1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Wang SH, Cheng JY, Tsai HH, Lo TC, Hung JT, Lin CC, Lee CW, Ho YH, Kuo HH, Yu AL, Yu J. Conformational alteration in glycan induces phospholipase Cβ1 activation and angiogenesis. J Biomed Sci 2022; 29:105. [PMID: 36517806 PMCID: PMC9753400 DOI: 10.1186/s12929-022-00889-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In endothelial cells, phospholipase C (PLC) β1-activated Ca2+ is a crucial second messenger for the signaling pathways governing angiogenesis. PLCβ1 is inactivated by complexing with an intracellular protein called translin-associated factor X (TRAX). This study demonstrates specific interactions between Globo H ceramide (GHCer) and TRAX, which highlight a new angiogenic control through PLCβ1 activation. METHODS Globo-series glycosphingolipids (GSLs), including GHCer and stage-specific embryonic antigen-3 ceramide (SSEA3Cer), were analyzed using enzyme-linked immunosorbent assay (ELISA) and Biacore for their binding with TRAX. Angiogenic activities of GSLs in human umbilical vein endothelial cells (HUVECs) were evaluated. Molecular dynamics (MD) simulation was used to study conformations of GSLs and their molecular interactions with TRAX. Fluorescence resonance energy transfer (FRET) analysis of HUVECs by confocal microscopy was used to validate the release of PLCβ1 from TRAX. Furthermore, the in vivo angiogenic activity of extracellular vesicles (EVs) containing GHCer was confirmed using subcutaneous Matrigel plug assay in mice. RESULTS The results of ELISA and Biacore analysis showed a stable complex between recombinant TRAX and synthetic GHCer with KD of 40.9 nM. In contrast, SSEA3Cer lacking a fucose residue of GHCer at the terminal showed ~ 1000-fold decrease in the binding affinity. These results were consistent with their angiogenic activities in HUVECs. The MD simulation indicated that TRAX interacted with the glycan moiety of GHCer at amino acid Q223, Q219, L142, S141, and E216. At equilibrium the stable complex maintained 4.6 ± 1.3 H-bonds. TRAX containing double mutations with Q223A and Q219A lost its ability to interact with GHCer in both MD simulation and Biacore assays. Removal of the terminal fucose from GHCer to become SSEA3Cer resulted in decreased H-bonding to 1.2 ± 1.0 by the MD simulation. Such specific H-bonding was due to the conformational alteration in the whole glycan which was affected by the presence or absence of the fucose moiety. In addition, ELISA, Biacore, and in-cell FRET assays confirmed the competition between GHCer and PLCβ1 for binding to TRAX. Furthermore, the Matrigel plug assay showed robust vessel formation in the plug containing tumor-secreted EVs or synthetic GHCer, but not in the plug with SSEA3Cer. The FRET analysis also indicated the disruption of colocalization of TRAX and PLCβ1 in cells by GHCer derived from EVs. CONCLUSIONS Overall, the fucose residue in GHCer dictated the glycan conformation for its complexing with TRAX to release TRAX-sequestered PLCβ1, leading to Ca2+ mobilization in endothelial cells and enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Hsiu-Hui Tsai
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Tzu-Chi Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Chun-Cheng Lin
- grid.38348.340000 0004 0532 0580Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Yi-Hsuan Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Huan-Hsien Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California in San Diego, San Diego, CA USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333 Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Rennie M, Lin G, Scarlata S. Multiple functions of phospholipase Cβ1 at a glance. J Cell Sci 2022; 135:276667. [PMID: 36125065 DOI: 10.1242/jcs.260282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase Cβ (PLCβ) is the main effector of the Gq family of heterotrimeric G proteins that transduces signals from hormones and neurotransmitters into Ca2+ signals. While PLCβ is critical for Ca2+ responses, recent studies have suggested that PLCβ has additional roles independent of its lipase activity. These novel functions are carried out by a cytosolic population of PLCβ that binds and inhibits the component 3 promoter of RNA-induced silencing complex (C3PO) to impact cytosolic RNA populations. Additionally, cytosolic PLCβ binds to stress granule proteins, keeping them dispersed and thus inhibiting stress granule formation. Upon activation of the Gα subunit of Gq (Gαq), cytosolic PLCβ relocalizes to the membrane, releasing C3PO and stress granule proteins, which in turn promotes activation of C3PO and RNA processing, as well as sequestration of specific transcripts into newly formed stress granules. As highlighted in this Cell Science at a Glance and the accompanying poster, the link between Gαq signaling, increased intracellular Ca2+ and changes in RNA processing impacts neuronal cell differentiation and may also affect neuronal development and dysfunction.
