1
|
Letovsky SI, Cao X, Hollenbach JA, Mack SJ, Maiers M. Association between HLA genetics and SARS-CoV-2 infection in a large real-world cohort. Genes Immun 2025:10.1038/s41435-025-00328-4. [PMID: 40275118 DOI: 10.1038/s41435-025-00328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Genetic variation in the human leukocyte antigen (HLA) region is thought to influence susceptibility to and severity of a variety of infectious diseases. Several studies have explored a possible relationship between HLA genetics and SARS-CoV-2 infection, although mixed results, small sample sizes, and difficulty controlling for exposure risk have made it difficult to draw firm conclusions. Here, a dataset of 419,234 subjects with HLA genotype data and COVID-19 PCR test results was studied. A baseline analysis was performed to examine the association of non-HLA factors on COVID-19 positivity. Then, multivariate logistic regressions, incorporating single and paired HLA alleles, were performed and then corrected for significant factors from the baseline analysis. Proxies for socioeconomic status and exposure risk were significantly associated with COVID-19 positivity across all ancestry groups studied. Forty-one single HLA alleles displayed significant association with COVID-19 positivity; after controlling for socioeconomic status and exposure risk, only eight significant associations remained. Additionally, two HLA allele pairs were associated with test positivity after correction. Of all variables, socioeconomic status showed the greatest effect size. The results from this study suggest that many, if not all, of the reported associations between HLA alleles and SARS-CoV-2 infection may be spurious, owing to confounding factors.
Collapse
Affiliation(s)
- Stanley I Letovsky
- Department of Data Science, AI, and Bioinformatics, Laboratory Corporation of America, Burlington, NC, USA.
| | - Xia Cao
- Department of Data Science, AI, and Bioinformatics, Laboratory Corporation of America, Burlington, NC, USA
| | - Jill A Hollenbach
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics; University of California, San Francisco, San Francisco, CA, USA
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, USA
| | - Martin Maiers
- CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP, Minneapolis, MN, USA
| |
Collapse
|
2
|
Zhao K, Ji Z, Zhang L, Quan N, Li Y, Yu G, Bi X. HPOseq: a deep ensemble model for predicting the protein-phenotype relationships based on protein sequences. BMC Bioinformatics 2025; 26:110. [PMID: 40263997 PMCID: PMC12013097 DOI: 10.1186/s12859-025-06122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Understanding the relationships between proteins and specific disease phenotypes contributes to the early detection of diseases and advances the development of personalized medicine. The acquisition of a large amount of proteomics data has facilitated this process. To improve discovery efficiency and reduce the time and financial costs associated with biological experiments, various computational methods have yielded promising results. However, the lack of rich and reliable protein-related information still presents challenges in this process. RESULTS In this paper, we propose an ensemble prediction model, named HPOseq, which predicts human protein-phenotype relationships based only on sequence information. HPOseq establishes two base models to achieve objectives. One directly extracts internal information from amino acid sequences as protein features to predict the associated phenotypes. The other builds a protein-protein network based on sequence similarity, extracting information between proteins for phenotype prediction. Ultimately, an ensemble module is employed to integrate the predictions from both base models, resulting in the final prediction. CONCLUSION The results of 5-fold cross-validation reveal that HPOseq outperforms seven baseline methods for predicting protein-phenotype relationships. Moreover, we conduct case studies from the points of phenotype annotation and protein analysis to verify the practical significance of HPOseq.
Collapse
Affiliation(s)
- Kai Zhao
- School of Computer Science and Technology, Xinjiang University, Urumqi, 830011, China
| | - Zhuocheng Ji
- School of Computer Science and Technology, Xinjiang University, Urumqi, 830011, China
| | - Linlin Zhang
- School of Software, Xinjiang University, Urumqi, 830011, China
| | - Na Quan
- School of Computer Science and Technology, Xinjiang University, Urumqi, 830011, China
| | - Yuheng Li
- School of Computer Science and Technology, Xinjiang University, Urumqi, 830011, China
| | - Guanglei Yu
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China
- School Of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Xuehua Bi
- College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830011, China.
- School Of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
3
|
Lukanov T, Mihaylova A, Al Hadra B, Lesichkova S, Georgieva A, Popov T, Krasteva Y, Mondeshki T, Naumova E. HLA-DQB1*05:03 is associated with an increased risk of COVID-19 progression in the Bulgarian population. Hum Immunol 2025; 86:111228. [PMID: 39755001 DOI: 10.1016/j.humimm.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
The SARS-CoV-2 outbreak represents a global health problem. The different infection rates are heavily influenced by host genetic factors, such as variability in the HLA region. The aim of our study was to investigate whether certain HLA alleles in the Bulgarian population contribute to COVID-19 progression and their role in anti-SARS-CoV-2 immunity. We evaluated 76 patients diagnosed with COVID-19 and classified them according to severity as mild, moderate, and severe. Data from a population cohort (n = 539), representative of the Bulgarian population, was used for comparisons. We found that the HLA-DQB1*05:03 (OR = 3.13, pc = 0.0008) allele was significantly associated with COVID-19 severity. Several other class I and class II alleles showed a promising association with a predisposition to disease severity or a protective role in its progression. This is the first study to assess the association between HLA and COVID-19 progression in the Bulgarian population. Despite some limitations, our results suggest that certain HLA alleles play a role in the severity of SARS-CoV-2 infection and it would be interesting to further trace their effect in the context of long COVID.
Collapse
Affiliation(s)
- Tsvetelin Lukanov
- Medical University - Sofia, Medical Faculty, Department of Clinical Immunology, Bulgaria; University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria.
| | - Anastasiya Mihaylova
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Bushra Al Hadra
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Spaska Lesichkova
- Medical University - Sofia, Medical Faculty, Department of Clinical Immunology, Bulgaria; University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Atanaska Georgieva
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Tsvetan Popov
- University Hospital Alexandrovska, Clinic of Surgery, Bulgaria; Medical University - Sofia, Medical Faculty, Department of Surgery, Bulgaria
| | - Yana Krasteva
- University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| | - Tsanko Mondeshki
- Medical University - Sofia, Medical Faculty, Department of Propaedeutic of Internal Medicine, Bulgaria; University Hospital Alexandrovska, Clinic of Propaedeutic of Internal Medicine, Bulgaria
| | - Elissaveta Naumova
- Medical University - Sofia, Medical Faculty, Department of Clinical Immunology, Bulgaria; University Hospital Alexandrovska, Clinic of Clinical Immunology and Stem Cell Bank, Bulgaria
| |
Collapse
|
4
|
Mazzotti L, Borges de Souza P, Azzali I, Angeli D, Nanni O, Sambri V, Semprini S, Bravaccini S, Cerchione C, Gaimari A, Nicolini F, Ancarani V, Martinelli G, Pasetto A, Calderon H, Juan M, Mazza M. Exploring the Relationship Between Humoral and Cellular T Cell Responses Against SARS-CoV-2 in Exposed Individuals From Emilia Romagna Region and COVID-19 Severity. HLA 2025; 105:e70011. [PMID: 39807702 PMCID: PMC11731316 DOI: 10.1111/tan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data. HLA type was inferred from TCR repertoire using the HLA3 tool and its association with clonal breadth (CB) and clonal depth (CD) was assessed. Age above 58 years, male and COVID-19 hospitalisation were significantly and independently associated with seropositivity (p = 0.004; p = 0.004; p = 0.04), suggesting an association between high antibody titres and symptoms' severity. As for the TCR repertoire analysis, we found no difference in CB among the cohorts, while CD was higher in seronegative than acute (p = 0.04). However, clustering analysis supported that seronegative patients are endowed with broader CB and deeper CD indicating a compensatory mechanism without effective seroconversion. The CD calculated on the TCRs associated with the single SARS-CoV-2 ORFs in convalescents is higher when compared to the acute. Lastly, we identified and reported on novel HLAs significantly associated with increased risk of hospitalisation such as HLA-C*07:02 carriers (OR = 3.9, CI = 1.1-13.4, p = 0.03) and on HLAs that associate significantly with lower or higher TCR repertoire parameters in a population exposed for the first time to SARS-CoV-2.
Collapse
Affiliation(s)
- Lucia Mazzotti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | | | - Irene Azzali
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Oriana Nanni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Vittorio Sambri
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
- DIMECBologna UniversityBolognaItaly
| | - Simona Semprini
- Microbiology UnitThe Great Romagna Area Hub LaboratoryPievesestinaItaly
| | - Sara Bravaccini
- Department of Medicine and SurgeryUniversity of Enna “Kore”EnnaItaly
| | - Claudio Cerchione
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Anna Gaimari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Fabio Nicolini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Valentina Ancarani
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| | - Giovanni Martinelli
- Department of Hematology and Sciences OncologyInstitute of Haematology “L. and A. Seràgnoli” S. Orsola, University Hospital in BolognaBolognaItaly
| | - Anna Pasetto
- Section for Cell TherapyRadiumhospitalet, Oslo University HospitalOsloNorway
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Hugo Calderon
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Manel Juan
- Department of ImmunologyCentre de Diagnòstic Biomèdic, Hospital Clínic of BarcelonaBarcelonaSpain
| | - Massimiliano Mazza
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori"MeldolaItaly
| |
Collapse
|
5
|
Tymoniuk B, Borowiec M, Makowska J, Holwek E, Sarnik J, Styrzyński F, Dróżdż I, Lewiński A, Stasiak M. Associations Between Clinical Manifestations of SARS-CoV-2 Infection and HLA Alleles in a Caucasian Population: A Molecular HLA Typing Study. J Clin Med 2024; 13:7695. [PMID: 39768617 PMCID: PMC11676434 DOI: 10.3390/jcm13247695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Background and Objectives: Severe COVID-19 still constitutes an important health problem. Taking into account the crucial role of HLA in immune reactions, evaluation of the impact of HLA on COVID-19 risk and clinical course seemed necessary, as the already available data are inconsistent. The aim of the present study was to compare the HLA profiles of patients with symptomatic SARS-CoV-2 infection and a healthy control group, as well as to compare HLA allele frequencies in patients with severe and non-severe courses of COVID-19. Materials and Methods: HLA classes were genotyped using a next-generation sequencing method in 2322 persons, including 2217 healthy hematopoietic stem cell potential donors and 105 patients with symptomatic COVID-19. Results: Symptomatic course of SARS-CoV-2 infection appeared to be associated with the presence of HLA-A*30:01, B*44:02, B*52:01, C*05:01, C*17:01, and DRB1*11:02, while HLA-C*07:04 and DQB1*03:03 seem to play a protective role. Moreover, we demonstrated that the severe symptomatic course of COVID-19 can be associated with the presence of HLA-B*08:01, C*04:01, DRB1*03:01, and DQB1*03:01, while HLA-DRB1*08:01 appeared to be protective against severe COVID-19 disease. Conclusions: Identification of alleles that are potentially associated with symptomatic SARS-CoV-2 infection as well as the severe course of COVID-19 broadens the knowledge on the genetic background of COVID-19 course and can constitute an important step in the development of personalized medicine.
