1
|
Hou Y, Shi H, Wang H, Tian L, Huan C, Liu Y, Wang H, Zhang W. HERC5-mediated ISGylation of SARS-CoV-2 nsp8 facilitates its degradation and inhibits viral replication. Int J Biol Macromol 2025:144546. [PMID: 40409630 DOI: 10.1016/j.ijbiomac.2025.144546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 non-structural protein 8 (SARS-CoV-2 nsp8) is a multifunctional protein essential for viral replication and immune evasion. However, the host factors that regulate nsp8 stability and function remain unclear. In this study, we identify HECT and RCC-like domain-containing protein 5 (HERC5) as an essential E3 ligase that regulates nsp8 stability through ISGylation, a ubiquitin-like post-translational modification that facilitates proteasome-dependent degradation. HERC5 overexpression significantly enhances nsp8 degradation in an enzymatic activity-dependent manner, whereas SARS-CoV-2 papain-like protease (PLpro) counteracts this process by deconjugating interferon-stimulated gene 15 (ISG15) from nsp8-thereby preventing its degradation and facilitating viral replication. Mass spectrometry and mutational analyses revealed that the N2 domain of nsp8 is indispensable for ISGylation, with multiple lysine residues acting as primary modification sites. Additionally, we demonstrated that the ISGylation system, including HERC5, ubiquitin-like modifier activating enzyme 7 (UBA7), and ISG15, effectively suppresses SARS-CoV-2 replication across multiple variants, including Omicron BA.5 and XBB.1.5.15. These findings provide novel insights into the role of ISGylation in host antiviral defense and highlight the interplay between HERC5 and PLpro in modulating viral replication. This study establishes a foundation for developing therapeutic strategies targeting HERC5 or PLpro to inhibit SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yubao Hou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Hongyun Shi
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Huihan Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Li Tian
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Yan Liu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130000, Jilin, China.
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Almakrami M, Bazuqamah M, A. Alshehri M, M. S. Alqahtani A, F. Kadasah S, Harthi N, Ali Alyami R, Alqurashi A, A. Al Ruwaithi A. Identification of Significant Mutations in Spike Protein of SARS-CoV-2 Variants of Concern and the Discovery of Potent Inhibitors. Glob Health Epidemiol Genom 2025; 2025:5042190. [PMID: 40330793 PMCID: PMC12052452 DOI: 10.1155/ghe3/5042190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Background: SARS-CoV-2 is a positive-sense single-stranded RNA virus that has a propensity for infecting epithelial cells and the respiratory system. The two important proteins, structural and nonstructural proteins, make the architecture of this virus. Aim: This research aimed at studying significant mutations in spike protein of SARS-CoV-2 variants of concern (VoCs) and finding shared mutations among omicron and other four variants (alpha, beta, gamma, and delta). The purpose of this study was to draw structural comparisons between wild type and mutant proteins, followed by identifying potent inhibitors (ligand) that could be used against SARS-CoV-2 spike protein and its latest omicron VoC. Methodology: In this research, we had studied 16 major mutations as well as shared mutations (6) present in spike region of SARS-CoV-2. Subsequently, we determined the structure of the wild-type SARS-CoV-2 protein from the Protein Data Bank (PDB) with the ID 7R4I. Furthermore, the structure of the mutant protein of SARS-CoV-2 omicron variant was modeled in SWISS-MODEL. The ligand dataset for spike protein of SARS-CoV-2 was also collected from literature and different databases. Both wild type and mutant proteins were docked with ligand database in Molecular Operating Environment (MOE). The docking analysis was performed, and two best ligand molecules, AZ_2 and AZ_13, were finalized based on their energy values, interactions, and docking scores to be used against our wild and mutant proteins. Results: AZ_2 demonstrated a docking score of -6.1753 in MOE, with energy values of -4.3889 and -6.1753. It formed key hydrogen bond interactions. AZ_13 showed a docking score of -5.9, with energy values of -9.3 and -5.9, forming hydrogen donor and acceptor interactions with Asp950 (3.06 Å), Ile312 (3.13 Å), and Glu309 (3.27 Å). These interactions suggest strong binding affinity and potential efficacy. Thus, present research work emphasized on identification of significant mutations and finding a potent target-based drug against SARS-CoV-2 and its omicron variant. Outcomes: Based on this computational analysis performed, it is suggested that proposed compound can be used as remedy against SARS-CoV-2 and its omicron variant.
Collapse
Affiliation(s)
- Mohsen Almakrami
- Department of Pathology and Laboratory Medicine, King Khaled Hospital, Najran 66262, Saudi Arabia
| | - Mohammed Bazuqamah
- Department of Pathology and Laboratory Medicine, King Khaled Hospital, Najran 66262, Saudi Arabia
| | - Mohammed A. Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulaziz M. S. Alqahtani
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Naif Harthi
- Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Rami Ali Alyami
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia
| | | |
Collapse
|
3
|
Fang XY, Sun C, Xie C, Cheng BZ, Lu ZZ, Zhao GX, Sui SF, Zeng MS, Liu Z. Structure and Antigenicity of Kaposi's Sarcoma-Associated Herpesvirus Glycoprotein B. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502231. [PMID: 40285648 DOI: 10.1002/advs.202502231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Indexed: 04/29/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a member of the human γ-herpesviruses family, exhibits extensive cellular tropism and is associated with Kaposi's sarcoma and various B-cell malignancies. Despite its clinical significance, no effective prophylactic vaccines or specific therapeutics are currently available to prevent or treat KSHV infection. Similar to other herpesviruses, KSHV depends on the envelope glycoprotein B (gB) for host receptor recognition and membrane fusion initiation, making gB a prime target for antiviral antibody or vaccine development. In this study, the high-resolution cryo-electron microscopy (cryo-EM) structure of KSHV gB is presented, revealing a unique trimeric conformation resembling the postfusion state observed in other herpesviruses. Additionally, the structure of the non-neutralizing monoclonal antibody 2C4 bound to KSHV gB domain IV is resolved. The comparative sequence and structure analyses reveal significant homology in neutralizing epitopes between KSHV and Epstein-Barr virus (EBV) gB, indicating a potential pathway for the development of broad-spectrum antiviral strategies. These findings provide a foundation for a deeper understanding of KSHV's infectious mechanism and pave the way for the creation of universal interventions against the human γ-herpesviruses.
Collapse
Affiliation(s)
- Xin-Yan Fang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bing-Zhen Cheng
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zheng-Zhou Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sen-Fang Sui
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zheng Liu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
4
|
Gheeraert A, Leroux V, Mias-Lucquin D, Karami Y, Vuillon L, Chauvot de Beauchêne I, Devignes MD, Rivalta I, Maigret B, Chaloin L. Subtle Changes at the RBD/hACE2 Interface During SARS-CoV-2 Variant Evolution: A Molecular Dynamics Study. Biomolecules 2025; 15:541. [PMID: 40305276 PMCID: PMC12024731 DOI: 10.3390/biom15040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The SARS-CoV-2 Omicron variants show different behavior compared to the previous variants, especially with respect to the Delta variant, which promotes a lower morbidity despite being much more contagious. In this perspective, we performed molecular dynamics (MD) simulations of the different spike RBD/hACE2 complexes corresponding to the WT, Delta and four Omicron variants. Carrying out a comprehensive analysis of residue interactions within and between the two partners allowed us to draw the profile of each variant by using complementary methods (PairInt, hydrophobic potential, contact PCA). PairInt calculations highlighted the residues most involved in electrostatic interactions, which make a strong contribution to the binding with highly stable interactions between spike RBD and hACE2. Apolar contacts made a substantial and complementary contribution in Omicron with the detection of two hydrophobic patches. Contact networks and cross-correlation matrices were able to detect subtle changes at point mutations as the S375F mutation occurring in all Omicron variants, which is likely to confer an advantage in binding stability. This study brings new highlights on the dynamic binding of spike RBD to hACE2, which may explain the final persistence of Omicron over Delta.
Collapse
Affiliation(s)
- Aria Gheeraert
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
| | - Vincent Leroux
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Dominique Mias-Lucquin
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Yasaman Karami
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Vuillon
- Laboratory of Mathematics (LAMA), CNRS, University of Savoie Mont Blanc, 73370 Le Bourget-du-Lac, France; (A.G.); (L.V.)
| | - Isaure Chauvot de Beauchêne
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Marie-Dominique Devignes
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 40129 Bologna, Italy;
- ENS, CNRS, Laboratoire de Chimie UMR 5182, 69364 Lyon, France
| | - Bernard Maigret
- LORIA, CNRS, Inria, University of Lorraine, 54506 Vandoeuvre-lès-Nancy, France; (V.L.); (D.M.-L.); (Y.K.); (I.C.d.B.); (M.-D.D.)
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, 34293 Montpellier, France
| |
Collapse
|
5
|
Wang Y, Xia B, Gao Z. A comprehensive review of current insights into the virulence factors of SARS-CoV-2. J Virol 2025; 99:e0204924. [PMID: 39878471 PMCID: PMC11852741 DOI: 10.1128/jvi.02049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached. Here, we review the potential impact of all proteins in SARS-CoV-2 on the viral pathogenic process and analyze the effects of their mutations on pathogenicity evolution. We aim to summarize which virus-encoded proteins are crucial in influencing viral pathogenicity, defined as disease severity following infection. Mutations in these key proteins, which are the virulence factors in SARS-CoV-2, may be the driving forces behind the evolution of viral pathogenicity. Mutations in the S protein can impact viral entry and fusogenicity. Mutations in proteins such as NSP2, NSP5, NSP14, and ORF7a can alter the virus's ability to suppress host protein synthesis and innate immunity. Mutations in NSP3, NSP4, NSP6, N protein, NSP5, and NSP12 may alter viral replication efficiency. The combined effects of mutations in the S protein and NSP6 can significantly reduce viral replication. In addition, various viral proteins, including ORF3a, ORF8, NSP4, Spike protein, N protein, and E protein, directly participate in the inflammatory process. Mutations in these proteins can modulate the levels of inflammation following infection. Collectively, these viral protein mutations can influence SARS-CoV-2 pathogenicity by impacting viral immune evasion, replication capacity, and the level of inflammation mediated by infection. In conclusion, the evolution of SARS-CoV-2 pathogenicity is likely determined by multiple virulence factors.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Song XD, Gao HX, Tan H, Xie YY, Zhang X, Zhang CM, Wang YL, Dai EH. Prevalence of infection and reinfection among health care workers in a hospital of Northern China between BA.5/BF.7 and XBB.1.5 wave. Am J Infect Control 2025; 53:228-238. [PMID: 39151826 DOI: 10.1016/j.ajic.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND To analyze the epidemiological characteristics of the SARS-CoV-2 infection and reinfection associated with the emergence of Omicron variant in Healthcare workers (HCWs). METHODS We enrolled 760 HCWs who received 2-4 vaccination doses of COVID-19 and followed by BA.5/BF.7 and/or XBB.1.5 breakthrough infections between December 2022 and July 2023. Serum sample from each individual were collected approximately 1,3 and 6 months after last exposure. IgM, IgG and Total antibodies against SARS-CoV-2 were measured by chemiluminescent immunoassay. Meanwhile, we created an Enterprise WeChat link for HCWs to self-report SARS-CoV-2 infections, symptoms and post COVID-19 conditions. RESULTS Our study revealed that the reinfection rate among HCWs reached 26.1%. The main symptoms were fever (91.2% vs 60.1%), cough (78.8% vs 58.0%), and sore throat (75.4% vs 59.6%) during infection and reinfection in Omicron BA.5/BF.7 and XBB.1.5 wave, and the interval for reinfection ranged from 91 to 210 days (median 152). Fatigue (23.6%), memory loss (18.8%) and coughing (18.6%) were the most prevalent long COVID symptoms, with a higher prevalence among female HCWs. CONCLUSIONS HCWs reinfection with SARS-CoV-2 causes milder symptoms, but high reinfection rate and short intervals. Strengthen infection prevention and control is crucial to mitigating infection risk and improving health services.
