1
|
Xu S, Liu Y, Luo C, Zhou M, Wang K, Xie Q, Zhang Q, Zhang Q, Li Q, Pan Z, Feng S, Liao M. Identification and characterization of a broadly neutralizing and protective nanobody against the HA1 domain of H5 avian influenza virus hemagglutinin. J Virol 2025; 99:e0209024. [PMID: 40192291 PMCID: PMC12090751 DOI: 10.1128/jvi.02090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/14/2025] [Indexed: 05/21/2025] Open
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) of subtype H5, particularly those of the currently circulating clades 2.3.2.1 and 2.3.4.4, are largely responsible for the sporadic human infections that frequently present with a high case fatality rate. Consequently, there is an urgent necessity for the development of advanced antiviral therapeutic options against the H5 HPAIVs. Herein, the yeast two-hybrid system was employed for identifying seven nanobodies that bind the HA1 domain of hemagglutinin (HA). Among these nanobodies, Nb10 was found to exhibit high-affinity and broad-spectrum neutralization capacity against viruses of clades 2.3.2.1 and 2.3.4.4 under both in vitro and in vivo conditions. Surprisingly, Nb10 exhibited excellent efficacy against the recombinant viruses Re6/PR8, Re8/PR8, Re10/PR8, Re11/PR8, and Re14/PR8 of the subtype H5, with average half-maximal inhibitory concentrations ranging from 0.01 to 0.42 µg/mL in a microneutralization assay. Furthermore, the intratracheal administration of Nb10 resulted in remarkable prophylactic and therapeutic efficacy in mice. The findings herein reveal that the virus-neutralizing effect of Nb10 is achieved by obstructing viral entrance into host cells. Moreover, Western blot analysis and enzyme-linked immunosorbent assay revealed that Nb10 recognizes a conformational epitope located in the region spanning amino acid residues 50-271 of the protein HA1 displayed on the surface of yeast cells. The predicted structure of the binding pocket indicates that Nb10 recognizes the highly conserved receptor-binding site of HA1. Taken together, the current study offers valuable insights for the development of protective therapeutics with broad-spectrum activity and the design of broadly protective influenza vaccines.IMPORTANCEHPAIVs of subtype H5 have raised substantial public health concerns regarding the potential for viral adaptation and sustained human-to-human transmission. The prevention and treatment of the disease are replete with numerous challenges due to frequent antigenic alterations in the virus. Nanobodies have significant potential for clinical applications and therapies owing to their small size and robust tissue-penetrating capabilities. Herein, we describe the identification of Nb10, a broad-spectrum virus-neutralizing and protective nanobody that is effective against the currently circulating H5 HPAIVs of clades 2.3.2.1 and 2.3.4.4. The intratracheal administration of Nb10 afforded significant protection in mice infected with the H5 virus. This result provides novel insights for the rational design of antiviral pharmaceuticals. Furthermore, an analysis of the binding site of the target protein HA1 may be useful for the development of more effective vaccinations against influenza viruses of the subtype H5.
Collapse
Affiliation(s)
- Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenying Luo
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mengruo Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ke Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinying Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhichao Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
He C, Hu X, Huang J, Jia C, Zhang M, Xu W, Li M, Cai M. A G219A hemagglutinin substitution increases pathogenicity and viral replication of Eurasian avian-like H1N1 swine influenza viruses. Vet Microbiol 2025; 306:110565. [PMID: 40408884 DOI: 10.1016/j.vetmic.2025.110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
The Eurasian avian-like swine (EA) H1N1 virus has been widely prevalent in the Chinese swine population and has caused infections in human. However, knowledge regarding its pathogenic mechanisms remains limited. In this study, we analyzed the pathogenic determinants of two G4 genotype EA H1N1 viruses (A/Swine/Guangdong/SS12/2017 and A/Swine/Jiangxi/1110/2017) with differing pathogenicity by constructing a series of reassortant and mutant viruses. The HA-G219A mutation was found to be determinant of pathogenicity in mice. Subsequent analyses revealed that this mutation enhances viral replication in human cells, improves thermal stability, reduces HA activation pH, and alters receptor-binding properties. Furthermore, HA-G219A mutation may be an adaptive mutation that facilitates influenza virus adaptation to swine, with its prevalence increasing in the swine population. This mutation may support cross-species transmission of EA H1N1 swine influenza viruses or genetic exchange with other virus subtypes/genotypes, potentially contributing to the emergence of pandemic viruses. These findings improve our understanding of EA H1N1 pathogenicity and highlight the critical need for ongoing surveillance of influenza viruses in pigs.
Collapse
Affiliation(s)
- Cong He
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Xiaokun Hu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China
| | - Junmei Huang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China
| | - Congjun Jia
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China
| | - Mengling Zhang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China
| | - Weilin Xu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China
| | - Meidi Li
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China.
| | - Mengkai Cai
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China; Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou 514028, China.
| |
Collapse
|
3
|
Zhang Z, Aziati ID, Nipper T, Boon ACM, Mehle A. ANP32 proteins from ticks and vertebrates are key host factors for replication of Bourbon virus across species. J Virol 2025:e0052225. [PMID: 40366164 DOI: 10.1128/jvi.00522-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Bourbon virus (BRBV) is a tick-borne virus in the genus Thogotovirus in the Orthomyxoviridae family. BRBV was initially identified as the presumptive causative agent of a fatal human infection in 2014 and has since been identified in ticks in the Midwest, Northeast, and Southern United States, with occasional spillovers into humans. However, little is known about how virus-host interactions impact their large host range. Here, we show that BRBV polymerase activity in human cells is completely dependent on cellular ANP32 proteins. BRBV polymerase activity was completely lost in cells lacking ANP32A and ANP32B, resulting in failed infections. BRBV polymerase activity was restored in the presence of ANP32 proteins from diverse hosts. Dhori virus and Thogoto virus, other related Thogotovirus members, retained high activity in the absence of ANP32 proteins, showing reduced dependence on these host factors. Interaction studies revealed that the BRBV polymerase trimer binds human ANP32A or ANP32B. Genetic analysis revealed that tick vectors for BRBV encode a single ANP32 locus corresponding to ANP32A. Tick ANP32A produces multiple protein variants through alternative splicing and start-site selection, all of which enhance polymerase activity for Thogotoviruses. Unexpectedly, the BRBV polymerase was highly sensitive to changes at the N-terminus of ANP32, while it was insensitive to changes in the body of ANP32 that restrict the activity of influenza virus polymerases. Thus, ANP32A is a deeply conserved pro-viral cofactor, and Thogotoviruses show remarkable plasticity utilizing ANP32 homologs from different hosts separated by almost 1 billion years of evolution.IMPORTANCEViral polymerases rely on cellular cofactors to support efficient transcription of viral genes and replication of the viral genome. The RNA-dependent RNA polymerase of influenza virus, an orthomyxovirus, requires the cellular ANP32A or ANP32B proteins for genome replication. However, little is known about whether ANP32 proteins are required by other orthomyxovirus family members, like the tick-borne thogotoviruses. We show that thogotoviruses use ANP32 proteins from diverse hosts to enhance polymerase activity, including that encoded by the single ANP32A gene found in ticks. However, thogotovirus polymerase showed varying levels of dependence on ANP32 proteins, with some polymerases functioning at near full activity even in the absence of ANP32 proteins. Thus, ANP32 proteins are deeply conserved viral cofactors, with each virus displaying distinct patterns of ANP32 usage and requirements for function.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ishmael D Aziati
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Thomas Nipper
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Li Y, Quan X, Chen R, Wang X, Chen Y, Gan Y, Irwin DM, Shen Y. Adaptive selection of quasispecies during in vivo passaging in chickens, mice, and ferrets results in host-specific strains for the H9N2 avian influenza virus. J Virol 2025:e0015125. [PMID: 40338080 DOI: 10.1128/jvi.00151-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Sporadic human infections of avian influenza virus (AIV) raise significant public health concerns. A critical factor limiting the transmission of AIVs is the shift in receptor-binding preference from Siaα2,3 to Siaα2,6. To reveal the adaptive selection dynamics during the host adaptation process of AIVs, this study generated a viral library with random mutations in the HA gene of the H9N2 strain. Upon passaging the viral library in chickens and mice, the predominantly selected variants exhibited a preference for Siaα2,3 receptors. Notably, the wild-type strain remained dominant in both inoculated and direct-contact chickens, while variants with the ΔL226/R229I substitutions were preferentially selected in mice. Ferrets have a predominance of Siaα2,6 in their respiratory tract. As expected, the variant harboring the N289D mutation, which prefers Siaα2,6 binding, was enriched during in vivo passaging in ferrets. The mice-adapted variant with the ΔL226/R229I mutations causes reduced levels of TNF-α in the early days post-infection in mice, which correlated with an increase in its viral titers. Conversely, elevated levels of IL-6 and IL-1β at five dpi may contribute to the development of the cytokine release syndrome, potentially elucidating the higher fatality rate observed. In conclusion, based on the mutant spectra of the HA gene, this study elucidates the distinct quasispecies dynamics during the adaptation of H9N2 to different hosts, with receptor availability serving as one of the driving factors. Furthermore, a series of critical substitutions that influence the interspecific transmission potential of H9N2 AIVs were identified.IMPORTANCEThe mutation of viruses creates a quasispecies reservoir. In this study, we aimed to investigate the dynamics of quasispecies during the host adaptation of AIVs. We generated a viral library with random mutations in the HA gene of H9N2 and conducted serial passaging in chickens, mice, and ferrets for five generations, respectively. The wild-type strain was dominant in chickens, while mice selected viruses with the ΔL226/R229I substitutions. Both variants showed a preference for binding to Siaα2,3, which aligned with the abundance of Siaα2,3 found in the respiratory tract epithelial cells of chickens and mice. In ferrets, where Siaα2,6 is more prevalent, the variant with the N289D mutation, which prefers Siaα2,6, was found to be enriched. In summary, this study revealed the adaptive selection of H9N2 quasispecies in various hosts, contributing to our understanding of AIV host adaptation.
