID: PMC10617426 DOI: 10.1128/jvi.00714-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.
Collapse
Affiliation(s)
- Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Hao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jia-Hui Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yi-Fan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
42
|
Poyraz L, Colbran LL, Mathieson I. Predicting functional consequences of recent natural selection in Britain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562549. [PMID: 37904954 PMCID: PMC10614889 DOI: 10.1101/2023.10.16.562549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ancient DNA can directly reveal the contribution of natural selection to human genomic variation. However, while the analysis of ancient DNA has been successful at identifying genomic signals of selection, inferring the phenotypic consequences of that selection has been more difficult. Most trait-associated variants are non-coding, so we expect that a large proportion of the phenotypic effects of selection will also act through non-coding variation. Since we cannot measure gene expression directly in ancient individuals, we used an approach (Joint-Tissue Imputation; JTI) developed to predict gene expression from genotype data. We tested for changes in the predicted expression of 17,384 protein coding genes over a time transect of 4500 years using 91 present-day and 616 ancient individuals from Britain. We identified 28 genes at seven genomic loci with significant (FDR < 0.05) changes in predicted expression levels in this time period. We compared the results from our transcriptome-wide scan to a genome-wide scan based on estimating per-SNP selection coefficients from time series data. At five previously identified loci, our approach allowed us to highlight small numbers of genes with evidence for significant shifts in expression from peaks that in some cases span tens of genes. At two novel loci (SLC44A5 and NUP85), we identify selection on gene expression not captured by scans based on genomic signatures of selection. Finally we show how classical selection statistics (iHS and SDS) can be combined with JTI models to incorporate functional information into scans that use present-day data alone. These results demonstrate the potential of this type of information to explore both the causes and consequences of natural selection.
Collapse
Affiliation(s)
- Lin Poyraz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Laura L. Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Srivastava K, Pandit B. Genome-wide CRISPR screens and their applications in infectious disease. Front Genome Ed 2023; 5:1243731. [PMID: 37794981 PMCID: PMC10546192 DOI: 10.3389/fgeed.2023.1243731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Inactivation or targeted disruption of a gene provides clues to assess the function of the gene in many cellular processes. Knockdown or knocking out a gene has been widely used for this purpose. However, recently CRISPR mediated genome editing has taken over the knockout/knockdown system with more precision. CRISPR technique has enabled us to perform targeted mutagenesis or genome editing to address questions in fundamental biology to biomedical research. Its application is wide in understanding the role of genes in the disease process, and response to therapy in cancer, metabolic disorders, or infectious disease. In this article, we have focused on infectious disease and how genome-wide CRISPR screens have enabled us to identify host factors involved in the process of infection. Understanding the biology of the host-pathogen interaction is of immense importance in planning host-directed therapy to improve better management of the disease. Genome-wide CRISPR screens provide strong mechanistic ways to identify the host dependency factors involved in various infections. We presented insights into genome-wide CRISPR screens conducted in the context of infectious diseases both viral and bacterial that led to better understanding of host-pathogen interactions and immune networks. We have discussed the advancement of knowledge pertaining to influenza virus, different hepatitis viruses, HIV, most recent SARS CoV2 and few more. Among bacterial diseases, we have focused on infection with life threatening Mycobacteria, Salmonella, S. aureus, etc. It appears that the CRISPR technique can be applied universally to multiple infectious disease models to unravel the role of known or novel host factors.
Collapse
Affiliation(s)
| | - Bhaswati Pandit
- National Institute of Biomedical Genomics (NIBMG), Calcutta, West Bengal, India
| |
Collapse
|
44
|
Santos MF, Rappa G, Karbanová J, Diana P, Cirrincione G, Carbone D, Manna D, Aalam F, Wang D, Vanier C, Corbeil D, Lorico A. HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cells. Nat Commun 2023; 14:4588. [PMID: 37563144 PMCID: PMC10415338 DOI: 10.1038/s41467-023-40227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4+ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7+ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4+ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.
Collapse
Affiliation(s)
- Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Germana Rappa
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - David Manna
- Touro College of Osteopathic Medicine, Middletown, New York, NY, USA
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - David Wang
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
| | - Cheryl Vanier
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA
- Imgen Research, LLC, 5495 South Rainbow #201, Las Vegas, NV, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| |
Collapse
|
45
|
Chabronova A, van den Akker G, Housmans BAC, Caron MMJ, Cremers A, Surtel DAM, Peffers MJ, van Rhijn LW, Marchand V, Motorin Y, Welting TJM. Depletion of SNORA33 Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus. Int J Mol Sci 2023; 24:12578. [PMID: 37628759 PMCID: PMC10454564 DOI: 10.3390/ijms241612578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated SNORA22 and SNORA33 KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by 35S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of SNORA33, but not SNORA22, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.