Collapse
Affiliation(s)
- Xue-Dong Song
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, Hebei, China
| | - Hui-Xia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hao Tan
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan-Yan Xie
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin Zhang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chen-Min Zhang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu-Ling Wang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Er-Hei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Campman SL, Boyd A, Schinkel J, Coyer L, Agyemang C, Galenkamp H, Koopman AD, Chilunga FP, Koopsen J, Zwinderman AH, Jurriaans S, Stronks K, Prins M. SARS-CoV-2 infection and vaccination status in six ethnic groups in Amsterdam, The Netherlands, May to November 2022. Epidemiol Infect 2025; 153:e23. [PMID: 39844374 PMCID: PMC11822580 DOI: 10.1017/s0950268825000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
We studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination status among six ethnic groups in Amsterdam, the Netherlands. We analysed participants of the Healthy Life in an Urban Setting cohort who were tested for SARS-CoV-2 spike protein antibodies between 17 May and 21 November 2022. We categorized participants with antibodies as only infected, only vaccinated (≥1 dose), or both infected and vaccinated, based on self-reported prior infection and vaccination status and previous seroprevalence data. We compared infection and vaccination status between ethnic groups using multivariable, multinomial logistic regression. Of the 1,482 included participants, 98.5% had SARS-CoV-2 antibodies (P between ethnic groups = 0.899). Being previously infected and vaccinated ranged from 41.5% (95% confidence interval (CI) = 35.0-47.9%) in the African Surinamese to 67.1% (95% CI = 59.1-75.0%) in the Turkish group. Compared to participants of Dutch origin, participants of South-Asian Surinamese (adjusted odds ratio (aOR) = 3.31, 95% CI = 1.50-7.31)), African Surinamese (aOR = 10.41, 95% CI = 5.17-20.94), Turkish (aOR = 3.74, 95% CI = 1.52-9.20), or Moroccan (aOR = 15.24, 95% CI = 6.70-34.65) origin were more likely to be only infected than infected and vaccinated, after adjusting for age, sex, household size, trust in the government's response to the pandemic, and month of study visit. SARS-CoV-2 infection and vaccination status varied across ethnic groups, particularly regarding non-vaccination. As hybrid immunity is most protective against coronavirus disease 2019, future vaccination campaigns should encourage vaccination uptake in specific demographic groups with only infection.
Collapse
Affiliation(s)
- Sophie L. Campman
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Anders Boyd
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Stichting HIV Monitoring, Amsterdam, The Netherlands
| | - Janke Schinkel
- Amsterdam UMC location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
| | - Liza Coyer
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - Anitra D.M. Koopman
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - Felix P. Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - Jelle Koopsen
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
| | - Aeilko H. Zwinderman
- Amsterdam UMC location University of Amsterdam, Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, The Netherlands
| | - Suzanne Jurriaans
- Amsterdam UMC location AMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Li Y, Li M, Xiao H, Liao F, Shen M, Ge W, Ou J, Liu Y, Chen L, Zhao Y, Wan P, Liu J, Chen J, Lan X, Wu S, Ding Q, Li G, Zhang Q, Pan P. The R203M and D377Y mutations of the nucleocapsid protein promote SARS-CoV-2 infectivity by impairing RIG-I-mediated antiviral signaling. PLoS Pathog 2025; 21:e1012886. [PMID: 39841800 PMCID: PMC11771877 DOI: 10.1371/journal.ppat.1012886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/27/2025] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood. SARS-CoV-2 N protein mutations were analyzed in Delta, Omicron, and original strains. Two mutations with a methionine (M) residue at site 203 and a tyrosine (Y) residue at site 377 of the N protein were found in Delta strain but not in Omicron and original strains, and promoted SARS-CoV-2 infection therein. Those mutations, R203M and D377Y, enhanced the inhibitory impact of N protein on the impairment of RIG-I-mediated antiviral signaling, such as IRF3 phosphorylation and IFN-β activation. The viral RNA-binding activity of N protein was promoted by these mutations, effectively attenuating the recognition and interaction of RIG-I with viral RNA compared to the original or other variants. The R203M/D377Y mutations thus enhanced the suppressive activity of the N protein on RIG-I-mediated interferon induction both in vitro and in vivo, which in turn promoted viral replication. This study helps to understand the variability of SARS-CoV-2 in regulating host immunity.
Collapse
Affiliation(s)
- Yongkui Li
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Moran Li
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Heng Xiao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaomiao Shen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiwei Ge
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junxian Ou
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuqing Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lumiao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yue Zhao
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pin Wan
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jinbiao Liu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jun Chen
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianwu Lan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaorong Wu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiwei Zhang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pan Pan
- State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Morgan G, Fung CYJ, Gingras AC, Colwill K, Briollais L, Frangione E, Wolday D, Qi F, Pasculescu A, Delgado-Brand M, Mailhot G, Tursun T, Arnoldo S, Bearss E, Binnie A, Borgundvaag B, Casalino S, Chowdhary S, Dagher M, Devine L, Elliott LT, Friedman SM, Khan Z, Lapadula E, MacDonald G, Mazzulli T, McLeod SL, Mighton C, Nirmalanathan K, Richardson D, Stern S, Taher A, Young J, Lerner-Ellis J, Taher J. Characterizing the SARS-CoV-2 antibody response and associations with patient factors: Serological profiling of participants enrolled in the GENCOV study. Clin Biochem 2025; 135:110859. [PMID: 39645018 DOI: 10.1016/j.clinbiochem.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION The GENCOV study sought to evaluate serological differences between individuals with differing COVID-19 severity and outcomes. We assessed the SARS-CoV-2 antibody response of GENCOV participants cross-sectionally 1-, 6-, and 12-months following COVID-19 diagnosis to identify patient factors associated with more robust and durable humoral immune responses. MATERIALS AND METHODS COVID-19 patients and a control cohort of vaccinated infection-naïve participants were recruited at hospital sites across the Greater Toronto Area in Ontario, Canada. Commercially available and laboratory-developed serological assays were used to characterize features of participants' antibody responses, including both binding and neutralizing antibodies. Regression analyses were performed to identify associations between participant characteristics and features of the SARS-CoV-2 antibody response. RESULTS Samples were obtained from participants 1- (n = 938), 6- (n = 842), and 12-months (n = 662) post-infection or vaccination. At all time points, vaccinees, and to a greater extent those who were both infected and vaccinated, had significantly elevated anti-spike antibody levels compared to unvaccinated participants. Increasing age and/or illness severity were associated with significantly higher antibody levels among unvaccinated participants. Among vaccines, those who were vaccinated after infection (i.e., hybrid immunity) had consistently higher antibody levels compared to participants who were infection-naïve or vaccinated before their infection (i.e., breakthrough infections). Additionally, receiving more vaccine doses and having a more recent vaccination were strongly associated with higher antibody levels across all time points. CONCLUSIONS Our findings highlight various patient factors, including vaccination, which contribute to robust, durable SARS-CoV-2 antibody responses. Overall, the findings presented here may inform future vaccine development and rollout plans.
Collapse
Affiliation(s)
- Gregory Morgan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chun Yiu Jordan Fung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Laurent Briollais
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Erika Frangione
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Dawit Wolday
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Melanie Delgado-Brand
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Genevieve Mailhot
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Saranya Arnoldo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; William Osler Health System, Brampton, ON L6R 3J, Canada
| | - Erin Bearss
- Mount Sinai Academic Family Health Team, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Alexandra Binnie
- Department of Critical Care, William Osler Health System, Etobicoke, ON M9V 1R8, Canada
| | - Bjug Borgundvaag
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON M5G 2A2, Canada
| | - Selina Casalino
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sunakshi Chowdhary
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Marc Dagher
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Luke Devine
- Division of General Internal Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steven M Friedman
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Emergency Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Zeeshan Khan
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada
| | - Elisa Lapadula
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Georgia MacDonald
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Microbiology, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Shelley L McLeod
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada; Schwartz/Reisman Emergency Medicine Institute, Sinai Health System, Toronto, ON M5G 2A2, Canada
| | - Chloe Mighton
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1A6, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada
| | | | | | - Seth Stern
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada
| | - Ahmed Taher
- Mackenzie Health, Richmond Hill, ON L4C 4Z3, Canada; Division of Emergency Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Juliet Young
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jordan Lerner-Ellis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Wu PH, Hong DC, Xie C, Zeng MS, Sun C. Enhancing immune defense against COVID-19: Alveolar delivery of mucosal vaccines. Sci Bull (Beijing) 2024; 69:3637-3639. [PMID: 39129115 DOI: 10.1016/j.scib.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Affiliation(s)
- Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong-Chun Hong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
11
|
Wang Y, Guo X, Chang S, Zhao L, Li A, Liu X, Ma H, Li Y. Mamastrovirus spike protein: Sequence and structural characterization as a basis for understanding cross-species transmission. Int J Biol Macromol 2024; 282:137366. [PMID: 39537052 DOI: 10.1016/j.ijbiomac.2024.137366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Astroviruses (AstVs) are notable for their propensity for cross-species transmission; however, the molecular determinants underlying this phenomenon remain poorly understood. The spike protein, which is responsible for host cell entry and is a major antigenic determinant, is hypothesized to play a pivotal role. In this study, we observed high sequence variability in the spike region of AstV. Structural analyses have revealed variability, arising from diverse evolutionary relationships, among AstVs of the same host origin. AstV spike proteins can be categorized into six groups, each of which encompasses AstVs from diverse hosts that exhibit high degrees of structural similarity. These six groups correspond to branches observed in the phylogenetic tree. Notably, the spike surface-exposed loops emerged as focal hotspots for B-cell epitopes across groups, with sequence variability that may contribute to immune evasion upon host switching. Differences in the spike structures of AstVs infecting the same host raise the possibility of distinct tissue tropisms and corresponding clinical manifestations. Collectively, our findings provide insights into the roles of spike protein similarities and immune epitope diversity in driving AstV cross-species transmission. Understanding these molecular mechanisms is crucial to predicting and mitigating the emergence of novel AstV strains.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Xu Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Shengbo Chang
- Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an 710071, PR China
| | - Liang Zhao
- Animal Husbandry Development Center of Lu'an, Lu'an, PR China
| | - Aolin Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Xunbi Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Hongfu Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, PR China.
