1
|
Vidal E, Eraña H, Charco JM, Lorenzo NL, Giler S, Ordóñez M, Fernández-Muñoz E, San-Juan-Ansoleaga M, Telling GC, Sánchez-Martín MA, Geijo M, Requena JR, Castilla J. Conservation of strain properties of bank vole-adapted chronic wasting disease in the absence of glycosylation and membrane anchoring. Neurobiol Dis 2025; 210:106894. [PMID: 40220915 DOI: 10.1016/j.nbd.2025.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Prion disease phenotypes (prion strains) are primarily determined by the specific misfolded conformation of the cellular prion protein (PrPC). However, post-translational modifications, including glycosyl phosphatidyl inositol (GPI) membrane anchoring and glycosylation, may influence strain characteristics. We investigated whether these modifications are essential for maintaining the unique properties of bank vole-adapted Chronic Wasting Disease (CWD-vole), the fastest known prion strain. Using a novel transgenic mouse model expressing I109 bank vole PrPC lacking the GPI anchor and largely devoid of glycans, we performed serial passages of CWD-vole prions. Despite elongated initial incubation periods, the strain maintained 100 % attack rate through three passages. Although the pathological phenotype showed characteristic GPI-less features, including abundant extracellular plaque formation, three subsequent serial passages in fully glycosylated and GPI-anchored bank vole I109 PrPC expressing transgenic mice TgVole (1×) demonstrated that the strain's distinctive rapid propagation properties were preserved. These findings suggest that neither GPI anchoring nor glycosylation are essential for maintaining CWD-vole strain properties, supporting the concept that strain characteristics are primarily encoded in the protein's misfolded structure.
Collapse
Affiliation(s)
- Enric Vidal
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain.
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain; ATLAS Molecular Pharma S. L., Derio, Spain.
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain; ATLAS Molecular Pharma S. L., Derio, Spain.
| | - Nuria L Lorenzo
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain; Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain.
| | - Samanta Giler
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain.
| | - Montserrat Ordóñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia. Spain.
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Glenn C Telling
- Prion Research Center, Colorado State University, Fort Collins, USA.
| | - Manuel A Sánchez-Martín
- Transgenic Facility, Department of Medicine, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| | - Mariví Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain; Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain.
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Arshad H, Eid S, Mehra S, Williams D, Kaczmarczyk L, Stuart E, Jackson WS, Schmitt-Ulms G, Watts JC. The brain interactome of a permissive prion replication substrate. Neurobiol Dis 2025; 206:106802. [PMID: 39800229 DOI: 10.1016/j.nbd.2025.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue. Substantial overlap was observed between the top interactors for BVPrP and MoPrP, with established PrP-interactors such as neural cell adhesion molecules, subunits of Na+/K+-ATPases, and contactin-1 being equally present in the two interactomes. We conclude that the molecular environments of BVPrP and MoPrP in the brains of mice are very similar. This suggests that the unorthodox properties of BVPrP are unlikely to be mediated by differential interactions with other proteins.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Nguyen TTD, Zayed M, Kim YC, Jeong BH. The First Genetic Characterization of the SPRN Gene in Pekin Ducks ( Anas platyrhynchos domesticus). Animals (Basel) 2024; 14:1588. [PMID: 38891635 PMCID: PMC11171214 DOI: 10.3390/ani14111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by an accumulation of misfolded prion protein (PrPSc) in brain tissues. The shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is involved in prion disease progress. The interaction between Sho and PrP accelerates the PrPSc conversion rate while the SPRN gene polymorphisms have been associated with prion disease susceptibility in several species. Until now, the SPRN gene has not been investigated in ducks. We identified the duck SPRN gene sequence and investigated the genetic polymorphisms of 184 Pekin ducks. We compared the duck SPRN nucleotide sequence and the duck Sho protein amino acid sequence with those of several other species. Finally, we predicted the duck Sho protein structure and the effects of non-synonymous single nucleotide polymorphisms (SNPs) using computational programs. We were the first to report the Pekin duck SPRN gene sequence. The duck Sho protein sequence showed 100% identity compared with the chicken Sho protein sequence. We found 27 novel SNPs in the duck SPRN gene. Four amino acid substitutions were predicted to affect the hydrogen bond distribution in the duck Sho protein structure. Although MutPred2 and SNPs&GO predicted that all non-synonymous polymorphisms were neutral or benign, SIFT predicted that four variants, A22T, G49D, A68T, and M105I, were deleterious. To the best of our knowledge, this is the first report about the genetic and structural characteristics of the duck SPRN gene.
Collapse
Affiliation(s)
- Thi-Thuy-Duong Nguyen
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea (M.Z.)
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea (M.Z.)
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea (M.Z.)
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
5
|
Thackray AM, Lam B, McNulty EE, Nalls AV, Mathiason CK, Magadi SS, Jackson WS, Andréoletti O, Marrero-Winkens C, Schätzl H, Bujdoso R. Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system. Brain 2022; 145:3236-3249. [PMID: 35446941 PMCID: PMC9473358 DOI: 10.1093/brain/awac144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Brian Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Srivathsa Subramanya Magadi
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristóbal Marrero-Winkens
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Hermann Schätzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary TRW 2D10, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
6
|
Gene expression and epigenetic markers of prion diseases. Cell Tissue Res 2022; 392:285-294. [PMID: 35307791 PMCID: PMC10113299 DOI: 10.1007/s00441-022-03603-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been proposed as biomarkers for diagnosis, classification, or monitoring of responsiveness to treatment in many diseases. In prion diseases, the profound associations with human aging, the effects of cell type and differentiation on in vitro susceptibility, and recently identified human risk factors, all implicate causal epigenetic mechanisms. Here, we review the current state of the art of epigenetics in prion diseases and its interaction with genetic determinants. In particular, we will review recent advances made by several groups in the field profiling DNA methylation and microRNA expression in mammalian prion diseases and the potential for these discoveries to be exploited as biomarkers.
Collapse
|
7
|
Koshy SM, Kincaid AE, Bartz JC. Transport of Prions in the Peripheral Nervous System: Pathways, Cell Types, and Mechanisms. Viruses 2022; 14:630. [PMID: 35337037 PMCID: PMC8954800 DOI: 10.3390/v14030630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Prion diseases are transmissible protein misfolding disorders that occur in animals and humans where the endogenous prion protein, PrPC, undergoes a conformational change into self-templating aggregates termed PrPSc. Formation of PrPSc in the central nervous system (CNS) leads to gliosis, spongiosis, and cellular dysfunction that ultimately results in the death of the host. The spread of prions from peripheral inoculation sites to CNS structures occurs through neuroanatomical networks. While it has been established that endogenous PrPC is necessary for prion formation, and that the rate of prion spread is consistent with slow axonal transport, the mechanistic details of PrPSc transport remain elusive. Current research endeavors are primarily focused on the cellular mechanisms of prion transport associated with axons. This includes elucidating specific cell types involved, subcellular machinery, and potential cofactors present during this process.