Collapse
Affiliation(s)
- Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
4
|
Pillai V, Gupta A, Rao A, Chittela RK. Biochemical characterization of clinically relevant mutations of human Translin. Mol Cell Biochem 2022; 478:821-834. [PMID: 36098897 DOI: 10.1007/s11010-022-04556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
DNA damage in all living cells is repaired with very high efficiency and nucleic acid binding proteins play crucial roles in repair associated processes. Translin is one such evolutionarily conserved nucleic acid interacting protein speculated to be a part of the DNA repair protein network. It is also involved in activation of RNA-induced silencing complex (RISC) along with Translin-associated factor X (TRAX) as the C3PO (component 3 promoter of RISC) complex. In the present work, we characterized ten clinically relevant variants of the human Translin protein using bioinformatic, biochemical, and biophysical tools. Bioinformatic studies using DynaMut revealed 9 out of the 10 selected mutations the Translin protein. Further analysis revealed that some mutations lead to changes in interactions with neighbouring residues in the protein structure. Using site directed mutagenesis, the point substitution variants were generated, corresponding proteins were overexpressed and purified using Ni-NTA affinity chromatography. Purified proteins form octamers similar to wild type (WT) Translin, as observed using native polyacrylamide gel electrophoresis (PAGE), gel filtration, and dynamic light-scattering (DLS) analysis. These octamers are functional and bind to single-stranded DNA (ssDNA) as well as single-stranded RNA (ssRNA) substrates. The mutant Translin proteins interact with wild type TRAX and form corresponding C3PO complexes. The C3PO complexes formed by all Translin variants with TRAX are functional in-vitro and show endoribonuclease activity. However, significant differences were observed in the extent of RNase activity in vitro. In conclusion, the clinically relevant mutations in Translin protein analysed by us exert their effect by modulating the RNase activity of the protein without altering its DNA-dependant function.
Collapse
Affiliation(s)
- Vinayaki Pillai
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Alka Gupta
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Avssn Rao
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| |
Collapse
|
5
|
Thakur A, Kumar M. AntiVIRmiR: A repository of host antiviral miRNAs and their expression along with experimentally validated viral miRNAs and their targets. Front Genet 2022; 13:971852. [PMID: 36159991 PMCID: PMC9493126 DOI: 10.3389/fgene.2022.971852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs play an essential role in promoting viral infections as well as modulating the antiviral defense. Several miRNA repositories have been developed for different species, e.g., human, mouse, and plant. However, 'VIRmiRNA' is the only existing resource for experimentally validated viral miRNAs and their targets. We have developed a 'AntiVIRmiR' resource encompassing data on host/virus miRNA expression during viral infection. This resource with 22,741 entries is divided into four sub-databases viz., 'DEmiRVIR', 'AntiVmiR', 'VIRmiRNA2' and 'VIRmiRTar2'. 'DEmiRVIR' has 10,033 differentially expressed host-viral miRNAs for 21 viruses. 'AntiVmiR' incorporates 1,642 entries for host miRNAs showing antiviral activity for 34 viruses. Additionally, 'VIRmiRNA2' includes 3,340 entries for experimentally validated viral miRNAs from 50 viruses along with 650 viral isomeric sequences for 14 viruses. Further, 'VIRmiRTar2' has 7,726 experimentally validated targets for viral miRNAs against 21 viruses. Furthermore, we have also performed network analysis for three sub-databases. Interactions between up/down-regulated human miRNAs and viruses are displayed for 'AntiVmiR' as well as 'DEmiRVIR'. Moreover, 'VIRmiRTar2' interactions are shown among different viruses, miRNAs, and their targets. We have provided browse, search, external hyperlinks, data statistics, and useful analysis tools. The database available at https://bioinfo.imtech.res.in/manojk/antivirmir would be beneficial for understanding the host-virus interactions as well as viral pathogenesis.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Carro MDLM, Grimson A, Cohen PE. Small RNAs and their protein partners in animal meiosis. Curr Top Dev Biol 2022; 151:245-279. [PMID: 36681472 DOI: 10.1016/bs.ctdb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Meiosis is characterized by highly regulated transitions in gene expression that require diverse mechanisms of gene regulation. For example, in male mammals, transcription undergoes a global shut-down in early prophase I of meiosis, followed by increasing transcriptional activity into pachynema. Later, as spermiogenesis proceeds, the histones bound to DNA are replaced with transition proteins, which are themselves replaced with protamines, resulting in a highly condensed nucleus with repressed transcriptional activity. In addition, two specialized gene silencing events take place during prophase I: meiotic silencing of unsynapsed chromatin (MSUC), and the sex chromatin specific mechanism, meiotic sex chromosome inactivation (MSCI). Notably, conserved roles for the RNA binding protein (RBP) machinery that functions with small non-coding RNAs have been described as participating in these meiosis-specific mechanisms, suggesting that RNA-mediated gene regulation is critical for fertility in many species. Here, we review roles of small RNAs and their associated RBPs in meiosis-related processes such as centromere function, silencing of unpaired chromatin and meiotic recombination. We will discuss the emerging evidence of non-canonical functions of these components in meiosis.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States
| | - Andrew Grimson
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, United States.