| |
Collapse
|
12
|
Kapusta K, McGowan A, Banerjee S, Wang J, Kolodziejczyk W, Leszczynski J. Benchmark Investigation of SARS-CoV-2 Mutants' Immune Escape with 2B04 Murine Antibody: A Step Towards Unraveling a Larger Picture. Curr Issues Mol Biol 2024; 46:12550-12573. [PMID: 39590339 PMCID: PMC11592782 DOI: 10.3390/cimb46110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Even though COVID-19 is no longer the primary focus of the global scientific community, its high mutation rate (nearly 30 substitutions per year) poses a threat of a potential comeback. Effective vaccines have been developed and administered to the population, ending the pandemic. Nonetheless, reinfection by newly emerging subvariants, particularly the latest JN.1 strain, remains common. The rapid mutation of this virus demands a fast response from the scientific community in case of an emergency. While the immune escape of earlier variants was extensively investigated, one still needs a comprehensive understanding of how specific mutations, especially in the newest subvariants, influence the antigenic escape of the pathogen. Here, we tested comprehensive in silico approaches to identify methods for fast and accurate prediction of antibody neutralization by various mutants. As a benchmark, we modeled the complexes of the murine antibody 2B04, which neutralizes infection by preventing the SARS-CoV-2 spike glycoprotein's association with angiotensin-converting enzyme (ACE2). Complexes with the wild-type, B.1.1.7 Alpha, and B.1.427/429 Epsilon SARS-CoV-2 variants were used as positive controls, while complexes with the B.1.351 Beta, P.1 Gamma, B.1.617.2 Delta, B.1.617.1 Kappa, BA.1 Omicron, and the newest JN.1 Omicron variants were used as decoys. Three essentially different algorithms were employed: forced placement based on a template, followed by two steps of extended molecular dynamics simulations; protein-protein docking utilizing PIPER (an FFT-based method extended for use with pairwise interaction potentials); and the AlphaFold 3.0 model for complex structure prediction. Homology modeling was used to assess the 3D structure of the newly emerged JN.1 Omicron subvariant, whose crystallographic structure is not yet available in the Protein Database. After a careful comparison of these three approaches, we were able to identify the pros and cons of each method. Protein-protein docking yielded two false-positive results, while manual placement reinforced by molecular dynamics produced one false positive and one false negative. In contrast, AlphaFold resulted in only one doubtful result and a higher overall accuracy-to-time ratio. The reasons for inaccuracies and potential pitfalls of various approaches are carefully explained. In addition to a comparative analysis of methods, some mechanisms of immune escape are elucidated herein. This provides a critical foundation for improving the predictive accuracy of vaccine efficacy against new viral subvariants, introducing accurate methodologies, and pinpointing potential challenges.
Collapse
Affiliation(s)
- Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Allyson McGowan
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Santanu Banerjee
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, MS 39174, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Wojciech Kolodziejczyk
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
13
|
Baek K, Kim D, Kang BM, Kim J, Demirev AV, Lee S, Kim M, Kim S, Park S, Kim JI, Park MS, Lee Y, Kwon HJ. Parental Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Predominates Over Coinfected SARS-CoV-2 Delta, Producing Less Lethal Variants in a Long-Term Replication Mouse Model. J Med Virol 2024; 96:e70072. [PMID: 39564900 DOI: 10.1002/jmv.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
The evolution of SARS-CoV-2, which limits public control and treatment, seems to have occurred through multiple mechanisms, including recombination of cocirculating strains in hosts. However, insufficient experimental data have been obtained after coinfection. Therefore, we investigated the emergence of variants after coinfection with parental SARS-CoV-2 and the SARS-CoV-2 Delta. We found that fewer (approximately 50%) mutations accumulated in Calu-3 cells than in other cells after serial passaging. Previously, we established a long-term replication mouse model by infecting Calu-3 cell-derived xenograft tumors with SARS-CoV-2. Here, we utilized our model to investigate the outcome after coinfection. More diverse viral mutations, along with multiple high-frequency simultaneous mutations, were discovered in the tumors than during cell passaging. Viral isolates from the tumors showed no cytopathic effects and formed much smaller plaques. Phylogenetic analysis suggested that the genetic makeup of the variants remained largely the same as that of parental SARS-CoV-2 rather than the SARS-CoV-2 Delta. Viral challenge revealed that the isolates were less lethal than the parental SARS-CoV-2 and SARS-CoV-2 Delta strains. These findings suggest that parental SARS-CoV-2 predominates over the SARS-CoV-2 Delta when coinfected, but the SARS-CoV-2 Delta contributes to the evolution of parental SARS-CoV-2 variants toward better host adaptation without recombination.
Collapse
Affiliation(s)
- Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Bo Min Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jinsoo Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Atanas V Demirev
- Department of Microbiology, Vaccine Innovation Center, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sangyi Lee
- Department of Microbiology, Vaccine Innovation Center, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Suyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Vaccine Innovation Center, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Vaccine Innovation Center, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
14
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
15
|
Uyar Y, Mart Kömürcü SZ, Artik Y, Cesur NP, Tanrıverdi A, Şanlı K. The evaluation of SARS-CoV-2 mutations at the early stage of the pandemic in Istanbul population. Ann Clin Microbiol Antimicrob 2024; 23:93. [PMID: 39390548 PMCID: PMC11468081 DOI: 10.1186/s12941-024-00750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Determination of SARS-CoV-2 variant is significant to prevent the spreads of COVID-19 disease. METHODS We aimed to evaluate the variants of SARS-CoV-2 rate in positive patients in Kanuni Sultan Suleyman Training and Research Hospital (KSS-TRH), Istanbul, Türkiye between 1st January and 30th November 2021 by using RT-PCR method. RESULTS Herein, 825,169 patients were evaluated (male:58.53% and female:41.47%) whether COVID-19 positive or not [( +):21.3% and (-):78.7%] and 175,367 patient was described as positive (53.2%-female and 46.8%-male) by RT-PCR. COVID-19 positive rate is observed highest in the 6-15- and 66-75-year age range. The frequencies were obtained as SARS-CoV-2 positive (without mutation of B.1.1.7 [B.1.1.7 (U.K), E484K, L452R, B.1.351 (S. Africa/Brazil) spike mutations] as 66.1% (n: 115,899), B.1.1.7 Variant as 23.2% (n:40,686), Delta mutation (L452R) variant as 9.8% (n:17,182), B.1.351 variant as 0.8% (n:1370) and E484K as 0.1% (n: 230). In April 2021, general SARS-CoV-2 and B.1.1.7 variant were dominantly observed. Up to July 2021, B.1.617.2 (Delta variant/ Indian variant) and E484K has been not observed. B.1.351 variant of SARS-CoV-2 has been started in February 2021 at the rarest ratio and March 2021 is the top point. September 2021 is the pick point of E484K. African/Brazil variant of SARS-CoV-2 has been started in February 2021 at the rarest ratio and March 2021 is the top point. September 2021 is the pick point of E484K. When the gender type is compared within the variants, women were found to be more prevalent in all varieties. CONCLUSIONS The meaning of these mutations is very important to understand the transmission capacity of the COVID-19 disease, pandemic episode, and diagnosis of the virus with mutation types. Understanding the variant type is important for monitoring herd immunity and the spread of the disease.
Collapse
Affiliation(s)
- Yavuz Uyar
- Cerrahpaşa Faculty of Medicine, Department of Medical Microbiology, Istanbul University-Cerrahpaşa, 34147, Istanbul, Türkiye.
| | - Selen Zeliha Mart Kömürcü
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Yakup Artik
- Health Institutes of Türkiye (TUSEB), COVID-19 Diagnostic Center, Istanbul Provincial Directorate of Health, Republic of Türkiye Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Nevra Pelin Cesur
- Health Institutes of Türkiye (TUSEB), COVID-19 Diagnostic Center, Istanbul Provincial Directorate of Health, Republic of Türkiye Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Arzu Tanrıverdi
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Kamuran Şanlı
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Başakşehir Çam and Sakura City Hospital, Başakşehir, 34480, Istanbul, Türkiye
| |
Collapse
|
16
|
Kim DH, Lee J, Lee DY, Lee SH, Jeong JH, Kim JY, Kim J, Choi YK, Lee JB, Park SY, Choi IS, Lee SW, Youk S, Song CS. Intranasal Administration of Recombinant Newcastle Disease Virus Expressing SARS-CoV-2 Spike Protein Protects hACE2 TG Mice against Lethal SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:921. [PMID: 39204044 PMCID: PMC11359043 DOI: 10.3390/vaccines12080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged as a global outbreak in 2019, profoundly affecting both human health and the global economy. Various vaccine modalities were developed and commercialized to overcome this challenge, including inactivated vaccines, mRNA vaccines, adenovirus vector-based vaccines, and subunit vaccines. While intramuscular vaccines induce high IgG levels, they often fail to stimulate significant mucosal immunity in the respiratory system. We employed the Newcastle disease virus (NDV) vector expressing the spike protein of the SARS-CoV-2 Beta variant (rK148/beta-S), and evaluated the efficacy of intranasal vaccination with rK148/beta-S in K18-hACE2 transgenic mice. Intranasal vaccination with a low dose (106.0 EID50) resulted in an 86% survival rate after challenge with the SARS-CoV-2 Beta variant. Administration at a high dose (107.0 EID50) led to a reduction in lung viral load and 100% survival against the SARS-CoV-2 Beta and Delta variants. A high level of the SARS-CoV-2 spike-specific IgA was also induced in vaccinated mice lungs following the SARS-CoV-2 challenge. Our findings suggest that rK148/beta-S holds promise as an intranasal vaccine candidate that effectively induces mucosal immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jiho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA
| | - Da-Ye Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Hun Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Yun Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jiwon Kim
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Joong-Bok Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Seung-Young Park
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - In-Soo Choi
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Sang-Won Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju 28160, Republic of Korea
- Biomedical Research Institute, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (D.-H.K.)
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Garg R, Liu Q, Van Kessel J, Asavajaru A, Uhlemann EM, Joessel M, Hamonic G, Khatooni Z, Kroeker A, Lew J, Scruten E, Pennington P, Deck W, Prysliak T, Nickol M, Apel F, Courant T, Kelvin AA, Van Kessel A, Collin N, Gerdts V, Köster W, Falzarano D, Racine T, Banerjee A. Efficacy of a stable broadly protective subunit vaccine platform against SARS-CoV-2 variants of concern. Vaccine 2024; 42:125980. [PMID: 38769033 DOI: 10.1016/j.vaccine.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The emergence and ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid vaccine development platforms that can be updated to counteract emerging variants of currently circulating and future emerging coronaviruses. Here we report the development of a "train model" subunit vaccine platform that contains a SARS-CoV-2 Wuhan S1 protein (the "engine") linked to a series of flexible receptor binding domains (RBDs; the "cars") derived from SARS-CoV-2 variants of concern (VOCs). We demonstrate that these linked subunit vaccines when combined with Sepivac SWE™, a squalene in water emulsion (SWE) adjuvant, are immunogenic in Syrian hamsters and subsequently provide protection from infection with SARS-CoV-2 VOCs Omicron (BA.1), Delta, and Beta. Importantly, the bivalent and trivalent vaccine candidates offered protection against some heterologous SARS-CoV-2 VOCs that were not included in the vaccine design, demonstrating the potential for broad protection against a range of different VOCs. Furthermore, these formulated vaccine candidates were stable at 2-8 °C for up to 13 months post-formulation, highlighting their utility in low-resource settings. Indeed, our vaccine platform will enable the development of safe and broadly protective vaccines against emerging betacoronaviruses that pose a significant health risk for humans and agricultural animals.
