1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Znaidi R, Massiani-Beaudoin O, Mailly P, Monnet H, Bonnifet T, Joshi RL, Fuchs J. Nuclear translocation of the LINE-1 encoded ORF1 protein alters nuclear envelope integrity in human neurons. Brain Res 2025; 1857:149579. [PMID: 40157412 DOI: 10.1016/j.brainres.2025.149579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
LINE-1 retrotransposons are increasingly implicated in aging and neurodegenerative diseases, yet the precise pathogenic mechanisms remain elusive. While the endonuclease and reverse transcriptase activities of LINE-1-encoded ORF2p can induce DNA damage and inflammation, a role of LINE-1 ORF1p in cellular dysfunctions stays unassigned. Here we demonstrate, using a neuronal cellular model, that ORF1p translocates into the nucleus upon arsenite-induced stress, directly interacting with nuclear import (KPNB1), nuclear pore complex (NUP153), and nuclear lamina (Lamin B1) proteins. Nuclear translocation of ORF1p disrupts nuclear integrity, nucleocytoplasmic transport, and heterochromatin structure, features linked to neurodegeneration and aging. Elevated nuclear ORF1p levels induced either by arsenite-induced stress, ORF1p overexpression, or as observed in Parkinson's disease post-mortem brain tissues correlate with impaired nuclear envelope (NE) morphology. Stress-induced nuclear alterations are mitigated by blocking ORF1p nuclear import or with the anti-aging drug remodelin. This study thus reveals a pathogenic action of nuclear ORF1p in human neurons driving NE alterations and thereby contributing to LINE-1-mediated cell toxicity.
Collapse
Affiliation(s)
- Rania Znaidi
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | | | - Philippe Mailly
- Orion Imaging Facility, CIRB, Collège de France, Université PSL, CNRS, INSERM, Labex Memolife, 75005 Paris, France
| | - Héloïse Monnet
- Orion Imaging Facility, CIRB, Collège de France, Université PSL, CNRS, INSERM, Labex Memolife, 75005 Paris, France
| | - Tom Bonnifet
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Rajiv L Joshi
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| | - Julia Fuchs
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| |
Collapse
|
3
|
Sutton PJ, Mosqueda N, Brownlee CW. Palmitoylated importin α regulates mitotic spindle orientation through interaction with NuMA. EMBO Rep 2025:10.1038/s44319-025-00484-8. [PMID: 40425783 DOI: 10.1038/s44319-025-00484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Regulation of cell division orientation is a fundamental process critical to differentiation and tissue homeostasis. Microtubules emanating from the mitotic spindle pole bind a conserved complex of proteins at the cell cortex which orients the spindle and ultimately the cell division plane. Control of spindle orientation is of particular importance in developing tissues, such as the developing brain. Misorientation of the mitotic spindle and thus subsequent division plane misalignment can contribute to improper segregation of cell fate determinants in developing neuroblasts, leading to a rare neurological disorder known as microcephaly. We demonstrate that the nuclear transport protein importin α, when palmitoylated, plays a critical role in mitotic spindle orientation through localizing factors, such as NuMA, to the cell cortex. We also observe craniofacial developmental defects in Xenopus laevis when importin α palmitoylation is abrogated, including smaller head and brains, a hallmark of spindle misorientation and microcephaly. These findings characterize not only a role for importin α in spindle orientation, but also a broader role for importin α palmitoylation which has significance for many cellular processes.
Collapse
Affiliation(s)
- Patrick James Sutton
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, USA.
| | - Natalie Mosqueda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, USA
| | - Christopher W Brownlee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, 11794, USA.
| |
Collapse
|
4
|
El-Sehemy A, Tachibana N, Ortin-Martinez A, Ringuette D, Coyaud É, Raught B, Dirks P, Wallace VA. Importin-alpha transports Norrin to the nucleus to promote proliferation and Notch signaling in glioblastoma stem cells. Oncogene 2025:10.1038/s41388-025-03427-8. [PMID: 40425833 DOI: 10.1038/s41388-025-03427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025]
Abstract
Norrin, a secreted protein encoded by NDP gene, is recognized for its established role as a paracrine canonical Frizzled-4/Wnt ligand that mediates angiogenesis and barrier function in the brain. However, emerging evidence suggests that Norrin possesses Frizzled-4-independent functions, notably impacting Notch activation and proliferation of cancer stem cells. We conducted a BioID protein-proximity screen to identify Norrin-interacting proteins. Surprisingly, a significant proportion of the proteins we identified were nuclear. Through comprehensive tagging and proximity ligation assays, we demonstrate that Norrin is transported to the nucleus through KPNA2 (member of the Importin-alpha family). Subsequently, we demonstrate that KPNA2 loss of function in patient-derived primary glioblastoma stem cells results in a nuclear to cytoplasmic shift of Norrin distribution, and a complete abrogation of its function in stimulating Notch signaling and cellular proliferation. These results indicate that Norrin is actively transported into the nucleus to regulate vital signaling pathways and cellular functions.
Collapse
Affiliation(s)
- Ahmed El-Sehemy
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Unievrsity of Toronto Department of Radiation Oncology (UTDRO), University of Toronto, Toronto, ON, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Dene Ringuette
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Wu J, Meng M, Guo Z, Hao K, Liang Y, Meng H, Fang G, Shi Z, Guo X, Li H, Feng Y, Lin L, Chen J, Zhang Y, Tian H, Chen X. Nuclear-Targeted Material Enabled Intranuclear MicroRNA Imaging for Tracking Gene Editing Process. Angew Chem Int Ed Engl 2025; 64:e202500052. [PMID: 40130324 DOI: 10.1002/anie.202500052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Gene editing technology based on clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas) systems serves as an efficient tool in cancer therapy. Tracking the gene editing process can help identify the progress of cancer treatment. However, existing techniques for monitoring the gene editing process rely on lysed cells, which can not reflect the dynamic changes of nucleic acid in living cells. It urgently needs in situ and real-time imaging technologies to track the gene editing process at a living single-cell level more effectively and precisely. Here, we reported a highly efficient nuclear-targeted material, phenylboronic acid modified linear PEI (LPBA), for loading gene editing plasmids and fluorescent probes to track gene editing processes of microRNA. Based on LPBA, we achieved efficient intranuclear microRNA imaging at the living cell level, reaching 32.4-fold higher than the linear PEI (LPEI) delivery system, which facilitated further sensitive monitoring of the gene editing process both in living cells and in vivo. Meanwhile, this efficient gene-editing and real-time detection technique could be extended to screening effective gene-editing plasmids. Such LPBA-based imaging technology extended the imaging area of microRNA and offered new insight in the field of gene editing and nucleic acid detection.
Collapse
Affiliation(s)
- Jiayan Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meng Meng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhaopei Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yonghao Liang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, 130041, China
| | - Hanyu Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Guanhe Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Zongwei Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Xiaoya Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huixin Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Lin Lin
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jie Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yingchao Zhang
- Department of Breast Surgery, Second Hospital of Jilin University, Changchun, 130041, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
6
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
7
|
Olah P, Reuvers N, Radai Z, Varadi A, van Lierop A, Wachtmeister T, Plante S, Chaskar P, Thomas C, Julia V, Alenius H, Homey B. Microbe-Host Interaction in Rosacea and Its Modulation through Topical Ivermectin. J Invest Dermatol 2025:S0022-202X(25)00398-7. [PMID: 40220854 DOI: 10.1016/j.jid.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Rosacea is characterized by inflammatory lesions, often accompanied by an increased density of the common skin mite Demodex folliculorum. Although rosacea shows a high prevalence and significantly affects the QOL of patients, the underlying mechanisms, especially the role of cutaneous dysbiosis, are largely unknown. Hence, we aimed to systematically characterize disease severity of patients with rosacea in the context of mite density, the cutaneous microbiome, and the host's transcriptome before and after 30 days of topical 1% ivermectin cream treatment. At day 30, a marked decrease in mite density was observed in 87.5% of patients. At day 0, distinct microbial community changes included the decrease in Cutibacterium acnes abundance, whereas Staphylococcus epidermidis colonization increased compared with that in healthy volunteers. Interestingly, the insect symbiont Snodgrassella alvi was recovered from a highly Demodex-colonized patient and eradicated by treatment on day 30. Although topical ivermectin did not affect bacterial dysbiosis, the host's transcriptome significantly normalized, and an "ivermectin transcriptomic signature" was defined. Findings of this study support that rosacea lesions are associated with dysbiosis. However, improvement of clinical signs during topical ivermectin is not associated with normalization of the bacterial microbiome but rather a decrease of transcriptomic dysregulation and mite density.
Collapse
Affiliation(s)
- Peter Olah
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Nina Reuvers
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zoltan Radai
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Alex Varadi
- Molecular Medicine Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anke van Lierop
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sandra Plante
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | | | - Carla Thomas
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | | | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
8
|
Odchimar NMO, Macalalad MAB, Orosco FL. From antibiotic to antiviral: computational screening reveals a multi-targeting antibiotic from Streptomyces spp. against Nipah virus fusion proteins. Mol Divers 2025; 29:1541-1555. [PMID: 39060858 DOI: 10.1007/s11030-024-10932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Nipah Virus is a re-emerging zoonotic paramyxovirus that poses a significant threat to both swine industry and human health. The pursuit of potential antiviral agents with both preventive and therapeutic properties holds promise for targeting such viruses. To expedite this search, leveraging computational biology is essential. Streptomyces is renowned for its capacity to produce large and diverse metabolites with promising bioactivities. In the current study, we conducted a comprehensive structure-based virtual screening of 6524 Streptomyces spp. metabolites sourced from the StreptomeDB database to evaluate their potential inhibitory effects on three Nipah virus fusion (NiVF) protein conformations: NiVF pre-fusion 1-mer (NiVF-1mer), pre-fusion 3-mer (NiVF-3mer), and NiVF post-fusion (NiVF-PoF). Prior to virtual screening, the drug-likeness of Streptomyces spp. compounds was profiled using ADMET properties. From the 913 ADMET-filtered compounds, the subsequent targeted and confirmatory blind docking analysis revealed that S896 or virginiamycin M1, a known macrolide antibiotic, showed a maximum binding affinity with the NiVF proteins, suggesting a multi-targeting inhibitory property. In addition, the 200-ns molecular dynamics simulation and MM/PBSA analyses revealed stable and strong binding affinity between the NiVF-S896 complexes, indicating favorable interactions between S896 and the target proteins. These findings suggest the potential of virginiamycin M1, an antibiotic, as a promising multi-targeting antiviral drug. However, in vitro and in vivo experimental validations are necessary to assess their safety and efficacy.