Collapse
Affiliation(s)
- Sam M. Koshy
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Anthony E. Kincaid
- Department of Pharmacy Science, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA;
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
8
|
Lakkaraju AKK, Sorce S, Senatore A, Nuvolone M, Guo J, Schwarz P, Moos R, Pelczar P, Aguzzi A. Glial activation in prion diseases is selectively triggered by neuronal PrP Sc. Brain Pathol 2022; 32:e13056. [PMID: 35178783 PMCID: PMC9425016 DOI: 10.1111/bpa.13056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Although prion infections cause cognitive impairment and neuronal death, transcriptional and translational profiling shows progressive derangement within glia but surprisingly little changes within neurons. Here we expressed PrPC selectively in neurons and astrocytes of mice. After prion infection, both astrocyte and neuron‐restricted PrPC expression led to copious brain accumulation of PrPSc. As expected, neuron‐restricted expression was associated with typical prion disease. However, mice with astrocyte‐restricted PrPC expression experienced a normal life span, did not develop clinical disease, and did not show astro‐ or microgliosis. Besides confirming that PrPSc is innocuous to PrPC‐deficient neurons, these results show that astrocyte‐born PrPSc does not activate the extreme neuroinflammation that accompanies the onset of prion disease and precedes any molecular changes of neurons. This points to a nonautonomous mechanism by which prion‐infected neurons instruct astrocytes and microglia to acquire a specific cellular state that, in turn, drives neural dysfunction.
Collapse
Affiliation(s)
- Asvin K K Lakkaraju
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland.,Amyloidosis Research and Treatment Center, Foundation Scientific Institute Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jingjing Guo
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Tranulis MA, Gavier-Widén D, Våge J, Nöremark M, Korpenfelt SL, Hautaniemi M, Pirisinu L, Nonno R, Benestad SL. Chronic wasting disease in Europe: new strains on the horizon. Acta Vet Scand 2021; 63:48. [PMID: 34823556 PMCID: PMC8613970 DOI: 10.1186/s13028-021-00606-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders with known natural occurrence in humans and a few other mammalian species. The diseases are experimentally transmissible, and the agent is derived from the host-encoded cellular prion protein (PrPC), which is misfolded into a pathogenic conformer, designated PrPSc (scrapie). Aggregates of PrPSc molecules, constitute proteinaceous infectious particles, known as prions. Classical scrapie in sheep and goats and chronic wasting disease (CWD) in cervids are known to be infectious under natural conditions. In CWD, infected animals can shed prions via bodily excretions, allowing direct host-to-host transmission or indirectly via prion-contaminated environments. The robustness of prions means that transmission via the latter route can be highly successful and has meant that limiting the spread of CWD has proven difficult. In 2016, CWD was diagnosed for the first time in Europe, in reindeer (Rangifer tarandus) and European moose (Alces alces). Both were diagnosed in Norway, and, subsequently, more cases were detected in a semi-isolated wild reindeer population in the Nordfjella area, in which the first case was identified. This population was culled, and all reindeer (approximately 2400) were tested for CWD; 18 positive animals, in addition to the first diagnosed case, were found. After two years and around 25,900 negative tests from reindeer (about 6500 from wild and 19,400 from semi-domesticated) in Norway, a new case was diagnosed in a wild reindeer buck on Hardangervidda, south of the Nordfjella area, in 2020. Further cases of CWD were also identified in moose, with a total of eight in Norway, four in Sweden, and two cases in Finland. The mean age of these cases is 14.7 years, and the pathological features are different from North American CWD and from the Norwegian reindeer cases, resembling atypical prion diseases such as Nor98/atypical scrapie and H- and L-forms of BSE. In this review, these moose cases are referred to as atypical CWD. In addition, two cases were diagnosed in red deer (Cervus elaphus) in Norway. The emergence of CWD in Europe is a threat to European cervid populations, and, potentially, a food-safety challenge, calling for a swift, evidence-based response. Here, we review data on surveillance, epidemiology, and disease characteristics, including prion strain features of the newly identified European CWD agents.
Collapse
|
10
|
Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021; 13:v13112287. [PMID: 34835094 PMCID: PMC8621399 DOI: 10.3390/v13112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a class of fatal neurodegenerative diseases caused by the entry and spread of infectious prion proteins (PrPSc) in the central nervous system (CNS). These diseases are endemic to certain mammalian animal species that use their sense of smell for a variety of purposes and therefore expose their nasal cavity (NC) to PrPSc in the environment. Prion diseases that affect humans are either inherited due to a mutation of the gene that encodes the prion protein, acquired by exposure to contaminated tissues or medical devices, or develop without a known cause (referred to as sporadic). The purpose of this review is to identify components of the NC that are involved in prion transport and to summarize the evidence that the NC serves as a route of entry (centripetal spread) and/or a source of shedding (centrifugal spread) of PrPSc, and thus plays a role in the pathogenesis of the TSEs.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Departments of Pharmacy Sciences and Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
11
|
Adhikari UK, Tayebi M. Epitope-specific anti-PrP antibody toxicity: a comparative in-silico study of human and mouse prion proteins. Prion 2021; 15:155-176. [PMID: 34632945 PMCID: PMC8900626 DOI: 10.1080/19336896.2021.1964326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Despite having therapeutic potential, anti-PrP antibodies caused a major controversy due to their neurotoxic effects. For instance, treating mice with ICSM antibodies delayed prion disease onset, but both were found to be either toxic or innocuous to neurons by researchers following cross-linking PrPC. In order to elucidate and understand the reasons that led to these contradictory outcomes, we conducted a comprehensive in silico study to assess the antibody-specific toxicity. Since most therapeutic anti-PrP antibodies were generated against human truncated recombinant PrP91-231 or full-length mouse PrP23-231, we reasoned that host specificity (human vs murine) of PrPC might influence the nature of the specific epitopes recognized by these antibodies at the structural level possibly explaining the 'toxicity' discrepancies reported previously. Initially, molecular dynamics simulation and pro-motif analysis of full-length human (hu)PrP and mouse (mo)PrP 3D structure displayed conspicuous structural differences between huPrP and moPrP. We identified 10 huPrP and 6 moPrP linear B-cell epitopes from the prion protein 3D structure where 5 out of 10 huPrP and 3 out of 6 moPrP B-cell epitopes were predicted to be potentially toxic in immunoinformatics approaches. Herein, we demonstrate that some of the predicted potentially 'toxic' epitopes identified by the in silico analysis were similar to the epitopes recognized by the toxic antibodies such as ICSM18 (146-159), POM1 (138-147), D18 (133-157), ICSM35 (91-110), D13 (95-103) and POM3 (95-100). This in silico study reveals the role of host specificity of PrPC in epitope-specific anti-PrP antibody toxicity.