Collapse
Affiliation(s)
- Ravendra Garg
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Akarin Asavajaru
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Eva-Maria Uhlemann
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Morgane Joessel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Glenn Hamonic
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Erin Scruten
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Paul Pennington
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - William Deck
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Tracy Prysliak
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Michaela Nickol
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Falko Apel
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Thomas Courant
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Nicolas Collin
- Vaccine Formulation Institute (VFI), Plan-Les-Ouates, Switzerland
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Trina Racine
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
18
|
Zhu Y, Gao Z, Feng X, Cheng L, Liu N, Liu C, Han S, Yang Q, Zou Q, Chong H, Zhang Z, Li M, Song G, He Y. Development of potent pan-coronavirus fusion inhibitors with a new design strategy. MedComm (Beijing) 2024; 5:e666. [PMID: 39070180 PMCID: PMC11283584 DOI: 10.1002/mco2.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024] Open
Abstract
Development of potent and broad-spectrum drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains one of the top priorities, especially in the cases of the emergence of mutant viruses and inability of current vaccines to prevent viral transmission. In this study, we have generated a novel membrane fusion-inhibitory lipopeptide IPB29, which is currently under clinical trials; herein, we report its design strategy and preclinical data. First, we surprisingly found that IPB29 with a rigid linker between the peptide sequence and lipid molecule had greatly improved α-helical structure and antiviral activity. Second, IPB29 potently inhibited a large panel of SARS-CoV-2 variants including the previously and currently circulating viruses, such as Omicron XBB.5.1 and EG.5.1. Third, IPB29 could also cross-neutralize the bat- and pangolin-isolated SARS-CoV-2-related CoVs (RatG13, PCoV-GD, and PCoV-GX) and other human CoVs (SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229E). Fourth, IPB29 administrated as an inhalation solution (IPB29-IS) in Syrian hamsters exhibited high therapeutic and preventive efficacies against SARS-CoV-2 Delta or Omicron variant. Fifth, the pharmacokinetic profiles and safety pharmacology of IPB29-IS were extensively characterized, providing data to support its evaluation in humans. In conclusion, our studies have demonstrated a novel design strategy for viral fusion inhibitors and offered an ideal drug candidate against SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhongcai Gao
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Xiaoli Feng
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Lin Cheng
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated Hospital, School of Medicine, Southern University of Science and TechnologyShenzhenGuangdongChina
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Liu
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Shaowei Han
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Qiaojiang Yang
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Qingcui Zou
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Zhang
- Institute of HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated Hospital, School of Medicine, Southern University of Science and TechnologyShenzhenGuangdongChina
| | - Minghua Li
- Kunming National High‐level Biosafety Research Center for Non‐Human PrimatesCenter for Biosafety Mega‐ScienceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Gengshen Song
- Research Institute of Youcare Pharmaceutical Group Co., LtdBeijingChina
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of PathogensNational Institute of Pathogen Biology and Center for AIDS ResearchChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
19
|
Suljič A, Zorec TM, Zakotnik S, Vlaj D, Kogoj R, Knap N, Petrovec M, Poljak M, Avšič-Županc T, Korva M. Efficient SARS-CoV-2 variant detection and monitoring with Spike Screen next-generation sequencing. Brief Bioinform 2024; 25:bbae263. [PMID: 38833323 PMCID: PMC11149657 DOI: 10.1093/bib/bbae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
The emergence and rapid spread of SARS-CoV-2 prompted the global community to identify innovative approaches to diagnose infection and sequence the viral genome because at several points in the pandemic positive case numbers exceeded the laboratory capacity to characterize sufficient samples to adequately respond to the spread of emerging variants. From week 10, 2020, to week 13, 2023, Slovenian routine complete genome sequencing (CGS) surveillance network yielded 41 537 complete genomes and revealed a typical molecular epidemiology with early lineages gradually being replaced by Alpha, Delta, and finally Omicron. We developed a targeted next-generation sequencing based variant surveillance strategy dubbed Spike Screen through sample pooling and selective SARS-CoV-2 spike gene amplification in conjunction with CGS of individual cases to increase throughput and cost-effectiveness. Spike Screen identifies variant of concern (VOC) and variant of interest (VOI) signature mutations, analyses their frequencies in sample pools, and calculates the number of VOCs/VOIs at the population level. The strategy was successfully applied for detection of specific VOC/VOI mutations prior to their confirmation by CGS. Spike Screen complemented CGS efforts with an additional 22 897 samples sequenced in two time periods: between week 42, 2020, and week 24, 2021, and between week 37, 2021, and week 2, 2022. The results showed that Spike Screen can be applied to monitor VOC/VOI mutations among large volumes of samples in settings with limited sequencing capacity through reliable and rapid detection of novel variants at the population level and can serve as a basis for public health policy planning.
Collapse
Affiliation(s)
- Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Doroteja Vlaj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
21
|
Monteiro MES, Lechuga GC, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Morel CM, Provance DW, De-Simone SG. Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes. Vaccines (Basel) 2024; 12:342. [PMID: 38675725 PMCID: PMC11055068 DOI: 10.3390/vaccines12040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.
Collapse
Affiliation(s)
- Maria E. S. Monteiro
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| |
Collapse
|
22
|
Tazarghi A, Bazoq S, Taziki Balajelini MH, Ebrahimi M, Hosseini SM, Razavi Nikoo H. Liver injury in COVID-19: an insight into pathobiology and roles of risk factors. Virol J 2024; 21:65. [PMID: 38491495 PMCID: PMC10943793 DOI: 10.1186/s12985-024-02332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
COVID-19 is a complex disease that can lead to fatal respiratory failure with extrapulmonary complications, either as a direct result of viral invasion in multiple organs or secondary to oxygen supply shortage. Liver is susceptible to many viral pathogens, and due to its versatile functions in the body, it is of great interest to determine how hepatocytes may interact with SARS-CoV-2 in COVID-19 patients. Liver injury is a major cause of death, and SARS-CoV-2 is suspected to contribute significantly to hepatopathy. Owing to the lack of knowledge in this field, further research is required to address these ambiguities. Therefore, we aimed to provide a comprehensive insight into host-virus interactions, underlying mechanisms, and associated risk factors by collecting results from epidemiological analyses and relevant laboratory experiments. Backed by an avalanche of recent studies, our findings support that liver injury is a sequela of severe COVID-19, and certain pre-existing liver conditions can also intensify the morbidity of SARS-CoV-2 infection in synergy. Notably, age, sex, lifestyle, dietary habits, coinfection, and particular drug regimens play a decisive role in the final outcome and prognosis as well. Taken together, our goal was to unravel these complexities concerning the development of novel diagnostic, prophylactic, and therapeutic approaches with a focus on prioritizing high-risk groups.
Collapse
Affiliation(s)
- Abbas Tazarghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sahar Bazoq
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hosein Taziki Balajelini
- Department of Otorhinolaryngology, Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mehran Hosseini
- Department of Physiology, School of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
23
|
Zhang H, Zhang Q, Liu K, Yuan Z, Xu X, Dong J. Elevated level of circulating calprotectin correlates with severity and high mortality in patients with COVID-19. Immun Inflamm Dis 2024; 12:e1212. [PMID: 38477671 PMCID: PMC10936233 DOI: 10.1002/iid3.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Patients with coronavirus disease-2019 (COVID-19) are characterized by hyperinflammation. Calprotectin (S100A8/S100A9) is a calcium- and zinc-binding protein mainly secreted by neutrophilic granulocytes or macrophages and has been suggested to be correlated with the severity and prognosis of COVID-19. AIM To thoroughly evaluate the diagnostic and prognostic utility of calprotectin in patients with COVID-19 by analyzing relevant studies. METHODS PubMed, Web of Science, and Cochrane Library were comprehensively searched from inception to August 1, 2023 to retrieve studies about the application of calprotectin in COVID-19. Useful data such as the level of calprotectin in different groups and the diagnostic efficacy of this biomarker for severe COVID-19 were extracted and aggregated by using Stata 16.0 software. RESULTS Fifteen studies were brought into this meta-analysis. First, the pooled standardized mean differences (SMDs) were used to estimate the differences in the levels of circulating calprotectin between patients with severe and non-severe COVID-19. The results showed an overall estimate of 1.84 (95% confidence interval [CI]: 1.09-2.60). Diagnostic information was extracted from 11 studies, and the pooled sensitivity and specificity of calprotectin for diagnosing severe COVID-19 were 0.75 (95% CI: 0.64-0.84) and 0.88 (95% CI: 0.79-0.94), respectively. The AUC was 0.89 and the pooled DOR was 18.44 (95% CI: 9.07-37.51). Furthermore, there was a strong correlation between elevated levels of circulating calprotectin and a higher risk of mortality outcomes in COVID-19 patients (odds ratio: 8.60, 95% CI: 2.17-34.12; p < 0.1). CONCLUSION This meta-analysis showed that calprotectin was elevated in patients with severe COVID-19, and this atypical inflammatory cytokine might serve as a useful biomarker to distinguish the severity of COVID-19 and predict the prognosis.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Qingyu Zhang
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Kun Liu
- Graduate School of EducationShandong Sport UniversityJinanShandong ProvinceChina
| | - Zenong Yuan
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Xiqiang Xu
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| | - Jun Dong
- Department of OrthopaedicsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong ProvinceChina
| |
Collapse
|
24
|
Chen L, He Y, Liu H, Shang Y, Guo G. Potential immune evasion of the severe acute respiratory syndrome coronavirus 2 Omicron variants. Front Immunol 2024; 15:1339660. [PMID: 38464527 PMCID: PMC10924305 DOI: 10.3389/fimmu.2024.1339660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. The Omicron variant (B.1.1.529) was first discovered in November 2021 in specimens collected from Botswana, South Africa. Omicron has become the dominant variant worldwide, and several sublineages or subvariants have been identified recently. Compared to those of other mutants, the Omicron variant has the most highly expressed amino acid mutations, with almost 60 mutations throughout the genome, most of which are in the spike (S) protein, especially in the receptor-binding domain (RBD). These mutations increase the binding affinity of Omicron variants for the ACE2 receptor, and Omicron variants may also lead to immune escape. Despite causing milder symptoms, epidemiological evidence suggests that Omicron variants have exceptionally higher transmissibility, higher rates of reinfection and greater spread than the prototype strain as well as other preceding variants. Additionally, overwhelming amounts of data suggest that the levels of specific neutralization antibodies against Omicron variants decrease in most vaccinated populations, although CD4+ and CD8+ T-cell responses are maintained. Therefore, the mechanisms underlying Omicron variant evasion are still unclear. In this review, we surveyed the current epidemic status and potential immune escape mechanisms of Omicron variants. Especially, we focused on the potential roles of viral epitope mutations, antigenic drift, hybrid immunity, and "original antigenic sin" in mediating immune evasion. These insights might supply more valuable concise information for us to understand the spreading of Omicron variants.