Collapse
Affiliation(s)
- Yiliang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xi Quan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rujian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiting Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingde Gan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
5
|
Song JH, Son SE, Kim HW, Kim SJ, An SH, Lee CY, Kwon HJ, Choi KS. Intranasally administered whole virion inactivated vaccine against clade 2.3.4.4b H5N1 influenza virus with optimized antigen and increased cross-protection. Virol J 2025; 22:131. [PMID: 40320528 PMCID: PMC12051338 DOI: 10.1186/s12985-025-02760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The global spread, frequent antigenic changes, and pandemic potential of clade 2.3.4.4b highly pathogenic avian influenza H5N1 underscore the urgent need for robust cross-protective vaccines. Here, we developed a clade 2.3.4.4b H5N1 whole inactivated virus (WIV) vaccine strain with improved structural stability, productivity, and safety. By analyzing the evolutionary trends of clade 2.3.4.4b H5N1 viruses, we identified a key mutation (R90K) that increases heat stability while preserving antigenicity. Additionally, the PB2 gene of PR8 was replaced with a prototypical avian PB2 gene to increase replication efficiency in embryonated chicken eggs and reduce replication efficiency in mammalian cells, thereby improving productivity and biosafety. We found that our optimized clade 2.3.4.4b H5N1 vaccine strain (22W_KY), inactivated with binary ethylenimine (BEI), had superior antigen internalization into respiratory epithelial cells compared to those inactivated with formaldehyde or beta-propiolactone. Following intranasal administration to mice, the BEI-inactivated 22W_KY also elicited significantly stronger systemic IgG, mucosal IgA, and T-cell responses, especially in the lungs. Protective efficacy studies revealed that the BEI-inactivated 22W_KY vaccine provided complete protection against heterologous viral challenges and significant protection against heterosubtypic viral challenges, with no weight loss and complete suppression of the viral load in the respiratory tract in 2 of 3 mice. These results indicate that the BEI-inactivated 22W_KY vaccine could serve as a promising candidate for a safe, stable, cost-efficient, and broadly protective intranasal influenza vaccine against zoonotic and pandemic threats.
Collapse
Affiliation(s)
- Jin-Ha Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Seoul, 88026, Republic of Korea
| | - Seung-Eun Son
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Seoul, 88026, Republic of Korea
| | - Ho-Won Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Seoul, 88026, Republic of Korea
| | - Seung-Ji Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Seoul, 88026, Republic of Korea
| | - Se-Hee An
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, College of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine, BK21 PLUS for Veterinary Science, Seoul National University, 1, Gwanak-ro, Seoul, 88026, Republic of Korea.
- GeNiner Inc, Seoul, Republic of Korea.
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Seoul, 88026, Republic of Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang S, Tang J, Liu L, Wei H, Xin L, Xiao K, Xiao J, Dong J, Li Z, Bai H, Wang S, Zhu W, Yang L, Zou S, Wang D. Construction and Immune Strategy Optimization of a Vaccine Strain for Influenza A (H5N8) Subtype. Viruses 2025; 17:544. [PMID: 40284987 PMCID: PMC12031352 DOI: 10.3390/v17040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Multiple subtypes of avian influenza virus (AIV), including H5N1, H5N6, and H5N8 viruses, are currently co-circulating in wild birds and poultry and causing sporadic human infections. Vaccine development is essential for pandemic preparedness. In this study, we constructed a candidate vaccine virus (CVV) using reverse genetics (RG) based on the sequence of the first human-infected H5N8 subtype AIV, A/Astrakhan/3212/2020 (H5N8). We evaluated the immunogenicity of the rH5N8/PR8 vaccine strain in combination with Alum, ISA51, and MF59 adjuvants, and we optimized immunization strategies including dosage, administration route, and immunization interval in BALB/c mice. Our results demonstrated that a 10 μg dose of inactivated rH5N8/PR8 with MF59 adjuvant, administered intramuscularly twice at 7-day intervals, induced the strongest immune response and effectively protected mice against challenge with wild-type H5N8 AIVs. Since pandemic influenza vaccines typically require tailored vaccination doses and routes specific to their characteristics, this study provides valuable insights for the development of similar vaccine strains with pandemic potential.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Mice, Inbred BALB C
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza A Virus, H5N8 Subtype/immunology
- Influenza A Virus, H5N8 Subtype/genetics
- Female
- Adjuvants, Immunologic/administration & dosage
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Humans
- Vaccination
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Immunogenicity, Vaccine
- Squalene/administration & dosage
- Polysorbates
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dayan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (S.Z.); (J.T.); (L.L.); (H.W.); (L.X.); (K.X.); (J.X.); (J.D.); (Z.L.); (H.B.); (W.Z.); (L.Y.); (S.Z.)
| |
Collapse
|
7
|
Liu Y, Deng S, Ren S, Tam RCY, Liu S, Zhang AJ, To KKW, Yuen KY, Chen H, Wang P. Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models. Nat Commun 2025; 16:3133. [PMID: 40169649 PMCID: PMC11962148 DOI: 10.1038/s41467-025-58504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in aquatic birds since 1997, causing outbreaks in domestic poultry and occasional human infections worldwide. Recently, the cross-species transmission of a new reassortant variant from clade 2.3.4.4b of H5N1 to cattle in the US has heightened concerns regarding the expansion of host range and potential human infection. As eradicating the H5N1 virus from its reservoir is impossible, it is essential to prepare for a potential pandemic caused by an H5N1 derivative. Utilizing a deleted-NS1 live attenuated influenza viral vector vaccine system (DelNS1 LAIV), a system we have previously used in the development of a COVID-19 vaccine, we have rapidly developed an intranasal vaccine for cattle H5N1 and related clade 2.3.4.4b strains, based on publicly available sequences. Our research demonstrates that a single intranasal immunization can provide effective protection against lethal challenges from HPAI cattle or mink H5N1 variants, offering strong, sustained immunity after two months in female mouse and male hamster models. Immunogenicity analysis reveals that intranasal vaccination with DelNS1 LAIV induces robust neutralizing antibody, mucosal IgA and T cell responses in mice. It is crucial to further evaluate the DelNS1-H5N1 LAIV system to prepare for potential future H5N1 outbreaks in humans.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shaofeng Deng
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuang Ren
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Rachel Chun-Yee Tam
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Pandemic Research Alliance Unit, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Pandemic Research Alliance Unit, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
8
|
Kobayashi D, Hiono T, Arakawa H, Kaji H, Ohkawara A, Ichikawa T, Ban H, Isoda N, Sakoda Y. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. J Virol 2025; 99:e0147824. [PMID: 39950775 PMCID: PMC11915841 DOI: 10.1128/jvi.01478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/21/2024] [Indexed: 03/19/2025] Open
Abstract
Influenza A viruses with fewer amino acids in the neuraminidase (NA) stalk domain are primarily isolated from chickens rather than wild ducks, indicating that a shortened NA stalk is considered an adaptation marker of avian influenza viruses (AIVs) to chickens. Experimental passages of an H7N7 nonpathogenic AIV (rgVac2-P0) in chickens resulted in a highly pathogenic variant (Vac2-P3L4) with a 34-amino-acid deletion in the NA stalk, encompassing five potential N-glycosylation sites. To investigate how amino acid truncation and deglycosylation in the NA stalk contribute to increased pathogenicity, a virus with glycosylation-deficient mutations at these sites (rgVac2-P3L4/P0NAΔGlyco) was constructed. Contrary to expectations, chickens inoculated with rgVac2-P3L4/P0NAΔGlyco exhibited variable clinical outcomes, attributed to the genetic instability of the virus. A single mutation stabilized the virus, and the mutant (rgVac2-P3L4/P0NAΔGlyco-Y65H) resulted in higher pathogenicity compared with a virus with restored glycosylation (rgVac2-P3L4/P0NA-Y65H). Glycan occupancy analysis revealed 3-4 glycans at the five potential sites. In functional analysis, glycosylation-deficient mutants, similar to the short-stalk NA virus, showed significantly reduced erythrocyte elution activity. Additionally, mutational analysis indicated variable contributions of N-glycans to elution activity across the sites. Moreover, the functionally most contributing sites of the five potential N-glycosylation motifs were consistently included in the amino acid deletions of the stalk-truncated NA in N7-subtyped field isolates, despite the varying truncation position or length. These findings suggest that the loss of glycosylation is functionally equivalent to a reduction in amino acids, and it plays a crucial role in enhancing pathogenicity in chickens and affecting NA function.IMPORTANCEAvian influenza poses significant economic challenges to the poultry industry and presents potential risks to human health. Understanding the molecular mechanisms that facilitate the emergence of chicken-adapted avian influenza viruses (AIVs) from non-pathogenic duck-origin influenza viruses is crucial for improving AIV monitoring systems in poultry and controlling this disease. Amino acid deletions in the neuraminidase (NA) stalk domain serve as one of the molecular markers for AIV adaptation to Galliformes. This study highlights the critical role of N-glycosylation in the NA stalk domain in the pathogenesis of high pathogenicity avian influenza viruses in chickens. The findings propose a novel theory that the loss of glycosylation at the NA stalk domain, rather than a reduction in stalk length, is responsible for both NA function and increased virus pathogenicity in chickens.
Collapse
Affiliation(s)
- Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiromu Arakawa
- Systems Biology Division, Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Hiroyuki Kaji
- Systems Biology Division, Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Ayako Ohkawara
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takaya Ichikawa
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hinako Ban
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
9
|
Kikawa C, Loes AN, Huddleston J, Figgins MD, Steinberg P, Griffiths T, Drapeau EM, Peck H, Barr IG, Englund JA, Hensley SE, Bedford T, Bloom JD. High-throughput neutralization measurements correlate strongly with evolutionary success of human influenza strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641544. [PMID: 40161702 PMCID: PMC11952370 DOI: 10.1101/2025.03.04.641544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Human influenza viruses rapidly acquire mutations in their hemagglutinin (HA) protein that erode neutralization by antibodies from prior exposures. Here, we use a sequencing-based assay to measure neutralization titers for 78 recent H3N2 HA strains against a large set of children and adult sera, measuring ~10,000 total titers. There is substantial person-to-person heterogeneity in the titers against different viral strains, both within and across age cohorts. The growth rates of H3N2 strains in the human population in 2023 are highly correlated with the fraction of sera with low titers against each strain. Notably, strain growth rates are less correlated with neutralization titers against pools of human sera, demonstrating the importance of population heterogeneity in shaping viral evolution. Overall, these results suggest that high-throughput neutralization measurements of human sera against many different viral strains can help explain the evolution of human influenza.
