1
|
Chen B, Farzan M, Choe H. SARS-CoV-2 spike protein: structure, viral entry and variants. Nat Rev Microbiol 2025:10.1038/s41579-025-01185-8. [PMID: 40328900 DOI: 10.1038/s41579-025-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a devastating global pandemic for 4 years and is now an endemic disease. With the emergence of new viral variants, COVID-19 is a continuing threat to public health despite the wide availability of vaccines. The virus-encoded trimeric spike protein (S protein) mediates SARS-CoV-2 entry into host cells and also induces strong immune responses, making it an important target for development of therapeutics and vaccines. In this Review, we summarize our latest understanding of the structure and function of the SARS-CoV-2 S protein, the molecular mechanism of viral entry and the emergence of new variants, and we discuss their implications for development of S protein-related intervention strategies.
Collapse
Affiliation(s)
- Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Paediatrics, Harvard Medical School, Boston, MA, USA.
| | - Michael Farzan
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Paediatrics, Harvard Medical School, Boston, MA, USA.
- Center for Integrated Solutions for Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Hyeryun Choe
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Paediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
3
|
Case JB, Jain S, Suthar MS, Diamond MS. SARS-CoV-2: The Interplay Between Evolution and Host Immunity. Annu Rev Immunol 2025; 43:29-55. [PMID: 39705164 DOI: 10.1146/annurev-immunol-083122-043054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Shilpi Jain
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Diamond
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
4
|
Florian DM, Bauer M, Popovitsch A, Fae I, Springer DN, Graninger M, Traugott M, Weseslindtner L, Aberle SW, Fischer G, Kundi M, Stiasny K, Zoufaly A, Landry SJ, Aberle JH. Enhanced and long-lasting SARS-CoV-2 immune memory in individuals with common cold coronavirus cross-reactive T cell immunity. Front Immunol 2025; 16:1501704. [PMID: 40191213 PMCID: PMC11968687 DOI: 10.3389/fimmu.2025.1501704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
With the continuous emergence of novel SARS-CoV-2 variants, long-lasting and broadly reactive cellular and humoral immunity is critical for durable protection from COVID-19. We investigated SARS-CoV-2-specific T cell immunity in relation to antibodies, infection outcome and disease severity and assessed its durability in a longitudinal cohort over a three-year time course. We identified pre-existing T cells reactive to the seasonal coronavirus (CoV) OC43 that cross-react with the conserved SARS-CoV-2 spike S813-829 peptide. These cross-reactive T cells increased in frequency following SARS-CoV-2 infection or vaccination and correlated with enhanced spike-specific T cell responses and significantly reduced viral loads. Furthermore, our data revealed that CoV-cross-reactive T cells were maintained as part of the long-lasting memory response, contributing to increased T cell frequencies against omicron variants. These findings suggest a functional role of CoV-cross-reactive T cells that extends beyond the initial SARS-CoV-2 exposure, contributing to enhanced immunity against highly mutated SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David M. Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Bauer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Ingrid Fae
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Gottfried Fischer
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department for Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Alexander Zoufaly
- Department of Medicine IV, Klinik Favoriten, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Samuel J. Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Cao J, Gan M, Zhang Z, Lin X, Ouyang Q, Fu H, Xu X, Wang Z, Li X, Wang Y, Cai H, Lei Q, Liu L, Wang H, Fan X. A Hidden Guardian: The Stability and Spectrum of Antibody-Dependent Cell-Mediated Cytotoxicity in COVID-19 Response in Chinese Adults. Vaccines (Basel) 2025; 13:262. [PMID: 40266151 PMCID: PMC11945335 DOI: 10.3390/vaccines13030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVES Identifying immune-protective biomarkers is crucial for the effective management and mitigation of current and future COVID-19 outbreaks, particularly in preventing or counteracting the immune evasion exhibited by the Omicron variants. The emergence of SARS-CoV-2 variants, especially those within the Omicron lineage, has highlighted their capacity to evade neutralizing antibodies, emphasizing the need to understand the role of antibody-dependent cell-mediated cytotoxicity (ADCC) in combating these infections. METHODS This study, conducted in Qichun City, Hubei province, from December 2021 to March 2023, involved 50 healthy Chinese adults who had received two doses of inactivated vaccines and had subsequently experienced mild infections with the Omicron BA.5 variant. Blood samples from these 50 healthy Chinese adults were collected at six distinct time points: at baseline and at the 1st, 3rd, 6th, and 9th months following the third dose of the inactivated vaccine, as well as 3 months post-breakthrough infection. Their sera were analyzed to assess ADCC and neutralization effects. RESULTS The results indicated that the antibodies elicited by the inactivated SARS-CoV-2 vaccine targeted the spike protein, exhibiting both pre-existing neutralizing and ADCC activities against Omicron variants BA.5 and XBB.1.5. Notably, the ADCC activity demonstrated greater stability compared to that of the neutralizing effects, persisting for at least 15 months post-vaccination, and could be augmented by additional vaccine doses and breakthrough infections. The ADCC effect associated with hybrid immunity effectively targets a spectrum of prospective Omicron variants, including BA.2.86, CH.1.1, EG.5.1, and JN.1. CONCLUSIONS In light of its stability and broad-spectrum efficacy, we recommend the use of the ADCC effect as a biomarker for assessing protective immunity and guiding the development of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhihao Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Qi Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Xinyue Xu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| | - Zhen Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xinlian Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Yaxin Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Qing Lei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Li Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.Z.); (Z.W.); (X.L.); (Y.W.); (H.C.); (L.L.)
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China; (J.C.); (M.G.); (X.L.); (Q.O.); (H.F.); (X.X.)
| |
Collapse
|
6
|
Silva Ramírez B, Peñuelas Urquides K, Escobedo Guajardo BL, Mata Tijerina VL, Cruz Luna JE, Corrales Pérez R, Gómez García S, González Escalante LA, Camacho Moll ME. Assessment of COVID-19 Vaccine Effectiveness Against SARS-CoV-2 Infection, Hospitalization and Death in Mexican Patients with Metabolic Syndrome from Northeast Mexico: A Multicenter Study. Vaccines (Basel) 2025; 13:244. [PMID: 40266114 PMCID: PMC11945729 DOI: 10.3390/vaccines13030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Metabolic syndrome (MetS) is a predisposing factor for severe COVID-19. The effectiveness of COVID-19 vaccines in patients with MetS has been poorly investigated. The aim of this study was to evaluate the effectiveness of COVID-19 vaccination before (BO) and after the Omicron (AO) SARS-CoV-2 variant in patients with MetS. Methods: This retrospective observational study was carried out in a total of 3194 patients with MetS and a COVID-19 PCR or rapid antigen test. The main outcomes were vaccine effectiveness against infection, hospitalization and death resulting from COVID-19. Results: BO, only two doses of BNT162b2 were effective against infection, this effectiveness was lost AO. Also, with two doses, BNT162b2, ChAdOx1 and CoronaVac were effective against hospitalization BO; however, AO, only BNT162b2 and CoronaVac were effective. Regarding death as an outcome of COVID-19, two doses of BNT162b2 were effective BO, whereas AO, BNT162b2 and CoronaVac were 100% effective. BO the presentation of a sore throat increased after two doses of COVID-19 vaccine regardless of the type, and the presentation of dyspnea diminished after two doses of BNT162b2 and CoronaVac. Conclusions: The SARS-CoV-2 Omicron variant has impacted vaccines' effectiveness against hospitalization and death in patients with MetS. A tailored vaccination scheme for patients with MetS should be implemented due to the varying effectiveness rates observed in our study.
Collapse
Affiliation(s)
- Beatriz Silva Ramírez
- Laboratory of Immunogenetics, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Nuevo Leon, Mexico; (B.S.R.); (V.L.M.T.)
| | - Katia Peñuelas Urquides
- Laboratory of Molecular Microbiology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Nuevo Leon, Mexico; (K.P.U.); (L.A.G.E.)
| | - Brenda Leticia Escobedo Guajardo
- Laboratory of Molecular Research of Diseases, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Nuevo Leon, Mexico;
| | - Viviana Leticia Mata Tijerina
- Laboratory of Immunogenetics, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Nuevo Leon, Mexico; (B.S.R.); (V.L.M.T.)
| | - Jorge Eleazar Cruz Luna
- Medical Epidemiological Assistance Coordination of the State of Nuevo Leon, Mexican Social Security Institute, Monterrey 64000, Nuevo Leon, Mexico; (J.E.C.L.); (R.C.P.); (S.G.G.)
| | - Roberto Corrales Pérez
- Medical Epidemiological Assistance Coordination of the State of Nuevo Leon, Mexican Social Security Institute, Monterrey 64000, Nuevo Leon, Mexico; (J.E.C.L.); (R.C.P.); (S.G.G.)
| | - Salvador Gómez García
- Medical Epidemiological Assistance Coordination of the State of Nuevo Leon, Mexican Social Security Institute, Monterrey 64000, Nuevo Leon, Mexico; (J.E.C.L.); (R.C.P.); (S.G.G.)
| | - Laura Adiene González Escalante
- Laboratory of Molecular Microbiology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Nuevo Leon, Mexico; (K.P.U.); (L.A.G.E.)
| | - María Elena Camacho Moll
- Laboratory of Molecular Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Nuevo Leon, Mexico
| |
Collapse
|
7
|
Awadalla M, AlRawi HZ, Henawi RA, Barnawi F, Alkadi H, Alyami A, Alsughayir A, Alsaif AS, Mubarak A, Alturaiki W, Alosaimi B. Humoral and cellular immune durability of different COVID-19 vaccine platforms following homologous/heterologous boosters: one-year post vaccination. Front Immunol 2025; 16:1526444. [PMID: 39911379 PMCID: PMC11794813 DOI: 10.3389/fimmu.2025.1526444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction The durability of Hybrid immunity induced by natural infection and/or COVID-19 vaccines and evidence supporting further booster vaccination are crucial factors for pandemic response, yet remain poorly understood. Methods We measured the durability of immune response and neutralizing capacity of antibodies following Homologous/Heterologous vaccination by mRNA-based vaccines (Pfizer-BioNTech BNT162b2) or (Moderna mRNA-1273) and viral vector-based vaccines (ChAdox1 nCoV-19-Oxford-AstraZeneca) in infected and non-infected patients. We also evaluated the long-lasting specific humoral IgG levels and T-cell immunity of the Memory CD8 cells. Results We found that heterologous prime boosters led to significantly higher IgG antibody levels)9.09(than homologous boosters)5.236) one year after vaccination. We measured SARS-CoV-2 anti-S IgG antibodies and then assessed their neutralizing capacity to inhibit the receptor-binding domain (RBD) of the SARS-CoV-2 wild-type strain and omicron B.1.1.529/BA.2 variants from binding to the ACE2 receptors. The heterologous regiment demonstrated superior ACE2-binding inhibition and consistently had higher mean ACE2-receptor binding inhibition across all dose regimens without the need for further doses. The CD8+ T cells producing IFN-γ to various COVID-19 vaccine dose regimens were evaluated. We found that robust T cell mediated immune responses were preserved and largely induced by a heterogeneous vaccination eliciting a significantly higher CD8+ T cells IFN-γ response in 100% of vaccinees regardless of previous natural infection. Indeed, the difference between infected and naïve groups was less pronounced suggesting a reduced infection-related response. Discussion Across three layers of evidence, this study showed that heterologous vaccination provides longer-lasting immunity than homologous doses, regardless of prior natural infection.