Collapse
Affiliation(s)
- Luyi Chen
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ying He
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Hongye Liu
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Yongjun Shang
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| | - Guoning Guo
- Department of Orthopedics, Kweichow MouTai Hospital, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
25
|
Kong X, Wang W, Zhong Y, Wang N, Bai K, Wu Y, Qi Q, Zhang Y, Liu X, Xie J. Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins. Front Nutr 2024; 11:1346510. [PMID: 38389797 PMCID: PMC10883054 DOI: 10.3389/fnut.2024.1346510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Xiaoyue Kong
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu Zhang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Boretti A. mRNA vaccine boosters and impaired immune system response in immune compromised individuals: a narrative review. Clin Exp Med 2024; 24:23. [PMID: 38280109 PMCID: PMC10821957 DOI: 10.1007/s10238-023-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
Over the last 24 months, there has been growing evidence of a correlation between mRNA COVID-19 vaccine boosters and increased prevalence of COVID-19 infection and other pathologies. Recent works have added possible causation to correlation. mRNA vaccine boosters may impair immune system response in immune compromised individuals. Multiple doses of the mRNA COVID-19 vaccines may result in much higher levels of IgG 4 antibodies, or also impaired activation of CD4 + and CD8 + T cells. The opportunity for mRNA vaccine boosters to impair the immune system response needs careful consideration, as this impacts the cost-to-benefit ratio of the boosters' practice.
Collapse
Affiliation(s)
- Alberto Boretti
- Melbourne Institute of Technology, The Argus, 288 La Trobe St, Melbourne, VIC 3000, Australia.
| |
Collapse
|
27
|
Ragan I, Perez J, Davenport W, Hartson L, Doyle B. UV-C Light Intervention as a Barrier against Airborne Transmission of SARS-CoV-2. Viruses 2024; 16:89. [PMID: 38257789 PMCID: PMC10820972 DOI: 10.3390/v16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND SARS-CoV-2 continues to impact human health globally, with airborne transmission being a significant mode of transmission. In addition to tools like vaccination and testing, countermeasures that reduce viral spread in indoor settings are critical. This study aims to assess the efficacy of UV-C light, utilizing the Violett sterilization device, as a countermeasure against airborne transmission of SARS-CoV-2 in the highly susceptible Golden Syrian hamster model. METHODS Two cohorts of naïve hamsters were subjected to airborne transmission from experimentally infected hamsters; one cohort was exposed to air treated with UV-C sterilization, while the other cohort was exposed to untreated air. RESULTS Treatment of air with UV-C light prevented the airborne transmission of SARS-CoV-2 from the experimentally exposed hamster to naïve hamsters. Notably, this protection was sustained over a multi-day exposure period during peak viral shedding by hamsters. CONCLUSIONS These findings demonstrate the efficacy of the UV-C light to mitigate against airborne SARS-CoV-2 transmission. As variants continue to emerge, UV-C light holds promise as a tool for reducing infections in diverse indoor settings, ranging from healthcare facilities to households. This study reinforces the urgency of implementing innovative methods to reduce airborne disease transmission and safeguard public health against emerging biological threats.
Collapse
Affiliation(s)
- Izabela Ragan
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80521, USA
| | | | | | - Lindsay Hartson
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | | |
Collapse
|
28
|
Tambe LAM, Mathobo P, Matume ND, Munzhedzi M, Edokpayi JN, Viraragavan A, Glanzmann B, Tebit DM, Mavhandu-Ramarumo LG, Street R, Johnson R, Kinnear C, Bessong PO. Molecular epidemiology of SARS-CoV-2 in Northern South Africa: wastewater surveillance from January 2021 to May 2022. Front Public Health 2023; 11:1309869. [PMID: 38174083 PMCID: PMC10764116 DOI: 10.3389/fpubh.2023.1309869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Wastewater-based genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides a comprehensive approach to characterize evolutionary patterns and distribution of viral types in a population. This study documents the molecular epidemiology of SARS-CoV-2, in Northern South Africa, from January 2021 to May 2022. Methodology A total of 487 wastewater samples were collected from the influent of eight wastewater treatment facilities and tested for SARS-CoV-2 RNA using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). SARS-CoV-2 positive samples with genome copies/mL ≥1,500 were subjected to allele-specific genotyping (ASG) targeting the Spike protein; 75 SARS-CoV-2 positive samples were subjected to whole genome sequencing (WGS) on the ATOPlex platform. Variants of concern (VoC) and lineages were assigned using the Nextclade and PangoLIN Software. Concordance for VoC between ASG and WGS analyses was determined. Sequence relationship was determined by phylogenetic analysis. Results Seventy-five percent (365/487) of the influent samples were positive for SARS-CoV-2 RNA. Delta and Omicron VoC were more predominant at a prevalence of 45 and 32%, respectively, and they were detected as early as January and February 2021, while Beta VoC was least detected at a prevalence of 5%. A total of 11/60 (18%) sequences were assigned lineages and clades only, but not a specific VoC name. Phylogenetic analysis was used to investigate the relationship of these sequences to other study sequences, and further characterize them. Concordance in variant assignment between ASG and WGS was seen in 51.2% of the study sequences. There was more intra-variant diversity among Beta VoC sequences; mutation E484K was absent. Three previously undescribed mutations (A361S, V327I, D427Y) were seen in Delta VoC. Discussion and Conclusion The detection of Delta and Omicron VoCs in study sites earlier in the outbreak than has been reported in other regions of South Africa highlights the importance of population-based approaches over individual sample-based approaches in genomic surveillance. Inclusion of non-Spike protein targets could improve the specificity of ASG, since all VoCs share similar Spike protein mutations. Finally, continuous molecular epidemiology with the application of sensitive technologies such as next generation sequencing (NGS) is necessary for the documentation of mutations whose implications when further investigated could enhance diagnostics, and vaccine development efforts.
Collapse
Affiliation(s)
- Lisa Arrah Mbang Tambe
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Phindulo Mathobo
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Nontokozo D. Matume
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mukhethwa Munzhedzi
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, University of Venda, Thohoyandou, South Africa
| | - Amsha Viraragavan
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Brigitte Glanzmann
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Denis M. Tebit
- Global Biomed Laboratories Inc., Lynchburg, VA, United States
| | - Lufuno Grace Mavhandu-Ramarumo
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Renee Street
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, Stellenbosch, South Africa
| | - Craig Kinnear
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Pascal Obong Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Center for Global Health Equity, School of Medicine, University of Virginia, Charlottesville, VA, United States
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
29
|
Li S, Guo J, Gu Y, Meng Y, He M, Yang S, Ge Z, Wang G, Yang Y, Jin R, Lu L, Liu P. Assessing airborne transmission risks in COVID-19 hospitals by systematically monitoring SARS-CoV-2 in the air. Microbiol Spectr 2023; 11:e0109923. [PMID: 37937995 PMCID: PMC10714815 DOI: 10.1128/spectrum.01099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Risk management and control of airborne transmission in hospitals is crucial in response to a respiratory virus pandemic. However, the formulation of these infection control measures is often based on epidemiological investigations, which are an indirect way of analyzing the transmission route of viruses. This can lead to careless omissions in infection prevention and control or excessively restrictive measures that increase the burden on healthcare workers. The study provides a starting point for standardizing transmission risk management in designated hospitals by systemically monitoring viruses in the air of typical spaces in COVID-19 hospitals. The negative results of 359 air samples in the clean and emergency zones demonstrated the existing measures to interrupt airborne transmission in a designated COVID-19 hospital. Some positive cases in the corridor of the contaminant zone during rounds and meal delivery highlighted the importance of monitoring airborne viruses for interrupting nosocomial infection.
Collapse
Affiliation(s)
- Shanglin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiazhen Guo
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yin Gu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yan Meng
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ming He
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shangzhi Yang
- Beijing Zijing Biotechnology Co., Ltd., Beijing, China
| | - Ziruo Ge
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guanjun Wang
- Beijing Zijing Biotechnology Co., Ltd., Beijing, China
| | - Yi Yang
- Beijing Zijing Biotechnology Co., Ltd., Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lianhe Lu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
30
|
Petcharat S, Supataragul A, Hirunpatrawong P, Torvorapanit P, Klungthong C, Chinnawirotpisan P, Ninwattana S, Thippamom N, Paitoonpong L, Suwanpimolkul G, Jantarabenjakul W, Buathong R, Joonlasak K, Manasatienkij W, Rattanatumhi K, Chantasrisawad N, Chumpa N, Cotrone TS, Fernandez S, Sriswasdi S, Wacharapluesadee S, Putcharoen O. High Transmission Rates of Early Omicron Subvariant BA.2 in Bangkok, Thailand. Adv Virol 2023; 2023:4940767. [PMID: 38094619 PMCID: PMC10719011 DOI: 10.1155/2023/4940767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024] Open
Abstract
The emergence of Omicron as the fifth variant of concern within the SARS-CoV-2 pandemic in late 2021, characterized by its rapid transmission and distinct spike gene mutations, underscored the pressing need for cost-effective and efficient methods to detect viral variants, especially given their evolving nature. This study sought to address this need by assessing the effectiveness of two SARS-CoV-2 variant classification platforms based on RT-PCR and mass spectrometry. The primary aim was to differentiate between Delta, Omicron BA.1, and Omicron BA.2 variants using 618 COVID-19-positive samples collected from Bangkok patients between November 2011 and March 2022. The analysis revealed that both BA.1 and BA.2 variants exhibited significantly higher transmission rates, up to 2-3 times, when compared to the Delta variant. This research presents a cost-efficient approach to virus surveillance, enabling a quantitative evaluation of variant-specific public health implications, crucial for informing and adapting public health strategies.