Collapse
Affiliation(s)
- Caroline Kikawa
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
- These authors contributed equally and are listed alphabetically
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
- These authors contributed equally and are listed alphabetically
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Marlin D. Figgins
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Philippa Steinberg
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Tachianna Griffiths
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth M. Drapeau
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heidi Peck
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Janet A. Englund
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
- Lead contact
| |
Collapse
|
10
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands influenza viral escape pathways from recalled humoral immunity. Immunity 2025; 58:716-727.e6. [PMID: 40023162 PMCID: PMC11906258 DOI: 10.1016/j.immuni.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Initial exposure to a rapidly evolving virus establishes B cell memory that biases later responses to antigenically drifted strains. This "immune imprinting" implies that subsequent exposure to a drifted strain can induce affinity maturation of memory B cells toward cross-reactivity with the drifted strain and hence toward greater overall breadth. Here, we used deep mutational scanning of H1 influenza hemagglutinins (HAs) to investigate how viruses evolve in response to these broad antibody response. We identified escape mutations from clonal antibody lineages that targeted the receptor binding site and lateral patch. By adjusting the antigen-antibody contacts, antibody affinity maturation restricted the potential escape routes for the eliciting strain. However, escape occurred readily in drifted strains. We attribute this escape-prone property of the drifted strains to epistatic networks within HA. Our data explain how the influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
Affiliation(s)
- Daniel P Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Maryanchik SV, Borovikova SE, Ivanova AO, Trofimov VV, Bagrova OE, Frolova AS, Mityaeva ON, Volchkov PY, Deviatkin AA. Antivirotics based on defective interfering particles: emerging concepts and challenges. Front Cell Infect Microbiol 2025; 15:1436026. [PMID: 40066067 PMCID: PMC11891348 DOI: 10.3389/fcimb.2025.1436026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
Viruses are obligate parasites, that use the host's internal metabolic systems for their own reproduction. This complicates the search for molecular targets to prevent the spread of viral infection without disrupting the vital functions of human cells. Defective interfering particles (DIPs) are natural competitors of viruses for important resources of viral reproduction. DIPs emerge during infection, originate from the normal viral replication process and inhibit its progression, making them an interesting candidate for antiviral therapy. Here we describe the biology of DIPs, advances in DIP-based antiviral technology, analyze their therapeutic potential and provide a systemic overview of existing preventive and therapeutic antiviral strategies.
Collapse
Affiliation(s)
- S. V. Maryanchik
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - S. E. Borovikova
- Institute of Gene Biology Russian Academy of Sciences (RAS), Moscow, Russia
| | - A. O. Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - O. E. Bagrova
- State Virus Collection Laboratory, Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Frolova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | - O. N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - P. Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The Moscow Clinical Scientific Center (MCSC) named after A. S. Loginov, Moscow, Russia
| | - A. A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| |
Collapse
|
12
|
Swaminath S, Mendes M, Zhang Y, Remick KA, Mejia I, Güereca M, Te Velthuis AJW, Russell AB. Analysis of NS2-dependent effects on influenza PB1 segment extends replication requirements beyond the canonical promoter. Nat Commun 2025; 16:1875. [PMID: 39987189 PMCID: PMC11846981 DOI: 10.1038/s41467-025-57092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
Influenza A virus encodes conserved promoter sequences. Using minimal replication assays-transfections with viral polymerase, nucleoprotein, and a genomic template-these sequences were identified as 13nt at the 5' end of the genomic RNA (U13) and 12nt at the 3' end (U12). Other than the fourth 3' nucleotide, the U12 and U13 sequences are identical between all eight RNA molecules of the segmented influenza A genome. However, individual segments can exhibit different dynamics during infection. Influenza NS2, which modulates transcription and replication differentially between genomic segments, may provide an explanation. Here, we assess how internal sequences of two genomic segments, HA and PB1, contribute to NS2-dependent replication and map such interactions down to individual nucleotides in PB1. We find that the expression of NS2 significantly alters sequence requirements for efficient replication beyond the identical U12 and U13 sequences, providing a potential mechanism for segment-specific replication dynamics across the influenza genome.
Collapse
Affiliation(s)
- Sharmada Swaminath
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Marisa Mendes
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yipeng Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Kaleigh A Remick
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Isabel Mejia
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Melissa Güereca
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Aartjan J W Te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alistair B Russell
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
13
|
Pilapitiya D, Lee WS, Vu MN, Kelly A, Webster RH, Koutsakos M, Kent SJ, Juno JA, Tan HX, Wheatley AK. Mucosal vaccination against SARS-CoV-2 using recombinant influenza viruses delivering self-assembling nanoparticles. Vaccine 2025; 46:126668. [PMID: 39740385 DOI: 10.1016/j.vaccine.2024.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms. Following intranasal immunisation, mice developed potent serological anti-RBD responses, with ferritin nanoparticles superseding monomeric or trimeric RBD responses. While parenteral and mucosal immunisation elicited robust anti-RBD IgG in serum, mucosal immunisation seeded respiratory IgA, RBD-specific lung-resident memory and germinal centre (GC) B cells. In animals with prior intramuscular vaccination, intranasal boosting with recombinant influenza vectors augmented mucosal IgG, IgA, GC and memory B cells, and SARS-CoV-2 lung neutralising titres. Recall of RBD-specific memory B cells via antigen re-exposure in the lung increased antibody-secreting cells in the lung-draining lymph nodes, with maintenance of lung GC B cells. Recombinant influenza-based vaccines effectively deliver highly immunogenic self-assembling nanoparticles, generating antibodies and B cells in the respiratory mucosa. This strategy provides a tractable pathway to augment lung-localised responses against recurrent respiratory viral infections.
Collapse
MESH Headings
- Animals
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Mice
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Female
- Administration, Intranasal
- Immunity, Mucosal
- Immunoglobulin G/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Mice, Inbred BALB C
- Antibodies, Neutralizing/immunology
- Immunoglobulin A/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Vaccination/methods
- Lung/immunology
- B-Lymphocytes/immunology
- Humans
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
Collapse
Affiliation(s)
- Devaki Pilapitiya
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mai N Vu
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Andrew Kelly
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Rosela H Webster
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
14
|
Koh WC, Yusoff K, Song AAL, Saad N, Chia SL. Viral vectors: design and delivery for small RNA. J Med Microbiol 2025; 74. [PMID: 39950625 DOI: 10.1099/jmm.0.001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
RNA interference regulates gene expression by selectively silencing target genes through the introduction of small RNA molecules, such as microRNA, small interfering RNA and short hairpin RNA. These molecules offer significant therapeutic potential for diverse human ailments like cancer, viral infections and neurodegenerative disorders. Whilst non-viral vectors like nanoparticles have been extensively explored for delivering these RNAs, viral vectors, with superior specificity and delivery efficiency, remain less studied. This review examines current viral vectors for small RNA delivery, focusing on design strategies and characteristics. It compares the advantages and drawbacks of each vector, aiding readers in selecting the optimal one for small RNA delivery.
Collapse
Affiliation(s)
- Wei Chin Koh
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suet Lin Chia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
15
|
Gu J, Yan Y, Zeng Z, Liu D, Hu J, Hu S, Wang X, Gu M, Liu X. Hemagglutinin with a polybasic cleavage site confers high virulence on H7N9 avian influenza viruses. Poult Sci 2025; 104:104832. [PMID: 39862488 PMCID: PMC11803838 DOI: 10.1016/j.psj.2025.104832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
H7N9 avian influenza virus (AIV) first emerged in February 2013 in China, and early isolates were all low pathogenic (LP). After circulation for a few years in live poultry markets of China, LP H7N9 AIVs evolved into a highly pathogenic (HP) form in late 2016. Deduced amino acid sequence analysis of hemagglutinin (HA) gene revealed that all HP H7N9 AIVs have obtained four-amino-acid insertion at position 339-342 (H7 numbering), making the cleavage site from a monobasic motif (LP AIVs) to a polybasic form (HP AIVs). Notably, the polybasic cleavage site motifs are diversified, of which PEVPKRKRTAR↓GLF motif is prevalent. To elucidate the reasons accounting for its dominance, recombinant H7N9 virus carrying PEVPKRKRTAR↓GLF (rJT157-2) motif was generated based on LP H7N9 virus A/chicken/Eastern China/JT157/2016 (JT157). Besides, another two viruses containing PEVPKGKRTAR↓GLF (rJT157-1) and PEIPKRKRTAR↓GLF (rJT157-3) cleavage site motifs were also constructed as comparisons. We found that rJT157-2 showed better biological characterizations in vitro including replication kinetics, plaque size, thermal and acid stability. In addition, animal experiments demonstrated that rJT157-2 was more pathogenic to both chickens and mice with higher virus titers and induced more severe changes in the lungs. These results suggested that HP H7N9 viruses carrying PEVPKRKRTAR↓GLF motif in the HA cleavage site were most likely adaptive mutants during the evolution of H7N9 AIVs.