Collapse
Affiliation(s)
- Nyzar Mabeth O Odchimar
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631, Taguig City, Metro Manila, Philippines
| | - Mark Andrian B Macalalad
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631, Taguig City, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research and Development Program, Department of Science and Technology - Industrial Technology Development Institute, 1631, Taguig City, Metro Manila, Philippines.
- S&T Fellows Program, Department of Science and Technology, 1631, Taguig City, Metro Manila, Philippines.
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, 1000, Manila, Metro Manila, Philippines.
| |
Collapse
|
9
|
Cotrone TS, Kobylinski K, Ponlawat A, Im-Erbsin R, Sunyakumthorn P, Vanachayangkul P, Poolpanichupatam Y, Lohachanakul J, Klungthong C, Farmer A, Fernandez S, Hunsawong T. Ivermectin Inhibits Zika Virus Replication in Vitro But Does Not Prevent Zika Virus Infection in Rhesus Macaques (Macaca mulatta). Am J Trop Med Hyg 2025; 112:648-656. [PMID: 39689359 PMCID: PMC11884300 DOI: 10.4269/ajtmh.24-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/26/2024] [Indexed: 12/19/2024] Open
Abstract
Zika virus (ZIKV) outbreaks occur sporadically in tropical and subtropical regions. At present, there are no licensed vaccines or specific treatments available for ZIKV. Ivermectin is approved for use in humans as an antiparasitic drug. In this study, we conducted in vitro cell culture and in vivo experiments in rhesus macaque hosts and Aedes aegypti vectors to investigate the potential of ivermectin as an inhibitor of ZIKV infection. In LLC-MK2 mammalian cells, ivermectin inhibited ZIKV growth in vitro with 50% inhibitory concentration (IC50) values in the ranges of 7.4-21.3 µM and 4.0-11.6 µM for African and Asian genotypes, respectively. In C6/36 mosquito cells, ivermectin inhibited ZIKV growth in vitro with IC50 values in the ranges of 10.1-17.4 µM and 8.0-15.6 µM for the African and Asian genotypes, respectively. Despite these in vitro results, high-dose ivermectin prophylaxis (1.2 mg/kg for 3 consecutive days) failed to prevent ZIKV infection in rhesus macaque and did not alter ZIKV IgM antibody production. The secondary transfer of ivermectin from nonhuman primate blood to mosquito vectors at 3 days post-ZIKV inoculation and after the last dose of ivermectin administration showed no reduction in ZIKV replication in mosquitoes. However, mosquito survival rates were significantly (P <0.0001) lower after exposure to ivermectin, thereby potentially impacting ZIKV transmission through increased vector mortality. However, further investigation is needed to determine dosing regimens that may realize these effects in vivo.
Collapse
Affiliation(s)
- Thomas S. Cotrone
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Kevin Kobylinski
- Department of Entomology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Alongkot Ponlawat
- Department of Entomology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Yongyuth Poolpanichupatam
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Jindarat Lohachanakul
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Chonticha Klungthong
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Aaron Farmer
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| | - Taweewun Hunsawong
- Department of Virology, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Science (WRAIR-AFRIMS), Bangkok, Thailand
| |
Collapse
|
10
|
Ferreira CA, Schneider PN, Carneiro LT, Mendonça BS, Nestal de Moraes G. Importin α/β inhibition as a strategy to modulate cancer drug resistance and XIAP nuclear translocation. Biochem Biophys Res Commun 2025; 751:151409. [PMID: 39919389 DOI: 10.1016/j.bbrc.2025.151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Shuttling from the cytoplasm to the nucleus is a regulated cellular process which involves the recognition of nuclear localization signal-containing proteins by importins. Nuclear-cytoplasmic protein transport is found aberrant in cancer, which impacts subcellular localization of proteins that modulate drug responses and cell growth. We have previously demonstrated that the classically cytoplasmic antiapoptotic XIAP protein is associated with breast cancer chemoresistance and poorer clinical outcomes, when mis localized in the nucleus. Nevertheless, little is known about the mechanisms of XIAP nuclear translocation. In this study, we compared importin expression and response to importin inhibitors in cancer cellular models with distinct drug sensitivity phenotypes and subcellular localization of XIAP. Remarkably, importins α1, α5 and β1 were found differentially expressed among drug sensitive and resistant cell lines, as well as primary breast tumors compared to normal tissues. Interestingly, nuclear XIAP-expressing cancer cells exhibiting resistance to both docetaxel and doxorubicin have shown pronounced sensitivity to importin inhibition. Pharmacological intervention of nuclear transport revealed that XIAP can shuttle from the cytoplasm to the nucleus dependently on the importins α/β1 classical pathway. Last, we have shown that INI-43-mediated inhibition of importins α/β1 potentiates the cytotoxic effects of chemotherapy in drug refractory cells. These findings indicate that targeting protein nuclear import via importins α and β1 might be of potential clinical benefit for drug resistance tumors, particularly when combined with conventional chemotherapy.
Collapse
Affiliation(s)
- C A Ferreira
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - P N Schneider
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - L T Carneiro
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - B S Mendonça
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - G Nestal de Moraes
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Chen E, Xi L. Cardiovascular adverse effects of antiviral therapies for COVID-19: Evidence and plausible mechanisms. Acta Pharmacol Sin 2025; 46:554-564. [PMID: 39251859 PMCID: PMC11845466 DOI: 10.1038/s41401-024-01382-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
Antiviral therapeutics have made a critical contribution in mitigating the symptoms and clinical outcomes of the coronavirus disease of 2019 (COVID-19), in which a single-stranded RNA viral pathogen, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes multi-organ injuries. Several antivirals were widely prescribed to treat COVID-19, either through the emergency use authorization (EUA) by the governmental regulatory agencies (i.e., remdesivir, paxlovid, molnupiravir, and the SARS-CoV-2-targeted monoclonal antibodies - tixagevimab and cilgavimab), as well as the repurposed use of the existing antiviral or antimalarial drugs (e.g., hydroxychloroquine, chloroquine, and ivermectin). Despite their efficacy in ameliorating COVID-19 symptoms, some adverse side-effects of the antivirals were also reported during the COVID-19 pandemic. Our current review has aimed to gather and extrapolate the recently published information concerning cardiovascular adverse effects caused by each of the antivirals. We also provide further discussion on the potential cellular mechanisms underlying the cardiovascular adverse effects of the selected antiviral drugs, which should be carefully considered when evaluating risk factors in managing patients with COVID-19 or similar infectious diseases. It is foreseeable that future antiviral drug development assisted with the newest artificial intelligence platform may improve the accuracy to predict the structures of biomolecules of antivirals and therefore to mitigate their associated cardiovascular adversities.
Collapse
Affiliation(s)
- Eileen Chen
- Virginia Commonwealth University School of Medicine (M.D. Class 2027), Richmond, VA, 23298, USA
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
12
|
Puello-Nakayama IC, Hernandez-Castillo J, Castillo JM, Talamás-Lara D, Palacios-Rápalo SN, del Ángel RM. Cytoplasmic retention of dengue virus capsid protein by metformin impairing nuclear transport. J Gen Virol 2025; 106:002089. [PMID: 40111383 PMCID: PMC11926096 DOI: 10.1099/jgv.0.002089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
Nuclear transport of proteins larger than 60 kDa occurs via energy-dependent active transport, whereas smaller proteins diffuse into the nucleus through nuclear pore complexes via passive nuclear transport. Although the dengue virus (DENV) replication cycle primarily takes place in the cytoplasm, the capsid protein and non-structural protein 5 (NS5) are imported into the nucleus through a nuclear localization sequence-dependent mechanism. However, given its small molecular weight (14 kDa), the DENV capsid protein may also enter the nucleus via passive diffusion. While some drugs primarily inhibit active nuclear transport, few are known to block passive diffusion. Notably, biguanides have been associated with inhibitory effects on passive nuclear transport. Since biguanides such as metformin (MET) exhibit anti-DENV properties, we investigated the effects of MET on the nuclear transport of DENV proteins. Our results suggest that MET induces changes in the nuclear membrane of Huh-7 cells and reduces capsid nuclear localization without affecting NS5 nuclear import. Furthermore, MET treatment did not alter capsid nuclear import in BHK-21 cells. Additionally, mimicking MET's effects using a non-hydrolyzable ATP analogue increased capsid cytoplasmic retention and decreased DENV-2 replication. Finally, the inhibition of the classical active nuclear transport pathway did not block capsid nuclear transport, suggesting that DENV-2 capsid enters the nucleus in Huh-7 and Vero cells independently of this pathway.