Collapse
Affiliation(s)
- Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Ananporn Supataragul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Piyapha Hirunpatrawong
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattama Torvorapanit
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Piyawan Chinnawirotpisan
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Sasiprapa Ninwattana
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Leilani Paitoonpong
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Gompol Suwanpimolkul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watsamon Jantarabenjakul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand
| | - Khajohn Joonlasak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Wudtichai Manasatienkij
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Khwankamon Rattanatumhi
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Napaporn Chantasrisawad
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntana Chumpa
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thomas S Cotrone
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
31
|
Hong Q, Bai Z, Tian D. SARS-CoV-2 booster immunization: stimulating de novo B-cell response and antibody generation. MedComm (Beijing) 2023; 4:e465. [PMID: 38116062 PMCID: PMC10728763 DOI: 10.1002/mco2.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Qiaonan Hong
- Department of Thoracic SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Lung Transplant Research LaboratoryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduChina
| | - Ziyi Bai
- Department of Thoracic SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Lung Transplant Research LaboratoryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduChina
| | - Dong Tian
- Department of Thoracic SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Lung Transplant Research LaboratoryInstitute of Thoracic Oncology, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
32
|
Liu Y, Yang Y, Wang G, Wang D, Shao PL, Tang J, He T, Zheng J, Hu R, Liu Y, Xu Z, Niu D, Lv J, Yang J, Xiao H, Wu S, He S, Tang Z, Liu Y, Tang M, Jiang X, Yuan J, Dai H, Zhang B. Multiplexed discrimination of SARS-CoV-2 variants via plasmonic-enhanced fluorescence in a portable and automated device. Nat Biomed Eng 2023; 7:1636-1648. [PMID: 37735541 DOI: 10.1038/s41551-023-01092-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Portable assays for the rapid identification of lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to aid large-scale efforts in monitoring the evolution of the virus. Here we report a multiplexed assay in a microarray format for the detection, via isothermal amplification and plasmonic-gold-enhanced near-infrared fluorescence, of variants of SARS-CoV-2. The assay, which has single-nucleotide specificity for variant discrimination, single-RNA-copy sensitivity and does not require RNA extraction, discriminated 12 lineages of SARS-CoV-2 (in three mutational hotspots of the Spike protein) and detected the virus in nasopharyngeal swabs from 1,034 individuals at 98.8% sensitivity and 100% specificity, with 97.6% concordance with genome sequencing in variant discrimination. We also report a compact, portable and fully automated device integrating the entire swab-to-result workflow and amenable to the point-of-care detection of SARS-CoV-2 variants. Portable, rapid, accurate and multiplexed assays for the detection of SARS-CoV-2 variants and lineages may facilitate variant-surveillance efforts.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Pan-Lin Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tingzhen He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jintao Zheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dan Niu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuai Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Shuang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhongrong Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yan Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | | | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
33
|
Sun C, Liu YT, Kang YF, Xie C, Li SX, Lu YT, Zeng MS. Elucidation of the neutralizing antibody evasion of emergent SARS-CoV-2 Omicron sub-lineages using structural analysis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2935-2938. [PMID: 37673846 DOI: 10.1007/s11427-023-2393-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shu-Xin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Tong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Chen J, Wang Y, Yu H, Wang R, Yu X, Huang H, Ai L, Zhang T, Huang B, Liu M, Ding T, Luo Y, Chen P. Epidemiological and laboratory characteristics of Omicron infection in a general hospital in Guangzhou: a retrospective study. Front Public Health 2023; 11:1289668. [PMID: 38094227 PMCID: PMC10716230 DOI: 10.3389/fpubh.2023.1289668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has emerged as a major global public health concern. In November 2022, Guangzhou experienced a significant outbreak of Omicron. This study presents detailed epidemiological and laboratory data on Omicron infection in a general hospital in Guangzhou between December 1, 2022, and January 31, 2023. Out of the 55,296 individuals tested, 12,346 were found to be positive for Omicron. The highest prevalence of positive cases was observed in the 20 to 39 age group (24.6%), while the lowest was in children aged 0 to 9 years (1.42%). Females had a higher incidence of infection than males, accounting for 56.6% of cases. The peak time of Omicron infection varied across different populations. The viral load was higher in older adults and children infected with Omicron, indicating age-related differences. Spearman's rank correlation analysis revealed positive correlations between Ct values and laboratory parameters in hospitalized patients with Omicron infection. These parameters included CRP (rs = 0.059, p = 0.009), PT (rs = 0.057, p = 0.009), INR (rs = 0.055, p = 0.013), AST (rs = 0.067, p = 0.002), LDH (rs = 0.078, p = 0.001), and BNP (rs = 0.063, p = 0.014). However, EO (Eosinophil, rs = -0.118, p < 0.001), BASO (basophil, rs = -0.093, p < 0.001), and LY (lymphocyte, rs = -0.069, p = 0.001) counts showed negative correlations with Ct values. Although statistically significant, the correlation coefficients between Ct values and these laboratory indices were very low. These findings provide valuable insights into the epidemiology of Omicron infection, including variations in Ct values across gender and age groups. However, caution should be exercised when utilizing Ct values in clinical settings for evaluating Omicron infection.
Collapse
Affiliation(s)
- Jingrou Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Yu
- Department of Radiation Hygiene and Protection, Guangdong Province Prevention and Treatment Center for Occupational Diseases, Guangzhou, China
| | - Ruizhi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Ai
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianruo Zhang
- Department of Medical Laboratory Technology, Medical College of Jiaying University, Meizhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Luo
- Division of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Equestre M, Marcantonio C, Marascio N, Centofanti F, Martina A, Simeoni M, Suffredini E, La Rosa G, Bonanno Ferraro G, Mancini P, Veneri C, Matera G, Quirino A, Costantino A, Taffon S, Tritarelli E, Campanella C, Pisani G, Nisini R, Spada E, Verde P, Ciccaglione AR, Bruni R. Characterization of SARS-CoV-2 Variants in Military and Civilian Personnel of an Air Force Airport during Three Pandemic Waves in Italy. Microorganisms 2023; 11:2711. [PMID: 38004723 PMCID: PMC10672769 DOI: 10.3390/microorganisms11112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
We investigated SARS-CoV-2 variants circulating, from November 2020 to March 2022, among military and civilian personnel at an Air Force airport in Italy in order to classify viral isolates in a potential hotspot for virus spread. Positive samples were subjected to Next-Generation Sequencing (NGS) of the whole viral genome and Sanger sequencing of the spike coding region. Phylogenetic analysis classified viral isolates and traced their evolutionary relationships. Clusters were identified using 70% cut-off. Sequencing methods yielded comparable results in terms of variant classification. In 2020 and 2021, we identified several variants, including B.1.258 (4/67), B.1.177 (9/67), Alpha (B.1.1.7, 9/67), Gamma (P.1.1, 4/67), and Delta (4/67). In 2022, only Omicron and its sub-lineage variants were observed (37/67). SARS-CoV-2 isolates were screened to detect naturally occurring resistance in genomic regions, the target of new therapies, comparing them to the Wuhan Hu-1 reference strain. Interestingly, 2/30 non-Omicron isolates carried the G15S 3CLpro substitution responsible for reduced susceptibility to protease inhibitors. On the other hand, Omicron isolates carried unusual substitutions A1803V, D1809N, and A949T on PLpro, and the D216N on 3CLpro. Finally, the P323L substitution on RdRp coding regions was not associated with the mutational pattern related to polymerase inhibitor resistance. This study highlights the importance of continuous genomic surveillance to monitor SARS-CoV-2 evolution in the general population, as well as in restricted communities.
Collapse
Affiliation(s)
- Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Cinzia Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Nadia Marascio
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Federica Centofanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Antonio Martina
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Matteo Simeoni
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.L.R.); (G.B.F.); (P.M.); (C.V.)
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Sciences, “Magna Grecia” University, 88100 Catanzaro, Italy; (G.M.); (A.Q.)
| | - Angela Costantino
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Stefania Taffon
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Elena Tritarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Carmelo Campanella
- Clinical Analysis and Molecular Biology Laboratory Rome, Institute of Aerospace Medicine, 00185 Rome, Italy;
| | - Giulio Pisani
- Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.S.); (G.P.)
| | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Enea Spada
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Paola Verde
- Aerospace Medicine Department, Aerospace Test Division, Militay Airport Mario De Bernardi, Pratica di Mare, 00040 Rome, Italy;
| | - Anna Rita Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.M.); (F.C.); (A.C.); (S.T.); (E.T.); (R.N.); (E.S.); (A.R.C.); (R.B.)
| |
Collapse
|
36
|
Nakhaie M, Ghoreshi ZAS, Rukerd MRZ, Askarpour H, Arefinia N. Novel Mutations in the Non-Structure Protein 2 of SARS-CoV-2. Mediterr J Hematol Infect Dis 2023; 15:e2023059. [PMID: 38028396 PMCID: PMC10631707 DOI: 10.4084/mjhid.2023.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Mutation in the genome of SARS-CoV-2 may play a role in immune evasion, pathogenicity, and speed of its transmission. Our investigation aimed to evaluate the mutations that exist in the NSP2. Materials and Method RNA was extracted from nasopharyngeal swabs from 100 COVID-19 patients. RT-PCR was performed on all samples using NSP2-specific primers. Following gel electrophoresis, the bands were cut, purified, and sequenced using the Sanger method. After sequencing, 90 sequences could be used for further analysis. Bioinformatics analysis was conducted to investigate the effect of mutations on protein structure, stability, prediction of homology models, and phylogeny tree. Results The patients' mean age was 51.08. The results revealed that 8 of the 17 NSP2 mutations (R207C, T224I, G262V, T265I, K337D, N348S, G392D, and I431M) were missense. One deletion was also found in NSP2. Among NSP2 missense mutations studied, K337D and G392D increased structural stability while the others decreased it. The homology-designed models demonstrated that the homologies were comparable to the sequences of the Wuhan-HU-1 virus. Conclusion Our study suggested that the mutations K337D and G392D modulate the stability of NSP2, and tracking viral evolution should be implemented and vaccine development updated.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh-al-sadat Ghoreshi
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedyeh Askarpour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Bio Environmental Health Hazard Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
37
|
Prasad R, Ajith H, Kumar Chandrakumaran N, Dnyaneshwar Khangar P, Mohan A, Nelson-Sathi S. In silico study identifies peptide inhibitors that negate the effect of non-synonymous mutations in major drug targets of SARS-CoV-2 variants. J Biomol Struct Dyn 2023; 41:9551-9561. [PMID: 36377464 DOI: 10.1080/07391102.2022.2143426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Since its advent in December 2019, SARS-CoV-2 has diverged into multiple variants with differing levels of virulence owing to the accumulation of mutations in its genome. The structural changes induced by non-synonymous mutations in major drug targets of the virus are known to alter the binding of potential antagonistic inhibitors. Here, we analyzed the effects of non-synonymous mutations in major targets of SARS-CoV-2 in response to potential peptide inhibitors. We screened 12 peptides reported to have anti-viral properties against RBD and 5 peptides against Mpro of SARS-CoV-2 variants using molecular docking and simulation approaches. The mutational landscape of RBD among SARS-CoV-2 variants had 21 non-synonymous mutations across 18 distinct sites. Among these, 14 mutations were present in the RBM region directly interacting with the hACE2 receptor. However, Only 3 non-synonymous mutations were observed in Mpro. We found that LCB1 - a de novo-synthesized peptide has the highest binding affinity to RBD despite non-synonymous mutations in variants and engages key residues of RBD-hACE2 interaction such as K417, E484, N487, and N501. Similarly, an antimicrobial peptide; 2JOS, was identified against Mpro with high binding affinity as it interacts with key residues in dimerization sites such as E166 and F140 crucial for viral replication. MD simulations affirm the stability of RBD-LCB1 and Mpro-2JOS complexes with an average RMSD of 1.902 and 2.476 respectively. We ascertain that LCB1 and 2JOS peptides are promising inhibitors to combat emerging variants of SARS-CoV-2 and thus warrant further investigations using in-vitro and in-vivo analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshny Prasad
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Harikrishnan Ajith
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Anand Mohan
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Shijulal Nelson-Sathi
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
38
|
Chen X, Liu B, Li C, Wang Y, Geng S, Du X, Weng J, Lai P. Stem cell-based therapy for COVID-19. Int Immunopharmacol 2023; 124:110890. [PMID: 37688914 DOI: 10.1016/j.intimp.2023.110890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
While The World Health Organization (WHO) has announced that COVID-19 is no longer a public health emergency of international concern(PHEIC), the risk of reinfection and new emerging variants still makes it crucial to study and work towards the prevention of COVID-19. Stem cell and stem cell-like derivatives have shown some promising results in clinical trials and preclinical studies as an alternative treatment option for the pulmonary illnesses caused by the COVID-19 and can be used as a potential vaccine. In this review, we will systematically summarize the pathophysiological process and potential mechanisms underlying stem cell-based therapy in COVID-19, and the registered COVID-19 clinical trials, and engineered extracellular vesicle as a potential vaccine for preventing COVID-19.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
39
|
Du T, Gao C, Lu S, Liu Q, Yang Y, Yu W, Li W, Qiao Sun Y, Tang C, Wang J, Gao J, Zhang Y, Luo F, Yang Y, Yang YG, Peng X. Differential Transcriptomic Landscapes of SARS-CoV-2 Variants in Multiple Organs from Infected Rhesus Macaques. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1014-1029. [PMID: 37451436 PMCID: PMC10928377 DOI: 10.1016/j.gpb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the persistent coronavirus disease 2019 (COVID-19) pandemic, which has resulted in millions of deaths worldwide and brought an enormous public health and global economic burden. The recurring global wave of infections has been exacerbated by growing variants of SARS-CoV-2. In this study, the virological characteristics of the original SARS-CoV-2 strain and its variants of concern (VOCs; including Alpha, Beta, and Delta) in vitro, as well as differential transcriptomic landscapes in multiple organs (lung, right ventricle, blood, cerebral cortex, and cerebellum) from the infected rhesus macaques, were elucidated. The original strain of SARS-CoV-2 caused a stronger innate immune response in host cells, and its VOCs markedly increased the levels of subgenomic RNAs, such as N, Orf9b, Orf6, and Orf7ab, which are known as the innate immune antagonists and the inhibitors of antiviral factors. Intriguingly, the original SARS-CoV-2 strain and Alpha variant induced larger alteration of RNA abundance in tissues of rhesus monkeys than Beta and Delta variants did. Moreover, a hyperinflammatory state and active immune response were shown in the right ventricles of rhesus monkeys by the up-regulation of inflammation- and immune-related RNAs. Furthermore, peripheral blood may mediate signaling transmission among tissues to coordinate the molecular changes in the infected individuals. Collectively, these data provide insights into the pathogenesis of COVID-19 at the early stage of infection by the original SARS-CoV-2 strain and its VOCs.