Collapse
Affiliation(s)
- Jinyuan Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, PR China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Zixiong Zeng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Dong Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
16
|
Yin Y, Li W, Chen R, Wang X, Chen Y, Cui X, Lu X, Irwin DM, Shen X, Shen Y. Random forest algorithm reveals novel sites in HA protein that shift receptor binding preference of the H9N2 avian influenza virus. Virol Sin 2025; 40:109-117. [PMID: 39746614 PMCID: PMC11962996 DOI: 10.1016/j.virs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025] Open
Abstract
A switch from avian-type α-2,3 to human-type α-2,6 receptors is an essential element for the initiation of a pandemic from an avian influenza virus. Some H9N2 viruses exhibit a preference for binding to human-type α-2,6 receptors. This identifies their potential threat to public health. However, our understanding of the molecular basis for the switch of receptor preference is still limited. In this study, we employed the random forest algorithm to identify the potentially key amino acid sites within hemagglutinin (HA), which are associated with the receptor binding ability of H9N2 avian influenza virus (AIV). Subsequently, these sites were further verified by receptor binding assays. A total of 12 substitutions in the HA protein (N158D, N158S, A160 N, A160D, A160T, T163I, T163V, V190T, V190A, D193 N, D193G, and N231D) were predicted to prefer binding to α-2,6 receptors. Except for the V190T substitution, the other substitutions were demonstrated to display an affinity for preferential binding to α-2,6 receptors by receptor binding assays. Especially, the A160T substitution caused a significant upregulation of immune-response genes and an increased mortality rate in mice. Our findings provide novel insights into understanding the genetic basis of receptor preference of the H9N2 AIV.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China; International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Rujian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yiting Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xinyuan Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xingbang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S1A8, Canada
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou 510642, China.
| |
Collapse
|
17
|
Yang Y, Hu Y, Yang Y, Liu Q, Zheng P, Yang Z, Duan B, He J, Li W, Li D, Zheng X, Wang M, Fu Y, Long Q, Ma Y. Tumor Vaccine Exploiting Membranes with Influenza Virus-Induced Immunogenic Cell Death to Decorate Polylactic Coglycolic Acid Nanoparticles. ACS NANO 2025; 19:3115-3134. [PMID: 39806805 DOI: 10.1021/acsnano.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2). IAV-induced ICD cells enhance biomass-derived carbon (BMDCs) migration, antigen uptake, cross-presentation, and maturation in vitro. Furthermore, immunization with IAV-induced ICD cells effectively suppressed tumor growth in melanoma-bearing mice. The isolated cell membrane inherited the immunological characteristics from the ICD cells and elicited robust antitumor immune responses through decorating PLGA NPs loading with a tumor-specific helper T-cell peptide and supplemented with ATP in a hydrogel system. This study indicated a promising strategy for developing cell-based and personalized tumor vaccines through fully taking advantage of the immune stimulation mechanisms of ICD occurrence in tumor cells, IAV modification, and nanoscale delivery.
Collapse
Affiliation(s)
- Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Yunnan University, Kunming 650091, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Kunming Medical University, Kunming 650500, China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Kunming Medical University, Kunming 650500, China
| | - Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Kunming Medical University, Kunming 650500, China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Kunming 650031, China
| |
Collapse
|
18
|
Mitrovich M, Vahey MD. Genetically Recoding Respiratory Syncytial Virus to Visualize Nucleoprotein Dynamics and Virion Assembly. ACS Infect Dis 2025; 11:95-103. [PMID: 39743228 PMCID: PMC11731299 DOI: 10.1021/acsinfecdis.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
RNA viruses possess small genomes encoding a limited repertoire of essential and often multifunctional proteins. Although genetically tagging viral proteins provides a powerful tool for dissecting mechanisms of viral replication and infection, it remains a challenge. Here, we leverage genetic code expansion to develop a recoded strain of respiratory syncytial virus (RSV) in which the multifunctional nucleoprotein is site-specifically modified with a noncanonical amino acid. The resulting virus replicates exclusively in cells capable of amber stop codon suppression and is amenable to labeling with tetrazine-modified fluorophores, achieving high signal to background. Virus with labeled nucleoprotein remains functional, retaining ∼70% infectivity relative to unlabeled controls. We leverage this tool to visualize RSV assembly, capturing the transfer of nucleoprotein complexes from cytoplasmic condensates directly to budding viral filaments at the cell surface and to cytoplasmic compartments containing viral surface proteins. Collectively, these results suggest multiple pathways for RSV assembly and establish a framework that may be extended to other viral nucleoproteins.
Collapse
Affiliation(s)
- Margaret
Dianne Mitrovich
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
- Center for
Biomolecular Condensates, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D. Vahey
- Department
of Biomedical Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
- Center for
Biomolecular Condensates, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
19
|
Huang JY, Sung PS, Hsieh SL. Regulation of interferon alpha production by the MAGUK-family protein CASK under H5N1 infection. Front Immunol 2025; 15:1513713. [PMID: 39850902 PMCID: PMC11754051 DOI: 10.3389/fimmu.2024.1513713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages. We found that H5N1 triggers CASK nuclear translocation via PKR and SRC signaling. HCK, a SRC family kinase, enhances CASK phosphorylation at S395 via CDK5, facilitating CASK's nuclear entry. Knocking out CASK in myeloid cells specifically reduces interferon-alpha (IFNA) production by hindering the nuclear export of Ifna mRNA, while leaving its mRNA levels unchanged. Myeloid-specific CASK knockout (KO) mice display exacerbated lung inflammation, which correlates with reduced IFNA levels during H5N1 infection. Interactome studies show that H5N1 triggers associations between CASK and CCT4, STIP1, and TNK1. These associations recruit IRF7, POLR2C, TAF15, HNRNPs, and CRM1, enabling the CASK complex to bind to the Ifna promoter, bind co-transcriptionally to Ifna mRNA, and facilitate CRM1-dependent Ifna mRNA export. This underscores CASK's critical role in the antiviral response.
Collapse
Affiliation(s)
- Jing-Ying Huang
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Immunology Research Center, National Health Research Institute, Zhunan, Taiwan
| | - Pei-Shan Sung
- Immunology Research Center, National Health Research Institute, Zhunan, Taiwan
| | - Shie-Liang Hsieh
- Immunology Research Center, National Health Research Institute, Zhunan, Taiwan
- Institute of Clinical Medicine and Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Xu N, Chen Y, Wu Y, Guo Y, Wang C, Qin T, Chen S, Peng D, Liu X. The evolution of hemagglutinin-158 and neuraminidase-88 glycosylation sites modulates antigenicity and pathogenicity of clade 2.3.2.1 H5N1 avian influenza viruses. Vet Microbiol 2025; 300:110333. [PMID: 39647217 DOI: 10.1016/j.vetmic.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Clade 2.3.2.1 of the H5N1 avian influenza virus (AIV) evolved into several subclades. However, the effect of glycosylation on the biological characteristics of hemagglutinin (HA) and/or neuraminidase (NA) from H5N1 AIVs remains unclear. Here, we determined that the global prevalence of clade 2.3.2.1 H5N1 AIVs with deglycosylated residue 158 on HA (HA158-) and glycosylated residue 88 on NA (NA88+) were predominant via multiple sequence analysis. The deglycosylation of residue on NA 88 (NA88-) was observed in clade 2.3.2.1a (new) and clade 2.3.2.1e H5N1 AIVs. Interestingly, NA88- was coupled with the acquisition of 158 glycosylation sites on HA (HA158+) in clade 2.3.2.1e H5N1 AIVs from China, and clade 2.3.2.1a (new) H5N1 AIVs exhibiting the HA158-NA88- pattern were predominant in Bangladesh. Meanwhile, the temporal distribution of strain HA158+ NA88- was highly consistent with the implementation of Re-6 vaccine in China. The recombinant H5N1 AIVs constructed using a reverse genetic system showed that the acquisition of the HA158 glycosylation site facilitated viral evasion from Re-6 antisera, and the virus lacking glycosylation sites at HA158 and NA88 resulted in reduced NA activity, replication in mammalian cells, and pathogenicity in both chickens and mice compared to that of the viruses with alternative glycosylation patterns. Therefore, the acquisition of HA158+ in clade 2.3.2.1e H5N1 AIVs enables evasion of Re-6 vaccination pressure, and the virulence of clade 2.3.2.1 H5N1 AIVs is modulated by the absence of glycosylation sites at HA158 and NA88. Our finding highlighted the importance of epidemiological surveillance and timely updating vaccines of H5 AIVs.
Collapse
Affiliation(s)
- Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yuwei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yijie Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Chenrong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
21
|
Jang Y, Baek YG, Lee YN, Cha RM, Choi YC, Park MJ, Lee YJ, Lee EK. Research Note: Establishment of vector system harboring duck RNA polymerase I promoter for avian influenza virus. Poult Sci 2025; 104:104570. [PMID: 39631283 PMCID: PMC11652914 DOI: 10.1016/j.psj.2024.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Reverse genetics (RG) systems are extensively utilized to investigate the characteristics of influenza viruses and develop vaccines, predominantly relying on human RNA polymerase I (pol I). However, the efficiency of RG systems for avian-origin influenza viruses may be compromised due to potential species-specific interactions of RNA pol I. In this study, we reported the polymerase activities of the duck RNA pol I promoter in avian cells and the generation of recombinant avian-derived influenza viruses using a novel vector system containing the duck RNA pol I promoter region to enhance the rescue efficiency of the RG system in avian cells. Initially, we explored a putative duck promoter region and identified the optimal size to improve the existing system. Subsequently, we established an RG system incorporating the duck RNA pol I promoter and compared its rescue efficiency with the human pol I system by generating recombinant influenza viruses in several cell lines. Notably, the 250-bp duck RNA pol I promoter demonstrated effective functionality in avian cells, exhibiting higher polymerase activity in a minigenome assay. The newly constructed RG system was significantly improved, enabling the rescue of influenza viruses in 293T, DF-1, and CCL141 cells. Furthermore, HPAI viruses were successfully rescued in DF-1 cells, a result that had not been achieved in previous experiments. In conclusion, our novel RG system harboring duck RNA pol I offers an additional tool for researching influenza viruses and may facilitate the development of vaccines for poultry.