Collapse
Affiliation(s)
- Alzbeta Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Guus van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Bas A. C. Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Marjolein M. J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Don A. M. Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L8 7TX, UK
| | - Lodewijk W. van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
| | - Virginie Marchand
- UAR2008 IBSLor CNRS-INSERM-Université de Lorraine, F54000 Nancy, France
| | - Yuri Motorin
- UAR2008 IBSLor CNRS-INSERM-Université de Lorraine, F54000 Nancy, France
- UMR7365 IMOPA, CNRS-Université de Lorraine, F54000 Nancy, France
| | - Tim J. M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 HX Maastricht, The Netherlands; (A.C.); (B.A.C.H.)
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center+ (MUMC+), 6229 HX Maastricht, The Netherlands
| |
Collapse
|
46
|
Borrmann H, Ulkar G, Kliszczak AE, Ismed D, Schilling M, Magri A, Harris JM, Balfe P, Vasudevan S, Borrow P, Zhuang X, McKeating JA. Molecular components of the circadian clock regulate HIV-1 replication. iScience 2023; 26:107007. [PMID: 37534138 PMCID: PMC10391662 DOI: 10.1016/j.isci.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 08/04/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) causes major health burdens worldwide and still lacks curative therapies and vaccines. Circadian rhythms are endogenous daily oscillations that coordinate an organism's response to its environment and invading pathogens. Peripheral viral loads of HIV-1 infected patients show diurnal variation; however, the underlying mechanisms remain unknown. Here, we demonstrate a role for the cell-intrinsic clock to regulate rhythmic HIV-1 replication in circadian-synchronized systems. Silencing the circadian activator Bmal1 abolishes this phenotype, and we observe BMAL1 binding to the HIV-1 promoter. Importantly, we show differential binding of the nuclear receptors REV-ERB and ROR to the HIV-long terminal repeat at different circadian times, demonstrating a dynamic interplay in time-of-day regulation of HIV-1 transcription. Bioinformatic analysis shows circadian regulation of host factors that control HIV-1 replication, providing an additional mechanism for rhythmic viral replication. This study increases our understanding of the circadian regulation of HIV-1, which can ultimately inform new therapies.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Görkem Ulkar
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Iaffaldano BJ, Marino MP, Reiser J. CRISPR library screening to develop HEK293-derived cell lines with improved lentiviral vector titers. Front Genome Ed 2023; 5:1218328. [PMID: 37520398 PMCID: PMC10373892 DOI: 10.3389/fgeed.2023.1218328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Lentiviral (LV) vectors have emerged as powerful tools for treating genetic and acquired human diseases. As clinical studies and commercial demands have progressed, there has been a growing need for large amounts of purified LV vectors. To help meet this demand, we developed CRISPR library screening methods to identify genetic perturbations in human embryonic kidney 293 (HEK293) cells and their derivatives that may increase LV vector titers. Briefly, LV vector-based Human CRISPR Activation and Knockout libraries (Calabrese and Brunello) were used to modify HEK293 and HEK293T cells. These cell populations were then expanded, and integrated LV vector genomes were rescued by transfection. LV vectors were harvested, and the process of sequential transduction and rescue-transfection was iterated. Through this workflow, guide RNAs (gRNAs) that target genes that may suppress or enhance LV vector production were enriched and identified with Next-Generation Sequencing (NGS). Though more work is needed to test genes identified in this screen, we expect that perturbations of genes we identified here, such as TTLL12, which is an inhibitor of antiviral innate immunity may be introduced and multiplexed to yield cell lines with improved LV vector productivity.