Collapse
Affiliation(s)
- Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chunchun Gao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Qianlan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Wenjie Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yong Qiao Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jiahong Gao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
40
|
Pondé RADA. Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology 2023; 587:109850. [PMID: 37562286 DOI: 10.1016/j.virol.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Emerging in South Africa, SARS-CoV-2 Omicron variant was marked by the expression of an exaggerated number of mutations throughout its genome and by the emergence of subvariants, whose attributes developed by them have been associated with amino acid exchanges that occur mainly in the RBM region of the spike protein. The RBM comprises a region within the RBD and is directly involved in the SARS-CoV-2 spike protein interaction with the host cell ACE2 receptor, during the infection mechanism and viral transmission. Defined as the region from aa 437 to aa 508, there are several residues in certain positions that interact directly with the human ACE-2 receptor during these processes. The occurrence of amino acid exchanges in these positions causes physicochemical alterations in the SARS-CoV-2 spike protein, which confer additional advantages and attributes to the agent. In addition, these exchanges serve as a basis for the characterization of new variants and subvariants of SARS-CoV-2. In this review, the amino acid exchanges that have occurred in the RBM of the subvariants BA.1 to BA.5 of SARS-CoV-2 that emerged from the Omicron are described. The physicochemical effects caused by them on spike protein are also described, as well as their influence on the biological properties and attributes developed by the subvariants BA.1, BA.2, BA.3, BA.4 and BA.5.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
41
|
Peissert F, Pedotti M, Corbellari R, Simonelli L, De Gasparo R, Tamagnini E, Plüss L, Elsayed A, Matasci M, De Luca R, Cassaniti I, Sammartino JC, Piralla A, Baldanti F, Neri D, Varani L. Adapting Neutralizing Antibodies to Viral Variants by Structure-Guided Affinity Maturation Using Phage Display Technology. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300088. [PMID: 37829677 PMCID: PMC10566804 DOI: 10.1002/gch2.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 10/14/2023]
Abstract
Neutralizing monoclonal antibodies have achieved great efficacy and safety for the treatment of numerous infectious diseases. However, their neutralization potency is often rapidly lost when the target antigen mutates. Instead of isolating new antibodies each time a pathogen variant arises, it can be attractive to adapt existing antibodies, making them active against the new variant. Potential benefits of this approach include reduced development time, cost, and regulatory burden. Here a methodology is described to rapidly evolve neutralizing antibodies of proven activity, improving their function against new pathogen variants without losing efficacy against previous ones. The reported procedure is based on structure-guided affinity maturation using combinatorial mutagenesis and phage display technology. Its use against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is demonstrated, but it is suitable for any other pathogen. As proof of concept, the method is applied to CoV-X2, a human bispecific antibody that binds with high affinity to the early SARS-CoV-2 variants but lost neutralization potency against Delta. Antibodies emerging from the affinity maturation selection exhibit significantly improved neutralization potency against Delta and no loss of efficacy against the other viral sequences tested. These results illustrate the potential application of structure-guided affinity maturation in facilitating the rapid adaptation of neutralizing antibodies to pathogen variants.
Collapse
Affiliation(s)
| | - Mattia Pedotti
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | | | - Luca Simonelli
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | - Raoul De Gasparo
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | - Elia Tamagnini
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| | - Louis Plüss
- Philochem AGLibernstrasse 3Otelfingen8112Switzerland
| | | | | | | | - Irene Cassaniti
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
| | - Jose’ Camilla Sammartino
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
| | - Antonio Piralla
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
| | - Fausto Baldanti
- Molecular Virology UnitMicrobiology and Virology DepartmentFondazione IRCCS Policlinico San MatteoPavia27100Italy
- Department of Clinical Surgical Diagnostic and Pediatric SciencesUniversità degli Studi di PaviaPavia27100Italy
| | - Dario Neri
- Philochem AGLibernstrasse 3Otelfingen8112Switzerland
- Philogen SpALocalità Bellaria 35Sovicille (SI)53018Italy
| | - Luca Varani
- Institute for Research in BiomedicineUniversità della Svizzera italiana (USI)Bellinzona6500Switzerland
| |
Collapse
|
42
|
Yi H, Wei S, Song J, Xiao M, Wang L, Zhao Q. Latent class analysis of healthcare workers' perceptions of workers' job demands in mobile cabin hospitals in China. Prev Med 2023; 175:107678. [PMID: 37619950 DOI: 10.1016/j.ypmed.2023.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Owing to the outbreak of the Omicron variant of SARS-CoV-2 in Shanghai, China, partitioned dynamic closure and control management plans were implemented on March 28, 2022. This created huge emergency pressure on Shanghai's medical and healthcare systems. However, the perceptions of job demands of healthcare workers (HCWs) and classification of frontline HCWs in mobile cabin hospitals are unknown. METHODS In this study, we investigated the job demands of 1223 frontline HCWs working in mobile cabin hospitals during the COVID-19 pandemic April 2022 to May 2022. We performed latent class analysis to identify classification features of job demands. A binary multivariate logistic regression model was used to explore the influencing factors of latent class. RESULTS The total mean job demand score was 132.26 (SD = 9.53), indicating a high level of job demand. A two-class model provided the best fit. The two classes were titled "middle-demand group" (17.66%) and "high-demand group" (82.34%). A regression analysis suggested that female HCWs, HCWs satisfied with the doctor/nurse-patient relationship, HCWs who believed that the risk of working in mobile cabin hospitals was high, and HCWs without physical discomfort during the pandemic were more likely to be in the "high-demand group". CONCLUSION Characteristics of the "high-demand group" subtype suggest that attention should be paid to the physical condition of frontline HCWs and the job demands of female HCWs. Managers should strengthen the training of HCWs in terms of their communication skills as well as their knowledge and technical skills to aid epidemic prevention and control.
Collapse
Affiliation(s)
- Hongmei Yi
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sha Wei
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyan Song
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingzhao Xiao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Zhao
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
43
|
Xie G, Wang L, Zhang J. How are countries responding differently to COVID-19: a systematic review of guidelines on isolation measures. Front Public Health 2023; 11:1190519. [PMID: 37719732 PMCID: PMC10502310 DOI: 10.3389/fpubh.2023.1190519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Isolation strategies have been implemented in numerous countries worldwide during the ongoing community transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, various countries and organizations have implemented their isolation measures at varying intensities, even during the same period. Therefore, we systematically reviewed the key information contained in currently available guidelines regarding the isolation of the general population, aiming to better identify the heterogeneity of the current isolation strategies. Methods We conducted searches in four evidence-based medicine (EBM) databases and five guideline websites to identify guidelines, guidance, protocols, and policy documents published by authoritative advisory bodies or healthcare organizations, which provided information on the implementation of isolation for general populations with COVID-19. One author extracted data using a standardized data extraction checklist, and a second author double-checked all extractions for completeness and correctness. Discrepancies were resolved through discussion. The information extracted from the included articles was summarized both narratively and using tables. Results We included 15 articles that provided information on isolation measures recommended by nine different countries and organizations. The included articles consistently recommended isolating individuals with a positive COVID-19 test, regardless of the presence of symptoms. However, there were variations in the duration of isolation, and substantial differences also existed in the criteria for ending the isolation of COVID-19 patients. Conclusion Different countries and organizations have substantial differences in their isolation policies. This reminds us that scientifically sound guidelines on isolation that balance the risk of prematurely ending isolation with the burden of prolonged isolation are a crucial topic of discussion when faced with a pandemic.
Collapse
Affiliation(s)
- Guangmei Xie
- Reproductive Medicine Center, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
- Reproductive Medicine Center, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Reproductive Medicine Center, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
- Reproductive Medicine Center, Gansu Provincial Central Hospital, Lanzhou, Gansu, China
| | - Jun Zhang
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Hojo-Souza NS, Freitas VLDS, Guidoni DL, de Souza FSH. Clinical symptom profile of hospitalized COVID-19 Brazilian patients according to SARS-CoV-2 variants. Epidemiol Health 2023; 45:e2023079. [PMID: 37654165 PMCID: PMC10867512 DOI: 10.4178/epih.e2023079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the prevalence of the main symptoms in Brazilian coronavirus disease 2019 (COVID-19) patients hospitalized during 4 distinct waves, based on their infection with different severe acute respiratory disease coronavirus 2 (SARS-CoV-2) variants. METHODS This study included hospitalized patients who tested positive for SARS-CoV-2 during 15 weeks around the peak of each of 4 waves: W1, ancestral strain/B.1 lineage (May 31 to September 12, 2020); W2, Gamma/P.1 variant (January 31 to May 15, 2021); W3, Omicron variant (December 5, 2021 to March 19, 2022); and W4, BA.4/BA.5 subvariants (May 22 to September 3, 2022). Symptom data were extracted from the Brazilian Severe Acute Respiratory Syndrome Database. Relative risks were calculated, and an analysis of symptom networks was performed. RESULTS Patients who were hospitalized during the prevalence of the Gamma/P.1 variant demonstrated a higher risk, primarily for symptoms such as fatigue, abdominal pain, low oxygen saturation, and sore throat, than patients hospitalized during the first wave. Conversely, patients who were hospitalized during the predominance of the Omicron variant exhibited a lower relative risk, particularly for symptoms such as loss of smell, loss of taste, diarrhea, fever, respiratory distress, and dyspnea. Similar results were observed in COVID-19 patients who were hospitalized during the wave of the Omicron subvariants BA.4/BA.5. A symptom network analysis, conducted to explore co-occurrence patterns among different variants, revealed significant differential profiles across the 4 waves, with the most notable difference observed between the W2 and W4 networks. CONCLUSIONS Overall, the relative risks and patterns of symptom co-occurrence associated with different SARS-CoV-2 variants may reflect disease severity.