Collapse
Affiliation(s)
- Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Halah Z. AlRawi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Rahaf A. Henawi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Fawziya Barnawi
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Haitham Alkadi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Ahmed Alyami
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Ammar Alsughayir
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Alyazeed S. Alsaif
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
England A, Sung J, Deulofeu M, Soler LF, Hallis B, Thomas K, Charlton S. Variant-specific neutralising antibodies levels induced by the PHH-1 V SARS-CoV-2 vaccine (Bimervax®) by HIPRA. Vaccine 2024; 42:126386. [PMID: 39326212 DOI: 10.1016/j.vaccine.2024.126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
SARS-CoV-2 virus variants continue to emerge at an alarming rate due to spontaneous genetic mutations, particularly in the spike protein receptor-binding domain (RBD) portion, which render the virus more likely to escape immunity. So far, the immunity obtained through global primary and/or booster immunisation campaigns has been sufficient to protect the population from new emerging variants of the Omicron lineage. The current approach to update vaccines' antigen composition to new variants to boost immunity may not be sustainable in the long term. It might also be potentially redundant if the mutations are giving rise to variants which induce milder infections and existing vaccines, such as Bimervax®, are still sufficiently protective, as Covid is slowly becoming a seasonal illness. Through measuring neutralising antibody titres in sera from subjects boosted with Bimervax®, we have demonstrated the ability of Bimervax® to induce immune responses against a variety of SARS-CoV-2 variants, ranging from earlier variants inducing more serious infections to more recent variants which have been found to produce milder infections.
Collapse
Affiliation(s)
- Anna England
- Vaccine Development and Evaluation Centre (VDEC), UK Health Security Agency (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, United Kingdom.
| | - Julia Sung
- Vaccine Development and Evaluation Centre (VDEC), UK Health Security Agency (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, United Kingdom.
| | | | | | - Bassam Hallis
- Vaccine Development and Evaluation Centre (VDEC), UK Health Security Agency (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, United Kingdom.
| | - Kelly Thomas
- Vaccine Development and Evaluation Centre (VDEC), UK Health Security Agency (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, United Kingdom.
| | - Sue Charlton
- Vaccine Development and Evaluation Centre (VDEC), UK Health Security Agency (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, United Kingdom.
| |
Collapse
|
9
|
Jiang W, Jiang Y, Sun H, Deng T, Yu K, Fang Q, Ge H, Lan M, Lin Y, Fang Z, Zhang Y, Zhou L, Li T, Yu H, Zheng Q, Li S, Xia N, Gu Y. Structural insight into broadening SARS-CoV-2 neutralization by an antibody cocktail harbouring both NTD and RBD potent antibodies. Emerg Microbes Infect 2024; 13:2406300. [PMID: 39470577 DOI: 10.1080/22221751.2024.2406300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
The continual emergence of highly pathogenic novel coronaviruses and their variants has underscored the importance of neutralizing monoclonal antibodies (mAbs) as a pivotal therapeutic approach. In the present study, we report the specific neutralizing antibodies 13H7 and 9G11, which target the N-terminal domain (NTD) and receptor-binding domain (RBD) of the SARS-CoV-2, respectively. The comparative analysis observed that 13H7 not only neutralizes early variants of concern (VOCs) but also exhibits neutralizing activity against the Omicron sublineage, including BA.4, BA.5, BQ.1, and BQ.1.1. 9G11, as an RBD antibody, also demonstrated remarkable neutralizing efficacy. A cocktail antibody combining 13H7 and 9G11 with the previously reported 3E2 broaden the neutralization spectrum against new variants of the SARS-CoV-2. We elucidated the cryo-EM structure of the complex, clarifying the mechanism of action of the cocktail antibody combination. Additionally, we also emphasized the molecular mechanism between 13H7 and SARS-CoV-2 NTD, revealing the impact of Y144 and H146 residue deletions and mutations on the neutralizing efficacy of 13H7. Taken together, our findings not only offer novel insights into the combination therapy of NTD and RBD neutralizing mAbs but also lay a theoretical foundation for the development of vaccines targeting NTD antibodies, thus providing valuable understanding of alleviating the emergence of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wenling Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Yanan Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Tingting Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Kunyu Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Qianjiao Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Huimin Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Miaoling Lan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Yanling Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Zhongyue Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Yali Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Lizhi Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of life Science, Xiamen University, Fujian, People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Fujian, People's Republic of China
| |
Collapse
|
10
|
Renner TM, Stuible M, Cass B, Perret S, Guimond J, Lord-Dufour S, McCluskie MJ, Durocher Y, Akache B. Reduced cross-protective potential of Omicron compared to ancestral SARS-CoV-2 spike vaccines against potentially zoonotic coronaviruses. NPJ VIRUSES 2024; 2:58. [PMID: 40295830 PMCID: PMC11721134 DOI: 10.1038/s44298-024-00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/19/2024] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic has emphasised the importance of vaccines and preparedness against viral threats crossing species barriers. In response, a worldwide vaccination campaign targeting SARS-CoV-2 was implemented, which provides some cross-protective immunological memory to other coronavirus species with zoonotic potential. Following a vaccination regimen against SARS-CoV-2 spike in a preclinical mouse model, we were able to demonstrate the induction of neutralizing antibodies towards multiple human ACE2 (hACE2)-binding Sarbecovirus spikes. Importantly, compared to vaccines based on the SARS-CoV-2 Reference strain, vaccines based on Omicron spike sequences induced drastically less broadly cross-protective neutralizing antibodies against other hACE2-binding sarbecoviruses. This observation remained true whether the vaccination regimens were based on protein subunit or mRNA / LNP vaccines. Overall, while it may be necessary to update vaccine antigens to combat the evolving SARS-CoV-2 virus for enhanced protection from COVID-19, Reference-based vaccines may be a more valuable tool to protect against novel coronavirus zoonoses.
Collapse
Affiliation(s)
- Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Brian Cass
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Sylvie Perret
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Julie Guimond
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Simon Lord-Dufour
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, Montreal, QC, Canada.
| | - Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Roshanzamir Z, Mohammadi F, Yadegar A, Naeini AM, Hojabri K, Shirzadi R. An Overview of Pediatric Pulmonary Complications During COVID-19 Pandemic: A Lesson for Future. Immun Inflamm Dis 2024; 12:e70049. [PMID: 39508631 PMCID: PMC11542302 DOI: 10.1002/iid3.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The pediatric community is considered a suitable target for controlling the spread and mortality of viral diseases. In late December 2019, a respiratory disease due to the novel coronavirus, later COVID-19, hit the globe. The COVID-19 global disruption had direct and indirect impacts on different aspects of child health. Therefore, surveillance, preventive approaches, and treatment plans for children came into the spotlight. OBJECTIVE This study aims to discuss the clinical pictures as well as laboratory and radiological findings of the infected children during the COVID-19 pandemic. The focus of this study is to express the clinical manifestations of respiratory disease in pediatric SARS-CoV-2, available therapeutic options, vaccine recommendations, and long COVID sequelae in affected children. This review could serve as a hint for upcoming challenges in pediatric care during future pandemics. RESULTS The clinical presentation of COVID-19 in pediatrics can range from mild pulmonary disease to acute respiratory distress syndrome (ARDS). Supportive care is a crucial component of the management of pediatric COVID-19. However, the importance of specializing in how to treat patients with more severe conditions cannot be overstated. Additionally, clinicians must consider prevention strategies as well as potential complications. CONCLUSION Although the infected patients are dipping day by day, there is a lack of clinical guidelines for pediatric SARS-CoV-2-associated pulmonary diseases. Understanding of the physicians about all aspects of pediatric care during the COVID-19 pandemic could lead to enhanced quality of future patient care and safety, reduced costs of health policies, and surveil the risk that patients with respiratory viruses can expose to society.
Collapse
Affiliation(s)
- Zahra Roshanzamir
- Pediatric Respiratory and Sleep Medicine Research CenterShiraz University of Medical SciencesShirazIran
| | - Fatemeh Mohammadi
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical SciencesTehranIran
| | - Amirhossein Yadegar
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical SciencesTehranIran
| | | | - Katayoon Hojabri
- Pediatric Intensive Care Unit, Shiraz University of Medical SciencesShirazIran
| | - Rohola Shirzadi
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Zhang S, Wang Y, Xu G, Dong C, Tian H, Li C, Kong X, Peng J, Huang H, Simayi A, Zhu F, Hu J, Xu K, Bao C, Jin H, Zhu L. Neutralizing Antibody-Mediated Protection from Prior Delta Variant Infection Against Omicron BA.5 Sub-Lineage Reinfection One Year Later: A Prospective Cohort Study. Vaccines (Basel) 2024; 12:1211. [PMID: 39591114 PMCID: PMC11598881 DOI: 10.3390/vaccines12111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Previous SARS-CoV-2 infection provides some level of protection against reinfection. However, few studies have evaluated the neutralizing antibody (NAb) response after Delta variant infection and its ability to prevent reinfection with Omicron BA.5 one year later. METHODS This prospective cohort study included 431 patients who recovered from Delta variant infection. We measured their serum NAb titers against both Delta and Omicron BA.5 using microneutralization tests. RESULTS Over a 17-month follow-up, 17.9% of the participants were reinfected with Omicron BA.5. Younger adults (18-65 years) and individuals who did not receive booster immunization had significantly higher reinfection rates than older adults (>65 years) and those who received boosters (p < 0.05). Notably, reinfection rates were higher in post-vaccination breakthrough cases than in individuals who were naturally infected. However, booster immunization reduced reinfection rates within the breakthrough group. We found no significant association between Delta NAb levels and protection against Omicron BA.5 reinfection (p > 0.05). Cross-neutralization assays showed a 7.1-fold reduction in NAb efficacy against Omicron BA.5. CONCLUSIONS Delta-variant infection-induced NAbs did not strongly predict protection against Omicron BA.5 reinfection. However, booster immunization effectively reduced the reinfection rate approximately one year after the initial Delta infection.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (S.Z.)
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yin Wang
- Department of Acute Infectious Disease Control and Prevention, Yangzhou Center for Disease Control and Prevention, Yangzhou 225007, China
| | - Guo Xu
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Dong
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Hua Tian
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Xiaoxiao Kong
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jiefu Peng
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Haodi Huang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Aidibai Simayi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (S.Z.)
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Fengcai Zhu
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jianli Hu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Ke Xu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Changjun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (S.Z.)
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Liguo Zhu
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing 210009, China
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing 210009, China
| |
Collapse
|
13
|
Zhang B, Fong Y, Fintzi J, Chu E, Janes HE, Kenny A, Carone M, Benkeser D, van der Laan LWP, Deng W, Zhou H, Wang X, Lu Y, Yu C, Borate B, Chen H, Reeder I, Carpp LN, Houchens CR, Martins K, Jayashankar L, Huynh C, Fichtenbaum CJ, Kalams S, Gay CL, Andrasik MP, Kublin JG, Corey L, Neuzil KM, Priddy F, Das R, Girard B, El Sahly HM, Baden LR, Jones T, Donis RO, Koup RA, Gilbert PB, Follmann D. Omicron COVID-19 immune correlates analysis of a third dose of mRNA-1273 in the COVE trial. Nat Commun 2024; 15:7954. [PMID: 39261482 PMCID: PMC11390939 DOI: 10.1038/s41467-024-52348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
In the phase 3 Coronavirus Efficacy (COVE) trial (NCT04470427), post-dose two Ancestral Spike-specific binding (bAb) and neutralizing (nAb) antibodies were shown to be correlates of risk (CoR) and of protection against Ancestral-lineage COVID-19 in SARS-CoV-2 naive participants. In the SARS-CoV-2 Omicron era, Omicron subvariants with varying degrees of immune escape now dominate, seropositivity rates are high, and booster doses are administered, raising questions on whether and how these developments affect the bAb and nAb correlates. To address these questions, we assess post-boost BA.1 Spike-specific bAbs and nAbs as CoRs and as correlates of booster efficacy in COVE. For naive individuals, bAbs and nAbs inversely correlate with Omicron COVID-19: hazard ratios (HR) per 10-fold marker increase (95% confidence interval) are 0.16 (0.03, 0.79) and 0.31 (0.10, 0.96), respectively. In non-naive individuals the analogous results are similar: 0.15 (0.04, 0.63) and 0.28 (0.07, 1.08). For naive individuals, three vs two-dose booster efficacy correlates with predicted nAb titer at exposure, with estimates -8% (-126%, 48%), 50% (25%, 67%), and 74% (49%, 87%), at 56, 251, and 891 Arbitrary Units/ml. These results support the continued use of antibody as a surrogate endpoint.