Collapse
Affiliation(s)
- Ian Carlos Puello-Nakayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Jonathan Hernandez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Juan Manuel Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Daniel Talamás-Lara
- Unidad de Microscopía Electrónica, Laboratorios Nacionales de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico city 07360, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
13
|
Sutton PJ, Mosqueda N, Brownlee CW. Palmitoylated Importin α Regulates Mitotic Spindle Orientation Through Interaction with NuMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.25.620315. [PMID: 39484393 PMCID: PMC11527331 DOI: 10.1101/2024.10.25.620315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulation of cell division orientation is a fundamental process critical to differentiation and tissue homeostasis. Microtubules emanating from the mitotic spindle pole bind a conserved complex of proteins at the cell cortex which orients the spindle and ultimately the cell division plane. Control of spindle orientation is of particular importance in developing tissues, such as the developing brain. Misorientation of the mitotic spindle and thus subsequent division plane misalignment can contribute to improper segregation of cell fate determinants in developing neuroblasts, leading to a rare neurological disorder known as microcephaly. We demonstrate that the nuclear transport protein importin α, when palmitoylated, plays a critical role in mitotic spindle orientation through localizing factors, such as NuMA, to the cell cortex. We also observe craniofacial developmental defects in Xenopus laevis when importin α palmitoylation is abrogated, including smaller head and brains, a hallmark of spindle misorientation and microcephaly. These findings characterize not only a role for importin α in spindle orientation, but also a broader role for importin α palmitoylation which has significance for many cellular processes.
Collapse
|
14
|
Alvisi G, Manaresi E, Pavan S, Jans DA, Wagstaff KM, Gallinella G. Avermectins Inhibit Replication of Parvovirus B19 by Disrupting the Interaction Between Importin α and Non-Structural Protein 1. Viruses 2025; 17:220. [PMID: 40006975 PMCID: PMC11860776 DOI: 10.3390/v17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized the interaction between NS1 classical nuclear localization signal (cNLS: GACHAKKPRIT-182) and host cell importin (IMP)α and proposed it as a potential target for antiviral drug development. Here, we further extend on such findings. First, we demonstrate that NS1 nuclear localization is required for viral production since introducing the K177T substitution in a cloned, infectious viral genome resulted in a non-viable virus. Secondly, we demonstrate that the antiparasitic drug ivermectin (IVM), known to inhibit the IMPα/β dependent nuclear import pathway, could impair the NS1-NLS:IMPα interaction and suppress viral replication in UT7/EpoS1 cells in a dose-dependent manner. We also show that a panel of structurally related avermectins (AVMs) can dissociate the NS1-NLS:IMPα complex with half-maximal inhibitory concentrations in the nanomolar range. Among them, Eprinomectin emerged as the most selective inhibitor of B19V replication, with a selectivity index of c. 5.0. However, when tested in EPCs generated from peripheral blood mononuclear cells, which constitute a cellular population close to the natural target cells in bone marrow, the inhibitory effect of IVM and Eprinomectin was demonstrated to a lesser extent, and both compounds exhibited high toxicity, thus highlighting the need for more specific inhibitors of the NS1-NLS:IMPα interaction.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Kylie M. Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
15
|
Bhambid M, Walunj SB, Anupama CA, Jain S, Mehta D, Arya A, Wagstaff KM, Panda A, Jans DA, Mohmmed A, Patankar S. Importin α inhibitors act against the differentiated stages of apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. J Antimicrob Chemother 2025; 80:485-495. [PMID: 39691987 DOI: 10.1093/jac/dkae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Nuclear import, dependent on the transporter importin α (IMPα), is a drug target for apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Indeed, a panel of small molecule inhibit interactions between IMPα and nuclear localization signals (NLSs) in vitro and the growth of rapidly dividing stages (P. falciparum blood stages and T. gondii tachyzoites) in culture. OBJECTIVES As new drugs targeting multiple life cycle stages of both parasites are required, the panel of IMPα inhibitors was tested for their ability to inhibit nuclear transport in the rapidly dividing stages and the maturation of differentiated stages (P. falciparum gametocytes and T. gondii bradyzoites). METHODS Using biophysical assays, Bay 11-7082, a Bay 11-7085 structural analogue, was tested for inhibition of IMPα:NLS interactions. The effect of the panel of inhibitors on the nuclear localization of reporter proteins was analysed in both parasites using transfections and microscopy. Also, using microscopy, the effect of inhibitors on differentiated stages of both parasites was tested. RESULTS Bay 11-7085 can inhibit nuclear transport in tachyzoites, while GW5074 and Caffeic Acid Phenethyl Ester (CAPE) can inhibit nuclear transport in the blood stages. Interestingly, CAPE can strongly inhibit gametocyte maturation, and Bay 11-7082 and Bay 11-7085 weakly inhibit bradyzoite differentiation. CONCLUSIONS As differentiation of gametocytes and bradyzoites is dependent on the activation of gene expression triggered by the nuclear translocation of transcription factors, our work provides a 'proof of concept' that targeting nuclear import is a viable strategy for the development of therapeutics against multiple stages of apicomplexan parasites, some of which are recalcitrant to existing drugs.
Collapse
Affiliation(s)
- Manasi Bhambid
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sujata B Walunj
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - C A Anupama
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shilpi Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Diksha Mehta
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - Anjali Arya
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ashutosh Panda
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Swati Patankar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
16
|
Sai Yengu N, Raheem A, Pons AG, Ho WL, Ali SMS, Haseeb A, Fadlalla Ahmad TK, Mustafa MS. The impact of ivermectin on COVID-19 outcomes: a systematic review and meta-analysis. Ann Med Surg (Lond) 2025; 87:809-829. [PMID: 40110299 PMCID: PMC11918548 DOI: 10.1097/ms9.0000000000002762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 03/22/2025] Open
Abstract
Background The COVID-19 pandemic, resulting in approximately seven million deaths globally, underscores the urgency for effective treatments. Ivermectin, among several repurposed drugs, garnered interest due to its antiviral properties. However, conflicting evidence from observational studies and randomized controlled trials raised questions about its efficacy and safety. Method This systematic review and meta-analysis followed MOOSE and PRISMA guidelines. Comprehensive searches were conducted in databases including Scopus, Embase, PubMed, and Web of Science up to April 2024. Data were extracted independently by two reviewers and analyzed using Comprehensive Meta-Analysis V3 software. Results Across 33 studies encompassing 15,376 participants, ivermectin showed no significant impact on critical outcomes such as mortality [risk ratio (RR) 0.911, 95% confidence intervals (CI) 0.732-1.135], mechanical ventilation (RR 0.727, 95% CI 0.521-1.016), polymerase chain reaction conversion (RR 1.024, 95% CI 0.936-1.120), ICU admissions (RR 0.712, 95% CI 0.274-1.850), or hospitalization rates (RR 0.735, 95% CI 0.464-1.165) compared to controls. However, it significantly reduced time to symptom alleviation (standardized mean difference -0.302, 95% CI -0.587 to -0.018) and sustained symptom relief (RR 0.897, 95% CI 0.873-0.921). Adverse event (AE) rates were similar between the ivermectin and control groups (RR 0.896, 95% CI 0.797-1.007). Meta-regression indicated older age and diabetes as predictors of AEs. Conclusion Despite its observed benefits in symptom management, ivermectin did not significantly influence critical clinical outcomes in COVID-19 patients. These findings highlight the importance of continued research to identify effective treatments for COVID-19, emphasizing the need for high-quality studies with robust methodology to inform clinical practice and public health policy effectively.
Collapse
Affiliation(s)
- Nithin Sai Yengu
- Dr Pinnamaneni Siddhartha Institute of Medical Sciences, Vijayawada, India
| | | | | | - Wing Lam Ho
- Saint George's University School of Medicine University Center, Grenada
| | | | - Abdul Haseeb
- Jinnah Sindh Medical University, Karachi, Pakistan
| | | | | |
Collapse
|
17
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
18
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
19
|
Walunj SB, Mishra G, Wagstaff KM, Patankar S, Jans DA. The Ivermectin Related Compound Moxidectin Can Target Apicomplexan Importin α and Limit Growth of Malarial Parasites. Cells 2025; 14:39. [PMID: 39791740 PMCID: PMC11720742 DOI: 10.3390/cells14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan Plasmodium species and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit P. falciparum and T. gondii IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time. We use circular dichroism and intrinsic tryptophan fluorescence measurements to show that moxidectin can bind directly to apicomplexan IMPαs, thereby inhibiting their key binding functions at low μM concentrations, as well as possessing anti-parasitic activity against P. falciparum in culture. The results imply a class effect in terms of IMPα's ability to be targeted by macrocyclic lactone compounds. Importantly, in the face of rising global emergence of resistance to approved anti-parasitic agents, the findings highlight the potential of moxidectin and possibly other macrocyclic lactone compounds as antimalarial agents.
Collapse
Affiliation(s)
- Sujata B. Walunj
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (S.B.W.); (K.M.W.)
- Molecular Parasitology Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (G.M.); (S.P.)
| | - Geetanjali Mishra
- Molecular Parasitology Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (G.M.); (S.P.)
| | - Kylie M. Wagstaff
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (S.B.W.); (K.M.W.)
| | - Swati Patankar
- Molecular Parasitology Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India; (G.M.); (S.P.)
| | - David A. Jans
- Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (S.B.W.); (K.M.W.)
| |
Collapse
|
20
|
Lombardi Z, Gardini L, Kashchuk AV, Menconi A, Lulli M, Tusa I, Tubita A, Maresca L, Stecca B, Capitanio M, Rovida E. Importin subunit beta-1 mediates ERK5 nuclear translocation, and its inhibition synergizes with ERK5 kinase inhibitors in reducing cancer cell proliferation. Mol Oncol 2025; 19:99-113. [PMID: 38965815 PMCID: PMC11705758 DOI: 10.1002/1878-0261.13674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin β1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin β1 knockdown or the α/β1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin β1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin β1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.