Collapse
Affiliation(s)
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
12
|
Deletion of Kif5c Does Not Alter Prion Disease Tempo or Spread in Mouse Brain. Viruses 2021; 13:v13071391. [PMID: 34372599 PMCID: PMC8310152 DOI: 10.3390/v13071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
In prion diseases, the spread of infectious prions (PrPSc) is thought to occur within nerves and across synapses of the central nervous system (CNS). However, the mechanisms by which PrPSc moves within axons and across nerve synapses remain undetermined. Molecular motors, including kinesins and dyneins, transport many types of intracellular cargo. Kinesin-1C (KIF5C) has been shown to transport vesicles carrying the normal prion protein (PrPC) within axons, but whether KIF5C is involved in PrPSc axonal transport is unknown. The current study tested whether stereotactic inoculation in the striatum of KIF5C knock-out mice (Kif5c−/−) with 0.5 µL volumes of mouse-adapted scrapie strains 22 L or ME7 would result in an altered rate of prion spreading and/or disease timing. Groups of mice injected with each strain were euthanized at either pre-clinical time points or following the development of prion disease. Immunohistochemistry for PrP was performed on brain sections and PrPSc distribution and tempo of spread were compared between mouse strains. In these experiments, no differences in PrPSc spread, distribution or survival times were observed between C57BL/6 and Kif5c−/− mice.
Collapse
|
13
|
Abstract
Somatic mutations arise postzygotically, producing genetic differences between cells in an organism. Well established as a driver of cancer, somatic mutations also exist in nonneoplastic cells, including in the brain. Technological advances in nucleic acid sequencing have enabled recent break-throughs that illuminate the roles of somatic mutations in aging and degenerative diseases of the brain. Somatic mutations accumulate during aging in human neurons, a process termed genosenium. A number of recent studies have examined somatic mutations in Alzheimer’s disease (AD), primarily from the perspective of genes causing familial AD. We have also gained new information on genome-wide mutations, providing insights into the cellular events driving somatic mutation and cellular dysfunction. This review highlights recent concepts, methods, and findings in the progress to understand the role of brain somatic mutation in aging and AD.
Collapse
Affiliation(s)
- Michael B Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Hannah C Reed
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Allegheny College, Meadville, Pennsylvania 16335, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
15
|
Spagnolli G, Requena JR, Biasini E. Understanding prion structure and conversion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:19-30. [PMID: 32958233 DOI: 10.1016/bs.pmbts.2020.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since their original identification, prions have represented enigmatic agents that defy the classical concept of genetic inheritance. For almost four decades, the high-resolution structure of PrPSc, the infectious and misfolded counterpart of the cellular prion protein (PrPC), has remained elusive, mostly due to technical challenges posed by its high insolubility and aggregation propensity. As a result, such a lack of information has critically hampered the search for an effective therapy against prion diseases. Nevertheless, multiple attempts to get insights into the structure of PrPSc have provided important experimental constraints that, despite being at limited resolution, are paving the way for the application of computer-aided technologies to model the three-dimensional architecture of prions and their templated replication mechanism. Here, we review the most relevant studies carried out so far to elucidate the conformation of infectious PrPSc and offer an overview of the most advanced molecular models to explain prion structure and conversion.
Collapse
Affiliation(s)
- Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy
| | - Jesús R Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, TN, Italy; Dulbecco Telethon Institute, University of Trento, Trento, TN, Italy.
| |
Collapse
|
16
|
Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease. Biochem J 2020; 477:833-852. [PMID: 32108870 PMCID: PMC7054746 DOI: 10.1042/bcj20190872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative conditions of humans and animals that arise through neurotoxicity induced by PrP misfolding. The cellular and molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding these processes will underpin therapeutic and control strategies for human and animal prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and require the use of tractable animal models. Here we used RNA-Seq-based transcriptome analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotoxicity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation of cell cycle activity and DNA damage response, followed by down-regulation of eIF2 and mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed were specific to PrP targeted to the plasma membrane since these prion-induced gene expression changes were not evident in similarly treated Drosophila transgenic for cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our data indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate with those identified in mammalian hosts undergoing prion disease. These studies highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host to study mammalian prion biology.
Collapse
|
17
|
Zheng H, Shi C, Luo H, Fan L, Yang Z, Hu X, Zhang Z, Zhang S, Hu Z, Fan Y, Yang J, Mao C, Xu Y. α-Synuclein in Parkinson's Disease: Does a Prion-Like Mechanism of Propagation from Periphery to the Brain Play a Role? Neuroscientist 2020; 27:367-387. [PMID: 32729773 DOI: 10.1177/1073858420943180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases, defined as motor and non-motor symptoms associated with the loss of dopaminergic neurons and a decreased release of dopamine (DA). Currently, PD patients are believed to have a neuropathological basis denoted by the presence of Lewy bodies (LBs) or Lewy neurites (LNs), which mostly comprise α-synuclein (α-syn) inclusions. Remarkably, there is a growing body of evidence indicating that the inclusions undergo template-directed aggregation and propagation via template-directed among the brain and peripheral organs, mainly in a prion-like manner. Interestingly, some studies reported that an integral loop was reminiscent of the mechanism of Parkinson's disease, denoting that α-syn as prionoid was transmitted from the periphery to the brain via specific pathways. Also the systematic life cycle of α-syn in the cellular level is illustrated. In this review, we critically assess landmark evidence in the field of Parkinson's disease with a focus on the genesis and prion-like propagation of the α-syn pathology. The anatomical and cell-to-cell evidences are discussed to depict the theory behind the propagation and transferred pathways. Furthermore, we highlight effective therapeutic perspectives and clinical trials targeting prion-like mechanisms. Major controversies surrounding this topic are also discussed.
Collapse
Affiliation(s)
- Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinchao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxian Zhang
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Güere ME, Våge J, Tharaldsen H, Benestad SL, Vikøren T, Madslien K, Hopp P, Rolandsen CM, Røed KH, Tranulis MA. Chronic wasting disease associated with prion protein gene ( PRNP) variation in Norwegian wild reindeer ( Rangifer tarandus). Prion 2019; 14:1-10. [PMID: 31852336 PMCID: PMC6959294 DOI: 10.1080/19336896.2019.1702446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The emergence of CWD in Europe in 2016 and the first natural infection in wild reindeer warranted disease management. This led to the testing of 2424 hunted or culled reindeer during 2016–2018, from the infected subpopulation in the Nordfjella mountain range in Southern Norway. To identify any association between PRNP variation and CWD susceptibility, we characterized the open reading frame of the PRNP gene in 19 CWD positive reindeer and in 101 age category- and sex-matched CWD negative controls. Seven variant positions were identified: 6 single nucleotide variants (SNVs) and a 24 base pair (bp) deletion located between nucleotide position 238 and 272, encoding four instead of five octapeptide repeats. With a single exception, all variant positions but one were predicted to be non-synonymous. The synonymous SNV and the deletion are novel in reindeer. Various combinations of the non-synonymous variant positions resulted in the identification of five PRNP alleles (A-E) that structured into 14 genotypes. We identified an increased CWD risk in reindeer carrying two copies of the most common allele, A, coding for serine in position 225 (Ser225) and in those carrying allele A together with the 24 bp deletion.