Collapse
Affiliation(s)
- Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Emilia Holwek
- Central Clinical Hospital, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Filip Styrzyński
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland;
| | - Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
6
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association between human leukocyte antigen alleles and COVID-19 disease severity. J Infect Public Health 2024; 17:102498. [PMID: 39173558 DOI: 10.1016/j.jiph.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND the human leukocyte antigen (HLA) loci have been widely characterized to be associated with viral infectious diseases. Several studies including various ethnic groups and populations suggested associations between certain HLA alleles and SARS-CoV-2 infection. Despite the numerous associations identified, the role of HLA polymorphisms in determining the individual response to SARS-CoV-2 infection is controversial among different Saudi populations. METHOD Here, we performed HLA typing by next-generation sequencing to investigate if variations in polymorphic HLA genes are linked to COVID-19 severity in the Saudi population. Namely, we analyzed HLA loci at allele level in 575 Saudi patients with SARS-CoV-2 infection. HLA class I and class II frequencies in patients were compared with allele frequency data from healthy Saudi population. RESULTS in our cohort HLA-A* 02:01:01 G was associated with mild disease but was not associated with moderate and severe disease. HLA-B* 51:01:01 G was protective from severe disease while HLA-B* 50:01:01 G, HLA-C* 06:02:01 G and HLA-DRB1 * 07:01:01 G were associated with risk to severe disease as well as the total COVID-19 cohort. HLA-DRB1 * 15:01:01 G was associated with risk to all severity groups. CONCLUSION in conclusion, we found significant associations between HLA alleles and COVID-19 disease severity in Saudis. Further studies are warranted to include HLA typing in the workup for any new COVID-19 patients.
Collapse
Affiliation(s)
- Ali Hajeer
- Department of Pathology and Laboratory Medicine, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center / King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Dunia Jawdat
- Cellular Therapy Services, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia; KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; King Abdulaziz City for Science and Technology (KACST)-Saudi Human Genome Satellite Lab at Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Nora Aljawini
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia; KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; King Abdulaziz City for Science and Technology (KACST)-Saudi Human Genome Satellite Lab at Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Malak S Abedalthagafi
- Genomics Research Department, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Yaseen M Arabi
- Intensive Care Department, Ministry of National Guard Health Affairs, King Abdullah International Medical Research Center and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia; KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia; King Abdulaziz City for Science and Technology (KACST)-Saudi Human Genome Satellite Lab at Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Meng L, Pan Y, Liu Y, He R, Sun Y, Wang C, Fei L, Zhu A, Wang Z, An Y, Wu Y, Diao B, Chen Y. Individuals carrying the HLA-B*15 allele exhibit favorable responses to COVID-19 vaccines but are more susceptible to Omicron BA.5.2 and XBB.1.16 infection. Front Immunol 2024; 15:1440819. [PMID: 39257586 PMCID: PMC11383769 DOI: 10.3389/fimmu.2024.1440819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Background Natural infection or vaccination have provided robust immune defense against SARS-CoV-2 invasion, nevertheless, Omicron variants still successfully cause breakthrough infection, and the underlying mechanisms are poorly understood. Methods Sequential blood samples were continuously collected at different time points from 252 volunteers who were received the CanSino Ad5-nCoV (n= 183) vaccine or the Sinovac CoronaVac inactivated vaccine (n= 69). The anti-SARS-CoV-2 prototype and Omicron BA.5.2 as well as XBB.1.16 variant neutralizing antibodies (Nab) in sera were detected by ELISA. Sera were also used to measure pseudo and live virus neutralization assay. The associations between the anti-prototype Nab levels and different HLA-ABC alleles were analyzed using artificial intelligence (AI)-deep learning techniques. The frequency of B cells in PBMCs was investigated by flow cytometry assay (FACs). Results Individuals carrying the HLA-B*15 allele manifested the highest concentrations of anti-SARS-CoV-2 prototype Nab after vax administration. Unfortunately, these volunteers are more susceptible to Omicron BA.5.2 breakthrough infection due to their sera have poorer anti-BA.5.2 Nab and lower levels of viral neutralization efficacy. FACs confirmed that a significant decrease in CD19+CD27+RBD+ memory B cells in these HLA-B*15 population compared to other cohorts. Importantly, generating lower concentrations of cross-reactive anti-XBB.1.16 Nab post-BA.5.2 infection caused HLA-B*15 individuals to be further infected by XBB.1.16 variant. Conclusions Individuals carrying the HLA-B*15 allele respond better to COVID-19 vax including the CanSino Ad5-nCoV and the Sinovac CoronaVac inactivated vaccines, but are more susceptible to Omicron variant infection, thus, a novel vaccine against this population is necessary for COVID-19 pandemic control in the future.
Collapse
Affiliation(s)
- Lingxin Meng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Rui He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yuting Sun
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Department of Medical Laboratory Center, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Hypocortisolemic ASIA: a vaccine- and chronic infection-induced syndrome behind the origin of long COVID and myalgic encephalomyelitis. Front Immunol 2024; 15:1422940. [PMID: 39044822 PMCID: PMC11263040 DOI: 10.3389/fimmu.2024.1422940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), long COVID (LC) and post-COVID-19 vaccine syndrome show similarities in their pathophysiology and clinical manifestations. These disorders are related to viral or adjuvant persistence, immunological alterations, autoimmune diseases and hormonal imbalances. A developmental model is postulated that involves the interaction between immune hyperactivation, autoimmune hypophysitis or pituitary hypophysitis, and immune depletion. This process might begin with a deficient CD4 T-cell response to viral infections in genetically predisposed individuals (HLA-DRB1), followed by an uncontrolled immune response with CD8 T-cell hyperactivation and elevated antibody production, some of which may be directed against autoantigens, which can trigger autoimmune hypophysitis or direct damage to the pituitary, resulting in decreased production of pituitary hormones, such as ACTH. As the disease progresses, prolonged exposure to viral antigens can lead to exhaustion of the immune system, exacerbating symptoms and pathology. It is suggested that these disorders could be included in the autoimmune/adjuvant-induced inflammatory syndrome (ASIA) because of their similar clinical manifestations and possible relationship to genetic factors, such as polymorphisms in the HLA-DRB1 gene. In addition, it is proposed that treatment with antivirals, corticosteroids/ginseng, antioxidants, and metabolic precursors could improve symptoms by modulating the immune response, pituitary function, inflammation and oxidative stress. Therefore, the purpose of this review is to suggest a possible autoimmune origin against the adenohypophysis and a possible improvement of symptoms after treatment with corticosteroid replacement therapy.
Collapse
Affiliation(s)
- Manuel Ruiz-Pablos
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Bruno Paiva
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
10
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
11
|
Hai NTT, Nhung VP, Tam NTT, Ngoc TTB, Thuong MTH, Dai HV, Duong NT, Hai NV, Ton ND, Thach PN, Ha NH. HLA alleles associated with susceptibility and severity of the COVID-19 in Vietnamese. Hum Immunol 2024; 85:110796. [PMID: 38580537 DOI: 10.1016/j.humimm.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
The diversity of clinical manifestations in COVID-19 has been observed not only among individuals but also among various populations in globally. HLA molecules play a central role in physiology, protective immunity, and deleterious, disease-related autoimmune reactivity or overreaction. This study exploited the association between HLA frequencies and SARS-CoV-2 susceptibility and disease severity among the Vietnamese cohort (159 patients and 52 controls). A significant difference in frequency of both HLA class I and II in mild, moderate, and severe/fatal COVID-19 patients and negative exposure individuals - the controls were observed. Regarding SARS-CoV-2 sensitivity, HLA-A*03:01, 30:01, HLA-DQA1*01:02, DRB1*15:01, and DRB5*02:02 presented higher frequency in the control group compared with infected patients but DRB1 09:01 frequency was higher in infected patients. Regarding COVID-19 severity, HLA-F*01:01, 01:03 and DPA1*01:03 and 02:01, DPB1*04:01, DQA1*01:02, and DQB1*05:02 alleles were detected with higher frequency in severe patients but DOB*01:01, DRB1*05:01 and 09:01 had a significantly higher frequency in the mild group than remaining groups. Surprisingly, HLA-DQA1*01:02 and DRB1*09:01 alleles were identified with both inversely potential roles in protective function and severe risk. The obtained data herein will contribute to explore on the role of host genetic background in the pathology of COVID-19 disease.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Hai
- National Hospital for Tropical Diseases, Kim Chung, Dong Anh, Hanoi 10000, Viet Nam; Department of Biochemistry, Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi 10000, Viet Nam
| | - Vu Phuong Nhung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Nguyen Thi Thanh Tam
- Department of Biochemistry, Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi 10000, Viet Nam
| | - Tran Thi Bich Ngoc
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Ma Thi Huyen Thuong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Ha Van Dai
- National Hospital for Tropical Diseases, Kim Chung, Dong Anh, Hanoi 10000, Viet Nam
| | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam
| | - Pham Ngoc Thach
- National Hospital for Tropical Diseases, Kim Chung, Dong Anh, Hanoi 10000, Viet Nam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Viet Nam.