Collapse
Affiliation(s)
- Zoe Lombardi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Lucia Gardini
- National Institute of Optics, National Research CouncilFlorenceItaly
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
| | - Anatolii V. Kashchuk
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
- Department of Physics and AstronomyUniversity of FlorenceItaly
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Matteo Lulli
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Luisa Maresca
- Core Research Laboratory – Institute for Cancer Research and Prevention (ISPRO)FlorenceItaly
| | - Barbara Stecca
- Core Research Laboratory – Institute for Cancer Research and Prevention (ISPRO)FlorenceItaly
| | - Marco Capitanio
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
- Department of Physics and AstronomyUniversity of FlorenceItaly
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| |
Collapse
|
21
|
Ma B, Gu C, Lu R, Lian P, Wang W, Huang Z, Su Z, Wang H. Inhibition of KPNA2 by ivermectin reduces E2F1 nuclear translocation to attenuate keratinocyte proliferation and ameliorate psoriasis-like lesions. Int Immunopharmacol 2024; 143:113360. [PMID: 39388894 DOI: 10.1016/j.intimp.2024.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Psoriasis is a chronic, immune-mediated skin disease with a significant global prevalence. Karyopherin subunit alpha 2 (KPNA2), a nuclear transport protein involved in cellular activities such as differentiation, proliferation, apoptosis, and immune response, has emerged as a potential biomarker in several diseases. Our study found that KPNA2 was significantly upregulated in psoriasis patients and in imiquimod (IMQ)-induced psoriasis mouse models by bioinformatics and molecular biotechnology. In vivo, treatment with ivermectin, a KPNA2 inhibitor, significantly improved psoriasis symptoms in mice as evidenced by reduced erythema, desquamation, and skin thickness. Histopathological staining revealed decreased expression of KPNA2, K17, and Ki67 in ivermectin-treated mice, suggesting reduced abnormal differentiation and proliferation of keratinocytes. Transcriptome data and immunoblotting analysis showed that KPNA2 inhibition reduced inflammation and keratinocyte proliferation and differentiation in IMQ-induced mice. In vitro, EdU (5-ethynyl-2'-deoxyuridine) and flow cytometry experiments demonstrated that the downregulation of KPNA2 expression in HaCaT cells was capable of inhibiting the EGF (Epidermal Growth Factor)-induced activation of AKT/STAT3 signaling and keratinocytes proliferation. In addition, nuclear-cytoplasmic protein separation and immunofluorescence localization experiments showed that KPNA2 inhibition affected the nuclear translocation of E2F transcription factor 1 (E2F1), a process critical for keratinocyte proliferation. This study elucidated the role of KPNA2 in the pathogenesis of psoriasis and highlighted its potential as a target for future psoriasis therapies. These findings provide new insights into targeted therapy for psoriasis and have significant implications for future clinical treatment.
Collapse
Affiliation(s)
- Bojie Ma
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Chaode Gu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Renwei Lu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Panpan Lian
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Wentong Wang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China.
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
22
|
Baric TJ, Reneer ZB. Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses. Viruses 2024; 17:1. [PMID: 39861790 PMCID: PMC11769264 DOI: 10.3390/v17010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito Aedes aegypti or Culex genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala. Current approaches for therapeutic control of flavivirus infections are limited, and despite recent advances, there are no approved drugs. Vaccines, available for a few circulating flaviviruses, still have limited potential for controlling contemporary and future outbreaks. Mouse models provide us with a valuable tool to test the effectiveness of drugs and vaccines, yet for many flaviviruses, well-established mouse models are lacking. In this review, we highlight the current state of flavivirus vaccines and therapeutics, as well as our current understanding of mouse models for various flaviviruses.
Collapse
Affiliation(s)
| | - Z. Beau Reneer
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3500, USA;
| |
Collapse
|
23
|
Lyu W, Qin H, Li Q, Lu D, Shi C, Zhao K, Zhang S, Yu R, Zhang H, Zhou X, Xia S, Zhang L, Wang X, Chi X, Liu Z. Novel mechanistic insights - A brand new Era for anti-HBV drugs. Eur J Med Chem 2024; 279:116854. [PMID: 39276582 DOI: 10.1016/j.ejmech.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Hepatitis B Virus (HBV) remains a critical global health issue, with substantial morbidity and mortality. Current therapies, including interferons and nucleoside analogs, often fail to achieve complete cure or functional eradication. This review explores recent advances in anti-HBV agents, focusing on their innovative mechanisms of action. HBV entry inhibitors target the sodium taurocholate cotransporting polypeptide (NTCP) receptor, impeding viral entry, while nucleus translocation inhibitors disrupt key viral life cycle steps, preventing replication. Capsid assembly modulators inhibit covalently closed circular DNA (cccDNA) formation, aiming to eradicate the persistent viral reservoir. Transcription inhibitors targeting cccDNA and integrated DNA offer significant potential to suppress HBV replication. Immunomodulatory agents are highlighted for their ability to enhance host immune responses, facil-itating better control and possible eradication of HBV. These novel approaches represent significant advancements in HBV therapy, providing new strategies to overcome current treatment limitations. The development of cccDNA reducers is particularly critical, as they directly target the persistent viral reservoir, offering a promising pathway towards achieving a functional cure or complete viral eradication. Continued research in this area is essential to advance the effectiveness of anti-HBV therapies.
Collapse
Affiliation(s)
- Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Haoming Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Kangchen Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Shengran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Ruohan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Huiying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaonan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Sitian Xia
- Beijing National Day School, Beijing, 100089, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaoqian Wang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Economic-Technological Development Area (BDA), Beijing, 100176, PR China.
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Ding J, Mairiang D, Prayongkul D, Puttikhunt C, Noisakran S, Kaewjiw N, Songjaeng A, Prommool T, Tangthawornchaikul N, Angkasekwinai N, Suputtamongkol Y, Lapphra K, Chokephaibulkit K, White NJ, Avirutnan P, Tarning J. In-host modeling of dengue virus and non-structural protein 1 and the effects of ivermectin in patients with acute dengue fever. CPT Pharmacometrics Syst Pharmacol 2024; 13:2196-2209. [PMID: 39308445 DOI: 10.1002/psp4.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 12/17/2024] Open
Abstract
The increased incidence of dengue poses a substantially global public health challenge. There are no approved antiviral drugs to treat dengue infections. Ivermectin, an old anti-parasitic drug, had no effect on dengue viremia, but reduced the dengue non-structural protein 1 (NS1) in a clinical trial. This is potentially important, as NS1 may play a causal role in the pathogenesis of severe dengue. This study established an in-host model to characterize the plasma kinetics of dengue virus and NS1 with host immunity and evaluated the effects of ivermectin, using a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach, based on two studies in acute dengue fever: a placebo-controlled ivermectin study in 250 adult patients and an ivermectin PK-PD study in 24 pediatric patients. The proposed model described adequately the observed ivermectin pharmacokinetics, viral load, and NS1 data. Bodyweight was a significant covariate on ivermectin pharmacokinetics. We found that ivermectin reduced NS1 with an EC50 of 67.5 μg/mL. In silico simulations suggested that ivermectin should be dosed within 48 h after fever onset, and that a daily dosage of 800 μg/kg could achieve substantial NS1 reduction. The in-host dengue model is useful to assess the drug effect in antiviral drug development for dengue fever.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dumrong Mairiang
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Dararat Prayongkul
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sansanee Noisakran
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattapong Kaewjiw
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Songjaeng
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanapan Prommool
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nattaya Tangthawornchaikul
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nasikarn Angkasekwinai
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Keswadee Lapphra
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Panisadee Avirutnan
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Jiao P, Ma J, Zhao Y, Jia X, Zhang H, Fan W, Jia X, Bai X, Zhao Y, Lu Y, Zhang H, Guo J, Pang G, Zhang K, Fang M, Li M, Liu W, Smith GL, Sun L. The nuclear localization signal of monkeypox virus protein P2 orthologue is critical for inhibition of IRF3-mediated innate immunity. Emerg Microbes Infect 2024; 13:2372344. [PMID: 38916407 PMCID: PMC11229740 DOI: 10.1080/22221751.2024.2372344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The Orthopoxvirus (OPXV) genus of the Poxviridae includes human pathogens variola virus (VARV), monkeypox virus (MPXV), vaccinia virus (VACV), and a number of zoonotic viruses. A number of Bcl-2-like proteins of VACV are involved in escaping the host innate immunity. However, little work has been devoted to the evolution and function of their orthologues in other OPXVs. Here, we found that MPXV protein P2, encoded by the P2L gene, and P2 orthologues from other OPXVs, such as VACV protein N2, localize to the nucleus and antagonize interferon (IFN) production. Exceptions to this were the truncated P2 orthologues in camelpox virus (CMLV) and taterapox virus (TATV) that lacked the nuclear localization signal (NLS). Mechanistically, the NLS of MPXV P2 interacted with karyopherin α-2 (KPNA2) to facilitate P2 nuclear translocation, and competitively inhibited KPNA2-mediated IRF3 nuclear translocation and downstream IFN production. Deletion of the NLS in P2 or orthologues significantly enhanced IRF3 nuclear translocation and innate immune responses, thereby reducing viral replication. Moreover, deletion of NLS from N2 in VACV attenuated viral replication and virulence in mice. These data demonstrate that the NLS-mediated translocation of P2 is critical for P2-induced inhibition of innate immunity. Our findings contribute to an in-depth understanding of the mechanisms of OPXV P2 orthologue in innate immune evasion.