Collapse
Affiliation(s)
- Mariella E Güere
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, Oslo, Norway
| | - Helene Tharaldsen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | | | - Petter Hopp
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
19
|
Thellung S, Corsaro A, Bosio AG, Zambito M, Barbieri F, Mazzanti M, Florio T. Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells 2019; 8:cells8111458. [PMID: 31752162 PMCID: PMC6912268 DOI: 10.3390/cells8111458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases. Relatively little information is however available about physiological role of PrPC. Although PrPC ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth, prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding between different membrane receptors, growth factors, and basement proteins, contributing to tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells (CSCs) from different tumors, including gliomas—the most malignant brain tumors—is predictive for poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and its molecular partners in this activity are the topic of the present review, with a particular focus on PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.
Collapse
Affiliation(s)
- Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Alessia G. Bosio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Martina Zambito
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
| | - Michele Mazzanti
- Dipartimento di Bioscienze, Università di Milano, 20133 Milano, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica (CEBR), Università di Genova, 16132 Genova, Italy; (S.T.); (A.C.); (A.G.B.); (M.Z.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (T.F.); (M.M.); Tel.: +39-01-0353-8806 (T.F.); +39-02-5031-4958 (M.M.)
| |
Collapse
|
20
|
De Mario A, Peggion C, Massimino ML, Norante RP, Zulian A, Bertoli A, Sorgato MC. The Link of the Prion Protein with Ca 2+ Metabolism and ROS Production, and the Possible Implication in Aβ Toxicity. Int J Mol Sci 2019; 20:ijms20184640. [PMID: 31546771 PMCID: PMC6770541 DOI: 10.3390/ijms20184640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023] Open
Abstract
The cellular prion protein (PrPC) is an ubiquitous cell surface protein mostly expressed in neurons, where it localizes to both pre- and post-synaptic membranes. PrPC aberrant conformers are the major components of mammalian prions, the infectious agents responsible for incurable neurodegenerative disorders. PrPC was also proposed to bind aggregated misfolded proteins/peptides, and to mediate their neurotoxic signal. In spite of long-lasting research, a general consensus on the precise pathophysiologic mechanisms of PrPC has not yet been reached. Here we review our recent data, obtained by comparing primary neurons from PrP-expressing and PrP-knockout mice, indicating a central role of PrPC in synaptic transmission and Ca2+ homeostasis. Indeed, by controlling gene expression and signaling cascades, PrPC is able to optimize glutamate secretion and regulate Ca2+ entry via store-operated channels and ionotropic glutamate receptors, thereby protecting neurons from threatening Ca2+ overloads and excitotoxicity. We will also illustrate and discuss past and unpublished results demonstrating that Aβ oligomers perturb Ca2+ homeostasis and cause abnormal mitochondrial accumulation of reactive oxygen species by possibly affecting the PrP-dependent downregulation of Fyn kinase activity.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Caterina Peggion
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Maria Lina Massimino
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Rosa Pia Norante
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Alessandra Zulian
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy.
| | - Maria Catia Sorgato
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
21
|
Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front Mol Neurosci 2019; 12:107. [PMID: 31105524 PMCID: PMC6494944 DOI: 10.3389/fnmol.2019.00107] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
22
|
Abstract
Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
23
|
Kara E, Marks JD, Aguzzi A. Toxic Protein Spread in Neurodegeneration: Reality versus Fantasy. Trends Mol Med 2018; 24:1007-1020. [DOI: 10.1016/j.molmed.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
|
24
|
Hirsch TZ, Martin-Lannerée S, Reine F, Hernandez-Rapp J, Herzog L, Dron M, Privat N, Passet B, Halliez S, Villa-Diaz A, Lacroux C, Klein V, Haïk S, Andréoletti O, Torres JM, Vilotte JL, Béringue V, Mouillet-Richard S. Epigenetic Control of the Notch and Eph Signaling Pathways by the Prion Protein: Implications for Prion Diseases. Mol Neurobiol 2018; 56:2159-2173. [PMID: 29998397 DOI: 10.1007/s12035-018-1193-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Among the ever-growing number of self-replicating proteins involved in neurodegenerative diseases, the prion protein PrP remains the most infamous for its central role in transmissible spongiform encephalopathies (TSEs). In these diseases, pathogenic prions propagate through a seeding mechanism, where normal PrPC molecules are converted into abnormally folded scrapie isoforms termed PrPSc. Since its discovery over 30 years ago, much advance has contributed to define the host-encoded cellular prion protein PrPC as a critical relay of prion-induced neuronal cell demise. A current consensual view is that the conversion of PrPC into PrPSc in neuronal cells diverts the former from its normal function with subsequent molecular alterations affecting synaptic plasticity. Here, we report that prion infection is associated with reduced expression of key effectors of the Notch pathway in vitro and in vivo, recapitulating changes fostered by the absence of PrPC. We further show that both prion infection and PrPC depletion promote drastic alterations in the expression of a defined set of Eph receptors and their ephrin ligands, which represent important players in synaptic function. Our data indicate that defects in the Notch and Eph axes can be mitigated in response to histone deacetylase inhibition in PrPC-depleted as well as prion-infected cells. We thus conclude that infectious prions cause a loss-of-function phenotype with respect to Notch and Eph signaling and that these alterations are sustained by epigenetic mechanisms.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, 75006, Paris, France
- INSERM U1162, 75010, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, 75006, Paris, France
| | - Fabienne Reine
- INRA, Université Paris-Saclay, UR 892 Virologie Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - Julia Hernandez-Rapp
- INSERM UMR 1124, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, 75006, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, G1V4G2, Québec, Canada
| | - Laetitia Herzog
- INRA, Université Paris-Saclay, UR 892 Virologie Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - Michel Dron
- INRA, Université Paris-Saclay, UR 892 Virologie Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - Nicolas Privat
- INSERM UMR 1127, CNRS UMR 7225, 75013, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Bruno Passet
- INRA UMR1313, Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Sophie Halliez
- INRA, Université Paris-Saclay, UR 892 Virologie Immunologie Moléculaires, 78350, Jouy-en-Josas, France
- INSERM, UMR-S1172, Lille University, 59045, Lille, France
| | - Ana Villa-Diaz
- Centro de Investigación en Sanidad Animal-INIA, 28130, Madrid, Spain
| | | | - Victor Klein
- INSERM UMR 1124, 75006, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, 75006, Paris, France
| | - Stéphane Haïk
- INSERM UMR 1127, CNRS UMR 7225, 75013, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | | | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal-INIA, 28130, Madrid, Spain
| | - Jean-Luc Vilotte
- INRA UMR1313, Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | | | - Sophie Mouillet-Richard
- INSERM UMR 1124, 75006, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, 75006, Paris, France.