Collapse
Affiliation(s)
- Bo Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jonathan Fintzi
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eric Chu
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Holly E Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Avi Kenny
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | | | | | - Yiwen Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Haiyan Chen
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Isabel Reeder
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Karen Martins
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | | | - Chuong Huynh
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Carl J Fichtenbaum
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Spyros Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Gay
- Department of Medicine, Division of Infectious Diseases, UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Michele P Andrasik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Thomas Jones
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Ruben O Donis
- Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Favresse J, Tré-Hardy M, Gillot C, Cupaiolo R, Wilmet A, Beukinga I, Blairon L, Bayart JL, Closset M, Wauthier L, Cabo J, David C, Elsen M, Dogné JM, Douxfils J. Vaccine-induced humoral response of BNT162b2 and mRNA-1273 against BA.1, BA.5, and XBB.1.5. (sub)variants 6 months after a homologous booster: is immunogenicity equivalent? Heliyon 2024; 10:e36116. [PMID: 39247272 PMCID: PMC11379571 DOI: 10.1016/j.heliyon.2024.e36116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Some studies suggest that the monovalent mRNA-1273 vaccine is more effective than BNT162b2 in producing higher levels of antibodies. However, limited data are available, and the methods used are not directly comparable. Material and methods Blood samples were obtained before the booster (third dose) and after 14, 90, and 180 days in two similar cohorts who received the original BNT162b2 or mRNA-1273 vaccine designed to target wild type SARS-CoV-2. The aim of our study is to compare their effectiveness by assessing the levels of binding and neutralizing antibodies specifically against each of the BA.1 variant, BA.5 variant, and the XBB.1.5 subvariant. Results Once the peak was reached after two weeks, a drastic decline in binding and neutralizing antibodies was observed up to 6 months after the homologous booster administration. The humoral response was however more sustained with the mRNA-1273 booster, with half-lives of 167, 55, and 48 days for binding, BA.1, and BA.5 neutralizing antibodies compared to 144, 30, and 29 days for the BNT162b2 booster, respectively. Compared to the BA.1 variant, the neutralizing capacity was significantly decreased at 6 months with the BA.5 variant (fold-decrease: 1.67 to 3.20) and the XBB.1.5. subvariant (fold-decrease: 2.86 to 5.48). Conclusion Although the decrease in the humoral response was observed with both mRNA vaccines over time, a more sustained response was observed with the mRNA-1273 vaccine. Moreover, the emergence of Omicron-based variants causes a reduced neutralizing capacity, notably with the XBB.1.5. subvariant. The administration of subsequent boosters would therefore be needed to restore a sufficiently high neutralizing response.
Collapse
Affiliation(s)
- Julien Favresse
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Faculty of Medicine, University of Namur, Namur, Belgium
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Marie Tré-Hardy
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Faculty of Medicine, University of Namur, Namur, Belgium
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
- Faculty of Medicine, Université libre de Bruxelles, Brussels, Belgium
| | - Constant Gillot
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Faculty of Medicine, University of Namur, Namur, Belgium
| | - Roberto Cupaiolo
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Alain Wilmet
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Ingrid Beukinga
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Laurent Blairon
- Department of Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Jean-Louis Bayart
- Department of Laboratory Medicine, Clinique St-Pierre, Ottignies, Belgium
| | - Mélanie Closset
- Department of Laboratory Medicine, Université catholique de Louvain, CHU UCL Namur, Namur, Belgium
| | - Loris Wauthier
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Julien Cabo
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Clara David
- Qualiblood s.a., Research and Development Department, Namur, Belgium
| | - Marc Elsen
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
| | - Jean-Michel Dogné
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Faculty of Medicine, University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, Faculty of Medicine, University of Namur, Namur, Belgium
- Qualiblood s.a., Research and Development Department, Namur, Belgium
- Department of Biological Hematology, Centre Hospitalier Universitaire Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand, France
| |
Collapse
|
15
|
He L, Wu Q, Zhang Z, Chen L, Yu K, Li L, Jia Q, Wang Y, Ni J, Wang C, Li Q, Zhai X, Zhao J, Liu Y, Fan R, Li YP. Development of Broad-Spectrum Nanobodies for the Therapy and Diagnosis of SARS-CoV-2 and Its Multiple Variants. Mol Pharm 2024; 21:3866-3879. [PMID: 38920116 DOI: 10.1021/acs.molpharmaceut.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Collapse
Affiliation(s)
- Lei He
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qian Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Lingling Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Leibin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- China Animal Disease Control Center, Beijing 102618, China
| | - Qiong Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianqiang Ni
- China Animal Disease Control Center, Beijing 102618, China
| | - Chuanbin Wang
- China Animal Disease Control Center, Beijing 102618, China
| | - Qi Li
- China Animal Disease Control Center, Beijing 102618, China
| | - Xinyan Zhai
- China Animal Disease Control Center, Beijing 102618, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuliang Liu
- China Animal Disease Control Center, Beijing 102618, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
16
|
Qi Y, Zheng H, Wang J, Chen Y, Guo X, Li Z, Zhang W, Zhou J, Wang S, Lin B, Zhang L, Yan T, Clemens J, Xia J, An Z, Yin Z, Wang X, Feng Z. Safety, Immunogenicity, and Effectiveness of Chinese-Made COVID-19 Vaccines in the Real World: An Interim Report of a Living Systematic Review. Vaccines (Basel) 2024; 12:781. [PMID: 39066419 PMCID: PMC11281383 DOI: 10.3390/vaccines12070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Several COVID-19 vaccines were developed and approved in China. Of these, the BIBB-CorV and CoronaVac inactivated whole-virion vaccines were widely distributed in China and developing countries. However, the performance of the two vaccines in the real world has not been summarized. Methods: A living systematic review based on findings from ongoing post-licensure studies was conducted, applying standardized algorithms. Articles published between 1 May 2020 and 31 May 2022 in English and Chinese were searched for in Medline, Embase, WanFang Data, medRxiv, bioRxiv, arXiv, SSRN, and Research Square, using SARS-CoV-2, COVID-19, and vaccine as the MeSH terms. Studies with estimates of safety, immunogenicity, and effectiveness from receiving the BIBB-CorV or CoronaVac vaccine that met the predefined screening criteria underwent a full-text review. The Joanna Briggs Institute's Critical Appraisal Checklist and the Cochrane risk of bias were used for assessment of the quality. A random-effects meta-regression model was applied to identify the potential impact factors on the vaccines' effectiveness. Results: In total, 32578 articles were identified, of these, 770 studies underwent a full-text review. Eventually, 213 studies were included. The pooled occurrence of solicited and unsolicited adverse events after any dose of either vaccine varied between 10% and 40%. The top five commonly reported rare adverse events were immunization stress-related responses (211 cases, 50.0%), cutaneous responses (43 cases, 10.2%), acute neurological syndrome (39 cases, 9.2%), anaphylaxis (17 cases, 4.0%), and acute stroke (16 cases, 3.8%). The majority (83.3%) recovered or were relieved within several days. The peak neutralization titers against the ancestral strain was found within 1 month after the completion of the primary series of either vaccine, with a GMT (geometric mean titer) of 43.7 (95% CI: 23.2-82.4), followed by a dramatic decrease within 3 months. At Month 12, the GMT was 4.1 (95% CI: 3.8-4.4). Homologous boosting could restore humoral immunity, while heterologous boosting elicited around sixfold higher neutralization titers in comparison with homologous boosting. The effectiveness of receiving either vaccine against death and severe disease was around 85% for both shortly after the primary series. At Month 12, the protection against death did not decline, while the protection against severe disease decreased to ~75%. Conclusions: Both the BIBP-CorV and CoronaVac inactivated vaccines are safe. Sustained vaccine effectiveness against death was determined 12 months after the primary series, although protection against severe disease decreased slightly over time. A booster dose could strengthen the waning effectiveness; however, the duration of the incremental effectiveness and the additional benefit provided by a heterologous booster need to be studied.
Collapse
Affiliation(s)
- Yangyang Qi
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; (Y.Q.); (Z.L.)
- Key Laboratory of Medical Molecular Virology of MoE & MoH and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Zheng
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yani Chen
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Xu Guo
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Zheng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; (Y.Q.); (Z.L.)
- Key Laboratory of Medical Molecular Virology of MoE & MoH and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Zhang
- Medical Library, Fudan University Library, Fudan University, Shanghai 200032, China;
| | - Jiajia Zhou
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Songmei Wang
- Laboratory of Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Boyi Lin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Lin Zhang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Tingting Yan
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - John Clemens
- International Vaccine Institute, Seoul 08826, Republic of Korea;
| | - Jielai Xia
- Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Zhijie An
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Zundong Yin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.Z.); (Y.C.); (X.G.); (J.Z.); (B.L.); (L.Z.); (T.Y.); (Z.A.); (Z.Y.)
| | - Xuanyi Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; (Y.Q.); (Z.L.)
- Key Laboratory of Medical Molecular Virology of MoE & MoH and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Zijian Feng
- Chinese Preventive Medicine Association, Beijing 100009, China
| |
Collapse
|
17
|
Rizvi ZA, Sadhu S, Dandotiya J, Sharma P, Binayke A, Singh V, Das V, Khatri R, Kumar R, Samal S, Kalia M, Awasthi A. SARS-CoV-2 infection induces thymic atrophy mediated by IFN-γ in hACE2 transgenic mice. Eur J Immunol 2024; 54:e2350624. [PMID: 38655818 DOI: 10.1002/eji.202350624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Puja Sharma
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
18
|
Tibble H, Mueller T, Proud E, Hall E, Kurdi A, Robertson C, Bennie M, Woolford L, Laidlaw L, Sterniczuk K, Sheikh A. Real-world severe COVID-19 outcomes associated with use of antivirals and neutralising monoclonal antibodies in Scotland. NPJ Prim Care Respir Med 2024; 34:17. [PMID: 38942748 PMCID: PMC11213868 DOI: 10.1038/s41533-024-00374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
We sought to investigate the incidence of severe COVID-19 outcomes after treatment with antivirals and neutralising monoclonal antibodies, and estimate the comparative effectiveness of treatments in community-based individuals. We conducted a retrospective cohort study investigating clinical outcomes of hospitalisation, intensive care unit admission and death, in those treated with antivirals and monoclonal antibodies for COVID-19 in Scotland between December 2021 and September 2022. We compared the effect of various treatments on the risk of severe COVID-19 outcomes, stratified by most prevalent sub-lineage at that time, and controlling for comorbidities and other patient characteristics. We identified 14,365 individuals treated for COVID-19 during our study period, some of whom were treated for multiple infections. The incidence of severe COVID-19 outcomes (inpatient admission or death) in community-treated patients (81% of all treatment episodes) was 1.2% (n = 137/11894, 95% CI 1.0-1.4), compared to 32.8% in those treated in hospital for acute COVID-19 (re-admissions or death; n = 40/122, 95% CI 25.1-41.5). For community-treated patients, there was a lower risk of severe outcomes (inpatient admission or death) in younger patients, and in those who had received three or more COVID-19 vaccinations. During the period in which BA.2 was the most prevalent sub-lineage in the UK, sotrovimab was associated with a reduced treatment effect compared to nirmaltrelvir + ritonavir. However, since BA.5 has been the most prevalent sub-lineage in the UK, both sotrovimab and nirmaltrelvir + ritonavir were associated with similarly lower incidence of severe outcomes than molnupiravir. Around 1% of those treated for COVID-19 with antivirals or neutralising monoclonal antibodies required hospital admission. During the period in which BA.5 was the prevalent sub-lineages in the UK, molnupiravir was associated with the highest incidence of severe outcomes in community-treated patients.
Collapse
Affiliation(s)
- Holly Tibble
- Usher Institute, University of Edinburgh, Edinburgh, Scotland.