| |
Collapse
|
12
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
13
|
Abolnezhadian F, Iranparast S, Shohan M, Shokati Eshkiki Z, Hamed M, Seyedtabib M, Nashibi R, Assarehzadegan MA, Mard SA, Shayesteh AA, Neisi N, Makvandi M, Alavi SM, Shariati G. Evaluation the frequencies of HLA alleles in moderate and severe COVID-19 patients in Iran: A molecular HLA typing study. Heliyon 2024; 10:e28528. [PMID: 38590857 PMCID: PMC10999921 DOI: 10.1016/j.heliyon.2024.e28528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/16/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 was first reported in December 2019 and it has spread globally ever since. The HLA system is crucial in directing anti-viral immunity and recent studies are investigating the possible involvement of the HLA genes on the severity of immune inflammation in different phases of COVID-19. Methods In this cross-sectional study, peripheral blood-extracted genomic DNAs of 109 COVID-19 patients and 70 healthy controls were genotyped for different alleles of HLA-A, HLA-B, and HLA-DRB1 loci using sequence-specific primer PCR method. Results The results indicated that frequencies of HLA-DRB1*11:01 and HLA-DRB1*04:03 were significantly higher in severe patients rather than moderates (p: <0.001 and 0.004, respectively). Also, it was observed that HLA-DRB1*04:01 was more frequent in moderate patients and healthy controls (p:0.002). In addition, HLA-B*07:35, and HLA-DRB1*07:01 showed higher frequencies in patients compared with controls (p: 0.031 and 0.003 respectively). Inversely, due to the higher frequencies of HLA-B*51:01 (p:0.027), HLA-DRB1*11:05 (p:0.003), HLA-DRB1*13:05 (p:0.022), and HLA-DRB1*14:01 (p:0.006) in healthy individuals rather than patients, they may be associated with COVID-19 resistance. Conclusion The results show that, based on the population differences, the type of alleles related to the severity of COVID-19 is different, which should be clarified by designing large-scale studies in order to develop HLA-based treatments and vaccines.
Collapse
Affiliation(s)
- Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shohan
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Hamed
- Immunobiology Center of Pasteur Medical Laboratory, Ahvaz, Iran
| | - Maryam Seyedtabib
- Department of Biostatistics & Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System and Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Shayesteh
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Shariati
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Vică ML, Dobreanu M, Curocichin G, Matei HV, Bâlici Ș, Vușcan ME, Chiorean AD, Nicula GZ, Pavel Mironescu DC, Leucuța DC, Teodoru CA, Siserman CV. The Influence of HLA Polymorphisms on the Severity of COVID-19 in the Romanian Population. Int J Mol Sci 2024; 25:1326. [PMID: 38279325 PMCID: PMC10816224 DOI: 10.3390/ijms25021326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we aimed to investigate whether specific HLA alleles found in patients from Romania and the Republic of Moldova were associated with the severity of COVID-19 infection and its associated mortality. We analyzed the HLA alleles at the -A, -B, -C, -DRB1, and -DQB1 loci in a cohort of 130 individuals with severe and extremely severe forms of COVID-19, including 44 individuals who died. We compared these findings to a control group consisting of individuals who had either not been diagnosed with COVID-19 or had experienced mild forms of the disease. Using multivariate logistic regression models, we discovered that the B*27 and B*50 alleles were associated with an increased susceptibility to developing a severe form of COVID-19. The A*33 and C*15 alleles showed potential for offering protection against the disease. Furthermore, we identified two protective alleles (A*03 and DQB1*02) against the development of extremely severe forms of COVID-19. By utilizing score statistics, we established a statistically significant association between haplotypes and disease severity (p = 0.021). In summary, this study provides evidence that HLA genotype plays a role in influencing the clinical outcome of COVID-19 infection.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Minodora Dobreanu
- Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| | - Ghenadie Curocichin
- Department of Family Medicine, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2004 Chișinău, Moldova;
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Ștefana Bâlici
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Mihaela Elvira Vușcan
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Alin Dan Chiorean
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Gheorghe Zsolt Nicula
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
| | - Daniela Cristina Pavel Mironescu
- Department of Cell and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.L.V.); (Ș.B.); (M.E.V.); (A.D.C.); (G.Z.N.); (D.C.P.M.)
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Costel Vasile Siserman
- Legal Medicine Institute, 400006 Cluj-Napoca, Romania;
- Department of Legal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Torki E, Hoseininasab F, Moradi M, Sami R, Sullman MJM, Fouladseresht H. The demographic, laboratory and genetic factors associated with long Covid-19 syndrome: a case-control study. Clin Exp Med 2024; 24:1. [PMID: 38231284 PMCID: PMC10794331 DOI: 10.1007/s10238-023-01256-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
Long Covid-19 syndrome (LCS) manifests with a wide range of clinical symptoms, yet the factors associated with LCS remain poorly understood. The current study aimed to investigate the relationships that demographic characteristics, clinical history, laboratory indicators, and the frequency of HLA-I alleles have with the likelihood of developing LCS. We extracted the demographic characteristics and clinical histories from the medical records of 88 LCS cases (LCS+ group) and 96 individuals without LCS (LCS- group). Furthermore, we evaluated the clinical symptoms, serum levels of interleukin (IL)-6 and tumor necrosis factor-α, laboratory parameters, and the frequencies of HLA-I alleles. Following this we used multiple logistic regression to investigate the association these variables had with LCS. Subjects in the LCS+ group were more likely to have experienced severe Covid-19 symptoms and had higher body mass index (BMI), white blood cell, lymphocyte counts, C-reactive protein (CRP), and IL-6 levels than those in the LCS- group (for all: P < 0.05). Moreover, the frequencies of the HLA-A*11, -B*14, -B*38, -B*50, and -C*07 alleles were higher in the LCS+ group (for all: P < 0.05). After adjusting for the most important variables, the likelihood of suffering from LCS was significantly associated with BMI, CRP, IL-6, the HLA-A*11, and -C*07 alleles, as well as a positive history of severe Covid-19 (for all: P < 0.05). Our study showed that a history of severe Covid-19 during the acute phase of the disease, the HLA-A*11, and -C*07 alleles, higher BMI, as well as elevated serum CRP and IL-6 levels, were all associated with an increased likelihood of LCS.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Hoseininasab
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Moradi
- Department of Genetics, School of Science, Shahrekord University, Shahrekord, Iran
| | - Ramin Sami
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Hoseinnezhad T, Soltani N, Ziarati S, Behboudi E, Mousavi MJ. The role of HLA genetic variants in COVID-19 susceptibility, severity, and mortality: A global review. J Clin Lab Anal 2024; 38:e25005. [PMID: 38251811 PMCID: PMC10829690 DOI: 10.1002/jcla.25005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic has had a profound global impact, with variations in susceptibility, severity, and mortality rates across different regions. While many factors can contribute to the spread and impact of the disease, specifically human leukocyte antigen (HLA) genetic variants have emerged as potential contributors to COVID-19 outcomes. METHODS In this comprehensive narrative review, we conducted a thorough literature search to identify relevant studies investigating the association between HLA genetic variants and COVID-19 outcomes. Additionally, we analyzed allelic frequency data from diverse populations to assess differences in COVID-19 incidence and severity. RESULTS Our review provides insights into the immunological mechanisms involving HLA-mediated responses to COVID-19 and highlights potential research directions and therapeutic interventions. We found evidence suggesting that certain HLA alleles, such as HLA-A02, may confer a lower risk of COVID-19, while others, like HLA-C04, may increase the risk of severe symptoms and mortality. Furthermore, our analysis of allele frequency distributions revealed significant variations among different populations. CONCLUSION Considering host genetic variations, particularly HLA genetic variants, is crucial for understanding COVID-19 susceptibility and severity. These findings have implications for personalized treatment and interventions based on an individual's genetic profile. However, further research is needed to unravel the precise mechanisms underlying the observed associations and explore the potential for targeted therapies or preventive measures based on HLA genetic variants.
Collapse
Affiliation(s)
- Taraneh Hoseinnezhad
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nasrin Soltani
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sarina Ziarati
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
17
|
Farias TD, Brugiapaglia S, Croci S, Magistroni P, Curcio C, Zguro K, Fallerini C, Fava F, Pettini F, Kichula KM, Pollock NR, Font-Porterias N, Palmer WH, Marin WM, Baldassarri M, Bruttini M, Hollenbach JA, Hendricks AE, Meloni I, Novelli F, GEN-COVID Multicenter Study Group, Renieri A, Furini S, Norman PJ, Amoroso A. HLA-DPB1*13:01 associates with enhanced, and KIR2DS4*001 with diminished protection from developing severe COVID-19. HLA 2024; 103:e15251. [PMID: 37850268 PMCID: PMC10873037 DOI: 10.1111/tan.15251] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
Extreme polymorphism of HLA and killer-cell immunoglobulin-like receptors (KIR) differentiates immune responses across individuals. Additional to T cell receptor interactions, subsets of HLA class I act as ligands for inhibitory and activating KIR, allowing natural killer (NK) cells to detect and kill infected cells. We investigated the impact of HLA and KIR polymorphism on the severity of COVID-19. High resolution HLA class I and II and KIR genotypes were determined from 403 non-hospitalized and 1575 hospitalized SARS-CoV-2 infected patients from Italy collected in 2020. We observed that possession of the activating KIR2DS4*001 allotype is associated with severe disease, requiring hospitalization (OR = 1.48, 95% CI 1.20-1.85, pc = 0.017), and this effect is greater in individuals homozygous for KIR2DS4*001 (OR = 3.74, 95% CI 1.75-9.29, pc = 0.003). We also observed the HLA class II allotype, HLA-DPB1*13:01 protects SARS-CoV-2 infected patients from severe disease (OR = 0.49, 95% CI 0.33-0.74, pc = 0.019). These association analyses were replicated using logistic regression with sex and age as covariates. Autoantibodies against IFN-α associated with COVID-19 severity were detected in 26% of 156 hospitalized patients tested. HLA-C*08:02 was more frequent in patients with IFN-α autoantibodies than those without, and KIR3DL1*01502 was only present in patients lacking IFN-α antibodies. These findings suggest that KIR and HLA polymorphism is integral in determining the clinical outcome following SARS-CoV-2 infection, by influencing the course both of innate and adaptive immunity.