| |
Collapse
|
25
|
Chen Y, Shao Q, Yuan YH, Chen NH. Prion-like propagation of α-synuclein in the gut-brain axis. Brain Res Bull 2018; 140:341-346. [PMID: 29894766 DOI: 10.1016/j.brainresbull.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is a progressive degenerative disease of the nervous system, which is characterized by movement disorders, such as static tremor, rigidity, and bradykinesia in advanced patients. Gastrointestinal (GI) dysfunction, such as gastric dysmotility, constipation, and anorectic dysfunction, is common non-motor symptom in the early stage of PD. The progression of PD includes the degenerative loss of dopaminergic (DA) neurons and aggregation of α-synuclein in the substantia nigra (SN). Interestingly, both of them are also present in the enteric nervous system (ENS) of PD patients. In this review, we describe the relationship between non-motor symptoms particularly GI dysfunction and the pathogenesis of PD, aiming to show the powerful evidences about the prion-like propagation of α-synuclein and support the hypothesis of gut-brain axis in PD. We then summarize the mechanism of the gut-brain axis and confirm α-synuclein as a potential target for drug design or new clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qianhang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
26
|
Zhao H, Wang S, Guo L, Du Y, Liu L, Ma T, Otecko NO, Li C, Zhang Y. Fixed differences in the 3'UTR of buffalo PRNP gene provide binding sites for miRNAs post-transcriptional regulation. Oncotarget 2018; 8:46006-46019. [PMID: 28545018 PMCID: PMC5542244 DOI: 10.18632/oncotarget.17545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/30/2017] [Indexed: 01/27/2023] Open
Abstract
Bovine spongiform encephalopathy, a member of transmissible spongiform encephalopathies, has not been reported in buffaloes, Bubalus bubalis. Prion protein (PrP), encoded by the prion protein gene (PRNP), is fundamental in the pathogenesis of transmissible spongiform encephalopathies. We previously showed that buffaloes express more PrP proteins but lower PRNP mRNA than cattle in several pivotal tissues like the obex. Therefore, we sought to establish whether genetic variability in PRNP 3'UTR, mediated by miRNA down-regulation, causes PrP expression differences between cattle and buffaloes. We annotated the 3'UTR of buffalo PRNP gene by 3'RACE experiment. A total of 92 fixed differences in the complete 3'UTR (~ 3 kb) were identified between 13 cattle and 13 buffaloes. Resequencing of UTR-C (g.786-1436) and UTR-B (g.778-1456) fragments confirmed that all mutations except g.1022T in cattle are fixed differences between 147 cattle and 146 buffaloes. In addition, analysis of the variation of ΔG between cattle and buffalo sequences reveals four remarkable differences. Two buffalo-specific insertion sites (a 28-bp insertion and an AG insertion in buffalo 3'UTR of PRNP g.970-997 and g. 1088-1089, respectively) and two mutants (g. 1007-1008 TG→CC) create compatible binding sites for miRNAs in buffalo 3'UTR. This was validated through luciferase reporter assays which demonstrated that miR-125b-5p, miR-132-3p, miR-145-5p, miR-331-3p, and miR-338-3p directly act on the fixed difference sites in buffalo 3'UTR. Additional expressional analyses show that these five miRNAs are coexpressed with PRNP in bovine obex tissues. Our study reveals a miRNAs regulated mechanism explaining the differences in prion expression between cattle and buffalo.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming 650091, P.R. China
| | - Siqi Wang
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,School of Life Science, Yunnan University, Kunming 650091, P.R. China
| | - Lixia Guo
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,School of Life Science, Yunnan University, Kunming 650091, P.R. China
| | - Yanli Du
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,School of Life Science, Yunnan University, Kunming 650091, P.R. China
| | - Linlin Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,School of Life Science, Yunnan University, Kunming 650091, P.R. China
| | - Tengfei Ma
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,School of Life Science, Yunnan University, Kunming 650091, P.R. China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, P.R. China
| | - Canpeng Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yaping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, P.R. China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R. China
| |
Collapse
|
27
|
Abstract
Protein amplification techniques exploit the ability of PrPTSE to induce a conformational change in prion protein (PrP) in a continuous fashion, so that the small amount of PrPTSE found in tissues and biologic fluids in prion diseases can be amplified to a point where they are detectable by conventional laboratory techniques. The most widely used protein aggregation assays are protein misfolding cyclic amplification assay (PMCA) and real-time quaking-induced conversion (RT-QuIC). These assays have been used extensively in both animal and human prion disease in studies ranging from the development of diagnostics, understanding disease transmission potential, to investigating mechanisms underlying neurodegeneration. In human prion disease, cerebrospinal fluid (CSF) RT-QuIC analysis has been shown to be a highly sensitive and specific test for sporadic Creutzfeldt-Jakob disease (sCJD) and has now been included in the diagnostic criteria. It is also a useful investigation for some genetic forms of prion disease where other cerebrospinal fluid tests may be negative. PMCA shows great potential for the diagnosis of variant CJD (vCJD) and has the ability to distinguish vCJD from sCJD, which may become increasingly important with emergence of a patient with neuropathologically confirmed vCJD associated with PRNP codon129MV, which indicates that a new wave of vCJD cases is likely and that these may be difficult to distinguish from sCJD.
Collapse
Affiliation(s)
- Alison J E Green
- National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom.
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
28
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
30
|
Davenport KA, Hoover CE, Bian J, Telling GC, Mathiason CK, Hoover EA. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS One 2017; 12:e0183927. [PMID: 28880938 PMCID: PMC5589181 DOI: 10.1371/journal.pone.0183927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.
Collapse
Affiliation(s)
- Kristen A. Davenport
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clare E. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jifeng Bian
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
31
|
Stincardini C, Massignan T, Biggi S, Elezgarai SR, Sangiovanni V, Vanni I, Pancher M, Adami V, Moreno J, Stravalaci M, Maietta G, Gobbi M, Negro A, Requena JR, Castilla J, Nonno R, Biasini E. An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS One 2017; 12:e0182589. [PMID: 28787011 PMCID: PMC5546605 DOI: 10.1371/journal.pone.0182589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 02/01/2023] Open
Abstract
Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.