- Public Health Scotland, Glasgow, Scotland.
| | - Tanja Mueller
- Public Health Scotland, Glasgow, Scotland
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Euan Proud
- Public Health Scotland, Glasgow, Scotland
| | | | - Amanj Kurdi
- Public Health Scotland, Glasgow, Scotland
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
- Department of Pharmacology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Chris Robertson
- Public Health Scotland, Glasgow, Scotland
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland
| | - Marion Bennie
- Public Health Scotland, Glasgow, Scotland
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Lana Woolford
- Usher Institute, University of Edinburgh, Edinburgh, Scotland
- Public Health Scotland, Glasgow, Scotland
| | | | | | - Aziz Sheikh
- Usher Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
19
|
Ruta S, Popescu CP, Matei L, Grancea C, Paun AM, Oprea C, Sultana C. SARS-CoV-2 Humoral and Cellular Immune Responses in People Living with HIV. Vaccines (Basel) 2024; 12:663. [PMID: 38932392 PMCID: PMC11209143 DOI: 10.3390/vaccines12060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Immunosuppressed individuals, such as people living with HIV (PLWH), remain vulnerable to severe COVID-19. We analyzed the persistence of specific SARS-CoV-2 humoral and cellular immune responses in a retrospective, cross-sectional study in PLWH on antiretroviral therapy. Among 104 participants, 70.2% had anti-S IgG antibodies, and 55.8% had significant neutralizing activity against the Omicron variant in a surrogate virus neutralization test. Only 38.5% were vaccinated (8.76 ± 4.1 months prior), all displaying anti-S IgG, 75% with neutralizing antibodies and anti-S IgA. Overall, 29.8% of PLWH had no SARS-CoV-2 serologic markers; they displayed significantly lower CD4 counts and higher HIV viral load. Severe immunosuppression (present in 12.5% of participants) was linked to lower levels of detectable anti-S IgG (p = 0.0003), anti-S IgA (p < 0.0001) and lack of neutralizing activity against the Omicron variant (p < 0.0001). T-cell responses were present in 86.7% of tested participants, even in those lacking serological markers. In PLWH without severe immunosuppression, neutralizing antibodies and T-cell responses persisted for up to 9 months post-infection or vaccination. Advanced immunosuppression led to diminished humoral immune responses but retained specific cellular immunity.
Collapse
Affiliation(s)
- Simona Ruta
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Corneliu Petru Popescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Camelia Grancea
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| | - Adrian Marius Paun
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Cristiana Oprea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Dr. Victor Babes Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania;
| | - Camelia Sultana
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.R.); (C.O.); (C.S.)
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania; (L.M.); (C.G.)
| |
Collapse
|
20
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
21
|
Le TP, Abell I, Conway E, Campbell PT, Hogan AB, Lydeamore MJ, McVernon J, Mueller I, Walker CR, Baker CM. Modelling the impact of hybrid immunity on future COVID-19 epidemic waves. BMC Infect Dis 2024; 24:407. [PMID: 38627637 PMCID: PMC11020923 DOI: 10.1186/s12879-024-09282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.
Collapse
Affiliation(s)
- Thao P Le
- School of Mathematics and Statistics, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia.
- Melbourne Centre for Data Science, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia.
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia.
| | - Isobel Abell
- School of Mathematics and Statistics, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
| | - Eamon Conway
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, 3052, Victoria, Australia
| | - Patricia T Campbell
- Department of Infectious Diseases at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, 3000, Victoria, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Bouverie St, Carlton, 3053, Victoria, Australia
| | - Alexandra B Hogan
- School of Population Health, University of New South Wales, Sydney, 2033, New South Wales, Australia
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Michael J Lydeamore
- Department of Econometrics and Business Statistics, Monash University, Wellington Road, Melbourne, 3800, Victoria, Australia
| | - Jodie McVernon
- Department of Infectious Diseases at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, 3000, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, 3000, Victoria, Australia
| | - Ivo Mueller
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
| | - Camelia R Walker
- School of Mathematics and Statistics, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
| | - Christopher M Baker
- School of Mathematics and Statistics, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Grattan Street, Melbourne, 3010, Victoria, Australia
| |
Collapse
|
22
|
Riou C, Bhiman JN, Ganga Y, Sawry S, Ayres F, Baguma R, Balla SR, Benede N, Bernstein M, Besethi AS, Cele S, Crowther C, Dhar M, Geyer S, Gill K, Grifoni A, Hermanus T, Kaldine H, Keeton RS, Kgagudi P, Khan K, Lazarus E, Le Roux J, Lustig G, Madzivhandila M, Magugu SFJ, Makhado Z, Manamela NP, Mkhize Q, Mosala P, Motlou TP, Mutavhatsindi H, Mzindle NB, Nana A, Nesamari R, Ngomti A, Nkayi AA, Nkosi TP, Omondi MA, Panchia R, Patel F, Sette A, Singh U, van Graan S, Venter EM, Walters A, Moyo-Gwete T, Richardson SI, Garrett N, Rees H, Bekker LG, Gray G, Burgers WA, Sigal A, Moore PL, Fairlie L. Safety and immunogenicity of booster vaccination and fractional dosing with Ad26.COV2.S or BNT162b2 in Ad26.COV2.S-vaccinated participants. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002703. [PMID: 38603677 PMCID: PMC11008839 DOI: 10.1371/journal.pgph.0002703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/18/2024] [Indexed: 04/13/2024]
Abstract
We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Overall, in the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration: The study has been registered to the South African National Clinical Trial Registry (SANCTR): DOH-27-012022-7841. The approval letter from SANCTR has been provided in the up-loaded documents.
Collapse
Affiliation(s)
- Catherine Riou
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Jinal N. Bhiman
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Shobna Sawry
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Richard Baguma
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sashkia R. Balla
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Ntombi Benede
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Asiphe S. Besethi
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
| | - Carol Crowther
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mrinmayee Dhar
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sohair Geyer
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Katherine Gill
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Tandile Hermanus
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Roanne S. Keeton
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Prudence Kgagudi
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Erica Lazarus
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean Le Roux
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Mashudu Madzivhandila
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Siyabulela F. J. Magugu
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Qiniso Mkhize
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Paballo Mosala
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thopisang P. Motlou
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Hygon Mutavhatsindi
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nonkululeko B. Mzindle
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anusha Nana
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Rofhiwa Nesamari
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anathi A. Nkayi
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thandeka P. Nkosi
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Millicent A. Omondi
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ravindre Panchia
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Faeezah Patel
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, United States of America
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Upasna Singh
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Strauss van Graan
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Elizabeth M. Venter
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Avril Walters
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Simone I. Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Helen Rees
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Wendy A. Burgers
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Penny L. Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Lee Fairlie
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Qian J, Zhang S, Wang F, Li J, Zhang J. What makes SARS-CoV-2 unique? Focusing on the spike protein. Cell Biol Int 2024; 48:404-430. [PMID: 38263600 DOI: 10.1002/cbin.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) seriously threatens public health and safety. Genetic variants determine the expression of SARS-CoV-2 structural proteins, which are associated with enhanced transmissibility, enhanced virulence, and immune escape. Vaccination is encouraged as a public health intervention, and different types of vaccines are used worldwide. However, new variants continue to emerge, especially the Omicron complex, and the neutralizing antibody responses are diminished significantly. In this review, we outlined the uniqueness of SARS-CoV-2 from three perspectives. First, we described the detailed structure of the spike (S) protein, which is highly susceptible to mutations and contributes to the distinct infection cycle of the virus. Second, we systematically summarized the immunoglobulin G epitopes of SARS-CoV-2 and highlighted the central role of the nonconserved regions of the S protein in adaptive immune escape. Third, we provided an overview of the vaccines targeting the S protein and discussed the impact of the nonconserved regions on vaccine effectiveness. The characterization and identification of the structure and genomic organization of SARS-CoV-2 will help elucidate its mechanisms of viral mutation and infection and provide a basis for the selection of optimal treatments. The leaps in advancements regarding improved diagnosis, targeted vaccines and therapeutic remedies provide sound evidence showing that scientific understanding, research, and technology evolved at the pace of the pandemic.
Collapse
Affiliation(s)
- Jingbo Qian
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
24
|
Liu P, Cai J, Tian H, Li J, Lu L, Xu M, Zhu X, Fu X, Wang X, Zhong H, Jia R, Ge Y, Zhu Y, Zeng M, Xu J. Characteristics of SARS-CoV-2 Omicron BA.5 variants in Shanghai after ending the zero-COVID policy in December 2022: a clinical and genomic analysis. Front Microbiol 2024; 15:1372078. [PMID: 38605705 PMCID: PMC11007228 DOI: 10.3389/fmicb.2024.1372078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction An unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak. Methods A total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico. Results The genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins. Discussion Further in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jiehao Cai
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - He Tian
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jingjing Li
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Lijuan Lu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xunhua Zhu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaomin Fu
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiangshi Wang
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Ran Jia
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanling Ge
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanfeng Zhu
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Ying B, Darling TL, Desai P, Liang CY, Dmitriev IP, Soudani N, Bricker T, Kashentseva EA, Harastani H, Raju S, Liu M, Schmidt AG, Curiel DT, Boon ACM, Diamond MS. Mucosal vaccine-induced cross-reactive CD8 + T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat Immunol 2024; 25:537-551. [PMID: 38337035 PMCID: PMC10907304 DOI: 10.1038/s41590-024-01743-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Houda Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Ketkar A, Willey V, Glasser L, Dobie C, Wenziger C, Teng CC, Dube C, Hirpara S, Cunningham D, Verduzco-Gutierrez M. Assessing the Burden and Cost of COVID-19 Across Variants in Commercially Insured Immunocompromised Populations in the United States: Updated Results and Trends from the Ongoing EPOCH-US Study. Adv Ther 2024; 41:1075-1102. [PMID: 38216825 PMCID: PMC10879378 DOI: 10.1007/s12325-023-02754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
INTRODUCTION/METHODS EPOCH-US is an ongoing, retrospective, observational cohort study among individuals identified in the Healthcare Integrated Research Database (HIRD®) with ≥ 12 months of continuous health plan enrollment. Data were collected for the HIRD population (containing immunocompetent and immunocompromised [IC] individuals), individual IC cohorts (non-mutually exclusive cohorts based on immunocompromising condition and/or immunosuppressive [IS] treatment), and the composite IC population (all unique IC individuals). This study updates previous results with addition of the general population cohort and data specifically for the year of 2022 (i.e., Omicron wave period). To provide healthcare decision-makers the most recent trends, this study reports incidence rates (IR) and severity of first SARS-CoV-2 infection; and relative risk, healthcare utilization, and costs related to first COVID-19 hospitalizations in the full year of 2022 and overall between April 2020 and December 2022. RESULTS These updated results showed a 2.9% prevalence of immune compromise in the population. From April 2020 through December 2022, the overall IR of COVID-19 was 115.7 per 1000 patient-years in the composite IC cohort and 77.8 per 1000 patient-years in the HIRD cohort. The composite IC cohort had a 15.4% hospitalization rate with an average cost of $42,719 for first COVID-19 hospitalization. Comparatively, the HIRD cohort had a 3.7% hospitalization rate with an average cost of $28,848 for first COVID-19 hospitalization. Compared to the general population, IC individuals had 4.3 to 23 times greater risk of hospitalization with first diagnosis of COVID-19. Between January and December 2022, hospitalizations associated with first COVID-19 diagnosis cost over $1 billion, with IC individuals (~ 3% of the population) generating $310 million (31%) of these costs. CONCLUSION While only 2.9% of the population, IC individuals had a higher risk of COVID-19 hospitalization and incurred higher healthcare costs across variants. They also disproportionately accounted for over 30% of total costs for first COVID-19 hospitalization in 2022, amounting to ~ $310 million. These data highlight the need for additional preventive measures to decrease the risk of developing severe COVID-19 outcomes in vulnerable IC populations.