Collapse
Affiliation(s)
- Ticiana D.J. Farias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paola Magistroni
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
| | - Kristina Zguro
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Francesco Pettini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - William H. Palmer
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Wesley M. Marin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
| | - Jill A. Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Audrey E. Hendricks
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Mathematical and Statistical Sciences, and Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Laboratory of Tumor Immunology Center for Experimental Research and Medical Studies, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin, 10126, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
18
|
Wang X, Zhang J, Guo P, Guo Y, Yang X, Liu M, Zhang D, Guo Y, Zhan J, Cai K, Zhou J, Dong S, Liu J. Rare peptide anchors of HLA class I alleles contribute to the COVID-19 disease severity and T cell memory. BIOSAFETY AND HEALTH 2023; 5:355-362. [PMID: 40078747 PMCID: PMC11895035 DOI: 10.1016/j.bsheal.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 01/02/2025] Open
Abstract
Understanding how human leukocyte antigen (HLA) polymorphism affects both the susceptibility and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will help to identify individuals at higher risk to better manage and prioritize vaccination at the clinical level and explain the differences in epidemic trends in different regions at the epidemiological level. This study compared the frequencies of HLA class I alleles (HLA-A, B) in 214 coronavirus disease 2019 (COVID-19) patients with different disease severity and 35 healthy controls and analyzed the correlations between specific HLA alleles and disease severity and T cell memory. The results showed no significant difference in HLA allele frequencies between COVID-19 patients and healthy controls (P > 0.05). The allele HLA-B*13:02 was significantly correlated with the disease severity of COVID-19 patients (P = 0.006). After adjustment for age and disease severity, the T cell responses of COVID-19 convalescents with the allele HLA-B*40:01 may be lower at six months (P = 0.044) and 12 months (P = 0.069). Moreover, these results may be due to their rare peptide anchors by analyzing the binding peptide motifs of these HLA alleles. The study may be valuable for investigating the potential association of specific HLA alleles with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Jie Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Peipei Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yuanyuan Guo
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Xiaonan Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Maoshun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Danni Zhang
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Jikun Zhou
- Shijiazhuang Fifth Hospital, Shijiazhuang 050011, China
| | - Shaobo Dong
- Macheng Center for Disease Control and Prevention, Huanggang 438300, China
| | - Jun Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| |
Collapse
|
19
|
Wang R, Sun Y, Kuang BH, Yan X, Lei J, Lin YX, Tian J, Li Y, Xie X, Chen T, Zhang H, Zeng YX, Zhao J, Feng L. HLA-Bw4 in association with KIR3DL1 favors natural killer cell-mediated protection against severe COVID-19. Emerg Microbes Infect 2023; 12:2185467. [PMID: 36849422 PMCID: PMC10013568 DOI: 10.1080/22221751.2023.2185467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Replicating SARS-CoV-2 has been shown to degrade HLA class I on target cells to evade the cytotoxic T-cell (CTL) response. HLA-I downregulation can be sensed by NK cells to unleash killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition by the cognate HLA-I ligands. Here, we investigated the impact of HLA and KIR genotypes and HLA-KIR combinations on COVID-19 outcome. We found that the peptide affinities of HLA alleles were not correlated with COVID-19 severity. The predicted poor binders for SARS-CoV-2 peptides belong to HLA-B subtypes that encode KIR ligands, including Bw4 and C1 (introduced by B*46:01), which have a small F pocket and cannot accommodate SARS-CoV-2 CTL epitopes. However, HLA-Bw4 weak binders were beneficial for COVID-19 outcome, and individuals lacking the HLA-Bw4 motif were at higher risk for serious illness from COVID-19. The presence of the HLA-Bw4 and KIR3DL1 combination had a 58.8% lower risk of developing severe COVID-19 (OR = 0.412, 95% CI = 0.187-0.904, p = 0.02). This suggests that HLA-Bw4 alleles that impair their ability to load SARS-CoV-2 peptides will become targets for NK-mediated destruction. Thus, we proposed that the synergistic responsiveness of CTLs and NK cells can efficiently control SARS-CoV-2 infection and replication, and NK-cell-mediated anti-SARS-CoV-2 immune responses being mostly involved in severe infection when the level of ORF8 is high enough to degrade HLA-I. The HLA-Bw4/KIR3DL1 genotype may be particularly important for East Asians undergoing COVID-19 who are enriched in HLA-Bw4-inhibitory KIR interactions and carry a high frequency of HLA-Bw4 alleles that bind poorly to coronavirus peptides.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Bo-Hua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Yan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yu-Xin Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jinxiu Tian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yating Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaoduo Xie
- Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Xin Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Favaro R, Formai A, Pavia G, Gargiulo L, Avagliano J, Valenti M, Facheris P, Salsano B, Latorre RV, Bellinato F, Gisondi P, Narcisi A, Costanzo A. The impact of biologic therapy for moderate-to-severe psoriasis on the immune responses to SARS-CoV-2 infection and vaccination. Br J Dermatol 2023; 189:635-637. [PMID: 37463513 DOI: 10.1093/bjd/ljad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 07/20/2023]
Abstract
Biologic therapy for moderate-to-severe psoriasis with anti-IL-23 and anti-IL-17 does not reduce the humoral and T-cell-mediated immune responses after COVID infection or vaccination; on the contrary, anti-IL-23 treatment was associated with a higher level of specific IgG following vaccination. In contrast, conventional therapies and TNF-α blockade reduce the production of specific antibodies.
Collapse
Affiliation(s)
- Rebecca Favaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Formai
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giulia Pavia
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luigi Gargiulo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Jessica Avagliano
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mario Valenti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paola Facheris
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Beatrice Salsano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Roberta V Latorre
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Francesco Bellinato
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Paolo Gisondi
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Alessandra Narcisi
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
21
|
Chen R, Fulton KM, Tran A, Duque D, Kovalchik K, Caron E, Twine SM, Li J. Integrated Immunopeptidomics and Proteomics Study of SARS-CoV-2-Infected Calu-3 Cells Reveals Dynamic Changes in Allele-specific HLA Abundance and Antigen Presentation. Mol Cell Proteomics 2023; 22:100645. [PMID: 37709257 PMCID: PMC10580047 DOI: 10.1016/j.mcpro.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
We present an integrated immunopeptidomics and proteomics study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to comprehensively decipher the changes in host cells in response to viral infection. Immunopeptidomics analysis identified viral antigens presented by host cells through both class I and class II MHC system for recognition by the adaptive immune system. The host proteome changes were characterized by quantitative proteomics and glycoproteomics and from these data, the activation of toll-like receptor 3-interferon pathway was identified. Glycosylation analysis of human leukocyte antigen (HLA) proteins from the elution and flow-through of immunoprecipitation revealed that SARS-CoV-2 infection changed the glycosylation pattern of certain HLA alleles with different HLA alleles, showing distinct dynamic changes in relative abundance. The difference in the glycosylation and abundance of HLA alleles changed the number of strong binding antigens each allele presented, suggesting the impact of SARS-CoV-2 infection on antigen presentation is allele-specific. These results could be further exploited to explain the imbalanced response from innate and adaptive immune system in coronavirus disease 2019 cases, which would be helpful for the development of therapeutics and vaccine for coronavirus disease 2019 and preparation for future pandemic.
Collapse
Affiliation(s)
- Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anh Tran
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diana Duque
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin Kovalchik
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Quebec, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
22
|
Tripathy AS, Wagh P, Vishwakarma S, Akolkar K, Tripathy S, Jali P, Kakrani AL, Barthwal M, Gurav Y, Kadgi N, Nakate L, Abraham P. Association of human leukocyte antigen class I and class II alleles and haplotypes in COVID-19 infection in a western Indian population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105468. [PMID: 37331496 PMCID: PMC10273771 DOI: 10.1016/j.meegid.2023.105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Affiliation(s)
| | - Priyanka Wagh
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | | | - Srikanth Tripathy
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Priyanka Jali
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | - Arjun Lal Kakrani
- Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, India
| | | | - Yogesh Gurav
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Nalini Kadgi
- BJMC and Sassoon General Hospital, Pune, Maharashtra, India
| | - Leena Nakate
- BJMC and Sassoon General Hospital, Pune, Maharashtra, India
| | - Priya Abraham
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|
23
|
Biancolella M, Colona VL, Luzzatto L, Watt JL, Mattiuz G, Conticello SG, Kaminski N, Mehrian-Shai R, Ko AI, Gonsalves GS, Vasiliou V, Novelli G, Reichardt JKV. COVID-19 annual update: a narrative review. Hum Genomics 2023; 17:68. [PMID: 37488607 PMCID: PMC10367267 DOI: 10.1186/s40246-023-00515-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
Three and a half years after the pandemic outbreak, now that WHO has formally declared that the emergency is over, COVID-19 is still a significant global issue. Here, we focus on recent developments in genetic and genomic research on COVID-19, and we give an outlook on state-of-the-art therapeutical approaches, as the pandemic is gradually transitioning to an endemic situation. The sequencing and characterization of rare alleles in different populations has made it possible to identify numerous genes that affect either susceptibility to COVID-19 or the severity of the disease. These findings provide a beginning to new avenues and pan-ethnic therapeutic approaches, as well as to potential genetic screening protocols. The causative virus, SARS-CoV-2, is still in the spotlight, but novel threatening virus could appear anywhere at any time. Therefore, continued vigilance and further research is warranted. We also note emphatically that to prevent future pandemics and other world-wide health crises, it is imperative to capitalize on what we have learnt from COVID-19: specifically, regarding its origins, the world's response, and insufficient preparedness. This requires unprecedented international collaboration and timely data sharing for the coordination of effective response and the rapid implementation of containment measures.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- University of Florence, 50121, Florence, Italy
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | | | - Silvestro G Conticello
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
- Institute of Clinical Physiology - National Council of Research (IFC-CNR), 56124, Pisa, Italy
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA
- Instituto Gonçalo MonizFundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Gregg S Gonsalves
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, USA
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, 89557, Reno, NV, USA.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|
24
|
Bnina AB, El Bahri Y, Cheybi A, Lazrek NB, Chouchane S, Omezzine A, Naija W, Bouatay A. Association between Human Leukocyte Antigen (HLA) DQB1*06 and HLA DQB1*03 and adverse outcomes in a group of critically ill patients with COVID-19 in Tunisia: a cross-sectional study. Pan Afr Med J 2023; 45:109. [PMID: 37719057 PMCID: PMC10504440 DOI: 10.11604/pamj.2023.45.109.39956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Human Leukocyte Antigen (HLA) system is a highly polymorphic genetic system associated with the prognosis of several infectious diseases. The aim of this study is to investigate the association of HLA polymorphism with the outcome of coronavirus disease 2019 (COVID-19) in Tunisian critically ill patients. Methods this retrospective cross-sectional study included 42 consecutive patients hospitalized in intensive care unit (ICU) for COVID-19 in March 2021. Genotyping of HLA loci was performed by LABType™ sequence-specific oligonucleotide (SSO) typing kits (One lambda Inc, USA). Statistical analyses were performed using Statistical Package for Social Sciences (SPSS®) version 23.0. A p-value <0.05 was considered significant. Multivariable regression analysis was performed for the association between HLA polymorphism with adverse outcomes with adjustment for potential confounders such as age, sex, co-morbidities and blood type. Results patients included in our study had a mean age of 64.5 ± 11.5 (34-83) years and were mainly men (64.3%; (n=27)). The most common cardiovascular risk factors were obesity (61.9%; (n=26)) and hypertension (26.2%; (n=11)). Thirty-two patients died (76.2%). Eleven patients (26.2%) required intubation during hospitalization. We found that HLA DQB1*06 allele was significantly associated with protection against mortality aOR: 0.066, 95% CI 0.005-0.821; p = 0.035. HLA DQB1*03 allele was significantly associated with protection against intubation aOR: 0.151, 95% CI 0.023-0.976; p = 0.047. Conclusion it was found that there are 2 protective HLA alleles against COVID-19 severity and mortality in critically ill patients. This could allow focusing on people genetically predisposed to develop severe forms of COVID-19.