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States.
| |
Collapse
|
7
|
Translin facilitates RNA polymerase II dissociation and suppresses genome instability during RNase H2- and Dicer-deficiency. PLoS Genet 2022; 18:e1010267. [PMID: 35714159 PMCID: PMC9246224 DOI: 10.1371/journal.pgen.1010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/30/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The conserved nucleic acid binding protein Translin contributes to numerous facets of mammalian biology and genetic diseases. It was first identified as a binder of cancer-associated chromosomal translocation breakpoint junctions leading to the suggestion that it was involved in genetic recombination. With a paralogous partner protein, Trax, Translin has subsequently been found to form a hetero-octomeric RNase complex that drives some of its functions, including passenger strand removal in RNA interference (RNAi). The Translin-Trax complex also degrades the precursors to tumour suppressing microRNAs in cancers deficient for the RNase III Dicer. This oncogenic activity has resulted in the Translin-Trax complex being explored as a therapeutic target. Additionally, Translin and Trax have been implicated in a wider range of biological functions ranging from sleep regulation to telomere transcript control. Here we reveal a Trax- and RNAi-independent function for Translin in dissociating RNA polymerase II from its genomic template, with loss of Translin function resulting in increased transcription-associated recombination and elevated genome instability. This provides genetic insight into the longstanding question of how Translin might influence chromosomal rearrangements in human genetic diseases and provides important functional understanding of an oncological therapeutic target. Human genetic diseases, including cancers, are frequently driven by substantial changes to chromosomes, including translocations, where one arm of a chromosome is exchanged for another. The human nucleic acid binding protein Translin was first identified by its ability to bind to the chromosomal sites at which some of these translocations occur. This resulted in Translin being implicated in the mechanism that generated the translocation and thus the associated disease state. However, since its discovery there has been little evidence to directly indicate Translin does contribute to this process. It is, however, known to contribute to a number of biological functions including, amongst others, neurological regulation, sleep control, vascular stiffening, cancer immunomodulation and it has been recently identified as a potential therapeutic target in some cancers. Here we demonstrate that Translin has conserved function in genome stability maintenance when other primary pathways are defective, a function independent of a key binding partner protein, Trax. Specifically, we demonstrate that Translin contributes to minimizing the deleterious genome destabilizing effects of retaining gene expression machineries on chromosomes. This offers the first evidence for how Translin might contribute to genetic disease-causing chromosomal changes and offers insight to inform therapeutic design.
Collapse
|
8
|
Activation of Gαq sequesters specific transcripts into Ago2 particles. Sci Rep 2022; 12:8758. [PMID: 35610292 PMCID: PMC9130320 DOI: 10.1038/s41598-022-12737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The Gαq/phospholipase Cβ1 (PLCβ1) signaling system mediates calcium responses from hormones and neurotransmitters. While PLCβ1 functions on the plasma membrane, there is an atypical cytosolic population that binds Argonaute 2 (Ago2) and other proteins associated with stress granules preventing their aggregation. Activation of Gαq relocalizes cytosolic PLCβ1 to the membrane, releasing bound proteins, promoting the formation of stress granules. Here, we have characterized Ago2 stress granules associated with Gαq activation in differentiated PC12 cells, which have a robust Gαq/PLCβ1 signaling system. Characterization of Ago2-associated stress granules shows shifts in protein composition when cells are stimulated with a Gαq agonist, or subjected to heat shock or osmotic stress, consistent with the idea that different stresses result in unique stress granules. Purified Ago2 stress granules from control cells do not contain RNA, while those from heat shock contain many different mRNAs and miRs. Surprisingly, Ago2 particles from cells where Gαq was stimulated show only two transcripts, chromogranin B, which is involved in secretory function, and ATP synthase 5f1b, which is required for ATP synthesis. RT-PCR, western blotting and other studies support the idea that Gαq-activation protects these transcripts. Taken together, these studies show a novel pathway where Gαq/PLCβ regulates the translation of specific proteins.
Collapse
|
9
|
Crystal structures and insights into precursor tRNA 5'-end processing by prokaryotic minimal protein-only RNase P. Nat Commun 2022; 13:2290. [PMID: 35484139 PMCID: PMC9051087 DOI: 10.1038/s41467-022-30072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
Besides the canonical RNA-based RNase P, pre-tRNA 5’-end processing can also be catalyzed by protein-only RNase P (PRORP). To date, various PRORPs have been discovered, but the basis underlying substrate binding and cleavage by HARPs (homolog of Aquifex RNase P) remains elusive. Here, we report structural and biochemical studies of HARPs. Comparison of the apo- and pre-tRNA-complexed structures showed that HARP is able to undergo large conformational changes that facilitate pre-tRNA binding and catalytic site formation. Planctomycetes bacterium HARP exists as dimer in vitro, but gel filtration and electron microscopy analysis confirmed that HARPs from Thermococcus celer, Thermocrinis minervae and Thermocrinis ruber can assemble into larger oligomers. Structural analysis, mutagenesis and in vitro biochemical studies all supported one cooperative pre-tRNA processing mode, in which one HARP dimer binds pre-tRNA at the elbow region whereas 5’-end removal is catalyzed by the partner dimer. Our studies significantly advance our understanding on pre-tRNA processing by PRORPs. HARP are member of protein-only RNase P, which catalyzes pre-tRNA 5’-end processing and maturation. Here, the authors present crystal structure and provide mechanistic insights into pre-tRNA binding and cleavage by HARP proteins.