Collapse
Affiliation(s)
| | | | - Lisa Glasser
- AstraZeneca, Biopharmaceuticals Medical, Wilmington, DE, USA
| | - Casey Dobie
- Xcenda, a Cencora company, Conshohocken, PA, USA
| | | | | | - Christine Dube
- AstraZeneca, Biopharmaceuticals Medical, Wilmington, DE, USA
| | - Sunny Hirpara
- AstraZeneca, Biopharmaceuticals Medical, Wilmington, DE, USA
| | | | | |
Collapse
|
27
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Yang JE, Wright ER, Kawaoka Y, Kane RS. Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine. Nat Commun 2024; 15:1284. [PMID: 38346966 PMCID: PMC10861510 DOI: 10.1038/s41467-024-45495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Makoto Kuroda
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan.
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
28
|
Adler JM, Martin Vidal R, Langner C, Vladimirova D, Abdelgawad A, Kunecova D, Lin X, Nouailles G, Voss A, Kunder S, Gruber AD, Wu H, Osterrieder N, Kunec D, Trimpert J. An intranasal live-attenuated SARS-CoV-2 vaccine limits virus transmission. Nat Commun 2024; 15:995. [PMID: 38307868 PMCID: PMC10837132 DOI: 10.1038/s41467-024-45348-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
The development of effective SARS-CoV-2 vaccines has been essential to control COVID-19, but significant challenges remain. One problem is intramuscular administration, which does not induce robust mucosal immune responses in the upper airways-the primary site of infection and virus shedding. Here we compare the efficacy of a mucosal, replication-competent yet fully attenuated virus vaccine, sCPD9-ΔFCS, and the monovalent mRNA vaccine BNT162b2 in preventing transmission of SARS-CoV-2 variants B.1 and Omicron BA.5 in two scenarios. Firstly, we assessed the protective efficacy of the vaccines by exposing vaccinated male Syrian hamsters to infected counterparts. Secondly, we evaluated transmission of the challenge virus from vaccinated and subsequently challenged male hamsters to naïve contacts. Our findings demonstrate that the live-attenuated vaccine (LAV) sCPD9-ΔFCS significantly outperformed the mRNA vaccine in preventing virus transmission in both scenarios. Our results provide evidence for the advantages of locally administered LAVs over intramuscularly administered mRNA vaccines in preventing infection and reducing virus transmission.
Collapse
Affiliation(s)
- Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Daniela Kunecova
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Xiaoyuan Lin
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Voss
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Sandra Kunder
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Coria LM, Rodriguez JM, Demaria A, Bruno LA, Medrano MR, Castro CP, Castro EF, Del Priore SA, Hernando Insua AC, Kaufmann IG, Saposnik LM, Stone WB, Prado L, Notaro US, Amweg AN, Diaz PU, Avaro M, Ortega H, Ceballos A, Krum V, Zurvarra FM, Sidabra JE, Drehe I, Baqué JA, Li Causi M, De Nichilo AV, Payes CJ, Southard T, Vega JC, Auguste AJ, Álvarez DE, Flo JM, Pasquevich KA, Cassataro J. A Gamma-adapted subunit vaccine induces broadly neutralizing antibodies against SARS-CoV-2 variants and protects mice from infection. Nat Commun 2024; 15:997. [PMID: 38307851 PMCID: PMC10837449 DOI: 10.1038/s41467-024-45180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
In the context of continuous emergence of SARS-CoV-2 variants of concern (VOCs), one strategy to prevent the severe outcomes of COVID-19 is developing safe and effective broad-spectrum vaccines. Here, we present preclinical studies of a RBD vaccine derived from the Gamma SARS-CoV-2 variant adjuvanted with Alum. The Gamma-adapted RBD vaccine is more immunogenic than the Ancestral RBD vaccine in terms of inducing broader neutralizing antibodies. The Gamma RBD presents more immunogenic B-cell restricted epitopes and induces a higher proportion of specific-B cells and plasmablasts than the Ancestral RBD version. The Gamma-adapted vaccine induces antigen specific T cell immune responses and confers protection against Ancestral and Omicron BA.5 SARS-CoV-2 challenge in mice. Moreover, the Gamma RBD vaccine induces higher and broader neutralizing antibody activity than homologous booster vaccination in mice previously primed with different SARS-CoV-2 vaccine platforms. Our study indicates that the adjuvanted Gamma RBD vaccine is highly immunogenic and a broad-spectrum vaccine candidate.
Collapse
Affiliation(s)
- Lorena M Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| | - Juan Manuel Rodriguez
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Agostina Demaria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Laura A Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Mayra Rios Medrano
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Eliana F Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Sabrina A Del Priore
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Andres C Hernando Insua
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ingrid G Kaufmann
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Lucas M Saposnik
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lineia Prado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Ulises S Notaro
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ayelen N Amweg
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Pablo U Diaz
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Martin Avaro
- Servicio Virosis Respiratorias, Laboratorio de Referencia de Influenza, SARS-CoV-2 y otros Virus Respiratorios, Centro Nacional de Influenza de OPS/OMS, Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas - ANLIS "Dr. Carlos G. Malbrán". Ciudad Autónoma de Buenos Aires, Buenos Aires, C1282AFF, Argentina
| | - Hugo Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ana Ceballos
- Facultad de Medicina UBA, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Buenos Aires, Argentina
| | - Valeria Krum
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Francisco M Zurvarra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Johanna E Sidabra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ignacio Drehe
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Jonathan A Baqué
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Mariana Li Causi
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Analia V De Nichilo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Cristian J Payes
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Teresa Southard
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Julio C Vega
- Laboratorio Pablo Cassará - I+D+i, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1408GBV, Argentina
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juan M Flo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| |
Collapse
|
30
|
Reuschl AK, Thorne LG, Whelan MVX, Ragazzini R, Furnon W, Cowton VM, De Lorenzo G, Mesner D, Turner JLE, Dowgier G, Bogoda N, Bonfanti P, Palmarini M, Patel AH, Jolly C, Towers GJ. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat Microbiol 2024; 9:451-463. [PMID: 38228858 PMCID: PMC10847042 DOI: 10.1038/s41564-023-01588-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.
Collapse
Affiliation(s)
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, St Mary's Medical School, Imperial College London, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L E Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Giulia Dowgier
- Division of Infection and Immunity, University College London, London, UK
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Nathasha Bogoda
- Division of Infection and Immunity, University College London, London, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | | | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK.
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
31
|
Liu F, Deng P, He J, Chen X, Jiang X, Yan Q, Xu J, Hu S, Yan J. A regional genomic surveillance program is implemented to monitor the occurrence and emergence of SARS-CoV-2 variants in Yubei District, China. Virol J 2024; 21:13. [PMID: 38191416 PMCID: PMC10775548 DOI: 10.1186/s12985-023-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND In December 2022, Chongqing experienced a significant surge in coronavirus disease 2019 (COVID-19) epidemic after adjusting control measures in China. Given the widespread immunization of the population with the BA.5 variant, it is crucial to actively monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant evolution in Chongqing's Yubei district. METHODS In this retrospective study based on whole genome sequencing, we collected oropharyngeal and nasal swab of native COVID-19 cases from Yubei district between January to May 2023, along with imported cases from January 2022 to January 2023. Through second-generation sequencing, we generated a total of 578 genomes. RESULTS Phylogenetic analyses revealed these genomes belong to 47 SARS-CoV-2 Pango lineages. BA.5.2.48 was dominant from January to April 2023, rapidly replaced by XBB* variants from April to May 2023. Bayesian Skyline Plot reconstructions indicated a higher evolutionary rate (6.973 × 10-4 subs/site/year) for the XBB.1.5* lineage compared to others. The mean time to the most recent common ancestor (tMRCA) of BA.5.2.48* closely matched BA.2.75* (May 27, 2022). Using multinomial logistic regression, we estimated growth advantages, with XBB.1.9.1 showing the highest growth advantage (1.2, 95% HPI:1.1-1.2), followed by lineage FR.1 (1.1, 95% HPI:1.1-1.2). CONCLUSIONS Our monitoring reveals the rapid replacement of the previously prevalent BA.5.2.48 variant by XBB and its sub-variants, underscoring the ineffectiveness of herd immunity and breakthrough BA.5 infections against XBB variants. Given the ongoing evolutionary pressure, sustaining a SARS-CoV-2 genomic surveillance program is imperative.
Collapse
Affiliation(s)
- Fangyuan Liu
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Peng Deng
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Jiuhong He
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Xiaofeng Chen
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Xinyu Jiang
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Qi Yan
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Jing Xu
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Sihan Hu
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China
| | - Jin Yan
- Chongqing Yubei Center for Disease Control and Prevention, Chongqing, China.
| |
Collapse
|
32
|
Razafimandimby H, Sauvageau C, Ouakki M, Carazo S, Skowronski DM, De Serres G. Effectiveness of BNT162b2 Vaccine Against Omicron-SARS-CoV-2 Subvariants in Children 5-11 Years of Age in Quebec, Canada, January 2022 to January 2023. Pediatr Infect Dis J 2024; 43:32-39. [PMID: 37922479 DOI: 10.1097/inf.0000000000004145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
BACKGROUND In premarketing clinical trials conducted before Omicron emergence, BNT162b2 vaccine efficacy against COVID-19 was 90% in children. We conducted postmarketing evaluation of 1- and 2-dose vaccine effectiveness (VE) against Omicron BA.1, BA.2 and BA.4/5 subvariants in 5- to 11-year olds. METHODS We estimated VE against SARS-CoV-2 infection using a test-negative design. Specimens collected between January 9, 2022, and January 7, 2023, from children 5-11 years old in Quebec, Canada, and tested by nucleic acid amplification test were eligible. We estimated VE by time since last vaccine dose, interval between doses and by period of Omicron subvariant predominance. RESULTS A total of 48,826 NAATs were included in overall analysis. From 14-55 to 56-385 days postvaccination, 2-dose VE against symptomatic infection decreased from 68% (95% CI, 62-74) to 25% (95% CI, 11-36). Two-dose VE with restriction to specimens collected from acute care hospitals (emergency rooms or wards) did not decline but was stable at ~40%. VE against symptomatic infection remained comparable at any interval between doses but increased with longer interval among children tested in acute care settings, from 18% (95% CI, -17 to 44) with 21- to 55-day interval to 69% (95% CI, 43-86) with ≥84-day interval. Two-dose VE against symptomatic infection dropped from 70% (95% CI, 63-76) during BA.1, to 32% (95% CI, 13-47) with BA.2 and to nonprotective during BA.4/5 dominance. CONCLUSIONS In children 5-11 years of age, VE against symptomatic infection was stable at any interval between doses but decreased with time since the last dose and against more divergent omicron subvariants.