Collapse
Affiliation(s)
- Amène Ben Bnina
- Hematology Laboratory, Sahloul Teaching Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Yasmine El Bahri
- Hematology Laboratory, Sahloul Teaching Hospital, Sousse, Tunisia
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Amény Cheybi
- Hematology Laboratory, Sahloul Teaching Hospital, Sousse, Tunisia
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Nada Ben Lazrek
- Hematology Laboratory, Sahloul Teaching Hospital, Sousse, Tunisia
| | - Syrine Chouchane
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Anesthesia and Intensive Care, Sahloul Teaching Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Biochemistry Laboratory, Sahloul Teaching Hospital, Sousse, Tunisia
| | - Walid Naija
- Faculty of Medicine, University of Sousse, Sousse, Tunisia
- Department of Anesthesia and Intensive Care, Sahloul Teaching Hospital, Sousse, Tunisia
| | - Amina Bouatay
- Hematology Laboratory, Sahloul Teaching Hospital, Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
25
|
Nabi AHMN, Ebihara A, Shekhar HU. Impacts of SARS-CoV-2 on diabetes mellitus: A pre and post pandemic evaluation. World J Virol 2023; 12:151-171. [PMID: 37396707 PMCID: PMC10311579 DOI: 10.5501/wjv.v12.i3.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 06/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crippled the whole world and has resulted in large number of morbidity and mortality. The origin of the SARS-CoV-2 is still disputed. The risk of infection with SARS-CoV-2 is dependent on several risk factors as observed in many studies. The severity of the disease depends on many factors including the viral strain, host immunogenetics, environmental factors, host genetics, host nutritional status and presence of comorbidities like hypertension, diabetes, Chronic Obstructive Pulmonary Disease, cardiovascular disease, renal impairment. Diabetes is a metabolic disorder mainly characterized by hyperglycemia. Diabetic individuals are intrinsically prone to infections. SARS-CoV-2 infection in patients with diabetes result in β-cell damage and cytokine storm. Damage to the cells impairs the equilibrium of glucose, leading to hyperglycemia. The ensuing cytokine storm causes insulin resistance, especially in the muscles and liver, which also causes a hyperglycemic state. All of these increase the severity of COVID-19. Genetics also play pivotal role in disease pathogenesis. This review article focuses from the probable sources of coronaviruses and SARS-CoV-2 to its impacts on individuals with diabetes and host genetics in pre- and post-pandemic era.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
26
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
27
|
Takeyama M, Yachi S, Nishimoto Y, Tsujino I, Nakamura J, Yamamoto N, Nakata H, Ikeda S, Umetsu M, Aikawa S, Hayashi H, Satokawa H, Okuno Y, Iwata E, Ogihara Y, Ikeda N, Kondo A, Iwai T, Yamada N, Ogawa T, Kobayashi T, Mo M, Yamashita Y. Mortality-associated Risk Factors in Hospitalized COVID-19 Patients in Japan: Findings of the CLOT-COVID Study. J Epidemiol 2023; 33:150-157. [PMID: 36372435 PMCID: PMC9909175 DOI: 10.2188/jea.je20220201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Reports of mortality-associated risk factors in patients with the novel coronavirus disease 2019 (COVID-19) are limited. METHODS We evaluated the clinical features that were associated with mortality among patients who died during hospitalization (n = 158) and those who were alive at discharge (n = 2,736) from the large-scale, multicenter, retrospective, observational cohort CLOT-COVID study, which enrolled consecutively hospitalized COVID-19 patients from 16 centers in Japan from April to September 2021. Data from 2,894 hospitalized COVID-19 participants of the CLOT-COVID study were analyzed in this study. RESULTS Patients who died were older (71.1 years vs 51.6 years, P < 0.001), had higher median D-dimer values on admission (1.7 µg/mL vs 0.8 µg/mL, P < 0.001), and had more comorbidities. On admission, the patients who died had more severe COVID-19 than did those who survived (mild: 16% vs 63%, moderate: 47% vs 31%, and severe: 37% vs 6.2%, P < 0.001). In patients who died, the incidence of thrombosis and major bleeding during hospitalization was significantly higher than that in those who survived (thrombosis: 8.2% vs 1.5%, P < 0.001; major bleeding: 12.7% vs 1.4%, P < 0.001). Multivariable logistic regression analysis revealed that age >70 years, high D-dimer values on admission, heart disease, active cancer, higher COVID-19 severity on admission, and development of major bleeding during hospitalization were independently associated with a higher mortality risk. CONCLUSION This large-scale observational study in Japan identified several independent risk factors for mortality in hospitalized patients with COVID-19 that could facilitate appropriate risk stratification of patients with COVID-19.
Collapse
Affiliation(s)
- Makoto Takeyama
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center
| | - Sen Yachi
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center
| | | | | | | | | | | | - Satoshi Ikeda
- Nagasaki University Graduate School of Biomedical Sciences
| | | | | | - Hiroya Hayashi
- Osaka Metropolitan University Graduate School of Medicine
| | | | | | - Eriko Iwata
- Nankai Medical Center Japan Community Health Care Organization
| | | | | | - Akane Kondo
- Shikoku Medical Center for Children and Adults
| | | | | | | | | | | | | |
Collapse
|
28
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
29
|
Arab F, Mollazadeh S, Ghayourbabaei F, Moghbeli M, Saburi E. The role of HLA genotypes in understanding the pathogenesis of severe COVID-19. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:14. [PMID: 36718139 PMCID: PMC9878497 DOI: 10.1186/s43042-023-00392-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused human tragedy through the global spread of the viral pathogen SARS-CoV-2. Although the underlying factors for the severity of COVID-19 in different people are still unknown, several gene variants can be used as predictors of disease severity, particularly variations in viral receptor genes such as angiotensin-converting enzyme 2 (ACE2) or major histocompatibility complex (MHC) genes. The reaction of the immune system, as the most important defense strategy in the case of viruses, plays a decisive role. The innate immune system is important both as a primary line of defense and as a trigger of the acquired immune response. The HLA-mediated acquired immune response is linked to the acquired immune system. In various diseases, it has been shown that genetic alterations in components of the immune system can play a crucial role in how the body responds to pathogens, especially viruses. One of the most important host genetic factors is the human leukocyte antigen (HLA) profile, which includes HLA classes I and II and may be symbolic of the diversity of immune response and genetic predisposition in disease progression. COVID-19 will have direct contact with the acquired immune system as an intracellular pathogen after exposure to the proteasome and its components through class I HLA. Therefore, it is assumed that in different genotypes of the HLA-I class, an undesirable supply causes an insufficient activation of the immune system. Insufficient binding of antigen delivered by class I HLA to host lymphocytes results in uncertain identification and insufficient activation of the acquired immune system. The absence of secretion of immune cytokines such as interferons, which play an important role in controlling viral infection in the early stages, is a complication of this event. Understanding the allelic diversity of HLA in people infected with coronavirus compared with uninfected people of one race not only allows identification of people with HLA susceptible to COVID-19 but also provides better insight into the behavior of the virus, which helps to take effective preventive and curative measures earlier.
Collapse
Affiliation(s)
- Fatemeh Arab
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farnaz Ghayourbabaei
- Department of Biology, Faculty of Sciences, University of Ferdowsi, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Fakhkhari M, Caidi H, Sadki K. HLA alleles associated with COVID-19 susceptibility and severity in different populations: a systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023; 24:10. [PMID: 36710951 PMCID: PMC9867832 DOI: 10.1186/s43042-023-00390-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/15/2023] [Indexed: 01/23/2023] Open
Abstract
Background COVID-19 is a respiratory disease caused by a novel coronavirus called as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Detected for the first time in December 2019 in Wuhan and it has quickly spread all over the world in a couple of months and becoming a world pandemic. Symptoms of the disease and clinical outcomes are very different in infected people. These differences highlight the paramount need to study and understand the human genetic variation that occurring viral infections. Human leukocyte antigen (HLA) is an important component of the viral antigen presentation pathway, and it plays an essential role in conferring differential viral susceptibility and severity of diseases. HLA alleles have been involved in the immune response to viral diseases such as SARS-CoV-2. Main body of the abstract Herein, we sought to evaluate this hypothesis by summarizing the association between HLA class I and class II alleles with COVID-19 susceptibility and/or severity reported in previous studies among different populations (Chinese, Italian, Iranian, Japanese, Spanish, etc.). The findings of all selected articles showed that several alleles have been found associated with COVID-19 susceptibility and severity. Even results across articles have been inconsistent and, in some cases, conflicting, highlighting that the association between the HLA system and the COVID-19 outcome might be ethnic-dependent, there were some alleles in common between some populations such as HLA-DRB1*15 and HLA-A*30:02. Conclusion These contradictory findings warrant further large, and reproducible studies to decipher any possible genetic predisposition underlying susceptibility to SARS-COV-2 and disease progression and host immune response.