Collapse
Affiliation(s)
- Yunyueng Jang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Ra Mi Cha
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yun-Chan Choi
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Min-Ji Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| |
Collapse
|
22
|
Sergeeva MV, Vasilev K, Romanovskaya-Romanko E, Yolshin N, Pulkina A, Shamakova D, Shurygina AP, Muzhikyan A, Lioznov D, Stukova M. Mucosal Immunization with an Influenza Vector Carrying SARS-CoV-2 N Protein Protects Naïve Mice and Prevents Disease Enhancement in Seropositive Th2-Prone Mice. Vaccines (Basel) 2024; 13:15. [PMID: 39852794 PMCID: PMC11769390 DOI: 10.3390/vaccines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame. Methods: We generated several FluVec-N recombinant vectors by reverse genetics and confirmed the vector's genetic stability, antigen expression in vitro, attenuation, and immunogenicity in a mouse model. We tested the protective potential of FluVec-N intranasal immunization in naïve mice and seropositive Th2-prone mice, primed with aluminium-adjuvanted inactivated SARS-CoV-2. Immune response in immunized and challenged mice was analyzed through serological methods and flow cytometry. Results: Double intranasal immunization of naïve mice with FluVec-N reduced weight loss and viral load in the lungs following infection with the SARS-CoV-2 beta variant. Mice primed with alum-adjuvanted inactivated coronavirus experienced substantial early weight loss and eosinophilia in the lungs during infection, demonstrating signs of enhanced disease. A single intranasal boost immunization with FluVec-N prevented the disease enhancement in primed mice by modulating the local immune response. Protection was associated with the formation of specific IgA and the early activation of virus-specific effector and resident CD8+ lymphocytes in mouse lungs. Conclusions: Our study supports the potential of immunization with influenza vector vaccines to prevent respiratory diseases and associated immunopathology.
Collapse
Affiliation(s)
- Mariia V. Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| | | | | | | | | | | | | | | | | | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia; (K.V.)
| |
Collapse
|
23
|
Bai Y, Lei H, Song W, Shin SC, Wang J, Xiao B, Koçer ZA, Song MS, Webster R, Webby RJ, Wong SS, Zanin M. Amino acids in the polymerase complex of shorebird-isolated H1N1 influenza virus impact replication and host-virus interactions in mammalian models. Emerg Microbes Infect 2024; 13:2332652. [PMID: 38517705 PMCID: PMC11018082 DOI: 10.1080/22221751.2024.2332652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.
Collapse
Affiliation(s)
- Yaqin Bai
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Guangzhou Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Diseases, Guangzhou, People’s Republic of China
| | - Hui Lei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Immunology & Infection, Hong Kong SAR, People's Republic of China
| | - Wenjun Song
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, People’s Republic of China
| | | | - Jiaqi Wang
- Guangzhou Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Diseases, Guangzhou, People’s Republic of China
| | - Biying Xiao
- Guangzhou Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Diseases, Guangzhou, People’s Republic of China
| | - Zeynep A. Koçer
- Emerging Viral Diseases Laboratory, Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Izmir, Türkiye
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University Medical School, Chungbuk, Korea
| | - Robert Webster
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard J. Webby
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sook-San Wong
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Immunology & Infection, Hong Kong SAR, People's Republic of China
| |
Collapse
|
24
|
Jang SG, Kim YI, Casel MAB, Choi JH, Gil JR, Rollon R, Kim EH, Kim SM, Ji HY, Park DB, Hwang J, Ahn JW, Kim MH, Song MS, Choi YK. HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts. Emerg Microbes Infect 2024; 13:2302854. [PMID: 38189114 PMCID: PMC10840603 DOI: 10.1080/22221751.2024.2302854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
During the 2021/2022 winter season, we isolated highly pathogenic avian influenza (HPAI) H5N1 viruses harbouring an amino acid substitution from Asparagine(N) to Aspartic acid (D) at residue 193 of the hemagglutinin (HA) receptor binding domain (RBD) from migratory birds in South Korea. Herein, we investigated the characteristics of the N193D HA-RBD substitution in the A/CommonTeal/Korea/W811/2021[CT/W811] virus by using recombinant viruses engineered via reverse genetics (RG). A receptor affinity assay revealed that the N193D HA-RBD substitution in CT/W811 increases α2,6 sialic acid receptor binding affinity. The rCT/W811-HA193N virus caused rapid lethality with high virus titres in chickens compared with the rCT/W811-HA193D virus, while the rCT/W811-HA193D virus exhibited enhanced virulence in mammalian hosts with multiple tissue tropism. Surprisingly, a ferret-to-ferret transmission assay revealed that rCT/W811-HA193D virus replicates well in the respiratory tract, at a rate about 10 times higher than that of rCT/W811-HA193N, and all rCT/W811-HA193D direct contact ferrets were seroconverted at 10 days post-contact. Further, competition transmission assay of the two viruses revealed that rCT/W811-HA193D has enhanced growth kinetics compared with the rCT/W811-HA193N, eventually becoming the dominant strain in nasal turbinates. Further, rCT/W811-HA193D exhibits high infectivity in primary human bronchial epithelial (HBE) cells, suggesting the potential for human infection. Taken together, the HA-193D containing HPAI H5N1 virus from migratory birds showed enhanced virulence in mammalian hosts, but not in avian hosts, with multi-organ replication and ferret-to-ferret transmission. Thus, this suggests that HA-193D change increases the probability of HPAI H5N1 infection and transmission in humans.
Collapse
Affiliation(s)
- Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Ryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Se-Mi Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ho Young Ji
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Dong Bin Park
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Woo Ahn
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
25
|
Schwerdtner M, Schmacke LC, Nave J, Limburg H, Steinmetzer T, Stein DA, Moulton HM, Böttcher-Friebertshäuser E. Unveiling the Role of TMPRSS2 in the Proteolytic Activation of Pandemic and Zoonotic Influenza Viruses and Coronaviruses in Human Airway Cells. Viruses 2024; 16:1798. [PMID: 39599912 PMCID: PMC11599139 DOI: 10.3390/v16111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The zoonotic transmission of influenza A viruses (IAVs) and coronaviruses (CoVs) may result in severe disease. Cleavage of the surface glycoproteins hemagglutinin (HA) and spike protein (S), respectively, is essential for viral infectivity. The transmembrane serine protease 2 (TMPRSS2) is crucial for cleaving IAV HAs containing monobasic cleavage sites and severe acute respiratory syndrome (SARS)-CoV-2 S in human airway cells. Here, we analysed and compared the TMPRSS2-dependency of SARS-CoV, Middle East respiratory syndrome (MERS)-CoV, the 1918 pandemic H1N1 IAV and IAV H12, H13 and H17 subtypes in human airway cells. We used the peptide-conjugated morpholino oligomer (PPMO) T-ex5 to knockdown the expression of active TMPRSS2 and determine the impact on virus activation and replication in Calu-3 cells. The activation of H1N1/1918 and H13 relied on TMPRSS2, whereas recombinant IAVs carrying H12 or H17 were not affected by TMPRSS2 knockdown. MERS-CoV replication was strongly suppressed in T-ex5 treated cells, while SARS-CoV was less dependent on TMPRSS2. Our data underline the importance of TMPRSS2 for certain (potentially) pandemic respiratory viruses, including H1N1/1918 and MERS-CoV, in human airways, further suggesting a promising drug target. However, our findings also highlight that IAVs and CoVs differ in TMPRSS2 dependency and that other proteases are involved in virus activation.
Collapse
Affiliation(s)
- Marie Schwerdtner
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany; (M.S.)
| | - Luna C. Schmacke
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Julia Nave
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany; (M.S.)
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, 35043 Marburg, Germany; (M.S.)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
26
|
Vicary AC, Jordan SN, Mendes M, Swaminath S, Castro LK, Porter JS, Russell AB. Novel CRITR-seq approach reveals influenza transcription is modulated by NELF and is a key event precipitating an interferon response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623683. [PMID: 39605461 PMCID: PMC11601499 DOI: 10.1101/2024.11.14.623683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transcription of interferons upon viral infection is critical for cell-intrinsic innate immunity. This process is influenced by many host and viral factors. To identify host factors that modulate interferon induction within cells infected by influenza A virus, we developed CRISPR with Transcriptional Readout (CRITR-seq). CRITR-seq is a method linking CRISPR guide sequence to activity at a promoter of interest. Employing this method, we find that depletion of the Negative Elongation Factor complex increases both flu transcription and interferon expression. We find that the process of flu transcription, both in the presence and absence of viral replication, is a key contributor to interferon induction. Taken together, our findings highlight innate immune ligand concentration as a limiting factor in triggering an interferon response, identify NELF as an important interface with the flu life cycle, and validate CRITR-seq as a tool for genome-wide screens for phenotypes of gene expression.
Collapse
Affiliation(s)
- Alison C. Vicary
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sydney N.Z. Jordan
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marisa Mendes
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sharmada Swaminath
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lennice K. Castro
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin S. Porter
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alistair B. Russell
- Department of Molecular Biology, School of Biological Sciences,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Schewe KE, Cooper S, Crowe J, Llewellyn S, Ritter L, Ryan KA, Dibben O. An Optimised Live Attenuated Influenza Vaccine Ferret Efficacy Model Successfully Translates H1N1 Clinical Data. Vaccines (Basel) 2024; 12:1275. [PMID: 39591178 PMCID: PMC11598904 DOI: 10.3390/vaccines12111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Between 2013 and 2016, the A/H1N1pdm09 component of the live attenuated influenza vaccine (LAIV) produced instances of lower-than-expected vaccine effectiveness. Standard pre-clinical ferret models, using a human-like vaccine dose and focusing on antigenic match to circulating wildtype (wt) strains, were unable to predict these fluctuations. By optimising the vaccine dose and utilising clinically relevant endpoints, we aimed to develop a ferret efficacy model able to reproduce clinical observations. Ferrets were intranasally vaccinated with 4 Log10 FFU/animal (1000-fold reduction compared to clinical dose) of seven historical LAIV formulations with known (19-90%) H1N1 vaccine efficacy or effectiveness (VE). Following homologous H1N1 wt virus challenge, protection was assessed based on primary endpoints of wt virus shedding in the upper respiratory tract and the development of fever. LAIV formulations with high (82-90%) H1N1 VE provided significant protection from wt challenge, while formulations with reduced (19-32%) VE tended not to provide significant protection. The strongest correlation observed was between reduction in wt shedding and VE (R2 = 0.75). Conversely, serum immunogenicity following vaccination was not a reliable indicator of protection (R2 = 0.37). This demonstrated that, by optimisation of the vaccine dose and the use of non-serological, clinically relevant protection endpoints, the ferret model could successfully translate clinical H1N1 LAIV VE data.