Collapse
Affiliation(s)
- Harimahefa Razafimandimby
- From the Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, Quebec, Canada
| | - Chantal Sauvageau
- From the Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, Quebec, Canada
- Biological Risks, Institut National de Santé Publique du Québec, Quebec, Quebec, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, Canada
| | - Manale Ouakki
- Biological Risks, Institut National de Santé Publique du Québec, Quebec, Quebec, Canada
| | - Sara Carazo
- Biological Risks, Institut National de Santé Publique du Québec, Quebec, Quebec, Canada
| | - Danuta M Skowronski
- Immunization Programs and Vaccine Preventable Diseases Service, BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Gaston De Serres
- From the Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Quebec, Quebec, Canada
- Biological Risks, Institut National de Santé Publique du Québec, Quebec, Quebec, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, Canada
| |
Collapse
|
33
|
Khan K, Lustig G, Römer C, Reedoy K, Jule Z, Karim F, Ganga Y, Bernstein M, Baig Z, Jackson L, Mahlangu B, Mnguni A, Nzimande A, Stock N, Kekana D, Ntozini B, van Deventer C, Marshall T, Manickchund N, Gosnell BI, Lessells RJ, Karim QA, Abdool Karim SS, Moosa MYS, de Oliveira T, von Gottberg A, Wolter N, Neher RA, Sigal A. Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant. Nat Commun 2023; 14:8078. [PMID: 38057313 PMCID: PMC10700484 DOI: 10.1038/s41467-023-43703-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Omicron BA.2.86 subvariant differs from Omicron BA.2 as well as recently circulating variants by over 30 mutations in the spike protein alone. Here we report on the isolation of the live BA.2.86 subvariant from a diagnostic swab collected in South Africa which we tested for escape from neutralizing antibodies and viral replication properties in cell culture. We found that BA.2.86 does not have significantly more escape relative to Omicron XBB.1.5 from neutralizing immunity elicited by either Omicron XBB-family subvariant infection or from residual neutralizing immunity of recently collected sera from the South African population. BA.2.86 does have extensive escape relative to ancestral virus with the D614G substitution (B.1 lineage) when neutralized by sera from pre-Omicron vaccinated individuals and relative to Omicron BA.1 when neutralized by sera from Omicron BA.1 infected individuals. BA.2.86 and XBB.1.5 show similar viral infection dynamics in the VeroE6-TMPRSS2 and H1299-ACE2 cell lines. We also investigate the relationship of BA.2.86 to BA.2 sequences. The closest BA.2 sequences are BA.2 samples from Southern Africa circulating in early 2022. Similarly, many basal BA.2.86 sequences were sampled in Southern Africa. This suggests that BA.2.86 potentially evolved in this region, and that unobserved evolution led to escape from neutralizing antibodies similar in scale to recently circulating strains of SARS-CoV-2.
Collapse
Affiliation(s)
- Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Cornelius Römer
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kajal Reedoy
- Africa Health Research Institute, Durban, South Africa
| | - Zesuliwe Jule
- Africa Health Research Institute, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | | | - Zainab Baig
- Africa Health Research Institute, Durban, South Africa
| | | | - Boitshoko Mahlangu
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anele Mnguni
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ayanda Nzimande
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nadine Stock
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Dikeledi Kekana
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Buhle Ntozini
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Nithendra Manickchund
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Bernadett I Gosnell
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Richard J Lessells
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
- Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| |
Collapse
|
34
|
Riou C, Bhiman JN, Ganga Y, Sawry S, Ayres F, Baguma R, Balla SR, Benede N, Bernstein M, Besethi AS, Cele S, Crowther C, Dhar M, Geyer S, Gill K, Grifoni A, Hermanus T, Kaldine H, Keeton RS, Kgagudi P, Khan K, Lazarus E, Roux JL, Lustig G, Madzivhandila M, Magugu SFJ, Makhado Z, Manamela NP, Mkhize Q, Mosala P, Motlou TP, Mutavhatsindi H, Mzindle NB, Nana A, Nesamari R, Ngomti A, Nkayi AA, Nkosi TP, Omondi MA, Panchia R, Patel F, Sette A, Singh U, van Graan S, Venter EM, Walters A, Moyo-Gwete T, Richardson SI, Garrett N, Rees H, Bekker LG, Gray G, Burgers WA, Sigal A, Moore PL, Fairlie L. Safety and immunogenicity of booster vaccination and fractional dosing with Ad26.COV2.S or BNT162b2 in Ad26.COV2.S-vaccinated participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.20.23298785. [PMID: 38045321 PMCID: PMC10690356 DOI: 10.1101/2023.11.20.23298785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection. Methods A total of 286 adults (with or without HIV) were enrolled >4 months after an Ad26.COV2.S prime and randomized 1:1:1:1 to receive either a full or half-dose booster of Ad26.COV2.S or BNT162b2 vaccine. B cell responses (binding, neutralization and antibody dependent cellular cytotoxicity-ADCC), and spike-specific T-cell responses were evaluated at baseline, 2, 12 and 24 weeks post-boost. Antibody and T-cell immunity targeting the Ad26 vector was also evaluated. Results No vaccine-associated serious adverse events were recorded. The full- and half-dose BNT162b2 boosted anti-SARS-CoV-2 binding antibody levels (3.9- and 4.5-fold, respectively) and neutralizing antibody levels (4.4- and 10-fold). Binding and neutralizing antibodies following half-dose Ad26.COV2.S were not significantly boosted. Full-dose Ad26.COV2.S did not boost binding antibodies but slightly enhanced neutralizing antibodies (2.1-fold). ADCC was marginally increased only after a full-dose BNT162b2. T-cell responses followed a similar pattern to neutralizing antibodies. Six months post-boost, antibody and T-cell responses had waned to baseline levels. While we detected strong anti-vector immunity, there was no correlation between anti-vector immunity in Ad26.COV2.S recipients and spike-specific neutralizing antibody or T-cell responses post-Ad26.COV2.S boosting. Conclusion In the context of hybrid immunity, boosting with heterologous full- or half-dose BNT162b2 mRNA vaccine demonstrated superior immunogenicity 2 weeks post-vaccination compared to homologous Ad26.COV2.S, though rapid waning occurred by 12 weeks post-boost. Trial Registration South African National Clinical Trial Registry (SANCR): DOH-27-012022-7841. Funding South African Medical Research Council (SAMRC) and South African Department of Health (SA DoH).
Collapse
Affiliation(s)
- Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Jinal N Bhiman
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Shobna Sawry
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Sashkia R Balla
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | | | - Asiphe S Besethi
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
| | - Carol Crowther
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mrinmayee Dhar
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sohair Geyer
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Katherine Gill
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tandile Hermanus
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Prudence Kgagudi
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Erica Lazarus
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean Le Roux
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Mashudu Madzivhandila
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Siyabulela FJ Magugu
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Qiniso Mkhize
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Paballo Mosala
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Thopisang P Motlou
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Hygon Mutavhatsindi
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Nonkululeko B Mzindle
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anusha Nana
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Anathi A Nkayi
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Thandeka P Nkosi
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Ravindre Panchia
- Perinatal HIV Research Unit, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Faeezah Patel
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Upasna Singh
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Strauss van Graan
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Elizabeth M. Venter
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Simone I. Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Helen Rees
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Lee Fairlie
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
35
|
Meijers M, Ruchnewitz D, Eberhardt J, Łuksza M, Lässig M. Population immunity predicts evolutionary trajectories of SARS-CoV-2. Cell 2023; 186:5151-5164.e13. [PMID: 37875109 PMCID: PMC10964984 DOI: 10.1016/j.cell.2023.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023]
Abstract
The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of genetic clades. New variants show intrinsic changes, notably increased transmissibility, and antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. How this functional variation shapes global evolution has remained unclear. Here, we establish a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The model is informed by tracking of time-resolved sequence data, epidemiological records, and cross-neutralization data of viral variants. Our inference shows that immune pressure, including contributions of vaccinations and previous infections, has become the dominant force driving the recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. First, it successfully predicts the short-term evolution of circulating strains and flags emerging variants likely to displace the previously predominant variant. Second, it predicts likely antigenic profiles of successful escape variants prior to their emergence.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Jan Eberhardt
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany
| | - Marta Łuksza
- Tisch Cancer Institute, Departments of Oncological Sciences and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 77, 50937 Köln, Germany.
| |
Collapse
|
36
|
Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ, Hu CW, Hsu MF, Kuo TJ, Lan YH, Chen LY, Ng HY, Chung MJ, Liao HN, Tseng SC, Lo CH, Chen YJ, Liao CC, Chang CS, Liang JJ, Draczkowski P, Puri S, Chang YC, Huang JS, Chen CC, Kau JH, Chen YH, Liu WC, Wu HC, Danny Hsu ST, Wang IH, Tao MH. Development of AAV-delivered broadly neutralizing anti-human ACE2 antibodies against SARS-CoV-2 variants. Mol Ther 2023; 31:3322-3336. [PMID: 37689971 PMCID: PMC10638075 DOI: 10.1016/j.ymthe.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Wen Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-I Tsung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Hu
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Jiun Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hua Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Yao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Yee Ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ni Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Che Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Hui Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Jiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Shin Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Sarita Puri
- Department of Bioscience, University of Milan, Milan, Italy
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Siou Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
37
|
He R, Zheng X, Zhang J, Liu B, Wang Q, Wu Q, Liu Z, Chang F, Hu Y, Xie T, Liu Y, Chen J, Yang J, Teng S, Lu R, Pan D, Wang Y, Peng L, Huang W, Terzieva V, Liu W, Wang Y, Li YP, Qu X. SARS-CoV-2 spike-specific T FH cells exhibit unique responses in infected and vaccinated individuals. Signal Transduct Target Ther 2023; 8:393. [PMID: 37802996 PMCID: PMC10558553 DOI: 10.1038/s41392-023-01650-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Long-term humoral immunity to SARS-CoV-2 is essential for preventing reinfection. The production of neutralizing antibody (nAb) and B cell differentiation are tightly regulated by T follicular help (TFH) cells. However, the longevity and functional role of TFH cell subsets in COVID-19 convalescents and vaccine recipients remain poorly defined. Here, we show that SARS-CoV-2 infection and inactivated vaccine elicited both spike-specific CXCR3+ TFH cell and CXCR3- TFH cell responses, which showed distinct response patterns. Spike-specific CXCR3+ TFH cells exhibit a dominant and more durable response than CXCR3- TFH cells that positively correlated with antibody responses. A third booster dose preferentially expands the spike-specific CXCR3+ TFH cell subset induced by two doses of inactivated vaccine, contributing to antibody maturation and potency. Functionally, spike-specific CXCR3+ TFH cells have a greater ability to induce spike-specific antibody secreting cells (ASCs) differentiation compared to spike-specific CXCR3- TFH cells. In conclusion, the persistent and functional role of spike-specific CXCR3+ TFH cells following SARS-CoV-2 infection and vaccination may play an important role in antibody maintenance and recall response, thereby conferring long-term protection. The findings from this study will inform the development of SARS-CoV-2 vaccines aiming to induce long-term protective immune memory.
Collapse
Affiliation(s)
- Rongzhang He
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Xingyu Zheng
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Jian Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Bo Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Qijie Wang
- The Central Hospital of Shaoyang, 422000, Shaoyang, China
| | - Qian Wu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China
| | - Ziyan Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Fangfang Chang
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Ting Xie
- The Central Hospital of Shaoyang, 422000, Shaoyang, China
| | - Yongchen Liu
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China
| | - Jun Chen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Jing Yang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Shishan Teng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Rui Lu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Dong Pan
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - You Wang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
- School of Public Health, University of South China, 421001, Hengyang, China
| | - Liting Peng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Weijin Huang
- National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Key Laboratory of Biological Product Quality Research and Evaluation of National Medical Products Administration, 102629, Beijing, China
| | - Velislava Terzieva
- Laboratory of OMICs Technologies, Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Wenpei Liu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China
| | - Youchun Wang
- National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Key Laboratory of Biological Product Quality Research and Evaluation of National Medical Products Administration, 102629, Beijing, China.
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, 501180, Guangzhou, China.
| | - Xiaowang Qu
- College of Basic Medical Sciences, Hengyang Medical School, University of South China & MOE Key Lab of Rare Pediatric Diseases, 421001, Hengyang, China.
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000, Chenzhou, China.
| |
Collapse
|
38
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Fryer HA, Hartley GE, Edwards ESJ, Varese N, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, van Zelm MC. COVID-19 Adenoviral Vector Vaccination Elicits a Robust Memory B Cell Response with the Capacity to Recognize Omicron BA.2 and BA.5 Variants. J Clin Immunol 2023; 43:1506-1518. [PMID: 37322095 PMCID: PMC10499924 DOI: 10.1007/s10875-023-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.