Collapse
Affiliation(s)
- Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianing Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuna Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Xiaoxiao Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Haoran Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaojuan Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yiqi Zhao
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, People’s Republic of China
| | - Jiayin Guo
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Gang Pang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ke Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Min Fang
- School of Life Sciences, Henan University, Kaifeng, People’s Republic of China
| | - Minghua Li
- Kunming National High-level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, People’s Republic of China
| | - Geoffrey L. Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Sun Z, Li J, Liu H, Fan Z. Insulin-Like Growth Factor-Binding Protein 5 Promotes the Cell Proliferation and Osteogenic Potential of Dental Pulp Stem Cells Dependent on Its Nuclear Localisation Sequence. J Oral Rehabil 2024; 51:2664-2674. [PMID: 39313926 DOI: 10.1111/joor.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) have been extensively used for tissue regeneration owing to their notable capabilities. Insulin-like growth factor-binding protein 5 (IGFBP5) regulates osteogenic differentiation of mesenchymal stem cells (MSCs); however, the underlying regulatory mechanisms require further investigation. MATERIALS AND METHODS Carboxyfluorescein succinimidyl ester, an alkaline phosphatase (ALP) activity assay and Alizarin Red staining were used to reveal the role of IGFBP5 in DPSCs. Protein expression levels were determined using western blotting. Immunofluorescence was used to observe cell sub-localisation. Subcutaneous transplantation in nude mice was used to observe the osteogenesis of DPSCs in vivo. RESULTS IGFBP5 enhanced the proliferation and osteogenic differentiation of DPSCs. Deletion of the nuclear localisation sequence (NLS) of IGFBP5 prevented its nuclear import and abolished all its promoting effects on DPSCs; ivermectin stimulation attenuated the enhancement of ALP activity by IGBFP5. Bone-like tissue formation promoted by IGFBP5 in vivo vanishes when the NLS is deleted. Inhibition of IGFBP5 nuclear import attenuated the IGFBP5-induced phosphorylation of JNK (p-JNK) and phosphorylated ERK (p-ERK) in DPSCs. CONCLUSION Our findings suggest that cell proliferation and osteogenic differentiation effects exerted by IGFBP5 on DPSCs are closely associated with their entry into the nucleus, thereby providing a novel potential target for tissue regeneration.
Collapse
Affiliation(s)
- Ziyan Sun
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Preventive Medicine, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Barghash RF, Gemmati D, Awad AM, Elbakry MMM, Tisato V, Awad K, Singh AV. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Molecules 2024; 29:5564. [PMID: 39683724 PMCID: PMC11643501 DOI: 10.3390/molecules29235564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Collapse
Affiliation(s)
- Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Mustafa M. M. Elbakry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Veronica Tisato
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Kareem Awad
- Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
28
|
Wu R, Li J, Aicher A, Jiang K, Tondi S, Dong S, Zheng Q, Tang S, Chen M, Guo Z, Šabanović B, Ananthanarayanan P, Jiang L, Sapino A, Wen C, Fu D, Shen B, Heeschen C. Gasdermin C promotes Stemness and Immune Evasion in Pancreatic Cancer via Pyroptosis-Independent Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308990. [PMID: 39297408 PMCID: PMC11558074 DOI: 10.1002/advs.202308990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/31/2024] [Indexed: 11/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic and lethal disease. Gasdermins are primarily associated with necrosis via membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. In this study, GSDMC upregulation during PDAC progression is reported. GSDMC directly induces genes related to stemness, EMT, and immune evasion. Targeting Gsdmc in murine PDAC models reprograms the immunosuppressive tumor microenvironment, rescuing the recruitment of anti-tumor immune cells through CXCL9. This not only results in diminished tumor initiation, growth and metastasis, but also enhances the response to KRASG12D inhibition and PD-1 checkpoint blockade, respectively. Mechanistically, it is discovered that ADAM17 cleaves GSDMC, releasing nuclear fragments binding to promoter regions of stemness, metastasis, and immune evasion-related genes. Pharmacological inhibition of GSDMC cleavage or prevention of its nuclear translocation is equally effective in suppressing GSDMC's downstream targets and inhibiting PDAC progression. The findings establish GSDMC as a potential therapeutic target for enhancing treatment response in this deadly disease.
Collapse
Affiliation(s)
- Renfei Wu
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Jingwei Li
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Alexandra Aicher
- Precision ImmunotherapyGraduate Institute of Biomedical SciencesChina Medical UniversityNo. 91, Xueshi RoadTaichung404Taiwan
- Immunology Research and Development CenterChina Medical UniversityNo. 91, Xueshi RoadTaichung404Taiwan
| | - Ke Jiang
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Serena Tondi
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Shuang Dong
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Siqi Tang
- School of PharmacyEast China University of Science and Technology130 Meilong RoadShanghai200237P. R. China
| | - Minchun Chen
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Zhenyang Guo
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Berina Šabanović
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Preeta Ananthanarayanan
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Lingxi Jiang
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Anna Sapino
- Department of PathologyCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Chenlei Wen
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Da Fu
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Baiyong Shen
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Christopher Heeschen
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| |
Collapse
|
29
|
Li G, Jiang H, Wang L, Liang T, Ding C, Yang M, Shen Y, Xin M, Zhang L, Dai J, Sun X, Chen X, Liu J, Xu Y. The role of PALLD-STAT3 interaction in megakaryocyte differentiation and thrombocytopenia treatment. Haematologica 2024; 109:3693-3704. [PMID: 38813732 PMCID: PMC11532707 DOI: 10.3324/haematol.2024.285242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, however the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/platelet-specific knockout of Palld in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain and Src homology 2 domain via immunoglobulin domain 3. Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.
Collapse
Affiliation(s)
- Guoming Li
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Lingbin Wang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Tingting Liang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Chen Ding
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Mina Yang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei Province.
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Synvida Biotechnology Co., Ltd, Shanghai.
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai.
| |
Collapse
|
30
|
Sarkar AK, Sarkar AR, Sahoo R, Jana NR, Jana NR. Designed Nanodrugs for Ultrasonic Removal of Toxic Polyglutamine Aggregates from Neuron Cells. NANO LETTERS 2024; 24:13473-13480. [PMID: 39413815 DOI: 10.1021/acs.nanolett.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Clearing of toxic polyglutamine aggregates from neuronal cells is crucial for ameliorating Huntington's disease. However, such clearance is challenging, requiring the targeting of affected neuron cells in the brain, followed by the removal of polyglutamine from cells. Here we report a designed nanodrug that can be used for the ultrasound-based removal of toxic polyglutamine aggregates from neuron cells. The nanodrug is composed of a sonosensitizer molecule, chlorin e6- or protoporphyrin IX-loaded polymer micelle of 20-30 nm in size that rapidly delivers the sonosensitizer into the cell nucleus. Ultrasound exposure of these cells generates singlet oxygen in the nucleus/perinuclear region that induces strong autophagic flux and clears toxic polyglutamine aggregates from cells. It has been demonstrated that the nanodrug and ultrasound treatment can enhance the cell survival against polyglutamine aggregates by 4 times. This result suggests that the nanodrug can be designed for focused ultrasound-based wireless treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankan Kumar Sarkar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Abu Raihan Sarkar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Rajkumar Sahoo
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nihar R Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| | - Nikhil R Jana
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|
31
|
Zaitsava H, Gachowska M, Bartoszewska E, Kmiecik A, Kulbacka J. The Potential of Nuclear Pore Complexes in Cancer Therapy. Molecules 2024; 29:4832. [PMID: 39459201 PMCID: PMC11510365 DOI: 10.3390/molecules29204832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Nuclear pore complexes (NPCs) play a critical role in regulating transport-dependent gene expression, influencing various stages of cancer development and progression. Dysregulation of nucleocytoplasmic transport has profound implications, particularly in the context of cancer-associated protein mislocalization. This review provides specific information about the relationship between nuclear pore complexes, key regulatory proteins, and their impact on cancer biology. Highlighting the influence of tumor-suppressor proteins as well as the potential of gold nanoparticles and intelligent nanosystems in cancer treatment, their role in inhibiting cell invasion is examined. This article concludes with the clinical implications of nuclear export inhibitors, particularly XPO1, as a therapeutic target in various cancers, with selective inhibitors of nuclear export compounds demonstrating efficacy in both hematological and solid malignancies. The review aims to explore the role of NPCs in cancer biology, focusing on their influence on gene expression, cancer progression, protein mislocalization, and the potential of targeted therapies such as nuclear export inhibitors and intelligent nanosystems in cancer treatment. Despite their significance and the number of research studies, the direct role of NPCs in carcinogenesis remains incompletely understood.
Collapse
Affiliation(s)
- Hanna Zaitsava
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Martyna Gachowska
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Elżbieta Bartoszewska
- Students’ Group of Cancer Cell Biology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (H.Z.); (E.B.)
| | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, 6a Chałubińskiego St., 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
32
|
Park SJ, Son SM, Barbosa AD, Wrobel L, Stamatakou E, Squitieri F, Balmus G, Rubinsztein DC. Nuclear proteasomes buffer cytoplasmic proteins during autophagy compromise. Nat Cell Biol 2024; 26:1691-1699. [PMID: 39209961 PMCID: PMC11469956 DOI: 10.1038/s41556-024-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Autophagy is a conserved pathway where cytoplasmic contents are engulfed by autophagosomes, which then fuse with lysosomes enabling their degradation. Mutations in core autophagy genes cause neurological conditions, and autophagy defects are seen in neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Thus, we have sought to understand the cellular pathway perturbations that autophagy-perturbed cells are vulnerable to by seeking negative genetic interactions such as synthetic lethality in autophagy-null human cells using available data from yeast screens. These revealed that loss of proteasome and nuclear pore complex components cause synergistic viability changes akin to synthetic fitness loss in autophagy-null cells. This can be attributed to the cytoplasm-to-nuclear transport of proteins during autophagy deficiency and subsequent degradation of these erstwhile cytoplasmic proteins by nuclear proteasomes. As both autophagy and cytoplasm-to-nuclear transport are defective in Huntington's disease, such cells are more vulnerable to perturbations of proteostasis due to these synthetic interactions.