Collapse
Affiliation(s)
- Meryem Fakhkhari
- Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco
| | - Hayat Caidi
- NARST Surveillance Unit, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Khalid Sadki
- Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
31
|
Ghazy AA, Alrasheedi AN, Elashri M, Moussa HH, Rashwan EK, Amer I, El Sharawy S, Elgamal S, Tawfik S, Abdelnasser M, Elsheredy A. Relevance of HLA-DP/DQ and INF-λ4 Polymorphisms to COVID-19 Outcomes. Br J Biomed Sci 2023; 80:11044. [PMID: 36743382 PMCID: PMC9894893 DOI: 10.3389/bjbs.2023.11044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Background: Single nucleotide polymorphisms provide information on individuals' potential reactions to environmental factors, infections, diseases, as well as various therapies. A study on SNPs that influence SARS-CoV-2 susceptibility and severity may provide a predictive tool for COVID-19 outcomes and improve the customized coronavirus treatment. Aim: To evaluate the role of human leukocyte antigens DP/DQ and IFNλ4 polymorphisms on COVID-19 outcomes among Egyptian patients. Participants and Methods: The study involved 80 patients with severe COVID-19, 80 patients with mild COVID-19, and 80 non-infected healthy volunteers. Genotyping and allelic discrimination of HLA-DPrs3077 (G/A), HLA-DQrs7453920 (A/G), and IFNλ4 rs73555604 (C/T) SNPs were performed using real-time PCR. Results: Ages were 47.9 ± 8, 44.1 ± 12.1, and 45.8 ± 10 years in severe, mild and non-infected persons. There was a statistically significant association between severe COVID-19 and male gender (p = 0.002). A statistically significant increase in the frequency of HLA-DPrs3077G, HLA-DQrs7453920A, and IFNλ4rs73555604C alleles among severe COVID-19 patients when compared with other groups (p < 0.001). Coexistence of these alleles in the same individual increases the susceptibility to severe COVID-19 by many folds (p < 0.001). Univariate and multivariate logistic regression analysis for the studied parameters showed that old age, male gender, non-vaccination, HLA-DQ rs7453920AG+AA, HLA-DPrs3077GA+GG, and IFNλ4rs73555604CT+CC genotypes are independent risk factors for severe COVID-19 among Egyptian patients. Conclusion: HLA-DQ rs7453920A, HLA-DPrs3077G, and IFNλ4rs73555604C alleles could be used as markers of COVID-19 severity.
Collapse
Affiliation(s)
- Amany A. Ghazy
- Department of Pathology, Microbiology and Immunology Division, College of Medicine, Jouf University, Sakaka, Saudi Arabia,*Correspondence: Amany A. Ghazy,
| | - Abdullah N. Alrasheedi
- Department of Otolaryngology - Head and Neck Surgery, College of Medicine, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Mohammed Elashri
- Department of Ophthalmology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hany Hussein Moussa
- Department of Chest Disease, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eman K. Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Ibrahim Amer
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shimaa El Sharawy
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shimaa Elgamal
- Department of Neurology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Salwa Tawfik
- Department of Internal Medicine, National Research Center, Cairo, Egypt
| | | | - Amel Elsheredy
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Karuppiah B, Chinniah R, Pandi S, Sevak V, Ravi PM, Thadakanathan D. Immunogenetic landscape of COVID-19 infections related neurological complications. COVID-19 IN ALZHEIMER'S DISEASE AND DEMENTIA 2023:133-146. [DOI: 10.1016/b978-0-443-15256-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Lemieux W, Perreault J, Leiva-Torres GA, Baillargeon N, Yanez JC, Chevrier MC, Richard L, Lewin A, Trépanier P. HLA and red blood cell antigen genotyping in SARS-CoV-2 convalescent plasma donors. Future Virol 2023; 18:10.2217/fvl-2022-0058. [PMID: 36844192 PMCID: PMC9941981 DOI: 10.2217/fvl-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
Aim: More data is required regarding the association between HLA allele and red blood cell (RBC) antigen expression in regard to SARS-CoV-2 infection and COVID-19 susceptibility. Methods: ABO, RhD, 37 other RBC antigens and HLA-A, B, C, DRB1, DQB1 and DPB1 were determined using high throughput platforms in 90 Caucasian convalescent plasma donors. Results: The AB group was significantly increased (1.5×, p = 0.018) and some HLA alleles were found to be significantly overrepresented (HLA-B*44:02, C*05:01, DPB1*04:01, DRB1*04:01 and DRB1*07:01) or underrepresented (A*01:01, B51:01 and DPB1*04:02) in convalescent individuals compared with the local bone marrow registry population. Conclusion: Our study of infection-susceptible but non-hospitalized Caucasian COVID-19 patients contributes to the global understanding of host genetic factors associated with SARS-CoV-2 infection and severity.
Collapse
Affiliation(s)
- William Lemieux
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | - Josée Perreault
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | | | - Nadia Baillargeon
- Héma-Québec, Transfusion Medicine, Québec City & Montréal, Québec, H4R 2W7, Canada
| | | | | | - Lucie Richard
- Héma-Québec, Transfusion Medicine, Québec City & Montréal, Québec, H4R 2W7, Canada
| | - Antoine Lewin
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | - Patrick Trépanier
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| |
Collapse
|
34
|
Malkova A. Genetic predisposition to COVID-19 and post-COVID syndrome. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:173-184. [DOI: 10.1016/b978-0-443-18566-3.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Dobrijević Z, Gligorijević N, Šunderić M, Penezić A, Miljuš G, Tomić S, Nedić O. The association of human leucocyte antigen (HLA) alleles with COVID-19 severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2378. [PMID: 35818892 PMCID: PMC9349710 DOI: 10.1002/rmv.2378] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Due to their pivotal role in orchestrating the immune response, HLA loci were recognized as candidates for genetic association studies related to the severity of COVID-19. Since the findings on the effects of HLA alleles on the outcome of SARS-CoV-2 infection remain inconclusive, we aimed to elucidate the potential involvement of genetic variability within HLA loci in the molecular genetics of COVID-19 by classifying the articles according to different disease severity/outcomes and by conducting a systematic review with meta-analysis. Potentially eligible studies were identified by searching PubMed, Scopus and Web of Science literature databases. A total of 28 studies with 13,073 participants were included in qualitative synthesis, while the results of 19 studies with 10,551 SARS-CoV-2-positive participants were pooled in the meta-analysis. According to the results of quantitative data synthesis, association with COVID-19 severity or with the lethal outcome was determined for the following alleles and allele families: HLA-A*01, HLA-A*03, HLA-A*11, HLA-A*23, HLA-A*31, HLA-A*68, HLA-A*68:02, HLA-B*07:02, HLA-B*14, HLA-B*15, HLA-B*40:02, HLA-B*51:01, HLA-B*53, HLA-B*54, HLA-B*54:01, HLA-C*04, HLA-C*04:01, HLA-C*06, HLA-C*07:02, HLA-DRB1*11, HLA-DRB1*15, HLA-DQB1*03 and HLA-DQB1*06 (assuming either allelic or dominant genetic model). We conclude that alleles of HLA-A, -B, -C, -DRB1 and -DQB1 loci may represent potential biomarkers of COVID-19 severity and/or mortality, which needs to be confirmed in a larger set of studies.
Collapse
Affiliation(s)
- Zorana Dobrijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Nikola Gligorijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Miloš Šunderić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Ana Penezić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Goran Miljuš
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Sergej Tomić
- Department for Immunology and ImmunoparasitologyUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Olgica Nedić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| |
Collapse
|
36
|
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
37
|
Lu X, Yamasaki S. Current understanding of T cell immunity against SARS-CoV-2. Inflamm Regen 2022; 42:51. [PMID: 36447270 PMCID: PMC9706904 DOI: 10.1186/s41232-022-00242-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
As an important part of adaptive immunity, T cells are indispensable in the defense against pathogens including viruses. SARS-CoV-2 is a new human coronavirus that occurred at the end of 2019 and has caused the COVID-19 pandemic. Nevertheless, most of the infected patients recovered without any antiviral therapies, suggesting an effective immunity developed in the bodies. T cell immunity responds upon SARS-CoV-2 infection or vaccination and plays crucial roles in eliminating the viruses and generating T cell memory. Specifically, a subpopulation of CD4+ T cells could support the production of anti-SARS-CoV-2 antibodies, and cytotoxic CD8+ T cells are also protective against the infection. SARS-CoV-2-recognizing T cells could be detected in SARS-CoV-2-unexposed donors, but the role of these cross-reactive T cells is still in debate. T cell responses could be diverse across individuals, mainly due to the polymorphism of HLAs. Thus, compared to antibodies, T cell responses are generally less affected by the mutations of SARS-CoV-2 variants. Up to now, a huge number of studies on SARS-CoV-2-responsive T cells have been published. In this review, we introduced some major findings addressing the questions in the main aspects about T cell responses elicited by SARS-CoV-2, to summarize the current understanding of COVID-19.