Collapse
Affiliation(s)
- Katarzyna E. Schewe
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Shaun Cooper
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Jonathan Crowe
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Steffan Llewellyn
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Lydia Ritter
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| | - Kathryn A. Ryan
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK;
| | - Oliver Dibben
- Flu-BPD, BioPharmaceutical Development, R&D, AstraZeneca, Liverpool L24 9JW, UK; (K.E.S.); (S.C.); (J.C.); (S.L.); (L.R.)
| |
Collapse
|
28
|
Hu W, Wang Z, Chen Y, Wu S, Li T, Zhai SL, Ju X, Sun Y, Wei WK, Yu J. The Thermal Stability of Influenza Viruses in Milk. Viruses 2024; 16:1766. [PMID: 39599880 PMCID: PMC11598856 DOI: 10.3390/v16111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype (clade 2.3.4.4b) have been detected in raw milk from infected cows. Several studies have examined the time and temperature parameters to ascertain whether influenza viruses in milk can be inactivated completely under commercial pasteurization conditions, yielding conflicting results. This study aimed to investigate whether milk could help protect influenza viruses from heat treatment. After heat treatment at 49 °C for one hour, the titer reduction of the influenza A/WSN/1933 (A/H1) virus in milk was approximately 1.6 log10TCID50/mL, which was significantly lower than that (3 log10TCID50/mL) observed in the Dulbecco's Modified Eagle Medium (DMEM) control media. The influenza D/bovine/CHN/JY3002/2022 (D/Yama2019) virus in milk retained a high residual infectivity (4.68 × 103 log10TCID50/mL) after treatment at 53 °C; however, the virus in DMEM completely lost its infectivity under the same conditions. Moreover, the influenza A/chicken/CHN/Cangzhou03/2023 (A/H5) virus in DMEM could be inactivated completely using any of the three heat treatment methods: 63 °C for 30 min, 72 °C for 15 s, or 80 °C for 15 s. For the virus present in milk, only heat treatment at 80 °C for 15 s completely inactivated it. These results suggest that milk prevents influenza viruses from pasteurization inactivation.
Collapse
Affiliation(s)
- Wanke Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.); (X.J.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.C.); (S.W.)
| | - Zhao Wang
- School of Laboratory Animal, Shandong First Medical University, Jinan 250117, China;
| | - Yunxia Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.C.); (S.W.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Siyu Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.C.); (S.W.)
| | - Tianyu Li
- Zhongshan Animal Disease Control Center, Zhongshan 528400, China;
| | - Shao-Lun Zhai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.); (X.J.)
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Wen-Kang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.C.); (S.W.)
| | - Jieshi Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.C.); (S.W.)
| |
Collapse
|
29
|
Chen KR, Yang CY, Shu SG, Lo YC, Lee KW, Wang LC, Chen JB, Shih MC, Chang HC, Hsiao YJ, Wu CL, Tan TH, Ling P. Endosomes serve as signaling platforms for RIG-I ubiquitination and activation. SCIENCE ADVANCES 2024; 10:eadq0660. [PMID: 39504361 PMCID: PMC11540011 DOI: 10.1126/sciadv.adq0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
RIG-I-like receptors (RLRs) are cytosolic RNA sensors critical for antiviral immunity. RLR activation is regulated by polyubiquitination and oligomerization following RNA binding. Yet, little is known about how RLRs exploit subcellular organelles to facilitate their posttranslational modifications and activation. Endosomal adaptor TAPE regulates the endosomal TLR and cytosolic RLR pathways. The potential interplay between RIG-I signaling and endosomes has been explored. Here, we report that endosomes act as platforms for facilitating RIG-I polyubiquitination and complex formation. RIG-I was translocated onto endosomes to form signaling complexes upon activation. Ablation of endosomes impaired RIG-I signaling to type I IFN activation. TAPE mediates the interaction and polyubiquitination of RIG-I and TRIM25. TAPE-deficient myeloid cells were defective in type I IFN activation upon RNA ligand and virus challenges. Myeloid TAPE deficiency increased the susceptibility to RNA virus infection in vivo. Our work reveals endosomes as signaling platforms for RIG-I activation and antiviral immunity.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Research, E-Da Hospital, I-Shou University, 824005 Kaohsiung, Taiwan
| | - Chia-Yu Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 33302 Tao-Yuan, Taiwan
| | - San-Ging Shu
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Yin-Chiu Lo
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Kuan-Wei Lee
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Li-Chun Wang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Jia-Bao Chen
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Meng-Cen Shih
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Hung-Chun Chang
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Yu-Ju Hsiao
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 60002 Chiayi City, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Pin Ling
- Department of Microbiology and Immunology, National Cheng Kung University, 70101 Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| |
Collapse
|
30
|
Tanaka R, Tamao K, Ono M, Yamayoshi S, Kawaoka Y, Su'etsugu M, Noji H, Tabata KV. In vitro one-pot construction of influenza viral genomes for virus particle synthesis based on reverse genetics system. PLoS One 2024; 19:e0312776. [PMID: 39514509 PMCID: PMC11548778 DOI: 10.1371/journal.pone.0312776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The reverse genetics system, which allows the generation of influenza viruses from plasmids encoding viral genome, is a powerful tool for basic research on viral infection mechanisms and application research such as vaccine development. However, conventional plasmid construction using Escherichia coli (E.coli) cloning is time-consuming and has difficulties handling DNA encoding genes toxic for E.coli or highly repeated sequences. These limitations hamper rapid virus synthesis. In this study, we establish a very rapid in vitro one-pot plasmid construction (IVOC) based virus synthesis. This method dramatically reduced the time for genome plasmid construction, which was used for virus synthesis, from several days or more to about 8 hours. Moreover, infectious viruses could be synthesized with a similar yield to the conventional E.coli cloning-based method with high accuracy. The applicability of this method was also demonstrated by the generation of recombinant viruses carrying reporter genes from the IVOC products. This method enables the pathogenicity analysis and vaccine development using genetically modified viruses, and it is expected to allow for faster analysis of newly emerging variants than ever before. Furthermore, its application to other RNA viruses is also expected.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Kenji Tamao
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Mana Ono
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Vincent Baker AL, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol 2024; 22:e3002916. [PMID: 39531474 PMCID: PMC11584116 DOI: 10.1371/journal.pbio.3002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Jenny J Ahn
- Department of Microbiology, University of Washington, Seattle, Washington, DC, United States of America
| | - Jordan T Ort
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jin Yu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, United States of America
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, United Kingdom
| | - Louise H Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, DC, United States of America
| |
Collapse
|
32
|
Dascalu S, Sealy JE, Sadeyen JR, Flammer PG, Fiddaman S, Preston SG, Dixon RJ, Bonsall MB, Smith AL, Iqbal M. Immunisation of chickens with inactivated and/or infectious H9N2 avian influenza virus leads to differential immune B-cell repertoire development. Front Immunol 2024; 15:1461678. [PMID: 39534604 PMCID: PMC11555566 DOI: 10.3389/fimmu.2024.1461678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Avian influenza viruses (AIVs) are a major economic burden to the poultry industry and pose serious zoonotic risks, with human infections being reported every year. To date, the vaccination of birds remains the most important method for the prevention and control of AIV outbreaks. Most national vaccination strategies against AIV infection use whole virus-inactivated vaccines, which predominantly trigger a systemic antibody-mediated immune response. There are currently no studies that have examined the antibody repertoire of birds that were infected with and/or vaccinated against AIV. To this end, we evaluate the changes in the H9N2-specific IgM and IgY repertoires in chickens subjected to vaccination(s) and/or infectious challenge. We show that a large proportion of the IgM and IgY clones were shared across multiple individuals, and these public clonal responses are dependent on both the immunisation status of the birds and the specific tissue that was examined. Furthermore, the analysis revealed specific clonal expansions that are restricted to particular H9N2 immunisation regimes. These results indicate that both the nature and number of immunisations are important drivers of the antibody responses and repertoire profiles in chickens following H9N2 antigenic stimulation. We discuss how the repertoire biology of avian B-cell responses may affect the success of AIV vaccination in chickens, in particular the implications of public versus private clonal selection.
Collapse
Affiliation(s)
- Stefan Dascalu
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Joshua E. Sealy
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Jean-Remy Sadeyen
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Steven Fiddaman
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stephen G. Preston
- Department of Biology, University of Oxford, Oxford, United Kingdom
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Robert J. Dixon
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Adrian L. Smith
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Munir Iqbal
- Avian Influenza and Newcastle Disease Research Group, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
33
|
Guan M, DeLiberto TJ, Feng A, Zhang J, Li T, Wang S, Li L, Killian ML, Praena B, Giri E, Deliberto ST, Hang J, Olivier A, Torchetti MK, Tao YJ, Parrish C, Wan XF. Neu5Gc binding loss of subtype H7 influenza A virus facilitates adaptation to gallinaceous poultry following transmission from waterbirds. J Virol 2024; 98:e0011924. [PMID: 39225467 PMCID: PMC11494897 DOI: 10.1128/jvi.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.