Collapse
Affiliation(s)
- Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Pondé RADA. Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology 2023; 587:109850. [PMID: 37562286 DOI: 10.1016/j.virol.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Emerging in South Africa, SARS-CoV-2 Omicron variant was marked by the expression of an exaggerated number of mutations throughout its genome and by the emergence of subvariants, whose attributes developed by them have been associated with amino acid exchanges that occur mainly in the RBM region of the spike protein. The RBM comprises a region within the RBD and is directly involved in the SARS-CoV-2 spike protein interaction with the host cell ACE2 receptor, during the infection mechanism and viral transmission. Defined as the region from aa 437 to aa 508, there are several residues in certain positions that interact directly with the human ACE-2 receptor during these processes. The occurrence of amino acid exchanges in these positions causes physicochemical alterations in the SARS-CoV-2 spike protein, which confer additional advantages and attributes to the agent. In addition, these exchanges serve as a basis for the characterization of new variants and subvariants of SARS-CoV-2. In this review, the amino acid exchanges that have occurred in the RBM of the subvariants BA.1 to BA.5 of SARS-CoV-2 that emerged from the Omicron are described. The physicochemical effects caused by them on spike protein are also described, as well as their influence on the biological properties and attributes developed by the subvariants BA.1, BA.2, BA.3, BA.4 and BA.5.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
41
|
Hannawi S, Yan L, Saifeldin L, Abuquta A, Alamadi A, Mahmoud SA, Hassan A, Zhang M, Gao C, Chen Y, Gai W, Xie L. Safety and immunogenicity of multivalent SARS-CoV-2 protein vaccines: a randomized phase 3 trial. EClinicalMedicine 2023; 64:102195. [PMID: 37731938 PMCID: PMC10507195 DOI: 10.1016/j.eclinm.2023.102195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Background COVID-19 vaccines that offer broad-spectrum protection are needed. We aimed to evaluate the safety and immunogenicity of multivalent vaccines, SCTV01E and SCTV01C, and compare them with an inactivated vaccine. Methods In the phase 3 trial (ClinicalTrials.gov: NCT05323461), adult participants previously vaccinated with Sinopharm's inactivated SARS-CoV-2 vaccine (BBBIP-CorV) were assigned to receive one booster dose of BBBIP-CorV, 20 μg SCTV01C, or 30 μg SCTV01E. The primary endpoint was to evaluate the geometric mean titers (GMT) of neutralizing antibody (nAb) against the Delta and Omicron BA.1 variants on day 28 after injection. Additional endpoints included GMTs of nAb against Delta (B.1.617.2) and Omicron BA.1 variants on day 180, GMTs against BA.5 on day 28, as well as solicited adverse events (AEs) within seven days, unsolicited AEs within 28 days, and serious AEs, AEs of special interest within 180 days after vaccination. Findings Between May 30, 2022 and October 28, 2022, a total of 1351 participants were randomized to BBBIP-CorV, SCTV01C, or SCTV01E in a 1:1:1 ratio, with immunogenicity assessments performed on the first 300 participants. For BBBIP-CorV, SCTV01C, and SCTV01E groups, the day 28 GMTs of neutralizing antibody against Omicron BA.1 were a 2.38-, 19.37-, and 28.06-fold increase from baseline; the GMTs against Omicron BA.5 were 2.07-, 15.89- and 21.11-fold increases; the GMTs against Delta variants were 1.97-, 12.76-, and 15.88-fold increases, respectively. The day 28 geometric mean ratio (GMR) of SCTV01C/BBIBP-CorV for Omicron BA.1 was 6.49 (95% CI: 4.75, 8.88), while the GMR of SCTV01E/BBIBP-CorV was 9.56 (95% CI: 6.85, 13.33). For the Delta variant, the day 28 GMR of SCTV01C/BBIBP-CorV was 6.26 (95% CI: 4.78, 8.19), and the day 28 GMR of SCTV01E/BBIBP-CorV was 7.26 (95% CI: 5.51, 9.56). On Day 180, the GMTs against Omicron BA.1 were 2.80-, 9.51-, and 15.56-fold increase from baseline, while those against Delta were 1.58-, 5.49-, and 6.63-fold for BBBIP-CorV, SCTV01C, and SCTV01E groups, respectively. Subgroup analyses showed that SCTV01C and SCTV01E induced uniformly high GMTs against both BA.1 and BA.5, demonstrating its superiority over BBIBP-CorV, regardless of baseline GMT levels. Safety and reactogenicity were similar among the three vaccines. Most AEs were Grade 1 or 2. There were 15 ≥Grade 3 AEs: 6 in the BBIBP-CorV group, 4 in the SCTV01C group and 5 in the SCTV01E group. No SAE was reported and one grade 1 AESI (Bell's palsy) was observed in SCTV01C group. Interpretation A booster dose of the tetravalent vaccine SCTV01E consistently induced high neutralizing antibody responses against Omicron BA.1, BA.5, and Delta variants, demonstrating superiority over inactivated vaccine. There is evidence to suggest that SCTV01E may have GMT superiority over bivalent vaccine SCTV01C against Delta, BA.1 and BA.5 variants. Funding This study was sponsored by Sinocelltech Ltd., and funded by the Beijing Science and Technology Planning Project [Z221100007922012] and the National Key Research and Development Program of China [2022YFC0870600].
Collapse
Affiliation(s)
- Suad Hannawi
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Lixin Yan
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Linda Saifeldin
- General Surgery Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Alaa Abuquta
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Ahmad Alamadi
- Ear, Nose and Throat Department (ENT), Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | | | - Aala Hassan
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Miaomiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Cuige Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yuanxin Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Wenlin Gai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| |
Collapse
|
42
|
Francis ME, Jansen EB, Yourkowski A, Selim A, Swan CL, MacPhee BK, Thivierge B, Buchanan R, Lavender KJ, Darbellay J, Rogers MB, Lew J, Gerdts V, Falzarano D, Skowronski DM, Sjaarda C, Kelvin AA. Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2. Nat Commun 2023; 14:5990. [PMID: 37752151 PMCID: PMC10522707 DOI: 10.1038/s41467-023-41761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Magen E Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ethan B Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alaa Selim
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cynthia L Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian K MacPhee
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Danuta M Skowronski
- BC Centre for Disease Control, Immunization Programs and Vaccine Preventable Diseases Service, Vancouver, BC, Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
43
|
Simon G, Favresse J, Gillot C, Closset M, Catry É, Dogné JM, Douxfils J, Wieërs G, Bayart JL. Kinetics and ability of binding antibody and surrogate virus neutralization tests to predict neutralizing antibodies against the SARS-CoV-2 Omicron variant following BNT162b2 booster administration. Clin Chem Lab Med 2023; 61:1875-1885. [PMID: 37078220 DOI: 10.1515/cclm-2022-1258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES To assess the long-term humoral immunity induced by booster administration, as well as the ability of binding antibody and surrogate virus neutralization tests (sVNT) to predict neutralizing antibodies (NAbs) against the SARS-CoV-2 Omicron variant. METHODS A total of 269 sera samples were analyzed from 64 healthcare workers who had received a homologous booster dose of BNT162b2. Neutralizing antibodies assessed by sVNT and anti-RBD IgG measured with the sCOVG assay (Siemens Healthineers®) were analyzed at five timepoints; before and up to 6 months following the booster. Antibody titers were correlated with neutralizing antibodies against the Omicron BA.1 variant obtained by pseudovirus neutralization test (pVNT) as a reference method. RESULTS While Wild-type sVNT percentage of inhibition (POI) remained above 98.6% throughout the follow-up period after booster administration, anti-RBD IgG and NAbs assessed by Omicron BA.1 pVNT showed respectively a 3.4-fold and 13.3-fold decrease after 6 months compared to the peak reached at day 14. NAbs assessed by Omicron sVNT followed a steady decline until reaching a POI of 53.4%. Anti-RBD IgG and Omicron sVNT assays were strongly correlated (r=0.90) and performed similarly to predict the presence of neutralizing antibodies with Omicron pVNT (area under the ROC: 0.82 for both assays). In addition, new adapted cut-off values of anti-RBD IgG (>1,276 BAU/mL) and Omicron sVNT (POI>46.6%) were found to be better predictors of neutralizing activity. CONCLUSIONS This study showed a significant drop in humoral immunity 6 months after booster administration. Anti-RBD IgG and Omicron sVNT assays were highly correlated and could predict neutralizing activity with moderate performance.
Collapse
Affiliation(s)
- Germain Simon
- Department of Laboratory Medicine, Clinique St-Pierre, Ottignies, Belgium
| | - Julien Favresse
- Department of Laboratory Medicine, Clinique St-Luc Bouge, Namur, Belgium
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Constant Gillot
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | | | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
- QUALIblood SA, Namur, Belgium
| | - Grégoire Wieërs
- Department of Pharmacy, Namur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
- Department of Internal Medicine, Clinique St-Pierre, Ottignies, Belgium
| | - Jean-Louis Bayart
- Department of Laboratory Medicine, Clinique St-Pierre, Ottignies, Belgium
| |
Collapse
|
44
|
Rizvi ZA, Dandotiya J, Sadhu S, Khatri R, Singh J, Singh V, Adhikari N, Sharma K, Das V, Pandey AK, Das B, Medigeshi G, Mani S, Bhatnagar S, Samal S, Pandey AK, Garg PK, Awasthi A. Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice. Commun Biol 2023; 6:935. [PMID: 37704701 PMCID: PMC10499788 DOI: 10.1038/s42003-023-05263-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
A recently emerged sub-lineage of Omicron, BA.5, together with BA.4, caused a fifth wave of coronavirus disease (COVID-19) in South Africa and subsequently emerged as a predominant strain globally due to its high transmissibility. The lethality of BA.5 infection has not been studied in an acute hACE2 transgenic (hACE2.Tg) mouse model. Here, we investigated tissue-tropism and immuno-pathology induced by BA.5 infection in hACE2.Tg mice. Our data show that intranasal infection of BA.5 in hACE2.Tg mice resulted in attenuated pulmonary infection and pathology with diminished COVID-19-induced clinical and pathological manifestations. BA.5, similar to Omicron (B.1.1.529), infection led to attenuated production of inflammatory cytokines, anti-viral response and effector T cell response as compared to the ancestral strain of SARS-CoV-2, Wuhan-Hu-1. We show that mice recovered from B.1.1.529 infection showed robust protection against BA.5 infection associated with reduced lung viral load and pathology. Together, our data provide insights as to why BA.5 infection escapes previous SARS-CoV-2 exposure induced-T cell immunity but may result in milder immuno-pathology and alleviated chances of re-infectivity in Omicron-recovered individuals.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Jyotsna Dandotiya
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Srikanth Sadhu
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Janmejay Singh
- Bioassay Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Virendra Singh
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Neeta Adhikari
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Kritika Sharma
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Vinayake Das
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Amit Kumar Pandey
- Centre for Tuberculosis and Bacterial Diseases Research, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Bhabatosh Das
- Centre for Microbiome and Anti-Microbial Resistance, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Guruprasad Medigeshi
- Bioassay Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shalendra Mani
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Shinjini Bhatnagar
- Centre for Maternal and Child Health, Translational Health Science and Technology NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Anil Kumar Pandey
- Department of Physiology, ESIC Medical College & Hospital, Faridabad, 121001, India
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
45
|
Frische A, Gunalan V, Krogfelt KA, Fomsgaard A, Lassaunière R. A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines (Basel) 2023; 11:1451. [PMID: 37766128 PMCID: PMC10535225 DOI: 10.3390/vaccines11091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The ideal vaccine against viral infections should elicit antibody responses that protect against divergent strains. Designing broadly protective vaccines against SARS-CoV-2 and other divergent viruses requires insight into the specific targets of cross-protective antibodies on the viral surface protein(s). However, unlike therapeutic monoclonal antibodies, the B-cell epitopes of vaccine-induced polyclonal antibody responses remain poorly defined. Here we show that, through the combination of neutralizing antibody functional responses with B-cell epitope mapping, it is possible to identify unique antibody targets associated with neutralization breadth. The polyclonal antibody profiles of SARS-CoV-2 index-strain-vaccinated rabbits that demonstrated a low, intermediate, or high neutralization efficiency of different SARS-CoV-2 variants of concern (VOCs) were distinctly different. Animals with an intermediate and high cross-neutralization of VOCs targeted fewer antigenic sites on the spike protein and targeted one particular epitope, subdomain 1 (SD1), situated outside the receptor binding domain (RBD). Our results indicate that a targeted functional antibody response and an additional focus on non-RBD epitopes could be effective for broad protection against different SARS-CoV-2 variants. We anticipate that the approach taken in this study can be applied to other viral vaccines for identifying future epitopes that confer cross-neutralizing antibody responses, and that our findings will inform a rational vaccine design for SARS-CoV-2.