Collapse
Affiliation(s)
- Xiuyuan Lu
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Epitope Analysis Team, Center for Advanced Modalities and DDS, Osaka University, Suita, 565-0871 Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Epitope Analysis Team, Center for Advanced Modalities and DDS, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871 Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
38
|
Prasad N, Yadav B, Prakash S, Yadav D, Singh A, Gautam S, Bhadauria D, Kaul A, Patel MR, Behera MR, Kushwaha RS, Yachha M. Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients. Vaccines (Basel) 2022; 10:1840. [PMID: 36366349 PMCID: PMC9697220 DOI: 10.3390/vaccines10111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/30/2023] Open
Abstract
Human leucocyte antigens (HLAs) are highly polymorphic glycoproteins expressed at the surface of all nucleated cells. It is required for the SARS-CoV-2 peptide antigen presentation to immune cells for their effector response. However, polymorphism in HLA significantly impacts the binding of SARS-CoV-2 antigenic peptide to the HLA pocket and regulates immune activation. In this study, 514 renal transplant recipients (RTRs) were recruited from the outpatient department and categorized either into symptomatic (n = 173) or asymptomatic groups (n = 341) based on Coronavirus disease-19 (COVID-19) symptoms. The anti-SARS-CoV-2 spike protein-specific IgG antibody titer was measured by chemiluminescent microparticle immune-assay methods in 310 RTRs. The HLA details of 514 patients were retrieved from the electronic medical records and analyzed retrospectively. We found that HLA antigen allele A*24 was significantly associated with asymptomatic infection in 22.78%, HLA C*02 in 4.51%, DRB1*12 in 10.85%, and HLA DQA1*02 in 27.74% of RTRs. Whereas HLA A*29 in 3.46%, A*33 in 26.01%, B*13 in 10.40%, DRB1*10 in 4.62%, DRB1*15 in 39.30%, DRB1*30 in 1.15%, and DQA1*60 in 3.57% of RTRs were associated with symptomatic infection. HLA DRB1*13 and DRB1*15 were associated with moderate to severe degrees of COVID-19 disease. The seroconversion rate in asymptomatic patients was 118/137 (86.13%), had a median titer of 647.80 au/ml, compared to symptomatic patients 148/173 (85.54%) with a median titer of 400.00 au/ml, which was not significant between the two groups (P = 0.88 and 0.13). In conclusion, HLA alleles A*24, C*02, DRB1*12, and DQA1*02 were significantly associated with asymptomatic infection, and A*29, A*33, B*13, DRB1*10, DRB*15, and DRB1*30 were significantly associated with symptomatic infection. HLA DRB1*13 and DRB1*15 were associated with moderate to severe degrees of COVID-19 disease.
Collapse
Affiliation(s)
- Narayan Prasad
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bubnova L, Pavlova I, Terentieva M, Glazanova T, Belyaeva E, Sidorkevich S, Bashketova N, Chkhingeria I, Kozhemyakina M, Azarov D, Kuznetsova R, Ramsay ES, Gladkikh A, Sharova A, Dedkov V, Totolian A. HLA Genotypes in Patients with Infection Caused by Different Strains of SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14024. [PMID: 36360904 PMCID: PMC9657774 DOI: 10.3390/ijerph192114024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The aggressive infectious nature of SARS-CoV-2, its rapid spread, and the emergence of mutations necessitate investigation of factors contributing to differences in SARS-CoV-2 susceptibility and severity. The role of genetic variations in the human HLA continues to be studied in various populations in terms of both its effect on morbidity and clinical manifestation of illness. The study included 484 COVID-19 convalescents (northwest Russia residents of St. Petersburg). Cases in which the responsible strain was determined were divided in two subgroups: group 1 (n = 231) had illness caused by genovariants unrelated to variant of concern (VOC) strains; and group 2 (n = 80) had illness caused by the delta (B.1.617.2) VOC; and a control group (n = 1456). DNA typing (HLA-A, B, DRB1) was performed at the basic resolution level. HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants only but not against infection caused by delta strains. HLA-A*03 was associated with protection against infection caused by delta strains; and allele groups associated with infection by delta strains were HLA-A*30, B*49, and B*57. Thus, in northwest Russia, HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants but not against delta viral strains. HLA-A*03 was associated with a reduced risk of infection by delta SARS-CoV-2 strains. HLA-A*30, HLA-B*49, and HLA-B*57 allele groups were predisposing factors for infection by delta (B.1.617.2) strains.
Collapse
Affiliation(s)
- Ludmila Bubnova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
| | - Irina Pavlova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Maria Terentieva
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Tatiana Glazanova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Elena Belyaeva
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Sergei Sidorkevich
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Nataliya Bashketova
- Saint Petersburg Office, Federal Service for Consumer Rights Protection and Human Welfare, 191025 St. Petersburg, Russia
| | - Irina Chkhingeria
- Saint Petersburg Office, Federal Service for Consumer Rights Protection and Human Welfare, 191025 St. Petersburg, Russia
| | | | - Daniil Azarov
- Saint Petersburg Center for Hygiene and Epidemiology, 191023 St. Petersburg, Russia
| | - Raisa Kuznetsova
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Edward S. Ramsay
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Anna Gladkikh
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Alena Sharova
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Vladimir Dedkov
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Areg Totolian
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| |
Collapse
|
40
|
Castelli EC, de Castro MV, Naslavsky MS, Scliar MO, Silva NSB, Pereira RN, Ciriaco VAO, Castro CFB, Mendes-Junior CT, Silveira EDS, de Oliveira IM, Antonio EC, Vieira GF, Meyer D, Nunes K, Matos LRB, Silva MVR, Wang JYT, Esposito J, Cória VR, Magawa JY, Santos KS, Cunha-Neto E, Kalil J, Bortolin RH, Hirata MH, Dell’Aquila LP, Razuk-Filho A, Batista-Júnior PB, Duarte-Neto AN, Dolhnikoff M, Saldiva PHN, Passos-Bueno MR, Zatz M. MUC22, HLA-A, and HLA-DOB variants and COVID-19 in resilient super-agers from Brazil. Front Immunol 2022; 13:975918. [PMID: 36389712 PMCID: PMC9641602 DOI: 10.3389/fimmu.2022.975918] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 08/08/2023] Open
Abstract
Background Although aging correlates with a worse prognosis for Covid-19, super elderly still unvaccinated individuals presenting mild or no symptoms have been reported worldwide. Most of the reported genetic variants responsible for increased disease susceptibility are associated with immune response, involving type I IFN immunity and modulation; HLA cluster genes; inflammasome activation; genes of interleukins; and chemokines receptors. On the other hand, little is known about the resistance mechanisms against SARS-CoV-2 infection. Here, we addressed polymorphisms in the MHC region associated with Covid-19 outcome in super elderly resilient patients as compared to younger patients with a severe outcome. Methods SARS-CoV-2 infection was confirmed by RT-PCR test. Aiming to identify candidate genes associated with host resistance, we investigated 87 individuals older than 90 years who recovered from Covid-19 with mild symptoms or who remained asymptomatic following positive test for SARS-CoV-2 as compared to 55 individuals younger than 60 years who had a severe disease or died due to Covid-19, as well as to the general elderly population from the same city. Whole-exome sequencing and an in-depth analysis of the MHC region was performed. All samples were collected in early 2020 and before the local vaccination programs started. Results We found that the resilient super elderly group displayed a higher frequency of some missense variants in the MUC22 gene (a member of the mucins' family) as one of the strongest signals in the MHC region as compared to the severe Covid-19 group and the general elderly control population. For example, the missense variant rs62399430 at MUC22 is two times more frequent among the resilient super elderly (p = 0.00002, OR = 2.24). Conclusion Since the pro-inflammatory basal state in the elderly may enhance the susceptibility to severe Covid-19, we hypothesized that MUC22 might play an important protective role against severe Covid-19, by reducing overactive immune responses in the senior population.
Collapse
Affiliation(s)
- Erick C. Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mateus V. de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Nayane S. B. Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Raphaela N. Pereira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Viviane A. O. Ciriaco
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila F. B. Castro
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
- Centro Universitário Sudoeste Paulista, Avaré, Brazil
| | - Celso T. Mendes-Junior
- Departamento de Química, Faculdade de Filosofa, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Etiele de S. Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iuri M. de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo C. Antonio
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gustavo F. Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Saúde Humana In Silico, Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Larissa R. B. Matos
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Jaqueline Y. T. Wang
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Joyce Esposito
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Vivian R. Cória
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Jhosiene Y. Magawa
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Keity S. Santos
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Jorge Kalil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Raul H. Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mário Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Amaro N. Duarte-Neto
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marisa Dolhnikoff
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo H. N. Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Krusko OV, Novikova EA, Potapov PK, Petrova AG. Genetic pattern of the COVID-19 course and reinfection. BULLETIN OF THE RUSSIAN MILITARY MEDICAL ACADEMY 2022; 24:593-604. [DOI: 10.17816/brmma109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A new coronavirus infection (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) broke out at the end of 2019 in Wuhan (China). The disease has become a global pandemic and claimed more than 6 million lives after spreading rapidly around the world. Issues related to the complicated course of COVID-19 mechanisms continue to be the subject of active study. It is known that morbidity and mortality increase dramatically with increasing age and concomitant diseases, including obesity, diabetes, cancer, and cardiovascular diseases. Although most infected people recover, even young and otherwise healthy patients can get sick with this disease. In this regard, an urgent task is to search for specific genetic factors that can explain the predisposition of people to infection and the development of a severe COVID-19 form. Human genetic determinants can provide the scientific basis for disease prediction and the development of personalized therapies to counteract the epidemic. In addition, cases of repeated infection with SARS-CoV-2 are increasingly being registered, which occurs 16 months after initial infection on average and depends on the virus genome structure. Studies conducted on sequencing viral genomes have shown that some patients were re-infected with the same strain of coronavirus, while others were different. This, in turn, causes researchers concerns about the effectiveness of immunity after infection and vaccine reliability. The genetic characteristics of a person and a virus commonly determine the tendency for reinfection. It is difficult to determine the true COVID-19 reinfection prevalence, which is explained by the low detectability of asymptomatic reinfection and the fact that many patients with a mild course of the disease were not tested at an early stage of the pandemic. Therefore, the true prevalence of reinfection with COVID-19 does not reflect the current reality. There are many more cases of reinfection than are described in the literature. In this regard, the true contribution of a virus genetic features to reinfection of COVID-19 can be determined only after population studies, and when developing immunization programs against a COVID-19, it is necessary to take into account the prevalence of reinfection in the population.