Collapse
Affiliation(s)
- Minhui Guan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Thomas J. DeLiberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Aijing Feng
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jieze Zhang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shuaishuai Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Beatriz Praena
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Emily Giri
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Shelagh T. Deliberto
- US Department of Agriculture Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, Veterinary Services, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
34
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J Virol 2024; 98:e0068924. [PMID: 39315814 PMCID: PMC11494878 DOI: 10.1128/jvi.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes using a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify the infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately 1 month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers 6 months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. We provide an experimental protocol (dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others. IMPORTANCE We describe a new approach that can rapidly measure how the antibodies in human serum inhibit infection by many different influenza strains. This new approach is useful for understanding how viral evolution affects antibody immunity. We apply the approach to study the effect of repeated influenza vaccination.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Neutralization Tests/methods
- Vaccination
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Female
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
35
|
Hauguel T, Sharma A, Mastrocola E, Lowry S, Maddur MS, Hu CH, Rajput S, Vitsky A, Choudhary S, Manickam B, De Souza I, Chervona Y, Moreno RM, Abdon C, Falcao L, Tompkins K, Illenberger D, Smith R, Meng F, Shi S, Efferen KS, Markiewicz V, Umemoto C, Hu J, Chen W, Scully I, Rohde CM, Anderson AS, Suphaphiphat Allen P. Preclinical immunogenicity and safety of hemagglutinin-encoding modRNA influenza vaccines. NPJ Vaccines 2024; 9:183. [PMID: 39375384 PMCID: PMC11488230 DOI: 10.1038/s41541-024-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Seasonal epidemics of influenza viruses are responsible for a significant global public health burden. Vaccination remains the most effective way to prevent infection; however, due to the persistence of antigenic drift, vaccines must be updated annually. The selection of vaccine strains occurs months in advance of the influenza season to allow adequate time for production in eggs. RNA vaccines offer the potential to accelerate production and improve efficacy of influenza vaccines. We leveraged the nucleoside-modified RNA (modRNA) platform technology and lipid nanoparticle formulation process of the COVID-19 mRNA vaccine (BNT162b2; Comirnaty®) to create modRNA vaccines encoding hemagglutinin (HA) (modRNA-HA) for seasonal human influenza strains and evaluated their preclinical immunogenicity and toxicity. In mice, a monovalent modRNA vaccine encoding an H1 HA demonstrated robust antibody responses, HA-specific Th1-type CD4+ T cell responses, and HA-specific CD8+ T cell responses. In rhesus and cynomolgus macaques, the vaccine exhibited durable functional antibody responses and HA-specific IFN-γ+ CD4+ T cell responses. Immunization of mice with monovalent, trivalent, and quadrivalent modRNA-HA vaccines generated functional antibody responses targeting the seasonal influenza virus(es) encoded in the vaccines that were greater than, or similar to, those of a licensed quadrivalent influenza vaccine. Monovalent and quadrivalent modRNA-HA vaccines were well-tolerated by Wistar Han rats, with no evidence of systemic toxicity. These nonclinical immunogenicity and safety data support further evaluation of the modRNA-HA vaccines in clinical studies.
Collapse
Affiliation(s)
- Teresa Hauguel
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Amy Sharma
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Emily Mastrocola
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Susan Lowry
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Mohan S Maddur
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Cheng Hui Hu
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Swati Rajput
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Allison Vitsky
- Drug Safety Research & Development, Pfizer Inc., La Jolla, CA, USA
| | | | | | - Ivna De Souza
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Yana Chervona
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Charisse Abdon
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Larissa Falcao
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Kristin Tompkins
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Rachel Smith
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Fanyu Meng
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Shuai Shi
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | | | | | - Cinthia Umemoto
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Jianfang Hu
- Global Biometrics & Data Management, Pfizer Inc., Collegeville, PA, USA
| | - Wei Chen
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Ingrid Scully
- Vaccine Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Cynthia M Rohde
- Drug Safety Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | | |
Collapse
|
36
|
Cardenas M, Seibert B, Cowan B, Caceres CJ, Gay LC, Cargnin Faccin F, Perez DR, Baker AL, Anderson TK, Rajao DS. Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket. Commun Biol 2024; 7:1230. [PMID: 39354058 PMCID: PMC11445579 DOI: 10.1038/s42003-024-06928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Amy L Baker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
37
|
Martinez-Sobrido L, Nogales A. Recombinant Influenza A Viruses Expressing Reporter Genes from the Viral NS Segment. Int J Mol Sci 2024; 25:10584. [PMID: 39408912 PMCID: PMC11476892 DOI: 10.3390/ijms251910584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Studying influenza A viruses (IAVs) requires secondary experimental procedures to detect the presence of the virus in infected cells or animals. The ability to generate recombinant (r)IAV using reverse genetics techniques has allowed investigators to generate viruses expressing foreign genes, including fluorescent and luciferase proteins. These rIAVs expressing reporter genes have allowed for easily tracking viral infections in cultured cells and animal models of infection without the need for secondary approaches, representing an excellent option to study different aspects in the biology of IAV where expression of reporter genes can be used as a readout of viral replication and spread. Likewise, these reporter-expressing rIAVs provide an excellent opportunity for the rapid identification and characterization of prophylactic and/or therapeutic approaches. To date, rIAV expressing reporter genes from different viral segments have been described in the literature. Among those, rIAV expressing reporter genes from the viral NS segment have been shown to represent an excellent option to track IAV infection in vitro and in vivo, eliminating the need for secondary approaches to identify the presence of the virus. Here, we summarize the status on rIAV expressing traceable reporter genes from the viral NS segment and their applications for in vitro and in vivo influenza research.
Collapse
Affiliation(s)
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, 28130 Madrid, Spain
| |
Collapse
|
38
|
Ichikawa T, Hiono T, Okamatsu M, Maruyama J, Kobayashi D, Matsuno K, Kida H, Sakoda Y. Hemagglutinin and neuraminidase of a non-pathogenic H7N7 avian influenza virus coevolved during the acquisition of intranasal pathogenicity in chickens. Arch Virol 2024; 169:207. [PMID: 39307848 DOI: 10.1007/s00705-024-06118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Polybasic amino acid residues at the hemagglutinin (HA) cleavage site are insufficient to induce the highly pathogenic phenotype of avian influenza viruses in chickens. In our previous study, an H7N7 avian influenza virus named "Vac2sub-P0", which is nonpathogenic despite carrying polybasic amino acids at the HA cleavage site, was passaged in chick air sacs, and a virus with high intravenous pathogenicity, Vac2sub-P3, was obtained. Intranasal infection with Vac2sub-P3 resulted in limited lethality in chickens; therefore, in this study, this virus was further passaged in chicken lungs, and the resultant virus, Vac2sub-P3L4, acquired high intranasal pathogenicity. Experimental infection of chickens with recombinant viruses demonstrated that mutations in HA and neuraminidase (NA) found in consecutive passages were responsible for the increased pathogenicity. The HA and NA functions of Vac2sub-P3L4 were compared with those of the parental virus in vitro; the virus growth at 40 °C was faster, the binding affinity to a sialic acid receptor was lower, and the rate of release by NA from the cell surface was lower, suggesting that these changes enabled the virus to replicate efficiently in chickens with high intranasal pathogenicity. This study demonstrates that viruses that are highly pathogenic when administered intranasally require additional adaptations for increased pathogenicity to be highly lethal to intranasally infected chickens.
Collapse
Affiliation(s)
- Takaya Ichikawa
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Faculty of Medicine, Department of Microbiology and Immunology, Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Junki Maruyama
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daiki Kobayashi
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
39
|
Wang L, Shi L, Liu H, Zhang J, Yang W, Schountz T, Ma W. Incompatible packaging signals and impaired protein functions hinder reassortment of bat H17N10 or H18N11 segment 7 with human H1N1 influenza A viruses. J Virol 2024; 98:e0086424. [PMID: 39162567 PMCID: PMC11406886 DOI: 10.1128/jvi.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Collapse
Affiliation(s)
- Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
40
|
Swaminath S, Mendes M, Zhang Y, Remick KA, Mejia I, Güereca M, te Velthuis AJ, Russell AB. Efficient genome replication in influenza A virus requires NS2 and sequence beyond the canonical promoter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612348. [PMID: 39314307 PMCID: PMC11419028 DOI: 10.1101/2024.09.10.612348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Influenza A virus encodes promoters in both the sense and antisense orientations. These support the generation of new genomes, antigenomes, and mRNA transcripts. Using minimal replication assays-transfections with viral polymerase, nucleoprotein, and a genomic template-the influenza promoter sequences were identified as 13nt at the 5' end of the viral genomic RNA (U13) and 12nt at the 3' end (U12). Other than the fourth 3' nucleotide, the U12 and U13 sequences are identical between all eight RNA molecules that comprise the segmented influenza genome. Despite possessing identical promoters, individual segments can exhibit different transcriptional dynamics during infection. However flu promoter sequences were defined in experiments without influenza NS2, a protein which modulates transcription and replication differentially between genomic segments. This suggests that the identity of the "complete" promoter may depend on NS2. Here we assess how internal sequences of two genomic segments, HA and PB1, may contribute to NS2-dependent replication as well as map such interactions down to individual nucleotides in PB1. We find that the expression of NS2 significantly alters sequence requirements for efficient replication beyond the identical U12 and U13 sequence, providing a mechanism for the divergent replication and transcription dynamics across the influenza A virus genome.