Collapse
Affiliation(s)
- So Jung Park
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Sung Min Son
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Antonio Daniel Barbosa
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Lidia Wrobel
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - David C Rubinsztein
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Xia Y, Wang D, Zhao H, Meng T, Jiang Q, Pan Z, Wang G, An T, Li B, Bi S, Wang H, Lu J, Liu H, Lin H, Lin C, Zheng Q, Li D. Silencing of tropomodulin 1 inhibits acute myeloid leukemia cell proliferation and tumor growth by elevating karyopherin alpha 2-mediated autophagy. Pharmacol Res 2024; 207:107327. [PMID: 39079577 DOI: 10.1016/j.phrs.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Evidence shows that tropomodulin 1 (TMOD1) is a powerful diagnostic marker in the progression of several cancer types. However, the regulatory mechanism of TMOD1 in tumor progression is still unclear. Here, we showed that TMOD1 was highly expressed in acute myeloid leukemia (AML) specimens, and TMOD1-silencing inhibited cell proliferation by inducing autophagy in AML THP-1 and MOLM-13 cells. Mechanistically, the C-terminal region of TMOD1 directly bound to KPNA2, and TMOD1-overexpression promoted KPNA2 ubiquitylation and reduced KPNA2 levels. In contrast, TMOD1-silencing increased KPNA2 levels and facilitated the nuclear transfer of KPNA2, then subsequently induced autophagy and inhibited cell proliferation by increasing the nucleocytoplasmic transport of p53 and AMPK activation. KPNA2/p53 inhibitors attenuated autophagy induced by silencing TMOD1 in AML cells. Silencing TMOD1 also inhibited tumor growth by elevating KPNA2-mediated autophagy in nude mice bearing MOLM-13 xenografts. Collectively, our data demonstrated that TMOD1 could be a novel therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Yuan Xia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Dan Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tingyi Meng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qingling Jiang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Zhaohai Pan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huikai Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hongfu Liu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Haiyan Lin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264003, PR China.
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
34
|
Vanhee C, Jacobs B, Kamugisha A, Canfyn M, Van Der Meersch H, Ceyssens B, Deconinck E, Van Hoorde K, Willocx M. Substandard and falsified ivermectin tablets obtained for self-medication during the COVID-19 pandemic as a source of potential harm. Drug Test Anal 2024; 16:957-967. [PMID: 38043940 DOI: 10.1002/dta.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
In 2019, a global viral pandemic, due to the SARS-CoV-2 virus, broke out. Soon after, the search for a vaccine and/or antiviral medicine began. One of the candidate antiviral medicines tested was ivermectin. Although several health authorities warned the public against the use of this medicine outside clinical trials, the drug was widely used at the end of 2020 and in 2021. Simultaneously, several reports started to emerge demonstrating serious adverse effects after self-medicating with ivermectin. It stands to reason that the self-administration of substandard or falsified (SF) medicines bearing harmful quality deficiencies have contributed to this phenomenon. In order to have a better view on the nature of these harmful quality deficiencies, SF ivermectin samples, intercepted in large quantities by the Belgian regulatory agencies during the period 2021-2022, were analyzed in our official medicines control laboratory. None of the samples (n = 19) were compliant to the quality criteria applicable to medicinal products. These SF products either suffered from a systematic underdosing of the active pharmaceutical ingredient or were severely contaminated with bacteria, two of which were contaminated with known pathogens that cause gastrointestinal illness upon oral intake. In addition to the direct risks of self-medicating with such a product, the improper usage and dosage of ivermectin medication might also facilitate ivermectin tolerance or resistance in parasites. This may have detrimental consequences on a global scale, certainly as the number of newly developed active pharmaceutical ingredients that can safely be used to combat parasites is rather scarce.
Collapse
Affiliation(s)
- Celine Vanhee
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bram Jacobs
- Service of Foodborne Pathogen, Scientific Direction of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Angélique Kamugisha
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Michael Canfyn
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | | | - Bart Ceyssens
- Federal Agency for Medicine and Health Care Products, Brussels, Belgium
| | - Eric Deconinck
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Koenraad Van Hoorde
- Service of Foodborne Pathogen, Scientific Direction of Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Marie Willocx
- Service Medicines and Health Products, Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| |
Collapse
|
35
|
Plessis-Belair J, Ravano K, Han E, Janniello A, Molina C, Sher RB. NEMF mutations in mice illustrate how Importin-β specific nuclear transport defects recapitulate neurodegenerative disease hallmarks. PLoS Genet 2024; 20:e1011411. [PMID: 39312574 PMCID: PMC11449308 DOI: 10.1371/journal.pgen.1011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Pathological disruption of Nucleocytoplasmic Transport (NCT), such as the mis-localization of nuclear pore complex proteins (Nups), nuclear transport receptors, Ran-GTPase, and RanGAP1, are seen in both animal models and in familial and sporadic forms of amyotrophic lateral sclerosis (ALS), frontal temporal dementia and frontal temporal lobar degeneration (FTD\FTLD), and Alzheimer's and Alzheimer's Related Dementias (AD/ADRD). However, the question of whether these alterations represent a primary cause, or a downstream consequence of disease is unclear, and what upstream factors may account for these defects are unknown. Here, we report four key findings that shed light on the upstream causal role of Importin-β-specific nuclear transport defects in disease onset. First, taking advantage of two novel mouse models of NEMF neurodegeneration (NemfR86S and NemfR487G) that recapitulate many cellular and biochemical aspects of neurodegenerative diseases, we find an Importin-β-specific nuclear import block. Second, we observe cytoplasmic mis-localization and aggregation of multiple proteins implicated in the pathogenesis of ALS/FTD and AD/ADRD, including TDP43, Importin-β, RanGap1, and Ran. These findings are further supported by a pathological interaction between Importin-β and the mutant NEMFR86S protein in cytoplasmic accumulations. Third, we identify similar transcriptional dysregulation in key genes associated with neurodegenerative disease. Lastly, we show that even transient pharmaceutical inhibition of Importin-β in both mouse and human neuronal and non-neuronal cells induces key proteinopathies and transcriptional alterations seen in our mouse models and in neurodegeneration. Our convergent results between mouse and human neuronal and non-neuronal cellular biology provide mechanistic evidence that many of the mis-localized proteins and dysregulated transcriptional events seen in multiple neurodegenerative diseases may in fact arise primarily from a primary upstream defect in Importin- β nuclear import. These findings have critical implications for investigating how sporadic forms of neurodegeneration may arise from presently unidentified genetic and environmental perturbations in Importin-β function.
Collapse
Affiliation(s)
- Jonathan Plessis-Belair
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathryn Ravano
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Ellen Han
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Aubrey Janniello
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Catalina Molina
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| | - Roger B. Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
36
|
Cavina L, Bouma MJ, Gironés D, Feiters MC. Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition. Molecules 2024; 29:4047. [PMID: 39274895 PMCID: PMC11396989 DOI: 10.3390/molecules29174047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Mathijs J. Bouma
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Daniel Gironés
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
- Protinhi Therapeutics, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| |
Collapse
|
37
|
Annamalai Subramani P, Tipthara P, Kolli SK, Nicholas J, Barnes SJ, Ogbondah MM, Kobylinski KC, Tarning J, Adams JH. Efficacy of ivermectin and its metabolites against Plasmodium falciparum liver stages in primary human hepatocytes. Antimicrob Agents Chemother 2024; 68:e0127223. [PMID: 38904389 PMCID: PMC11304735 DOI: 10.1128/aac.01272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Ivermectin, a broad-spectrum anti-parasitic drug, has been proposed as a novel vector control tool to reduce malaria transmission by mass drug administration. Ivermectin and some metabolites have mosquito-lethal effect, reducing Anopheles mosquito survival. Ivermectin inhibits liver stage development in a rodent malaria model, but no inhibition was observed in a primate malaria model or in a human malaria challenge trial. In the liver, cytochrome P450 3A4 and 3A5 enzymes metabolize ivermectin, which may impact drug efficacy. Thus, understanding ivermectin metabolism and assessing this impact on Plasmodium liver stage development is critical. Using primary human hepatocytes (PHHs), we characterized ivermectin metabolism and evaluated the efficacy of ivermectin and its primary metabolites M1 (3″-O-demethyl ivermectin) and M3 (4-hydroxymethyl ivermectin) against Plasmodium falciparum liver stages. Two different modes of ivermectin exposure were evaluated: prophylactic mode (days 0-3 post-infection) and curative mode (days 3-5 post-infection). We used two different PHH donors and modes to determine the inhibitory concentration (IC50) of ivermectin, M1, M3, and the known anti-malarial drug pyrimethamine, with IC50 values ranging from 1.391 to 14.44, 9.95-23.71, 4.767-8.384, and 0.9073-5.416 µM, respectively. In our PHH model, ivermectin and metabolites M1 and M3 demonstrated inhibitory activity against P. falciparum liver stages in curative treatment mode (days 3-5) and marginal activity in prophylactic treatment mode (days 0-3). Ivermectin had improved efficacy when co-administered with ketoconazole, a specific inhibitor of cytochrome P450 3A4 enzyme. Further studies should be performed to examine ivermectin liver stage efficacy when co-administered with CYP3A4 inhibitors and anti-malarial drugs to understand the pharmacokinetic and pharmacodynamic drug-drug interactions that enhance efficacy against human malaria parasites in vitro.