Collapse
|
45
|
Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Probing conformational landscapes of binding and allostery in the SARS-CoV-2 omicron variant complexes using microsecond atomistic simulations and perturbation-based profiling approaches: hidden role of omicron mutations as modulators of allosteric signaling and epistatic relationships. Phys Chem Chem Phys 2023; 25:21245-21266. [PMID: 37548589 PMCID: PMC10536792 DOI: 10.1039/d3cp02042h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.3 and BA.4/BA.5 spike protein complexes with the ACE2 host receptor using molecular dynamics simulations and perturbation-based network profiling approaches. Microsecond atomistic simulations provided a detailed characterization of the conformational landscapes and revealed the increased thermodynamic stabilization of the BA.2 variant which can be contrasted with the BA.4/BA.5 variants inducing a significant mobility of the complexes. Using the dynamics-based mutational scanning of spike residues, we identified structural stability and binding affinity hotspots in the Omicron complexes. Perturbation response scanning and network-based mutational profiling approaches probed the effect of the Omicron mutations on allosteric interactions and communications in the complexes. The results of this analysis revealed specific roles of Omicron mutations as conformationally plastic and evolutionary adaptable modulators of binding and allostery which are coupled to the major regulatory positions through interaction networks. Through perturbation network scanning of allosteric residue potentials in the Omicron variant complexes performed in the background of the original strain, we characterized regions of epistatic couplings that are centered around the binding affinity hotspots N501Y and Q498R. Our results dissected the vital role of these epistatic centers in regulating protein stability, efficient ACE2 binding and allostery which allows for accumulation of multiple Omicron immune escape mutations at other sites. Through integrative computational approaches, this study provides a systematic analysis of the effects of Omicron mutations on thermodynamics, binding and allosteric signaling in the complexes with ACE2 receptor.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA.
| |
Collapse
|
46
|
Yue C, Wang P, Tian J, Gao GF, Liu K, Liu WJ. Seeing the T cell Immunity of SARS-CoV-2 and SARS-CoV: Believing the Epitope-Oriented Vaccines. Int J Biol Sci 2023; 19:4052-4060. [PMID: 37705735 PMCID: PMC10496500 DOI: 10.7150/ijbs.80468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 stimulated vigorous research efforts in immunology and vaccinology. In addition to innate immune responses, both virus-specific humoral and cellular immune responses are of importance for viral clearance. T cell epitopes play a central role in T cell-based immune responses. Herein, we summarized the peptide/major histocompatibility complex (pMHC) structures of the SARS-CoV-2-derived T cell epitopes available in the Protein Data Bank (PDB) and proposed the challenge and opportunities for using of T cell epitopes in future vaccine development efforts. A total of 27 SARS-CoV-2 related pMHC structures and five complexes with T cell receptors were retrieved. The peptides are mainly distributed on spike (S), nucleocapsid (N), and ORF1ab proteins. Most peptides are conserved among variants of concerns (VOCs) for SARS-CoV-2, except for several mutated peptides located in the S protein. The structures of human leukocyte antigen (HLA) complexed with seven epitopes derived from SARS-CoV were also retrieved, which showed a potential cross T cell immunity with SARS-CoV-2. Structural studies of antigenic peptides from SARS-CoV-2 and SARS-CoV help to visualize the processes and the mechanisms of cross T cell immunity. T cell epitope-oriented vaccines are potential next-generation vaccines for SARS-CoV-2, which are worthy of further investigation.
Collapse
Affiliation(s)
- Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyan Wang
- Department of Pathogen Biology & Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
47
|
Montero S, Urrunaga-Pastor D, Soto-Becerra P, Cvetkovic-Vega A, Guillermo-Roman M, Figueroa-Montes L, Sagástegui AA, Alvizuri-Pastor S, Contreras-Macazana RM, Apolaya-Segura M, Díaz-Vélez C, Maguiña JL. Humoral response after a BNT162b2 heterologous third dose of COVID-19 vaccine following two doses of BBIBP-CorV among healthcare personnel in Peru. Vaccine X 2023; 14:100311. [PMID: 37207103 PMCID: PMC10162476 DOI: 10.1016/j.jvacx.2023.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023] Open
Abstract
Background The inactivated virus vaccine, BBIBP-CorV, was principally distributed across low- and middle-income countries as primary vaccination strategy to prevent poor COVID-19 outcomes. Limited information is available regarding its effect on heterologous boosting. We aim to evaluate the immunogenicity and reactogenicity of a third booster dose of BNT162b2 following a double BBIBP-CorV regime. Methods We conducted a cross-sectional study among healthcare providers from several healthcare facilities of the Seguro Social de Salud del Perú - ESSALUD. We included participants two-dose BBIBP-CorV vaccinated who presented a three-dose vaccination card at least 21 days passed since the vaccinees received their third dose and were willing to provide written informed consent. Antibodies were determined using LIAISON® SARS-CoV-2 TrimericS IgG (DiaSorin Inc., Stillwater, USA). Factors potentially associated with immunogenicity, and adverse events, were considered. We used a multivariable fractional polynomial modeling approach to estimate the association between anti-SARS-CoV-2 IgG antibodies' geometric mean (GM) ratios and related predictors. Results We included 595 subjects receiving a third dose with a median (IQR) age of 46 [37], [54], from which 40% reported previous SARS-CoV-2 infection. The overall geometric mean (IQR) of anti-SARS-CoV-2 IgG antibodies was 8,410 (5,115 - 13,000) BAU/mL. Prior SARS-CoV-2 history and full/part-time in-person working modality were significantly associated with greater GM. Conversely, time from boosting to IgG measure was associated with lower GM levels. We found 81% of reactogenicity in the study population; younger age and being a nurse were associated with a lower incidence of adverse events. Conclusions Among healthcare providers, a booster dose of BNT162b2 following a full BBIBP-CorV regime provided high humoral immune protection. Thus, SARS-CoV-2 previous exposure and working in person displayed as determinants that increase anti-SARS-CoV-2 IgG antibodies.
Collapse
Affiliation(s)
- Stephanie Montero
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
| | - Diego Urrunaga-Pastor
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola (USIL), Lima, Peru
| | - Percy Soto-Becerra
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Universidad Continental, Huancayo, Perú
| | - Aleksandar Cvetkovic-Vega
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Martina Guillermo-Roman
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
| | | | | | | | | | - Moisés Apolaya-Segura
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Cristian Díaz-Vélez
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Jorge L. Maguiña
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
48
|
Vedelago C, Li J, Lowry K, Howard C, Wuethrich A, Trau M. A Multiplexed SERS Microassay for Accurate Detection of SARS-CoV-2 and Variants of Concern. ACS Sens 2023; 8:1648-1657. [PMID: 37026968 PMCID: PMC10081832 DOI: 10.1021/acssensors.2c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 variants play an important role in predicting patient outcome during postinfection, and with growing fears of COVID-19 reservoirs in domestic and wild animals, it is necessary to adapt detection systems for variant detection. However, variant-specific detection remains challenging. Surface-enhanced Raman scattering is a sensitive and multiplexing technique that allows the simultaneous detection of multiple targets for accurate identification. Here we propose the development of a multiplex SERS microassay to detect both the spike and nucleocapsid structural proteins of SARS-CoV-2. The designed SERS microassay integrates gold-silver hollow nanobox barcodes and electrohydrodynamically induced nanomixing which in combination enables highly specific and sensitive detection of SARS-CoV-2 and the S-protein epitopes to delineate between ancestral prevariant strains with the newer variants of concern, Delta and Omicron. The microassay allows detection from as low as 20 virus/μL and 50 pg/mL RBD protein and can clearly identify the virus among infected versus healthy nasopharyngeal swabs, with the potential to identify between variants. The detection of both S- and N-proteins of SARS-CoV-2 and the differentiation of variants on the SERS microassay can aid the early detection of COVID-19 to reduce transmission rates and lead into adequate treatments for those severely affected by the virus.
Collapse
Affiliation(s)
- Courtney Vedelago
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Kym Lowry
- The Queensland Paediatric Infectious Diseases (QIPD)
Sakzewski Research Group, Queensland Children’s
Hospital, Brisbane, QLD 4101, Australia
- University of Queensland Centre for
Clinical Research (UQCCR), Royal Brisbane and Women’s Hospital,
Brisbane, QLD 4029, Australia
| | - Christopher Howard
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of
Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences,
The University of Queensland, Brisbane, QLD 4072,
Australia
| |
Collapse
|
49
|
Stojmenovic D, Stojmenovic T, Andjelkovic M, Trunic N, Dikic N, Kilibarda N, Nikolic I, Nedeljkovic I, Ostojic M, Purkovic M, Radovanovic J. The Influence of Different SARS-CoV-2 Strains on Changes in Maximal Oxygen Consumption, Ventilatory Efficiency and Oxygen Pulse of Elite Athletes. Diagnostics (Basel) 2023; 13:diagnostics13091574. [PMID: 37174965 PMCID: PMC10177849 DOI: 10.3390/diagnostics13091574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the influence of different SARS-CoV-2 strains on the functional capacity of athletes. METHODS In total, 220 athletes underwent cardiopulmonary exercise testing (CPET) after coronavirus infection and before returning to sports activities. Eighty-eight athletes were infected by the Wuhan virus, and 66 were infected during the Delta and Omicron strain periods of the pandemic. RESULTS The CPET results showed significantly decreased maximal oxygen consumption, ventilatory efficiency, and oxygen pulse in athletes who were infected with Wuhan and Delta strains compared to athletes who suffered from Omicron virus infection. An early transition from aerobic to anaerobic metabolic pathways for energy production was observed in the Wuhan and Delta groups but not in athletes who were infected with the Omicron strain. There were no differences in the obtained results when Wuhan and Delta virus variants were compared. CONCLUSION These results suggest that the Wuhan and Delta virus strains had a significantly greater negative impact on the functional abilities of athletes compared to the Omicron virus variant, especially in terms of aerobic capacity and cardiorespiratory function.
Collapse
Affiliation(s)
- Dragutin Stojmenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Tamara Stojmenovic
- Faculty of Physical Education and Sports Management, University of Singidunum, 11000 Belgrade, Serbia
- Department of Pharmacy, University of Singidunum, 11000 Belgrade, Serbia
| | - Marija Andjelkovic
- Department of Pharmacy, University of Singidunum, 11000 Belgrade, Serbia
| | - Nenad Trunic
- Faculty of Physical Education and Sports Management, University of Singidunum, 11000 Belgrade, Serbia
| | - Nenad Dikic
- Faculty of Physical Education and Sports Management, University of Singidunum, 11000 Belgrade, Serbia
- Department of Pharmacy, University of Singidunum, 11000 Belgrade, Serbia
| | - Natasa Kilibarda
- Department of Pharmacy, University of Singidunum, 11000 Belgrade, Serbia
| | - Ivan Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivana Nedeljkovic
- Cardiology Department, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Ostojic
- Cardiology Department, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milos Purkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Radovanovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
50
|
Yadav PD, Kumar S, Bergeron É, Flora MS. Editorial: Emerging SARS-CoV-2 variants: Genomic variations, transmission, pathogenesis, clinical impact and interventions. Front Med (Lausanne) 2023; 10:1178696. [PMID: 37064028 PMCID: PMC10096020 DOI: 10.3389/fmed.2023.1178696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Affiliation(s)
- Pragya D. Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Sanjay Kumar
- Department of Neurosurgery, Command Hospital (Southern Command), Armed Forces Medical College (AFMC), Pune, India
| | - Éric Bergeron
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | | |
Collapse
|