Collapse
|
10
|
Lei L, Cheng A, Wang M, Jia R. The Influence of Host miRNA Binding to RNA Within RNA Viruses on Virus Multiplication. Front Cell Infect Microbiol 2022; 12:802149. [PMID: 35531344 PMCID: PMC9069554 DOI: 10.3389/fcimb.2022.802149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
microRNAs (miRNAs), non-coding RNAs about 22 nt long, regulate the post-transcription expression of genes to influence many cellular processes. The expression of host miRNAs is affected by virus invasion, which also affects virus replication. Increasing evidence has demonstrated that miRNA influences RNA virus multiplication by binding directly to the RNA virus genome. Here, the knowledge relating to miRNAs’ relationships between host miRNAs and RNA viruses are discussed.
Collapse
Affiliation(s)
- Lin Lei
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia,
| |
Collapse
|
11
|
Hou W, Liu G, Ren X, Liu X, He L, Huang H. Quantitative Proteomics Analysis Expands the Roles of Lysine β-Hydroxybutyrylation Pathway in Response to Environmental β-Hydroxybutyrate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4592170. [PMID: 35251473 PMCID: PMC8894020 DOI: 10.1155/2022/4592170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is a newly identified protein posttranslational modification (PTM) derived from β-hydroxybutyrate (BHB), a product of ketone body metabolism in liver. BHB could serve as an energy source and play a role in the suppression of oxidative stress. The plasma concentration of BHB could increase up to 20 mM during starvation and in pathological conditions. Despite the progress, how the cells derived from extrahepatic tissues respond to elevated environmental BHB remains largely unknown. Given that BHB can significantly drive Kbhb, we characterized the BHB-induced lysine β-hydroxybutyrylome and acetylome by quantitative proteomics. A total of 840 unique Kbhb sites on 429 proteins were identified, with 42 sites on 39 proteins increased by more than 50% in response to BHB. The results showed that the upregulated Kbhb induced by BHB was involved in aminoacyl-tRNA biosynthesis, 2-oxocarboxylic acid metabolism, citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism pathways. Moreover, some BHB-induced Kbhb substrates were significantly involved in diseases such as cancer. Taken together, we investigate the dynamics of lysine β-hydroxybutyrylome and acetylome induced by environmental BHB, which reveals the roles of Kbhb in regulating various biological processes and expands the biological functions of BHB.
Collapse
Affiliation(s)
- Wanting Hou
- School of Pharmacy, Nanchang University, Nanchang 330006, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianming Liu
- Bruker (Beijing) Scientific Technology Co., Ltd., Beijing 100192, China
| | - Lei He
- Bruker (Beijing) Scientific Technology Co., Ltd., Beijing 100192, China
| | - He Huang
- School of Pharmacy, Nanchang University, Nanchang 330006, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Stavast CJ, van Zuijen I, Erkeland SJ. MicroRNA-139, an Emerging Gate-Keeper in Various Types of Cancer. Cells 2022; 11:cells11050769. [PMID: 35269391 PMCID: PMC8909004 DOI: 10.3390/cells11050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mounting data show that MIR139 is commonly silenced in solid cancer and hematological malignancies. MIR139 acts as a critical tumor suppressor by tuning the cellular response to different types of stress, including DNA damage, and by repressing oncogenic signaling pathways. Recently, novel insights into the mechanism of MIR139 silencing in tumor cells have been described. These include epigenetic silencing, inhibition of POL-II transcriptional activity on gene regulatory elements, enhanced expression of competing RNAs and post-transcriptional regulation by the microprocessor complex. Some of these MIR139-silencing mechanisms have been demonstrated in different types of cancer, suggesting that these are more general oncogenic events. Reactivation of MIR139 expression in tumor cells causes inhibition of tumor cell expansion and induction of cell death by the repression of oncogenic mRNA targets. In this review, we discuss the different aspects of MIR139 as a tumor suppressor gene and give an overview on different transcriptional mechanisms regulating MIR139 in oncogenic stress and across different types of cancer. The novel insights into the expression regulation and the tumor-suppressing activities of MIR139 may pave the way to new treatment options for cancer.