Collapse
Affiliation(s)
- Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saioa R. Elezgarai
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Michael Pancher
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valentina Adami
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giulia Maietta
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medical Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- * E-mail:
| |
Collapse
|
32
|
Liu XL, Feng XL, Wang GM, Gong BB, Ahmad W, Liu NN, Zhang YY, Yang L, Ren HL, Cui SS. Exploration of the Main Sites for the Transformation of Normal Prion Protein (PrP C) into Pathogenic Prion Protein (PrP sc). J Vet Res 2017; 61:11-22. [PMID: 29978050 PMCID: PMC5894410 DOI: 10.1515/jvetres-2017-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/10/2017] [Indexed: 11/26/2022] Open
Abstract
Introduction The functions and mechanisms of prion proteins (PrPC) are currently unknown, but most experts believe that deformed or pathogenic prion proteins (PrPSc) originate from PrPC, and that there may be plural main sites for the conversion of normal PrPC into PrPSc. In order to better understand the mechanism of PrPC transformation to PrPSc, the most important step is to determine the replacement or substitution site. Material and Methods BALB/c mice were challenged with prion RML strain and from 90 days post-challenge (dpc) mice were sacrificed weekly until all of them had been at 160 dpc. The ultra-structure and pathological changes of the brain of experimental mice were observed and recorded by transmission electron microscopy. Results There were a large number of pathogen-like particles aggregated in the myelin sheath of the brain nerves, followed by delamination, hyperplasia, swelling, disintegration, phagocytic vacuolation, and other pathological lesions in the myelin sheath. The aggregated particles did not overflow from the myelin in unstained samples. The phenomenon of particle aggregation persisted all through the disease course, and was the earliest observed pathological change. Conclusion It was deduced that the myelin sheath and lipid rafts in brain nerves, including axons and dendrites, were the main sites for the conversion of PrPC to PrPSc, and the PrPSc should be formed directly by the conversion of protein conformation without the involvement of nucleic acids.
Collapse
Affiliation(s)
- Xi-Lin Liu
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xiao-Li Feng
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China.,Biological safety protection third-level laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Guang-Ming Wang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Bin-Bin Gong
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Waqas Ahmad
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China.,Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan
| | - Nan-Nan Liu
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Yuan-Yuan Zhang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Li Yang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Hong-Lin Ren
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Shu-Sen Cui
- China-Japan Union Hospital of Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education/Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|
33
|
Transfer of pathogenic and nonpathogenic cytosolic proteins between spinal cord motor neurons in vivo in chimeric mice. Proc Natl Acad Sci U S A 2017; 114:E3139-E3148. [PMID: 28348221 DOI: 10.1073/pnas.1701465114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent studies have reported spread of pathogenic proteins in the mammalian nervous system, but whether nonpathogenic ones spread is unknown. We initially investigated whether spread of a mutant amyotrophic lateral sclerosis-associated cytosolic superoxide dismutase 1 (SOD1) protein between motor neurons could be detected in intact chimeric mice. Eight-cell embryos from G85R SOD1YFP and G85R SOD1CFP mice were aggregated, and spinal cords of adult chimeric progeny were examined for motor neurons with cytosolic double fluorescence. By 3 mo of age, we observed extensive double fluorescence, including in amyotrophic lateral sclerosis-affected cranial nerve motor nuclei but not in the relatively spared extraocular nuclei. Chimeras of nonpathogenic wtSOD1YFP and G85R SOD1CFP also exhibited double fluorescence. In a third chimera, mitochondrial mCherry did not transfer to G85R SOD1YFP motor neurons, suggesting that neither RNA nor organelles transfer, but mito-mCherry neurons received G85R SOD1YFP. In a chimera of ChAT promoter-EGFP and mito-mCherry, EGFP efficiently transferred to mito-mCherry+ cells. Thus, nonpathogenic cytosolic proteins appear capable of transfer. During study of both the SOD1FP and EGFP chimeras, we observed fluorescence also in small cells neighboring the motor neurons, identified as mature gray matter oligodendrocytes. Double fluorescence in the G85R SOD1FP chimera and observation of the temporal development of fluorescence first in motor neurons and then in these oligodendrocytes suggest that they may be mediators of transfer of cytosolic proteins between motor neurons.
Collapse
|
34
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
35
|
Abstract
Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.
Collapse
Affiliation(s)
- José A del Río
- a Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC) , Parc Científic de Barcelona, Barcelona , Spain.,b Department of Cell Biology, Physiology and Inmunology , Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Barcelona , Spain
| | - Rosalina Gavín
- a Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC) , Parc Científic de Barcelona, Barcelona , Spain.,b Department of Cell Biology, Physiology and Inmunology , Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Barcelona , Spain
| |
Collapse
|
36
|
Bioassay of prion-infected blood plasma in PrP transgenic Drosophila. Biochem J 2016; 473:4399-4412. [PMID: 27733649 DOI: 10.1042/bcj20160417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 01/27/2023]
Abstract
In pursuit of a tractable bioassay to assess blood prion infectivity, we have generated prion protein (PrP) transgenic Drosophila, which show a neurotoxic phenotype in adulthood after exposure to exogenous prions at the larval stage. Here, we determined the sensitivity of ovine PrP transgenic Drosophila to ovine prion infectivity by exposure of these flies to a dilution series of scrapie-infected sheep brain homogenate. Ovine PrP transgenic Drosophila showed a significant neurotoxic response to dilutions of 10-2 to 10-10 of the original scrapie-infected sheep brain homogenate. Significantly, we determined that this prion-induced neurotoxic response in ovine PrP transgenic Drosophila was transmissible to ovine PrP transgenic mice, which is indicative of authentic mammalian prion detection by these flies. As a consequence, we considered that PrP transgenic Drosophila were sufficiently sensitive to exogenous mammalian prions to be capable of detecting prion infectivity in the blood of scrapie-infected sheep. To test this hypothesis, we exposed ovine PrP transgenic Drosophila to scrapie-infected plasma, a blood fraction notoriously difficult to assess by conventional prion bioassays. Notably, pre-clinical plasma from scrapie-infected sheep induced neurotoxicity in PrP transgenic Drosophila and this effect was more pronounced after exposure to samples collected at the clinical phase of disease. The neurotoxic phenotype in ovine PrP transgenic Drosophila induced by plasma from scrapie-infected sheep was transmissible since head homogenate from these flies caused neurotoxicity in recipient flies during fly-to-fly transmission. Our data show that PrP transgenic Drosophila can be used successfully to bioassay prion infectivity in blood from a prion-diseased mammalian host.
Collapse
|
37
|
Zhao H, Wang SQ, Qing LL, Liu LL, Zhang YP. Expression of BSE-associated proteins in the CNS and lymphoreticular tissues of cattle and buffalo. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
A direct assessment of human prion adhered to steel wire using real-time quaking-induced conversion. Sci Rep 2016; 6:24993. [PMID: 27112110 PMCID: PMC4845018 DOI: 10.1038/srep24993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022] Open
Abstract
Accidental transmission of prions during neurosurgery has been reported as a consequence of re-using contaminated surgical instruments. Several decontamination methods have been studied using the 263K-hamster prion; however, no studies have directly evaluated human prions. A newly developed in vitro amplification system, designated real-time quaking-induced conversion (RT-QuIC), has allowed the activity of abnormal prion proteins to be assessed within a few days. RT-QuIC using human recombinant prion protein (PrP) showed high sensitivity for prions as the detection limit of our assay was estimated as 0.12 fg of active prions. We applied this method to detect human prion activity on stainless steel wire. When we put wires contaminated with human Creutzfeldt–Jakob disease brain tissue directly into the test tube, typical PrP-amyloid formation was observed within 48 hours, and we could detect the activity of prions at 50% seeding dose on the wire from 102.8 to 105.8 SD50. Using this method, we also confirmed that the seeding activities on the wire were removed following treatment with NaOH. As seeding activity closely correlated with the infectivity of prions using the bioassay, this wire-QuIC assay will be useful for the direct evaluation of decontamination methods for human prions.