Collapse
|
48
|
Gong K, Lai Y. Development trends of immune activation during HIV infection in recent three decades: a bibliometric analysis based on CiteSpace. Arch Microbiol 2023; 205:283. [PMID: 37432538 DOI: 10.1007/s00203-023-03624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
This study aimed to evaluate and pinpoint the status, hot areas, and frontiers of immune activation during HIV infection utilizing CiteSpace. From 1990 to 2022, we searched for studies on immune activation during HIV infection in the Web of Science Core Collection. CiteSpace was used to visually analyze the publications to identify the research status and pertinent research hotspots and frontiers in terms of the countries, institutions, authors, references, journals, and keywords. The Web of Science Core Collection yielded 5321 articles on immune activation during HIV infection. With 2854 and 364 articles, the United States and the University of California, San Francisco were the leading nation and institution in this domain. Steven G. Deeks has published 95 papers and is the most published author. The top cited articles on microbial translocation as a significant factor during HIV infection were published by Brenchley et al. Research on molecular/biology/genetics is often referenced in publications in the journals of molecular/biology/immunology. Inflammation, risk, mortality, cardiovascular disease, persistence, and biomarkers will be high-frequency words that are hot topics of research. According to the results, there was a strong collaboration between countries and organizations but little collaboration among authors. Molecular biology, immunology, and medicine are the main study subjects. The current hot topics in research are inflammation, risk, mortality, cardiovascular disease, persistence, and biomarkers. Future studies should concentrate on reducing the pathological changes caused by inflammation and altering the mechanisms of immune activation to reduce the size of the viral reservoir.
Collapse
Affiliation(s)
- Kang Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
49
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Rugeles MT, Galeano E. Plasma metabolomics by nuclear magnetic resonance reveals biomarkers and metabolic pathways associated with the control of HIV-1 infection/progression. Front Mol Biosci 2023; 10:1204273. [PMID: 37457832 PMCID: PMC10339029 DOI: 10.3389/fmolb.2023.1204273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
How the human body reacts to the exposure of HIV-1 is an important research goal. Frequently, HIV exposure leads to infection, but some individuals show natural resistance to this infection; they are known as HIV-1-exposed but seronegative (HESN). Others, although infected but without antiretroviral therapy, control HIV-1 replication and progression to AIDS; they are named controllers, maintaining low viral levels and an adequate count of CD4+ T lymphocytes. Biological mechanisms explaining these phenomena are not precise. In this context, metabolomics emerges as a method to find metabolites in response to pathophysiological stimuli, which can help to establish mechanisms of natural resistance to HIV-1 infection and its progression. We conducted a cross-sectional study including 30 HESN, 14 HIV-1 progressors, 14 controllers and 30 healthy controls. Plasma samples (directly and deproteinized) were analyzed through Nuclear Magnetic Resonance (NMR) metabolomics to find biomarkers and altered metabolic pathways. The metabolic profile analysis of progressors, controllers and HESN demonstrated significant differences with healthy controls when a discriminant analysis (PLS-DA) was applied. In the discriminant models, 13 metabolites associated with HESN, 14 with progressors and 12 with controllers were identified, which presented statistically significant mean differences with healthy controls. In progressors, the metabolites were related to high energy expenditure (creatinine), mood disorders (tyrosine) and immune activation (lipoproteins), phenomena typical of the natural course of the infection. In controllers, they were related to an inflammation-modulating profile (glutamate and pyruvate) and a better adaptive immune system response (acetate) associated with resistance to progression. In the HESN group, with anti-inflammatory (lactate and phosphocholine) and virucidal (lactate) effects which constitute a protective profile in the sexual transmission of HIV. Concerning the significant metabolites of each group, we identified 24 genes involved in HIV-1 replication or virus proteins that were all altered in progressors but only partially in controllers and HESN. In summary, our results indicate that exposure to HIV-1 in HESN, as well as infection in progressors and controllers, affects the metabolism of individuals and that this affectation can be determined using NMR metabolomics.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo de Investigación en Ciencias Farmacéuticas ICIF-CES, Facultad de Ciencias y Biotecnología, Universidad CES, Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
50
|
Xue G, Yu HJ, Buffone C, Huang SW, Lee K, Goh SL, Gres AT, Guney MH, Sarafianos SG, Luban J, Diaz-Griffero F, KewalRamani VN. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat Commun 2023; 14:3782. [PMID: 37355754 PMCID: PMC10290713 DOI: 10.1038/s41467-023-39146-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.
Collapse
Affiliation(s)
- Guangai Xue
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Szu-Wei Huang
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - KyeongEun Lee
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shih Lin Goh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anna T Gres
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
| | - Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stefan G Sarafianos
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
- Bond Life Sciences Center, MMI, Biochemistry, University of Missouri, Columbia, MO, 65201, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|