Collapse
|
13
|
Zhao Y, Cui S, Wang Y, Xu R. The Extensive Regulation of MicroRNA in Immune Thrombocytopenia. Clin Appl Thromb Hemost 2022; 28:10760296221093595. [PMID: 35536600 PMCID: PMC9096216 DOI: 10.1177/10760296221093595] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNA (miRNA) is a small, single-stranded, non-coding RNA molecule that plays
a variety of key roles in different biological processes through
post-transcriptional regulation of gene expression. MiRNA has been proved to be
a variety of cellular processes involved in development, differentiation, signal
transduction, and is an important regulator of immune and autoimmune diseases.
Therefore, it may act as potent modulators of the immune system and play an
important role in the development of several autoimmune diseases. Immune
thrombocytopenia (ITP) is an autoimmune systemic disease characterized by a low
platelet count. Several studies suggest that like other autoimmune disorders,
miRNAs are deeply involved in the pathogenesis of ITP, interacting with the
function of innate and adaptive immune responses. In this review, we discuss
emerging knowledge about the function of miRNAs in ITP and describe miRNAs in
terms of their role in the immune system and autoimmune response. These findings
suggest that miRNA may be a useful therapeutic target for ITP by regulating the
immune system. In the future, we need to have a more comprehensive understanding
of miRNAs and how they regulate the immune system of patients with ITP.
Collapse
Affiliation(s)
- Yuerong Zhao
- 74738Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Institute of Hematology, 74738Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Institute of Hematology, 74738Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Oyama K, Baba T, Kashiwabara SI. Functional characterization of testis-brain RNA-binding protein, TB-RBP/Translin, in translational regulation. J Reprod Dev 2021; 67:35-42. [PMID: 33268667 PMCID: PMC7902210 DOI: 10.1262/jrd.2020-120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Testis-brain RNA-binding protein (TB-RBP/Translin) is known to contribute to the translational repression of a subset of haploid cell-specific mRNAs, including protamine 2 (Prm2) mRNA. Mutant mice lacking TB-RBP display abnormal spermatogenesis, despite normal male fertility. In this study, we carried out functional analysis of TB-RBP in mammalian cultured cells to understand the mechanism of translational repression by this RNA-binding protein. Although the amino acid sequence contained a eukaryotic translation initiation factor 4E (EIF4E)-recognition motif, TB-RBP failed to interact with EIF4E. In cultured cells, TB-RBP was unable to reduce the activity of luciferase encoded by a reporter mRNA carrying the 3'-untranslated region of Prm2. However, λΝ-BoxB tethering assay revealed that the complex of TB-RBP with its binding partner, Translin-associated factor X (TRAX), exhibits the ability to reduce the luciferase reporter activity by degrading the mRNA. These results suggest that TB-RBP may play a regulatory role in determining the sequence specificity of TRAX-catalyzed mRNA degradation.
Collapse
Affiliation(s)
- Kanako Oyama
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tadashi Baba
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Shin-Ichi Kashiwabara
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
15
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
16
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Matsubara L, Fukuoka T, Sudo K, Fukunaga T, Imanishi A, Kuronuma K, Matsuo M, Kamoshida S, Hasegawa N, Asano S, Ito M. Translin restricts the growth of pubertal mammary epithelial cells estrogen-independently in mice. Biochem Biophys Res Commun 2020; 521:562-568. [PMID: 31677798 DOI: 10.1016/j.bbrc.2019.10.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022]
Abstract
Translin, a ubiquitous RNA/DNA-binding protein that forms a hetero-octamer together with Translin-associated factor X (TRAX), possesses endoribonuclease activity and plays a physiological role in restricting the size and differentiation of mesenchymal precursor cells. However, the precise role of Translin in epithelial cells remains unclear. Here, we show evidence that Translin restricts the growth of pubertal mammary epithelial cells. The mammary epithelia of Translin-null females exhibited retarded growth before puberty, but highly enhanced growth and DNA synthesis with increased ramification after the onset of puberty. Primary cultures of Translin-null mammary epithelial cells showed augmented DNA synthesis in a ligand-independent and ligand-enhanced manner. Translin-null ovariectomized mice implanted with slow-release estrogen pellets showed enhanced length and ramification of the mammary glands. Mammary epithelial growth was also observed in ovariectomized Translin-null mice implanted with placebo pellets. Luciferase reporter assays using embryonic fibroblasts from Translin-null mice showed unaltered estrogen receptor α function. These results indicate that Translin plays a physiological role in restricting intrinsic growth, beyond mesenchymal cells, of pubertal mammary epithelial cells.