Collapse
Affiliation(s)
- Anders Frische
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Vithiagaran Gunalan
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| | - Karen Angeliki Krogfelt
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Infectious Diseases Unit, Clinical Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Ria Lassaunière
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| |
Collapse
|
46
|
Wang Z, Wu P, Wang L, Li B, Liu Y, Ge Y, Wang R, Wang L, Tan H, Wu CH, Laine M, Salje H, Song H. Marginal effects of public health measures and COVID-19 disease burden in China: A large-scale modelling study. PLoS Comput Biol 2023; 19:e1011492. [PMID: 37721947 PMCID: PMC10538769 DOI: 10.1371/journal.pcbi.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
China had conducted some of the most stringent public health measures to control the spread of successive SARS-CoV-2 variants. However, the effectiveness of these measures and their impacts on the associated disease burden have rarely been quantitatively assessed at the national level. To address this gap, we developed a stochastic age-stratified metapopulation model that incorporates testing, contact tracing and isolation, based on 419 million travel movements among 366 Chinese cities. The study period for this model began from September 2022. The COVID-19 disease burden was evaluated, considering 8 types of underlying health conditions in the Chinese population. We identified the marginal effects between the testing speed and reduction in the epidemic duration. The findings suggest that assuming a vaccine coverage of 89%, the Omicron-like wave could be suppressed by 3-day interval population-level testing (PLT), while it would become endemic with 4-day interval PLT, and without testing, it would result in an epidemic. PLT conducted every 3 days would not only eliminate infections but also keep hospital bed occupancy at less than 29.46% (95% CI, 22.73-38.68%) of capacity for respiratory illness and ICU bed occupancy at less than 58.94% (95% CI, 45.70-76.90%) during an outbreak. Furthermore, the underlying health conditions would lead to an extra 2.35 (95% CI, 1.89-2.92) million hospital admissions and 0.16 (95% CI, 0.13-0.2) million ICU admissions. Our study provides insights into health preparedness to balance the disease burden and sustainability for a country with a population of billions.
Collapse
Affiliation(s)
- Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Peiyi Wu
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bingying Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yonghong Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yuxi Ge
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ruixue Wang
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Ligui Wang
- Center of Disease Control and Prevention, PLA, Beijing, China
| | - Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chieh-Hsi Wu
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Marko Laine
- Finnish Meteorological Institute, Meteorological Research Unit, Helsinki, Finland
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hongbin Song
- Center of Disease Control and Prevention, PLA, Beijing, China
| |
Collapse
|
47
|
de Sousa LAF, Ferreira LSDS, Lobato LFL, Ferreira HLDS, Sousa LHDS, Santos VFD, Nunes PRS, Maramaldo CEC, Neto SS, Sampaio HL, Silva FVD, Brito MDC, Lima WKR, Lima CZGPA, Neto LGL. Molecular epidemiology of SARS-CoV-2 variants in circulation in the state of Maranhão, Brazil. J Med Virol 2023; 95:e29092. [PMID: 37724346 DOI: 10.1002/jmv.29092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a coronavirus belonging to the beta CoV genus, responsible for SARS in humans, which became known as COVID-19. The emergence of variants of this virus is related to the presence of cases of reinfection, reduced vaccine effectiveness and greater transmission of the virus. Objective: In this study, we evaluated the molecular epidemiology of SARS-CoV-2 lineages circulating in the state of Maranhão. This is a cross-sectional and retrospective epidemiological study of genomic surveillance of SARS-CoV-2. The study comprised of 338 genomes sequenced by the Next Generation Sequencing technique on Illumina's Miseq equipment, submitted to Global Initiative on Sharing Avian Influenza Data, 190 (56.2%) are from samples of female and 148 (43.8%) from male patients. Sequencing performed covered samples of patients aged between 1 and 108 years, with emphasis on the age groups from 30 to 39 years with 15.0% of sequenced genomes and 20 to 29 years with 12.4%. As for the distribution of sequenced genomes by health macro-regions, 285 (84.3%) are from cities in the northern macro-region. We evidenced the circulation of 29 lineages and sub-lineages, four of which belonging to the Delta variant (AY.43, AY.99.1, AY.99.2 and AY.101 responsible for 4.5% of the genomes) and the others belonging to the Omicron variant, with emphasis on: BA.1 and sub-lineages (42.8%); BA.4, BA.5 and sub-lineages (5.3% and 41.1%); the sub-lineages DL.1 and BQ.1 (5% and 2%). A strong genomic surveillance system allows the study of the natural history of the disease, when there is a resurgence of SARS-CoV-2 cases.
Collapse
Affiliation(s)
- Luis Artur Ferreira de Sousa
- Virology Laboratory, Postgraduation Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís, Maranhão, Brazil
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
| | | | - Luis Felipe Lima Lobato
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
- Postgraduation Program in Tropical Medicine-IOC/FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | | | - Valdenice Ferreira Dos Santos
- Post-graduate Programme in Biodiversity and Biotechnology (BIONORTE), CEUMA University, UniCEUMA, São Luís, Maranhão, Brazil
| | - Paulo Ricardo Silva Nunes
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
| | | | - Sebastião Silveira Neto
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
| | - Hellen Lobato Sampaio
- Virology Laboratory, Postgraduation Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís, Maranhão, Brazil
| | - Fabiano Vieira da Silva
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
- Postgraduation Program in Tropical Medicine-IOC/FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Marcelo da Costa Brito
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
| | - Washington Kleber Rodrigues Lima
- Post-graduate Programme in Biodiversity and Biotechnology (BIONORTE), CEUMA University, UniCEUMA, São Luís, Maranhão, Brazil
- UniCEUMA, CEUMA University, São Luís, Maranhão, Brazil
| | | | - Lidio Gonçalves Lima Neto
- Virology Laboratory, Postgraduation Program in Microbial Biology, CEUMA University, UniCEUMA, São Luís, Maranhão, Brazil
- Oswaldo Cruz Institute/Central Public Health Laboratory of Maranhão-IOC/LACEN-MA, São Luís, Maranhão, Brazil
| |
Collapse
|
48
|
Breznik JA, Rahim A, Zhang A, Ang J, Stacey HD, Bhakta H, Clare R, Liu LM, Kennedy A, Hagerman M, Kajaks T, Miller MS, Nazy I, Bramson JL, Costa AP, Bowdish DM. Early Omicron infection is associated with increased reinfection risk in older adults in long-term care and retirement facilities. EClinicalMedicine 2023; 63:102148. [PMID: 37753447 PMCID: PMC10518514 DOI: 10.1016/j.eclinm.2023.102148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/28/2023] Open
Abstract
Background Older adults are at increased risk of SARS-CoV-2 Omicron infection and severe disease, especially those in congregate living settings, despite high SARS-CoV-2 vaccine coverage. It is unclear whether hybrid immunity (combined vaccination and infection) after one Omicron infection provides increased protection against subsequent Omicron reinfection in older adults. Methods Incidence of SARS-CoV-2 Omicron infection was examined in 750 vaccinated residents of long-term care and retirement homes in the observational cohort COVID in Long-Term Care Study in Ontario, Canada, within a 75-day period (July to September 2022). Risk of infection was assessed by Cox proportional hazards regression. Serum anti-spike and anti-RBD SARS-CoV-2 IgG and IgA antibodies, microneutralization titres, and spike-specific T cell memory responses, were examined in a subset of 318 residents within the preceding three months. Findings 133 of 750 participants (17.7%) had a PCR-confirmed Omicron infection during the observation period. Increased infection risk was associated with prior Omicron infection (at 9-29 days: 47.67 [23.73-95.76]), and this was not attributed to days since fourth vaccination (1.00 [1.00-1.01]) or residence outbreaks (>6 compared to ≤6: 0.95 [0.37-2.41]). Instead, reinfected participants had lower serum neutralizing antibodies to ancestral and Omicron BA.1 SARS-CoV-2, and lower anti-RBD IgG and IgA antibodies, after their initial Omicron infection. Interpretation Counterintuitively, SARS-CoV-2 Omicron infection was associated with increased risk of Omicron reinfection in residents of long-term care and retirement homes. Less robust humoral hybrid immune responses in older adults may contribute to risk of Omicron reinfection. Funding COVID-19 Immunity Task Force of the Public Health Agency of Canada.
Collapse
Affiliation(s)
- Jessica A. Breznik
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Ahmad Rahim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jann Ang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hannah D. Stacey
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hina Bhakta
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rumi Clare
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Li-Min Liu
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Allison Kennedy
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Megan Hagerman
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Tara Kajaks
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Matthew S. Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan L. Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Andrew P. Costa
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Centre for Integrated Care, St. Joseph's Health System, Hamilton, Ontario, Canada
| | - Dawn M.E. Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute of Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
49
|
Rössler A, Netzl A, Knabl L, Bante D, Wilks SH, Borena W, von Laer D, Smith DJ, Kimpel J. Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography. Nat Commun 2023; 14:5224. [PMID: 37633965 PMCID: PMC10460376 DOI: 10.1038/s41467-023-41049-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Antonia Netzl
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Samuel H Wilks
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Derek J Smith
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|
50
|
Wang R, Huang H, Yu C, Sun C, Ma J, Kong D, Lin Y, Zhao D, Zhou S, Lu J, Cao S, Zhang Y, Luo C, Li X, Wang Y, Xie L. A spike-trimer protein-based tetravalent COVID-19 vaccine elicits enhanced breadth of neutralization against SARS-CoV-2 Omicron subvariants and other variants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1818-1830. [PMID: 36598621 PMCID: PMC9811042 DOI: 10.1007/s11427-022-2207-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 01/05/2023]
Abstract
Multivalent vaccines combining crucial mutations from phylogenetically divergent variants could be an effective approach to defend against existing and future SARS-CoV-2 variants. In this study, we developed a tetravalent COVID-19 vaccine SCTV01E, based on the trimeric Spike protein of SARS-CoV-2 variants Alpha, Beta, Delta, and Omicron BA.1, with a squalene-based oil-in-water adjuvant SCT-VA02B. In the immunogenicity studies in naïve BALB/c and C57BL/6J mice, SCTV01E exhibited the most favorable immunogenic characteristics to induce balanced and broad-spectrum neutralizing potencies against pre-Omicron variants (D614G, Alpha, Beta, and Delta) and newly emerging Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5). Booster studies in C57BL/6J mice previously immunized with D614G monovalent vaccine demonstrated superior neutralizing capacities of SCTV01E against Omicron subvariants, compared with the D614G booster regimen. Furthermore, SCTV01E vaccination elicited naïve and central memory T cell responses to SARS-CoV-2 ancestral strain and Omicron spike peptides. Together, our comprehensive immunogenicity evaluation results indicate that SCTV01E could become an important COVID-19 vaccine platform to combat surging infections caused by the highly immune evasive BA.4/5 variants. SCTV01E is currently being studied in a head-to-head immunogenicity comparison phase 3 clinical study with inactivated and mRNA vaccines (NCT05323461).
Collapse
Affiliation(s)
- Rui Wang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Hongpeng Huang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chulin Yu
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunyun Sun
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Juan Ma
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Desheng Kong
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yalong Lin
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Dandan Zhao
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Shaozheng Zhou
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Jianbo Lu
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Sai Cao
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yanjing Zhang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunxia Luo
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Xuefeng Li
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yang Wang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Liangzhi Xie
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China.
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|