Collapse
|
39
|
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal neurodegenerative disorders characterised by long incubation period, short clinical duration, and transmissibility to susceptible species. Neuronal loss, spongiform changes, gliosis and the accumulation in the brain of the misfolded version of a membrane-bound cellular prion protein (PrP(C)), termed PrP(TSE), are diagnostic markers of these diseases. Compelling evidence links protein misfolding and its accumulation with neurodegenerative changes. Accordingly, several mechanisms of prion-mediated neurotoxicity have been proposed. In this paper, we provide an overview of the recent knowledge on the mechanisms of neuropathogenesis, the neurotoxic PrP species and the possible therapeutic approaches to treat these devastating disorders.
Collapse
|
40
|
Massignan T, Cimini S, Stincardini C, Cerovic M, Vanni I, Elezgarai SR, Moreno J, Stravalaci M, Negro A, Sangiovanni V, Restelli E, Riccardi G, Gobbi M, Castilla J, Borsello T, Nonno R, Biasini E. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci Rep 2016; 6:23180. [PMID: 26976106 PMCID: PMC4791597 DOI: 10.1038/srep23180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity.
Collapse
Affiliation(s)
- Tania Massignan
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sara Cimini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Claudia Stincardini
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Milica Cerovic
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Saioa R Elezgarai
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Geraldina Riccardi
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan Italy
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Emiliano Biasini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
41
|
Sadallah M, Labat-Gest V, Tempia F. Propagation of Neuronal Damage to Embryonic Grafts Transplanted in the Hippocampus of Murine Models of Alzheimer's Disease. Rejuvenation Res 2015; 18:554-63. [PMID: 26540615 DOI: 10.1089/rej.2015.1672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by the presence of two principal hallmarks-amyloid plaques and neurofibrillary tangles. The primary cause of the majority of AD cases is not known. Likewise, the mechanisms underlying the propagation of the pathology from affected tissue to neighboring healthy neurons are largely unknown, but knowledge about them could be helpful to design strategies aimed at halting the progression of the disease. To throw light on the mechanisms of propagation of neuronal damage to healthy tissue, wild-type (WT) hippocampal solid tissue chunks derived from green fluorescent protein (GFP)-positive embryos were grafted into the hippocampus of 6-month-old WT and 3xTg-AD mice, a triple-transgenic mouse model that exhibits both amyloid-beta (Aβ) and tau protein pathology. The histological and morphological alterations of the grafted tissues were assessed 3 months post-transplantation. Tissues grafted in 3xTg-AD hosts, compared to those grafted in WT recipients, presented a significant decrease in neurite outgrowth (35.4%) and dendritic spine density (41.3%), mainly due to a reduction of stubby and thin-shaped spines. Moreover, some cells of the tissue transplanted in 3xTg-AD hosts accumulated intracellular amyloid peptide deposits similar to the cells of the host. Furthermore, the immunohistochemical examination of reactive astrocytes and microglia revealed the presence of more inflammation in the grafted tissues hosted in 3xTg-AD compared to WT recipients. These results show a propagation of neuronal damage to initially healthy embryonic grafts, validating this methodology for future studies on the mechanisms of the progression of AD pathology to surrounding regions.
Collapse
Affiliation(s)
- Mohcene Sadallah
- 1 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino , Orbassano (Torino), Italy .,2 Department of Biology, Ecole Normale Supérieure de Kouba , Algiers, Algeria
| | - Vivien Labat-Gest
- 1 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino , Orbassano (Torino), Italy
| | - Filippo Tempia
- 1 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino , Orbassano (Torino), Italy .,3 Department of Neuroscience and National Institute of Neuroscience-Italy (INN), University of Torino , Torino, Italy
| |
Collapse
|
42
|
Wegmann S, Maury EA, Kirk MJ, Saqran L, Roe A, DeVos SL, Nicholls S, Fan Z, Takeda S, Cagsal-Getkin O, William CM, Spires-Jones TL, Pitstick R, Carlson GA, Pooler AM, Hyman BT. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J 2015; 34:3028-41. [PMID: 26538322 DOI: 10.15252/embj.201592748] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau-overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eduardo A Maury
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Molly J Kirk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lubna Saqran
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Allyson Roe
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sarah L DeVos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Samantha Nicholls
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shuko Takeda
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ozge Cagsal-Getkin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Christopher M William
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems and Euan MacDonald Centre, University of Edinburgh, Edinburgh, UK
| | | | | | - Amy M Pooler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
43
|
Zhao H, Du Y, Chen S, Qing L, Wang X, Huang J, Wu D, Zhang Y. The prion protein gene polymorphisms associated with bovine spongiform encephalopathy susceptibility differ significantly between cattle and buffalo. INFECTION GENETICS AND EVOLUTION 2015; 36:531-538. [PMID: 26319996 DOI: 10.1016/j.meegid.2015.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Prion protein, encoded by the prion protein gene (PRNP), plays a crucial role in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Several polymorphisms within the PRNP are known to be associated with influencing bovine spongiform encephalopathy (BSE) susceptibility in cattle, namely two insertion/deletion (indel) polymorphisms (a 23-bp indel in the putative promoter and a 12-bp indel in intron 1), the number of octapeptide repeats (octarepeats) present in coding sequence (CDS) and amino acid polymorphisms. The domestic buffaloes, Bubalus bubalis, are a ruminant involved in various aspects of agriculture. It is of interest to ask whether the PRNP polymorphisms differ between cattle and buffalo. In this study, we analyzed the previously reported polymorphisms associated with BSE susceptibility in Chinese buffalo breeds, and compared these polymorphisms in cattle with BSE, healthy cattle and buffalo by pooling data from the literature. Our analysis revealed three significant findings in buffalo: 1) extraordinarily low deletion allele frequencies of the 23- and 12-bp indel polymorphisms; 2) significantly low allelic frequencies of six octarepeats in CDS and 3) the presence of S4R, A16V, P54S, G108S, V123M, S154N and F257L substitutions in buffalo CDSs. Sequence alignments comparing the buffalo coding sequence to other species were analyzed using the McDonald-Kreitman test to reveal five groups (Bison bonasus, Bos indicus, Bos gaurus, Boselaphus tragocamelus, Syncerus caffer caffer) with significantly divergent non-synonymous substitutions from buffalo, suggesting potential divergence of buffalo PRNP and others. To the best of our knowledge this is the first study of PRNP polymorphisms associated with BSE susceptibility in Chinese buffalo. Our findings have provided evidence that buffaloes have a unique genetic background in the PRNP gene in comparison with cattle.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Yanli Du
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Shunmei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lili Qing
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Xiaoyan Wang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yaping Zhang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
44
|
Bujdoso R, Landgraf M, Jackson WS, Thackray AM. Prion-induced neurotoxicity: Possible role for cell cycle activity and DNA damage response. World J Virol 2015; 4:188-197. [PMID: 26279981 PMCID: PMC4534811 DOI: 10.5501/wjv.v4.i3.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/19/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
Protein misfolding neurodegenerative diseases arise through neurotoxicity induced by aggregation of host proteins. These conditions include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, motor neuron disease, tauopathies and prion diseases. Collectively, these conditions are a challenge to society because of the increasing aged population and through the real threat to human food security by animal prion diseases. It is therefore important to understand the cellular and molecular mechanisms that underlie protein misfolding-induced neurotoxicity as this will form the basis for designing strategies to alleviate their burden. Prion diseases are an important paradigm for neurodegenerative conditions in general since several of these maladies have now been shown to display prion-like phenomena. Increasingly, cell cycle activity and the DNA damage response are recognised as cellular events that participate in the neurotoxic process of various neurodegenerative diseases, and their associated animal models, which suggests they are truly involved in the pathogenic process and are not merely epiphenomena. Here we review the role of cell cycle activity and the DNA damage response in neurodegeneration associated with protein misfolding diseases, and suggest that these events contribute towards prion-induced neurotoxicity. In doing so, we highlight PrP transgenic Drosophila as a tractable model for the genetic analysis of transmissible mammalian prion disease.