Collapse
|
42
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Palatnik-de-Sousa I, Wallace ZS, Cavalcante SC, Ribeiro MPF, Silva JABM, Cavalcante RC, Scheuermann RH, Palatnik-de-Sousa CB. A novel vaccine based on SARS-CoV-2 CD4 + and CD8 + T cell conserved epitopes from variants Alpha to Omicron. Sci Rep 2022; 12:16731. [PMID: 36202985 PMCID: PMC9537284 DOI: 10.1038/s41598-022-21207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022] Open
Abstract
COVID-19 caused, as of September, 1rst, 2022, 599,825,400 confirmed cases, including 6,469,458 deaths. Currently used vaccines reduced severity and mortality but not virus transmission or reinfection by different strains. They are based on the Spike protein of the Wuhan reference virus, which although highly antigenic suffered many mutations in SARS-CoV-2 variants, escaping vaccine-generated immune responses. Multiepitope vaccines based on 100% conserved epitopes of multiple proteins of all SARS-CoV-2 variants, rather than a single highly mutating antigen, could offer more long-lasting protection. In this study, a multiepitope multivariant vaccine was designed using immunoinformatics and in silico approaches. It is composed of highly promiscuous and strong HLA binding CD4+ and CD8+ T cell epitopes of the S, M, N, E, ORF1ab, ORF 6 and ORF8 proteins. Based on the analysis of one genome per WHO clade, the epitopes were 100% conserved among the Wuhan-Hu1, Alpha, Beta, Gamma, Delta, Omicron, Mµ, Zeta, Lambda and R1 variants. An extended epitope-conservancy analysis performed using GISAID metadata of 3,630,666 SARS-CoV-2 genomes of these variants and the additional genomes of the Epsilon, Lota, Theta, Eta, Kappa and GH490 R clades, confirmed the high conservancy of the epitopes. All but one of the CD4 peptides showed a level of conservation greater than 97% among all genomes. All but one of the CD8 epitopes showed a level of conservation greater than 96% among all genomes, with the vast majority greater than 99%. A multiepitope and multivariant recombinant vaccine was designed and it was stable, mildly hydrophobic and non-toxic. The vaccine has good molecular docking with TLR4 and promoted, without adjuvant, strong B and Th1 memory immune responses and secretion of high levels of IL-2, IFN-γ, lower levels of IL-12, TGF-β and IL-10, and no IL-6. Experimental in vivo studies should validate the vaccine's further use as preventive tool with cross-protective properties.
Collapse
Affiliation(s)
- Iam Palatnik-de-Sousa
- Department of Electrical Engeneering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Stephany Christiny Cavalcante
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Paula Fonseca Ribeiro
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Antônio Barbosa Martins Silva
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Ciro Cavalcante
- Department of Pharmacy, Campus Professor Antônio Garcia Filho, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Global Virus Network, Baltimore, MD, USA
| | - Clarisa Beatriz Palatnik-de-Sousa
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute for Immunological Investigation (III), INCT, National Council for Scientific and Technological Development (CNPq), São Paulo, Brazil.
| |
Collapse
|
44
|
Siserman CV, Jeican II, Gheban D, Anton V, Mironescu D, Șușman S, Vică ML, Lazăr M, Aluaș M, Toader C, Albu S. Fatal Form of COVID-19 in a Young Male Bodybuilder Anabolic Steroid Using: The First Autopsied Case. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1373. [PMID: 36295534 PMCID: PMC9611349 DOI: 10.3390/medicina58101373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
We report the case of a 34-year-old male patient, a bodybuilding trainer and user of anabolic androgenic steroids (AASs) for 16 years. He was found in cardio-respiratory arrest in his home. By performing a medico-legal autopsy, a severe form of COVID-19, aortic atherosclerotic plaques, and an old myocardial infarction was found. The SARS-CoV-2 RT-PCR test on necroptic lung fragments was positive, with a B.1.258 genetic line. The histopathological examinations showed microthrombi with endothelitis in the cerebral tissue, massive pulmonary edema, diffuse alveolar damage grade 1, pulmonary thromboembolism, hepatic peliosis, and severe nesidioblastosis. The immunohistochemical examinations showed SARS-CoV-2 positive in the myocardium, lung, kidneys, and pancreas. ACE-2 receptor was positive in the same organs, but also in the spleen and liver. HLA alleles A*03, A*25, B*18, B*35, C*04, C*12, DRB1*04, DRB1*15, DQB1*03, DQB1*06 were also identified. In conclusion, death was due to a genetic predisposition, a long-term abuse of AASs that favored the development of a pluriorganic pathological tissue terrain, and recent consumption of AASs, which influenced the immune system at the time of infection.
Collapse
Affiliation(s)
- Costel Vasile Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Legal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ionuț Isaia Jeican
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Infectious Disease Clinical Hospital, 400000 Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Pathology, Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Vlad Anton
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | | | - Sergiu Șușman
- Imogen Medical Research Institute, County Clinical Emergency Hospital, 400000 Cluj-Napoca, Romania
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihaela Laura Vică
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Mihaela Lazăr
- Viral Respiratory Infections Laboratory, Cantacuzino National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Maria Aluaș
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babeș Str., No. 15, 400012 Cluj-Napoca, Romania
| | - Corneliu Toader
- Clinic of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 041914 Bucharest, Romania
| | - Silviu Albu
- Department of Head and Neck Surgery and Otorhinolaryngology, University Clinical Hospital of Railway Company, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Ji XS, Chen B, Ze B, Zhou WH. Human genetic basis of severe or critical illness in COVID-19. Front Cell Infect Microbiol 2022; 12:963239. [PMID: 36204639 PMCID: PMC9530247 DOI: 10.3389/fcimb.2022.963239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable morbidity and mortality worldwide. The clinical manifestation of COVID-19 ranges from asymptomatic or mild infection to severe or critical illness, such as respiratory failure, multi-organ dysfunction or even death. Large-scale genetic association studies have indicated that genetic variations affecting SARS-CoV-2 receptors (angiotensin-converting enzymes, transmembrane serine protease-2) and immune components (Interferons, Interleukins, Toll-like receptors and Human leukocyte antigen) are critical host determinants related to the severity of COVID-19. Genetic background, such as 3p21.31 and 9q34.2 loci were also identified to influence outcomes of COVID-19. In this review, we aimed to summarize the current literature focusing on human genetic factors that may contribute to the observed diversified severity of COVID-19. Enhanced understanding of host genetic factors and viral interactions of SARS-CoV-2 could provide scientific bases for personalized preventive measures and precision medicine strategies.
Collapse
Affiliation(s)
- Xiao-Shan Ji
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bin Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bi Ze
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
46
|
Dieter C, Brondani LDA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS One 2022; 17:e0270627. [PMID: 35793369 PMCID: PMC9258831 DOI: 10.1371/journal.pone.0270627] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia de Almeida Brondani
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Emerim Lemos
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
47
|
Suslova TA, Vavilov MN, Belyaeva SV, Evdokimov AV, Stashkevich DS, Galkin A, Kofiadi IA. Distribution of HLA-A, -B, -C, -DRB1, -DQB1, -DPB1 allele frequencies in patients with COVID-19 bilateral pneumonia in Russians, living in the Chelyabinsk region (Russia). Hum Immunol 2022; 83:547-550. [PMID: 35525710 PMCID: PMC9046060 DOI: 10.1016/j.humimm.2022.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
Abstract
In this population-based case-control study conducted in the Chelyabinsk region of Russia, we examined the distribution of HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, in a group of 100 patients with confirmed COVID-19 bilateral pneumonia. Typing was performed by NGS and statistical calculations were carried out with the Arlequin program. HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 alleles were compared between patients with COVID-19 and 99 healthy controls. We identified that COVID-19 susceptibility is associated with alleles and genotypes rs9277534A (disequilibrium with HLA-DPB1*02:01, -02:02, -04:01, -04:02, -17:01 alleles) with low expression of protein products HLA-DPB1 (pc < 0.028) and homozygosity at HLA-C*04 (p = 0.024, pc = 0.312). Allele HLA-A*01:01 was decreased in a group of patients with severe forms of bilateral pneumonia, and therefore it may be considered as a protective factor for the development of severe symptoms of COVID-19 (p = 0.009, pc = 0.225). Our studies provide further evidence for the functional association between HLA genes and COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Ilya A Kofiadi
- Pirogov Russian National Reseach Medical University, Moscow, Russia
| |
Collapse
|
48
|
Aviles-Gonzalez CI, Scano A, Cossu G, Littera R, Campagna M, Deidda S, Romano F, Kalcev G, Firinu D, Meloni F, Carta MG, Del Giacco S, Restivo A, Zorcolo L, Marongiu L, Tamburini G, Maleci A, Orrù G, Chessa L, Brasesco MV. Verifying the Theory of Climate Affecting Lethality of COVID-19 by an Analysis in Two Climatic Zones of Chile. THE OPEN PUBLIC HEALTH JOURNAL 2022; 15. [DOI: 10.2174/18749445-v15-e2204140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 09/22/2023]
Abstract
Introduction:
The study of seasonal influences on the COVID-19 pandemic can take advantage of the unique position of Chile and its different climatic profiles in the north-south extension. The purpose is to verify the influence of seasonal climate changes on the COVID-19 in the temperate and sub-arctic areas of Chile.
Methods:
We monitored the evolution of CFR in temperate versus sub-boreal regions, reporting from the John Hopkins University COVID-19 Center on the CFR in each province in midwinter, spring, and early summer.
Results:
CFR worsened from mid-winter to mid-spring in the temperate zone of Chile, while in the sub-boreal area the CFR improves in the same period, (Kruskal Wallis Test, p=0.004). In the temperate zone after the increase in late winter-early spring, CRF tends to stabilize; on the contrary in the sub-boreal zone, there is a more marked tendency to worsen the CFR at the same time (Kruskal Wallis Test, p=0.010). The temperate zone of Chile shows a CFR increasing until spring-like temperate Europe, unlike Europe CFR does not decrease in summer, but the mean minimum temperature in temperate Chile is lower in summer than in temperate Europe. In Patagonian, CFR remains stable or drops from winter to spring but increases in early summer.
Conclusion:
The temperate and sub-boreal zones of Chile have a markedly different CFR variation profile during the COVID-19 pandemic.
Collapse
|
49
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
50
|
Biancolella M, Colona VL, Mehrian-Shai R, Watt JL, Luzzatto L, Novelli G, Reichardt JKV. COVID-19 2022 update: transition of the pandemic to the endemic phase. Hum Genomics 2022; 16:19. [PMID: 35650595 PMCID: PMC9156835 DOI: 10.1186/s40246-022-00392-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Ruty Mehrian-Shai
- Sheba Medical Center, Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,University of Florence, Florence, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy. .,Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, USA. .,Department of Biomedicine and Prevention, School of Medicine and Surgery, Via Montpellier 1, 00133, Rome, Italy.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|