Collapse
Affiliation(s)
- Leo Matsubara
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Tomoya Fukuoka
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Katsuko Sudo
- Pre-clinical Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan; Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 159-8555, Japan
| | - Takako Fukunaga
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Azusa Imanishi
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Kana Kuronuma
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Miki Matsuo
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shingo Kamoshida
- Laboratory of Pathology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Natsumi Hasegawa
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Shigetaka Asano
- Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 159-8555, Japan
| | - Mitsuhiro Ito
- Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan; Research Organization for Nano & Life Innovation, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 159-8555, Japan.
| |
Collapse
|
18
|
Sala L, Chandrasekhar S, Vidigal JA. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Front Biosci (Landmark Ed) 2020; 25:1-42. [PMID: 31585876 DOI: 10.2741/4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA,
| |
Collapse
|
19
|
Gupta A, Pillai VS, Chittela RK. Translin: A multifunctional protein involved in nucleic acid metabolism. J Biosci 2019; 44:139. [PMID: 31894120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Translin, a highly conserved, DNA/RNA binding protein, is abundantly expressed in brain, testis and in certain malignancies. It was discovered initially in the quest to find proteins that bind to alternating polypurines-polypyrimidines repeats. It has been implicated to have a role in RNA metabolism (tRNA processing, RNAi, RNA transport, etc.), transcription, DNA damage response, etc. Studies from human, mice, drosophila and yeast have revealed that it forms an octameric ring, which is important for its function. Translin is a cytoplasmic protein, but under genotoxic stress, it migrates into the nucleus, binds to the break point hot spots and therefore, thought to be involved in chromosomal translocation events as well as DNA damage related response. Its structure is known and DNA binding regions, GTP binding region and regions responsible for homotypic and heterotypic interaction are known. It forms a ball like structure with open central channel for accommodating the substrate nucleic acids. Besides this, translin protein binds to 3' and 5' UTR of certain mRNAs and probably regulates their availability for translation. It is also involved in mRNA transport and cell cycle progression. It forms a heteromeric complex with translin associated factor-X (TRAX) to form C3PO complex which is involved in RNA silencing process. Recently, it has been shown that translin is upregulated under starvation conditions in Drosophila and is involved in the integration of sleep and metabolic rate of the flies. Earlier studies classified translin as a DNA repair protein; however subsequent studies showed that it is a multifunctional protein. With this background, in this review we have summarized the translin biochemical activities, cellular function as well as structural properties of this important protein.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
20
|
Stavast CJ, Erkeland SJ. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019; 8:cells8111465. [PMID: 31752361 PMCID: PMC6912820 DOI: 10.3390/cells8111465] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3'- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.
Collapse
|
21
|
Gupta A, Pillai VS, Chittela RK. Translin: A multifunctional protein involved in nucleic acid metabolism. J Biosci 2019. [DOI: 10.1007/s12038-019-9947-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Scarlata S. The role of phospholipase Cβ on the plasma membrane and in the cytosol: How modular domains enable novel functions. Adv Biol Regul 2019; 73:100636. [PMID: 31409535 DOI: 10.1016/j.jbior.2019.100636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/14/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Phospholipase Cβ (PLCβ) is a signaling enzyme activated by G proteins to generate calcium signals. The catalytic core of PLCβ is surrounded by modular domains that mediate the interaction of the enzyme with known protein partners on the plasma membrane. The C-terminal region PLCβ contains a novel coiled-coil domain that is required for Gαq binding and activation. Recent work has shown that this domain also binds a number of cytosolic proteins that regulate protein translation, and that these proteins compete with Gαq for PLCβ binding. The ability of PLCβ to shuttle between the cytosol to impact protein translation and the plasma membrane to mediate calcium signals puts PLCβ in a central role in cell function.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, United States.
| |
Collapse
|
23
|
Mo X, Yang X, Yuan YA. Structural insights into Drosophila-C3PO complex assembly and 'Dynamic Side Port' model in substrate entry and release. Nucleic Acids Res 2019; 46:8590-8604. [PMID: 29860349 PMCID: PMC6144819 DOI: 10.1093/nar/gky465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023] Open
Abstract
In Drosophila and human, component 3 promoter of RISC (C3PO), a heteromeric complex, enhances RISC assembly and promotes RISC activity. Here, we report crystal structure of full-length Drosophila C3PO (E126Q), an inactive C3PO mutant displaying much weaker RNA binding ability, at 2.1 Å resolution. In addition, we also report the cryo-EM structures of full-length Drosophila C3PO (E126Q), C3PO (WT) and SUMO-C3PO (WT, sumo-TRAX + Translin) particles trapped at different conformations at 12, 19.7 and 12.8 Å resolutions, respectively. Crystal structure of C3PO (E126Q) displays a half-barrel architecture consisting of two Trax/Translin heterodimers, whereas cryo-EM structures of C3PO (E126Q), C3PO (WT) and SUMO-C3PO (WT) adopt a closed football-like shape with a hollow interior cavity. Remarkably, both cryo-EM structures of Drosophila C3PO (E126Q) and Drosophila SUMO-C3PO (WT) particles contain a wide side port (∼25 Å × ∼30 Å versus ∼15 Å × ∼20 Å) for RNA substrate entry and release, formed by a pair of anti-parallel packed long α1 helices of TRAX subunits. Notably, cryo-EM structure of SUMO-C3PO showed that four copies of extra densities belonging to N-terminal SUMO tag are located at the outside shell of SUMO-C3PO particle, which demonstrated that the stoichiometry of TRAX/Translin for the in vitro expressed and assembled full-length Drosophila-SUMO–C3PO particle is 4:4, suggesting Drosophila C3PO is composed by TRAX/translin at a ratio of 4:4. Remarkably, the comparison of the cryo-EM structures suggests that the C3PO side ports regulated by α1 helices of TRAX molecules are highly dynamic. Hence, we propose that C3PO particles could adopt a ‘Dynamic Side Port’ model to capture/digest nucleic acid duplex substrate and release the digested fragments through the dynamic side ports.