Collapse
Affiliation(s)
- Pradeep Annamalai Subramani
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Samantha J. Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Madison M. Ogbondah
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Kevin C. Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
38
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
39
|
Kocas M, Comoglu T, Ozkul A. Development and in vitro antiviral activity of ivermectin liposomes as a potential drug carrier system. Arch Pharm (Weinheim) 2024; 357:e2300708. [PMID: 38702288 DOI: 10.1002/ardp.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
This study aimed to assess and compare diverse formulations of ivermectin-loaded liposomes, employing lipid film hydration and ethanol injection methods. Three lipids (DOPC, SPC, and DSPC) were used in predetermined molar ratios. A total of 18 formulations were created, and a factorial design determined the optimal formulation based on particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency. The average mean particle size, PDI and zeta potential of the selected formulations (F1, F2, F7, F9, and F11) was, respectively, 196.40 ± 44.60 nm, 0.39 ± 0.09, and -40.24 ± 9.17. The encapsulation efficiency exceeded 80%, with a mean loading capacity of 4.00 ± 1.70%. In vitro studies included transmission electron microscopy, Fourier transform infrared spectroscopy, drug release, and antiviral activity assessments against SARS-CoV-2. The liposomal formulations demonstrated superior antiviral activity compared to free ivermectin, as indicated by lower IC50 values. The results of this study emphasize the effectiveness of ivermectin-loaded liposomes in inhibiting viral activity, highlighting their potential as promising candidates for antiviral therapy. The findings suggest that the strategic use of liposomes as drug carriers can significantly modulate and improve the antiviral properties of ivermectin, offering a novel approach to harnessing its full therapeutic potential. Collectively, these results provide a robust foundation for further exploration of ivermectin as a viral protection tool and optimization of its delivery mechanisms.
Collapse
Affiliation(s)
- Meryem Kocas
- Department of Pharmaceutical Technology, Selcuk University Faculty of Pharmacy, Konya, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Pharmaceutical Technology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| | - Aykut Ozkul
- Department of Virology, Ankara University Faculty of Veterinary Medicine, Ankara, Turkey
| |
Collapse
|
40
|
Li J, Qin Z, Li Y, Huang B, Xiao Q, Chen P, Luo Y, Zheng W, Zhang T, Zhang Z. Phosphorylation of IDH1 Facilitates Progestin Resistance in Endometrial Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310208. [PMID: 38582508 PMCID: PMC11187910 DOI: 10.1002/advs.202310208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
The progestin regimen is one of the main therapeutic strategies for women with endometrial cancer who undergo conservative management. Although many patients respond well to initial therapy, progestin-refractory disease inevitably emerges, and the molecular basis underlying progestin resistance has not been comprehensively elucidated. Herein, they demonstrated progestin results in p38-dependent IDH1 Thr 77 phosphorylation (pT77-IDH1). pT77-IDH1 translocates into the nucleus and is recruited to chromatin through its interaction with OCT6. IDH1-produced α-ketoglutarate (αKG) then facilitates the activity of OCT6 to promote focal adhesion related target gene transcription to confer progestin resistance. Pharmacological inhibition of p38 or focal adhesion signaling sensitizes endometrial cancer cells to progestin in vivo. The study reveals p38-dependent pT77-IDH1 as a key mediator of progestin resistance and a promising target for improving the efficacy of progestin therapy.
Collapse
Affiliation(s)
- Jingjie Li
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Zuoshu Qin
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yunqi Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Baozhu Huang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Qimeng Xiao
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Peiqin Chen
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Yifan Luo
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Wenxin Zheng
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
- Simon Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Zhenbo Zhang
- Precision Research Center for Refractory DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Reproductive Medicine CenterDepartment of Obstetrics and GynecologyTongji hospitalSchool of MedicineTongji UniversityShanghai200065China
| |
Collapse
|
41
|
Gao X, Xuan Y, Zhou Z, Chen C, Wen Wang D, Wen Z. Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65. Int Immunopharmacol 2024; 133:112073. [PMID: 38636372 DOI: 10.1016/j.intimp.2024.112073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/β-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS Increased expression of importin β was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1β/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.
Collapse
Affiliation(s)
- Xu Gao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yunling Xuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China.
| |
Collapse
|
42
|
Israr J, Alam S, Kumar A. Drug repurposing for respiratory infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:207-230. [PMID: 38942538 DOI: 10.1016/bs.pmbts.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Respiratory infections such as Coronavirus disease 2019 are a substantial worldwide health challenge, frequently resulting in severe sickness and death, especially in susceptible groups. Conventional drug development for respiratory infections faces obstacles such as extended timescales, substantial expenses, and the rise of resistance to current treatments. Drug repurposing is a potential method that has evolved to quickly find and reuse existing medications for treating respiratory infections. Drug repurposing utilizes medications previously approved for different purposes, providing a cost-effective and time-efficient method to tackle pressing medical needs. This chapter summarizes current progress and obstacles in repurposing medications for respiratory infections, focusing on notable examples of repurposed pharmaceuticals and their probable modes of action. The text also explores the significance of computational approaches, high-throughput screening, and preclinical investigations in identifying potential candidates for repurposing. The text delves into the significance of regulatory factors, clinical trial structure, and actual data in confirming the effectiveness and safety of repurposed medications for respiratory infections. Drug repurposing is a valuable technique for quickly increasing the range of treatments for respiratory infections, leading to better patient outcomes and decreasing the worldwide disease burden.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India; Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
43
|
Izquierdo-Pujol J, Puertas MC, Martinez-Picado J, Morón-López S. Targeting Viral Transcription for HIV Cure Strategies. Microorganisms 2024; 12:752. [PMID: 38674696 PMCID: PMC11052381 DOI: 10.3390/microorganisms12040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral therapy (ART) suppresses viral replication to undetectable levels, reduces mortality and morbidity, and improves the quality of life of people living with HIV (PWH). However, ART cannot cure HIV infection because it is unable to eliminate latently infected cells. HIV latency may be regulated by different HIV transcription mechanisms, such as blocks to initiation, elongation, and post-transcriptional processes. Several latency-reversing (LRA) and -promoting agents (LPA) have been investigated in clinical trials aiming to eliminate or reduce the HIV reservoir. However, none of these trials has shown a conclusive impact on the HIV reservoir. Here, we review the cellular and viral factors that regulate HIV-1 transcription, the potential pharmacological targets and genetic and epigenetic editing techniques that have been or might be evaluated to disrupt HIV-1 latency, the role of miRNA in post-transcriptional regulation of HIV-1, and the differences between the mechanisms regulating HIV-1 and HIV-2 expression.
Collapse
Affiliation(s)
- Jon Izquierdo-Pujol
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Sara Morón-López
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
| |
Collapse
|
44
|
Nasir M, Irfan J, Asif AB, Khan QU, Anwar H. Complexities of Dengue Fever: Pathogenesis, Clinical Features and Management Strategies. Discoveries (Craiova) 2024; 12:e189. [PMID: 40093849 PMCID: PMC11910338 DOI: 10.15190/d.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 03/19/2025] Open
Abstract
Dengue fever, transmitted through the bite of infected Aedes mosquitos, poses a significant global threat, particularly in the tropical and subtropical region. In this review, we aim to summarize the existent literature on dengue virus infection and to enlighten the reader on recent advances and knowledge. Dengue virus infection can cause a spectrum of clinical manifestations, ranging from asymptomatic or mild illness to more severe and potentially life-threatening complications. Pathogenesis of dengue is based on viral and host factors. Viral factors include NS1 antigen and genomic factors. Host factors include antibody dependent enhancement, anti-NS1 antibodies, cytokines, cross reactive T-Cell response, HLA allele variation and non-HLA mediated polymorphisms. The clinical picture of dengue is described on the basis of WHO 1997 and 2009 criteria. It is classified into dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Life-threatening complications can develop in severe cases, and this includes renal complications such as acute kidney injury (AKI) and hepatic complications such as hepatic dysfunction and in rare cases, fulminant hepatic failure. Neurological complications, cardiac complications and respiratory distress syndrome have also been reported. Treatment methods include targeting the dengue vector and Carica papaya, a natural remedy with antiviral properties. Additionally, the role of corticosteroids, intravenous immunoglobulins, and mast cell inhibitors has been explored in dengue treatment, aiming to reduce severity. Novel approaches involve drugs targeting dengue proteins and host factors necessary for the virus's life cycle, offering potential avenues for more targeted therapeutic interventions. In recent years, significant progress has been made in the development of vaccines against dengue, with Sanofi Pasteur's Dengvaxia being the first licensed vaccine approved for use. Utilizing various approaches such as recombinant proteins, viral vectors and viral like particles, various alternatives have been provided which aim to be safer substitutes to Dengvaxia while maintaining the effectiveness. A review on dengue is essential for clinicians and healthcare professionals to stay updated on diagnostics, treatment protocols and prevention strategies.
Collapse
|
45
|
Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG, Ratangee BA, Sealy TT, Vallone KT, Clements TP. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J 2024; 291:1632-1662. [PMID: 36266238 PMCID: PMC9874604 DOI: 10.1111/febs.16662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antiviral therapies are integral in the fight against SARS-CoV-2 (i.e. severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Antiviral therapeutics can be divided into categories based on how they combat the virus, including viral entry into the host cell, viral replication, protein trafficking, post-translational processing, and immune response regulation. Drugs that target how the virus enters the cell include: Evusheld, REGEN-COV, bamlanivimab and etesevimab, bebtelovimab, sotrovimab, Arbidol, nitazoxanide, and chloroquine. Drugs that prevent the virus from replicating include: Paxlovid, remdesivir, molnupiravir, favipiravir, ribavirin, and Kaletra. Drugs that interfere with protein trafficking and post-translational processing include nitazoxanide and ivermectin. Lastly, drugs that target immune response regulation include interferons and the use of anti-inflammatory drugs such as dexamethasone. Antiviral therapies offer an alternative solution for those unable or unwilling to be vaccinated and are a vital weapon in the battle against the global pandemic. Learning more about these therapies helps raise awareness in the general population about the options available to them with respect to aiding in the reduction of the severity of COVID-19 infection. In this 'A Guide To' article, we provide an in-depth insight into the development of antiviral therapeutics against SARS-CoV-2 and their ability to help fight COVID-19.