Collapse
|
45
|
Reiten MR, Bakkebø MK, Brun-Hansen H, Lewandowska-Sabat AM, Olsaker I, Tranulis MA, Espenes A, Boysen P. Hematological shift in goat kids naturally devoid of prion protein. Front Cell Dev Biol 2015. [PMID: 26217662 PMCID: PMC4495340 DOI: 10.3389/fcell.2015.00044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The physiological role of the cellular prion protein (PrPC) is incompletely understood. The expression of PrPC in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrPC knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrPC. Here we report hematological and immunological analyses of homozygous goat kids lacking PrPC (PRNPTer/Ter) compared to heterozygous (PRNP+/Ter) and normal (PRNP+/+) kids. Levels of cell surface PrPC and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNPTer/Ter, intermediate in PRNP+/Ter and high in PRNP+/+ kids. The PRNPTer/Ter animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrPC has a role in bone marrow physiology and warrant further studies of PrPC in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrPC-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrPC.
Collapse
Affiliation(s)
- Malin R Reiten
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Hege Brun-Hansen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Anna M Lewandowska-Sabat
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Ingrid Olsaker
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
46
|
Qing LL, Zhao H, Liu LL. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:436-45. [PMID: 25297084 DOI: 10.13918/j.issn.2095-8137.2014.5.436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrP(C)) into the disease-associated isoform (PrP(Sc)). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties.
Collapse
Affiliation(s)
- Li-Li Qing
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | - Hui Zhao
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China.
| | - Lin-Lin Liu
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
47
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
48
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
49
|
Prodromidou K, Papastefanaki F, Sklaviadis T, Matsas R. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells 2015; 32:1674-87. [PMID: 24497115 DOI: 10.1002/stem.1663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/15/2022]
Abstract
Cellular prion protein (PrP) is prominently expressed in brain, in differentiated neurons but also in neural stem/precursor cells (NPCs). The misfolding of PrP is a central event in prion diseases, yet the physiological function of PrP is insufficiently understood. Although PrP has been reported to associate with the neural cell adhesion molecule (NCAM), the consequences of concerted PrP-NCAM action in NPC physiology are unknown. Here, we generated NPCs from the subventricular zone (SVZ) of postnatal day 5 wild-type and PrP null (-/-) mice and observed that PrP is essential for proper NPC proliferation and neuronal differentiation. Moreover, we found that PrP is required for the NPC response to NCAM-induced neuronal differentiation. In the absence of PrP, NCAM not only fails to promote neuronal differentiation but also induces an accumulation of doublecortin-positive neuronal progenitors at the proliferation stage. In agreement, we noted an increase in cycling neuronal progenitors in the SVZ of PrP-/- mice compared with PrP+/+ mice, as evidenced by double labeling for the proliferation marker Ki67 and doublecortin as well as by 5-bromo-2'-deoxyuridine incorporation experiments. Additionally, fewer newly born neurons were detected in the rostral migratory stream of PrP-/- mice. Analysis of the migration of SVZ cells in microexplant cultures from wild-type and PrP-/- mice revealed no differences between genotypes or a role for NCAM in this process. Our data demonstrate that PrP plays a critical role in neuronal differentiation of NPCs and suggest that this function is, at least in part, NCAM-dependent.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
50
|
Caverzasi E, Mandelli ML, DeArmond SJ, Hess CP, Vitali P, Papinutto N, Oehler A, Miller BL, Lobach IV, Bastianello S, Geschwind MD, Henry RG. White matter involvement in sporadic Creutzfeldt-Jakob disease. ACTA ACUST UNITED AC 2014; 137:3339-54. [PMID: 25367029 PMCID: PMC4240303 DOI: 10.1093/brain/awu298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P = 0.002), axial (P = 0.0003) and radial (P = 0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P < 0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P = 0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean diffusivity, however, was apparent visibly on the quantitative attenuation coefficient maps compared to healthy control subjects. Neuropathological analysis showed diffuse astrocytic gliosis and activated microglia in the white matter, rare prion deposition and subtle subcortical microvacuolization, and patchy foci of demyelination with no evident white matter axonal degeneration. Decreased mean diffusivity on attenuation coefficient maps might be associated with astrocytic gliosis. We show for the first time significant global reduced mean diffusivity within the white matter in sporadic Creutzfeldt-Jakob disease, suggesting possible primary involvement of the white matter, rather than changes secondary to neuronal degeneration/loss. Sporadic Creutzfeldt-Jakob disease (sCJD) is considered primarily a disease of grey matter. However, Caverzasi et al. now show a global decrease in mean diffusivity in white matter. The changes appear to be associated with reactive astrocytic gliosis and activated microglia, and suggest primary involvement of the white matter in sCJD.
Collapse
Affiliation(s)
- Eduardo Caverzasi
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Maria Luisa Mandelli
- 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen J DeArmond
- 3 Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA 4 Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christopher P Hess
- 5 Neuroradiology Division, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paolo Vitali
- 6 Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia 27100, Italy
| | - Nico Papinutto
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Abby Oehler
- 3 Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA 4 Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bruce L Miller
- 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Irina V Lobach
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stefano Bastianello
- 7 Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Michael D Geschwind
- 2 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Roland G Henry
- 1 Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA 8 Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA 9 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|