Collapse
Affiliation(s)
- Sharmada Swaminath
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marisa Mendes
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yipeng Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kaleigh A. Remick
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Isabel Mejia
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Melissa Güereca
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alistair B. Russell
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
41
|
Yu L, Yongbo W, Shengjun Y, Jia T, Ya X, Guoyang L, Linna M. Research of recombinant influenza A virus as a vector for Mycoplasma pneumoniae P1a and P30a. Immun Inflamm Dis 2024; 12:e70021. [PMID: 39291404 PMCID: PMC11408921 DOI: 10.1002/iid3.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae (MP) is a common respiratory pathogen affecting the longevity of the elderly and the health of children. However, the human vaccine against MP has not been successfully developed till now due to the poor immunogenicity and side effects of MP inactivated or attenuated vaccine. Therefore, it is necessary to develop a MP genetic engineering vaccine with influenza virus strain as vector. METHODS In this study, the major antigen genes P1a of MP adhesion factor P1(3862-4554 bases) and P30a of P30(49-822 bases) were inserted into the nonstructural protein (NS) gene of Influenza A virus strain A/Puerto Rio/8/34(H1N1), PR8 for short, to construct the recombinant vectors NS-P1a or NS-P30a. The recombinant pHW2000 plasmids containing NS-P1a or NS-P30a were cotransfected with the rest 7 fragments of PR8 into HEK293T cells. After inoculating chicken embryos, the recombinant influenza viruses rFLU-P1a and rFLU-P30a were rescued. RT-PCR and sequencing were used to identify the recombinant viruses. The hemagglutination titers of rFLU-P1a and rFLU-P30a were determined after five successive generations in chicken embryos so as to indicate the genetic stability of the recombinant viruses. The morphology of recombinant influenza viruses was observed under electron microscopy. RESULTS P1a or P30a was designed to be inserted into the modified NS gene sequence separately and synthesized successfully. RT-PCR identification of the recombinant viruses rFLU-P1a and rFLU-P30a showed that P1a (693 bp), P30a (774 bp), NS-P1a (1992bp) and NS-P30a (2073 bp) bands were found, and the sequencing results were correct. After five successive generations, each virus generation has a certain hemagglutination titer (from 1:32 to 1:64), and the band of P1a or P30a can be seen in the corresponding positions. The virus particles under the electron microscope appeared as spheres or long strips connected by several particles, revealing a complete viral membrane structure composed of virus lipid bilayer, hemagglutinin, neuraminidase, and matrix proteins. CONCLUSION The recombinant viruses rFLU-P1a and rFLU-P30a which carried the advantaged immune regions of the P1 and P30 genes in MP were successfully constructed and identified. And the genetic stability of rFLU-P1a or rFLU-P30a was relatively high. The typical and complete morphology of influenza virus was observed under the electron microscope. Our research provided a foundation for the further development of MP vaccines for human.
Collapse
Affiliation(s)
- Liang Yu
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Wang Yongbo
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Yang Shengjun
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Tan Jia
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Xu Ya
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan ProvinceKunmingChina
| | - Liao Guoyang
- The Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
| | - Ma Linna
- Department of Medical Laboratory TechniqueKunming Medical University Haiyuan CollegeKunmingChina
| |
Collapse
|
42
|
Chen D, Su W, Choy KT, Chu YS, Lin CH, Yen HL. High throughput profiling identified PA-L106R amino acid substitution in A(H1N1)pdm09 influenza virus that confers reduced susceptibility to baloxavir in vitro. Antiviral Res 2024; 229:105961. [PMID: 39002800 DOI: 10.1016/j.antiviral.2024.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.
Collapse
Affiliation(s)
- Dongdong Chen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Su
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Tim Choy
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Sing Chu
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lin
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hui-Ling Yen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
43
|
Yang F, Zhao X, Huo C, Miao X, Qin T, Chen S, Peng D, Liu X. An avian-origin internal backbone effectively increases the H5 subtype avian influenza vaccine candidate yield in both chicken embryonated eggs and MDCK cells. Poult Sci 2024; 103:103988. [PMID: 38970848 PMCID: PMC11269899 DOI: 10.1016/j.psj.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024] Open
Abstract
Inactivated vaccines play an important role in preventing and controlling the epidemic caused by the H5 subtype avian influenza virus. The vaccine strains are updated in response to alterations in surface protein antigens, while an avian-derived vaccine internal backbone with a high replicative capacity in chicken embryonated eggs and MDCK cells is essential for vaccine development. In this study, we constructed recombinant viruses using the clade 2.3.4.4d A/chicken/Jiangsu/GY5/2017(H5N6, CkG) strain as the surface protein donor and the clade 2.3.4.4b A/duck/Jiangsu/84512/2017(H5N6, Dk8) strain with high replicative ability as an internal donor. After optimization, the integration of the M gene from the CkG into the internal genes from Dk8 (8GM) was selected as the high-yield vaccine internal backbone, as the combination improved the hemagglutinin1/nucleoprotein (HA1/NP) ratio in recombinant viruses. The r8GMΔG with attenuated hemagglutinin and neuraminidase from the CkG exhibited high-growth capacity in both chicken embryos and MDCK cell cultures. The inactivated r8GMΔG vaccine candidate also induced a higher hemagglutination inhibition antibody titer and microneutralization titer than the vaccine strain using PR8 as the internal backbone. Further, the inactivated r8GMΔG vaccine candidate provided complete protection against wild-type strain challenge. Therefore, our study provides a high-yield, easy-to-cultivate candidate donor as an internal gene backbone for vaccine development.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chenzhi Huo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
44
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Van Vinh Chau N, Loes AN, Huddleston J, Yu TC, Quynh Le M, Nhat NTD, Thi Le Thanh N, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. Cell Host Microbe 2024; 32:1397-1411.e11. [PMID: 39032493 PMCID: PMC11329357 DOI: 10.1016/j.chom.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
MESH Headings
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Mutation
- Adult
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza, Human/virology
- Influenza, Human/immunology
- Age Factors
- Middle Aged
- Young Adult
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Adolescent
- Evolution, Molecular
- Aged
- Child
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
45
|
Lv L, Yang X, Zhang Y, Ren X, Zeng S, Zhang Z, Wang Q, Lv J, Gao P, Dorf ME, Li S, Zhao L, Fu B. hnRNPAB inhibits Influenza A virus infection by disturbing polymerase activity. Antiviral Res 2024; 228:105925. [PMID: 38944160 DOI: 10.1016/j.antiviral.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.
Collapse
Affiliation(s)
- Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Ren
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jiaxi Lv
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Pengyue Gao
- Department of Immunology, Yangtze University Health Science Center, Jingzhou, 434023, China
| | - Martin E Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, 02115. USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
46
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Baker AV, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595634. [PMID: 38826368 PMCID: PMC11142178 DOI: 10.1101/2024.05.23.595634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
H5 influenza is a potential pandemic threat. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic risk, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. Here we use pseudovirus deep mutational scanning to measure how all mutations to a clade 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind a2-6-linked sialic acids, and show that some viruses already carry mutations that stabilize HA. We also identify recent viral strains with reduced neutralization to sera elicited by candidate vaccine virus. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive characterization of mutations to inform surveillance of H5 influenza.
Collapse
|
47
|
Sundaram B, Pandian N, Kim HJ, Abdelaal HM, Mall R, Indari O, Sarkar R, Tweedell RE, Alonzo EQ, Klein J, Pruett-Miller SM, Vogel P, Kanneganti TD. NLRC5 senses NAD + depletion, forming a PANoptosome and driving PANoptosis and inflammation. Cell 2024; 187:4061-4077.e17. [PMID: 38878777 PMCID: PMC11283362 DOI: 10.1016/j.cell.2024.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 07/28/2024]
Abstract
NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nagakannan Pandian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hee Jin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hadia M Abdelaal
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Omkar Indari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily Q Alonzo
- Department of Research and Development, Cell Signaling Technology, Danvers, MA 01915, USA
| | - Jonathon Klein
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
48
|
He Z, Li W, Zhang M, Huang M, Chen Z, Zhao X, Ding Y, Zhang J, Zhao L, Jiao P. RNF216 Inhibits the Replication of H5N1 Avian Influenza Virus and Regulates the RIG-I Signaling Pathway in Ducks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:187-203. [PMID: 38829131 DOI: 10.4049/jimmunol.2300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/20/2024] [Indexed: 06/05/2024]
Abstract
The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-β expression during virus infection, the expression level of IFN-β in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.
Collapse
Affiliation(s)
- Zhuoliang He
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Meng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Minfan Huang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiya Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Luxiang Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
49
|
Liang Z, Lin X, Sun L, Edwards KM, Song W, Sun H, Xie Y, Lin F, Ling S, Liang T, Xiao B, Wang J, Li M, Leung CY, Zhu H, Bhandari N, Varadarajan R, Levine MZ, Peiris M, Webster R, Dhanasekaran V, Leung NHL, Cowling BJ, Webby RJ, Ducatez M, Zanin M, Wong SS. A(H2N2) and A(H3N2) influenza pandemics elicited durable cross-reactive and protective antibodies against avian N2 neuraminidases. Nat Commun 2024; 15:5593. [PMID: 38961067 PMCID: PMC11222539 DOI: 10.1038/s41467-024-49884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.
Collapse
Affiliation(s)
- Zaolan Liang
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xia Lin
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Lihong Sun
- Guangzhou Institute for Respiratory Health and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kimberly M Edwards
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenjun Song
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanmin Xie
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fangmei Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shiman Ling
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tingting Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Biying Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiaqi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Min Li
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chin-Yu Leung
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
| | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Min Z Levine
- US Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Robert Webster
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mariette Ducatez
- Interactions Hosts-Pathogens (IHAP), Université de Toulouse, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Sook-San Wong
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Yi Y, Zhang H, An Y, Chen Z. A Live Attenuated H1N1 Influenza Vaccine Based on the Mutated M Gene. Vaccines (Basel) 2024; 12:725. [PMID: 39066364 PMCID: PMC11281364 DOI: 10.3390/vaccines12070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza vaccines currently approved for clinical use mainly include inactivated influenza virus vaccines and live attenuated influenza vaccines (LAIVs). LAIVs have multiple advantages, such as ease of use and strong immunogenicity, and can provide cross-protection. In this study, the M gene of the PR8 virus was mutated as follows (G11T, C79G, G82C, C85G, and C1016A), and a live attenuated influenza virus containing the mutated M gene was rescued and obtained using reverse genetic technology as a vaccine candidate. The replication ability of the rescued virus was significantly weakened in both MDCK cells and mice with attenuated virulence. Studies on immunogenicity found that 1000 TCID50 of mutated PR8 (mPR8) can prime strong humoral and cellular immune responses. Single-dose immunization of 1000 TCID50 mPR8 was not only able to counter the challenge of the homologous PR8 virus but also provided cross-protection against the heterologous H9N2 virus.
Collapse
Affiliation(s)
- Yinglei Yi
- Shanghai Institute of Biological Products, Shanghai 200052, China;
| | - Hongbo Zhang
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China;
| | - Youcai An
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China;
| | - Ze Chen
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China;
| |
Collapse
|