Collapse
Affiliation(s)
- Xiaobing Mo
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Xia Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.,Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
24
|
Liu Y, Fang Y, Liu Y, Wang Z, Lyu B, Hu Y, Zhou X. Opposite effects of Drosophila C3PO on gene silencing mediated by esi-2.1 and miRNA-bantam. Acta Biochim Biophys Sin (Shanghai) 2019; 51:131-138. [PMID: 30576408 DOI: 10.1093/abbs/gmy154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/14/2022] Open
Abstract
Translin/TRAX complex, also named as C3PO, is evolutionarily conserved and participates in diverse cellular processes in different organisms from yeast to human. C3PO plays a critical role in the activation of RNA-induced silencing complexes by promoting the unwinding and degradation of passenger strand of exogenous siRNAs (exo-siRNAs) in Drosophila and human. Moreover, human C3PO (hC3PO) has been found to broadly repress miRNAs by degrading miRNA precursors. However, the effect of Drosophila melanogaster C3PO (dmC3PO) on endogenous siRNA (endo-siRNA) and miRNA pathways remains unknown. Here, we found that the loss of dmC3PO promoted the accumulation of the passenger strand of esi-2.1 (hp-CG4068B), and resulted in the de-repression of the DNA-damage-response gene mutagensensitive 308 (mus308), which is an endogenous slicer target of esi-2.1 in Drosophila. Moreover, we also found that depletion of dmC3PO increased the accumulation of miR-bantam. Taken together, our findings indicated that dmC3PO not only involves in siRNA pathway triggered by dsRNA, but also regulates the abundance of certain endogenous small RNAs in Drosophila.
Collapse
Affiliation(s)
- Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bao Lyu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
25
|
Chen YC, Chang YW, Huang YS. Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism-Risk Genes Involved in Translation. Dev Neurobiol 2018; 79:60-74. [PMID: 30430754 DOI: 10.1002/dneu.22653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Regulated local translation-whereby specific mRNAs are transported and localized in subcellular domains where they are translated in response to regional signals-allows for remote control of gene expression to concentrate proteins in subcellular compartments. Neurons are highly polarized cells with unique features favoring local control for axonal pathfinding and synaptic plasticity, which are key processes involved in constructing functional circuits in the developing brain. Neurodevelopmental disorders are caused by genetic or environmental factors that disturb the nervous system's development during prenatal and early childhood periods. The growing list of genetic mutations that affect mRNA translation raises the question of whether aberrant translatomes in individuals with neurodevelopmental disorders share common molecular features underlying their stereotypical phenotypes and, vice versa, cause a certain degree of phenotypic heterogeneity. Here, we briefly give an overview of the role of local translation during neuronal development. We take the autism-risk gene list and discuss the molecules that (perhaps) are involved in mRNA transport and translation. Both exaggerated and suppressed translation caused by mutations in those genes have been identified or suggested. Finally, we discuss some proof-of-principle regimens for use in autism mouse models to correct dysregulated translation.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
26
|
Trax: A versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiol Learn Mem 2018; 159:46-51. [PMID: 30017897 DOI: 10.1016/j.nlm.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
Abstract
Translin-associated protein X (TSNAX), also called trax, was first identified as a protein that interacts with translin. Subsequent studies demonstrated that these proteins form a heteromeric RNase complex that mediates degradation of microRNAs, a pivotal finding that has stimulated interest in understanding the role of translin and trax in cell signaling. Recent studies addressing this question have revealed that trax plays key roles in both synaptic plasticity and DNA repair signaling pathways. In the context of synaptic plasticity, trax works together with its partner protein, translin, to degrade a subset of microRNAs. Activation of the translin/trax RNase complex reverses microRNA-mediated translational silencing to trigger dendritic protein synthesis critical for synaptic plasticity. In the context of DNA repair, trax binds to and activates ATM, a central component of the double-stranded DNA repair process. Thus, these studies focus attention on trax as a critical signaling protein that interacts with multiple partners to impact diverse signaling pathways. To stimulate interest in deciphering the multifaceted role of trax in cell signaling, we summarize the current understanding of trax biology and highlight gaps in our knowledge about this protean protein.