Collapse
Affiliation(s)
- Drugan K. Brady
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Aashi R. Gurijala
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Liyu Huang
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ali A. Hussain
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Audrey L. Lingan
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | | - Brina A. Ratangee
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tristan T. Sealy
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Kyle T. Vallone
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | |
Collapse
|
46
|
Sarfraz A, Sarfraz Z, Bano S, Sarfraz M, Jaan A, Minhas A, Razzack AA, Patel G, Manish KC, Makkar SS, Garimella R, Pandav K, Almonte J, Paul T, Almonte T, Jimenez L, Pantoga JC, El Mazboudi N, Yatzkan G, Michel G, Michel J. Global Perspective on COVID-19 Therapies, Cardiovascular Outcomes, and Implications for Long COVID: A State-of-the-Art Review. J Community Hosp Intern Med Perspect 2024; 14:58-66. [PMID: 38966504 PMCID: PMC11221457 DOI: 10.55729/2000-9666.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/02/2024] [Indexed: 07/06/2024] Open
Abstract
The COVID-19 pandemic has resulted in many therapies, of which many are repurposed and used for other diseases in the last decade such in Influenza and Ebola. We intend to provide a robust foundation for cardiovascular outcomes of the therapies to better understand the rationale for the clinical trials that were conducted during the COVID-19 pandemic, and to gain more clarity on the steps moving forward should the repurposing provide clinical benefit in pandemic situations. With this state-of-the-art review, we aim to improve the understanding of the cardiovascular involvement of the therapies prior to, during, and after the COVID-19 pandemic to provide meaningful findings to the cardiovascular specialists and clinical trials for therapies, moving on from the period of pandemic urgency.
Collapse
Affiliation(s)
| | | | - Shehar Bano
- Fatima Jinnah Medical University, Lahore,
Pakistan
| | | | - Ali Jaan
- Rochester General Hospital, Rochester, NY,
USA
| | - Amna Minhas
- Fatima Jinnah Medical University, Lahore,
Pakistan
| | | | | | - KC Manish
- Larkin Health System, South Miami, Florida,
USA
| | | | | | | | | | - Trissa Paul
- Larkin Health System, South Miami, Florida,
USA
| | | | | | | | | | | | | | - Jack Michel
- Larkin Health System, South Miami, Florida,
USA
| |
Collapse
|
47
|
Jitobaom K, Peerapen P, Boonyuen U, Meewan I, Boonarkart C, Sirihongthong T, Thongon S, Thongboonkerd V, Auewarakul P. Identification of inositol monophosphatase as a broad-spectrum antiviral target of ivermectin. J Med Virol 2024; 96:e29552. [PMID: 38511598 DOI: 10.1002/jmv.29552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Ivermectin has broad-spectrum antiviral activities. Despite the failure in clinical application of COVID-19, it can serve as a lead compound for the development of more effective broad-spectrum antivirals, for which a better understanding of its antiviral mechanisms is essential. We thus searched for potential novel targets of ivermectin in host cells by label-free thermal proteomic profiling using Huh-7 cells. Inositol monophosphatase (IMPase) was found among the proteins with shifted thermal stability by ivermectin. Ivermectin could inhibit IMPase activity and reduce cellular myo-inositol and phosphatidylinositol-4-phosphate levels. On the other hand, inositol could impair the antiviral activity of ivermectin and lithium, an IMPase inhibitor with known antiviral activity. As phosphatidylinositol phosphate is crucial for the replication of many RNA viruses, inhibition of cellular myo-inositol biosynthesis may be an important antiviral mechanism of ivermectin. Hence, inhibition of IMPase could serve as a potential target for broad-spectrum antiviral development.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ittipat Meewan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
De Jesús-González LA, del Ángel RM, Palacios-Rápalo SN, Cordero-Rivera CD, Rodríguez-Carlos A, Trujillo-Paez JV, Farfan-Morales CN, Osuna-Ramos JF, Reyes-Ruiz JM, Rivas-Santiago B, León-Juárez M, García-Herrera AC, Ramos-Cortes AC, López-Gándara EA, Martínez-Rodríguez E. A Dual Pharmacological Strategy against COVID-19: The Therapeutic Potential of Metformin and Atorvastatin. Microorganisms 2024; 12:383. [PMID: 38399787 PMCID: PMC10893401 DOI: 10.3390/microorganisms12020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Metformin (MET) and atorvastatin (ATO) are promising treatments for COVID-19. This review explores the potential of MET and ATO, commonly prescribed for diabetes and dyslipidemia, respectively, as versatile medicines against SARS-CoV-2. Due to their immunomodulatory and antiviral capabilities, as well as their cost-effectiveness and ubiquitous availability, they are highly suitable options for treating the virus. MET's effect extends beyond managing blood sugar, impacting pathways that can potentially decrease the severity and fatality rates linked with COVID-19. It can partially block mitochondrial complex I and stimulate AMPK, which indicates that it can be used more widely in managing viral infections. ATO, however, impacts cholesterol metabolism, a crucial element of the viral replicative cycle, and demonstrates anti-inflammatory characteristics that could modulate intense immune reactions in individuals with COVID-19. Retrospective investigations and clinical trials show decreased hospitalizations, severity, and mortality rates in patients receiving these medications. Nevertheless, the journey from observing something to applying it in a therapeutic setting is intricate, and the inherent diversity of the data necessitates carefully executed, forward-looking clinical trials. This review highlights the requirement for efficacious, easily obtainable, and secure COVID-19 therapeutics and identifies MET and ATO as promising treatments in this worldwide health emergency.
Collapse
Affiliation(s)
- Luis Adrián De Jesús-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Adrián Rodríguez-Carlos
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Juan Valentin Trujillo-Paez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| | | | - José Manuel Reyes-Ruiz
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, Mexico
| | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Ana Cristina García-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Adriana Clara Ramos-Cortes
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Erika Alejandra López-Gándara
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Estefanía Martínez-Rodríguez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| |
Collapse
|
49
|
Pennacchio FA, Poli A, Pramotton FM, Lavore S, Rancati I, Cinquanta M, Vorselen D, Prina E, Romano OM, Ferrari A, Piel M, Cosentino Lagomarsino M, Maiuri P. N2FXm, a method for joint nuclear and cytoplasmic volume measurements, unravels the osmo-mechanical regulation of nuclear volume in mammalian cells. Nat Commun 2024; 15:1070. [PMID: 38326317 PMCID: PMC10850064 DOI: 10.1038/s41467-024-45168-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, current methods to measure cytoplasmic and nuclear volumes, including confocal 3D reconstruction, have limitations, such as relying on two-dimensional projections or poor vertical resolution. Here, to overcome these limitations, we describe a method, N2FXm, to jointly measure cytoplasmic and nuclear volumes in single cultured adhering human cells, in real time, and across cell cycles. We find that this method accurately provides joint size over dynamic measurements and at different time resolutions. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we show that N2FXm can give relevant insights on how mechanical forces exerted by the cytoskeleton on the nuclear envelope can affect the growth of nucleus volume by biasing nuclear import. Our method, by allowing for accurate joint nuclear and cytoplasmic volume dynamic measurements at different time resolutions, highlights the non-constancy of the nucleus/cytoplasm ratio along the cell cycle.
Collapse
Affiliation(s)
- Fabrizio A Pennacchio
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Alessandro Poli
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Francesca Michela Pramotton
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, CH-8092, Switzerland
| | - Stefania Lavore
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Ilaria Rancati
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Cinquanta
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Daan Vorselen
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA
| | - Elisabetta Prina
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Orso Maria Romano
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, CH-8092, Switzerland
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005, Paris, France
| | - Marco Cosentino Lagomarsino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, and I.N.F.N., Via Celoria 16, 20133, Milan, Italy
| | - Paolo Maiuri
- IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
50
|
Patho B, Grant DM, Percival A, Russell GC. Ivermectin inhibits replication of the malignant catarrhal fever virus alcelaphine herpesvirus 1. Virology 2024; 590:109958. [PMID: 38071929 DOI: 10.1016/j.virol.2023.109958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Malignant catarrhal fever is a lymphoproliferative disease of cattle and other ungulates that is caused by genetically and antigenically related gamma herpesviruses of the genus Macavirus. Infection of the natural host species is efficient and asymptomatic but spread to susceptible hosts is often fatal with clinical signs including fever, depression, nasal and ocular discharge. There is no recognised treatment for MCF but a vaccine for one MCF virus, alcelaphine herpesvirus 1 (AlHV-1), has been described. In this paper we describe the inhibition of AlHV-1 replication and propagation by the anthelminthic drug ivermectin. Concentrations of 10 μM or greater led to significant reductions in both copy number and viable titre of virus tested in culture medium, with little replication detected at over 20 μM ivermectin. In the absence of alternative treatments, further testing of ivermectin as a candidate antiviral treatment for MCF may therefore be justified.
Collapse
Affiliation(s)
- Blanka Patho
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Dawn M Grant
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Ann Percival
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - George C Russell
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK.
| |
Collapse
|