Collapse
|
27
|
Kasai M, Ishida R, Nakahara K, Okumura K, Aoki K. Mesenchymal cell differentiation and diseases: involvement of translin/TRAX complexes and associated proteins. Ann N Y Acad Sci 2018; 1421:37-45. [PMID: 29740830 DOI: 10.1111/nyas.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn-/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states.
Collapse
Affiliation(s)
- Masataka Kasai
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Ishida
- Center for Stem Cell and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakahara
- National Institution for Academic Degrees and Quality Enhancement of Higher Education, Tokyo, Japan
| | - Ko Okumura
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan
| | - Katsunori Aoki
- Occupational Health Department, Sony Corporate Service Corporation, Kanagawa, Japan
| |
Collapse
|
28
|
Swevers L, Liu J, Smagghe G. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi. Viruses 2018; 10:E230. [PMID: 29723993 PMCID: PMC5977223 DOI: 10.3390/v10050230] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, NCSR "Demokritos", 15341 Athens, Greece.
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
29
|
Abstract
Small RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), silence protein expression from target mRNAs bearing their complementary sequences, via the formation of the effector complex called RNA-induced silencing complex (RISC). Although the mechanism of RISC assembly has been studied for nearly two decades, the detailed mechanism has still remained unclear in part due to the lack of a pure reconstitution system. Recently, we identified all the core proteins necessary for RISC assembly in flies and successfully recapitulated the assembly of catalytically active RISC with eight recombinant proteins. The reconstitution system provides a versatile framework for detailed studies of RISC assembly, including single molecule analysis as described in another chapter in this issue.
Collapse
Affiliation(s)
- Shintaro Iwasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.,RNA Systems Biochemistry Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
30
|
Abstract
Complex immunoprecipitation (Co-IP) is a powerful technique for precipitating an intact protein complex out of solution and cell lysates using an antibody that specifically binds to a particular protein in a large complex of proteins. Mass spectrometry (MS) is used to identify, sequence, and quantify proteins. RNA-induced silencing complexes (RISCs), Ago2 centered protein assemblies, are essential for miRNA mediated RNA decay and gene expression regulation; however, the complete list of RISCs is unknown. Here we describe methods used to combine IP and MS to identify new components of RISCs.
Collapse
|
31
|
Gomez-Escobar N, Almobadel N, Alzahrani O, Feichtinger J, Planells-Palop V, Alshehri Z, Thallinger GG, Wakeman JA, McFarlane RJ. Translin and Trax differentially regulate telomere-associated transcript homeostasis. Oncotarget 2017; 7:33809-20. [PMID: 27183912 PMCID: PMC5085120 DOI: 10.18632/oncotarget.9278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
Translin and Trax proteins are highly conserved nucleic acid binding proteins that have been implicated in RNA regulation in a range of biological processes including tRNA processing, RNA interference, microRNA degradation during oncogenesis, spermatogenesis and neuronal regulation. Here, we explore the function of this paralogue pair of proteins in the fission yeast. Using transcript analysis we demonstrate a reciprocal mechanism for control of telomere-associated transcripts. Mutation of tfx1+ (Trax) elevates transcript levels from silenced sub-telomeric regions of the genome, but not other silenced regions, such as the peri-centromeric heterochromatin. In the case of some sub-telomeric transcripts, but not all, this elevation is dependent on the Trax paralogue, Tsn1 (Translin). In a reciprocal fashion, Tsn1 (Translin) serves to repress levels of transcripts (TERRAs) from the telomeric repeats, whereas Tfx1 serves to maintain these elevated levels. This reveals a novel mechanism for the regulation of telomeric transcripts. We extend this to demonstrate that human Translin and Trax also control telomere-associated transcript levels in human cells in a telomere-specific fashion.
Collapse
Affiliation(s)
- Natalia Gomez-Escobar
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Nasser Almobadel
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Othman Alzahrani
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Julia Feichtinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Vicente Planells-Palop
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Zafer Alshehri
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Gerhard G Thallinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
32
|
Baraban JM, Shah A, Fu X. Multiple Pathways Mediate MicroRNA Degradation: Focus on the Translin/Trax RNase Complex. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:1-20. [PMID: 29413516 DOI: 10.1016/bs.apha.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The discovery of the microRNA system has revolutionized our understanding of translational control. Furthermore, growing appreciation of the pivotal role that de novo translation plays in activity-dependent synaptic plasticity has fueled interest among neuroscientists in deciphering how the microRNA system impacts neuronal signaling and the pathophysiology of neuropsychiatric disorders. Although we have a general understanding of how the microRNA system operates, many key questions remain. In particular, the biosynthesis of microRNAs and their role in translational silencing are fairly well understood. However, much less is known about how microRNAs are degraded and silencing is reversed, crucial aspects of microRNA signaling. In contrast to microRNA synthesis which is mediated almost exclusively by a single pathway that culminates in Dicer, recent studies indicate that there are multiple pathways of microRNA degradation that target different subpopulations of microRNAs. While the Lin-28 pathway of microRNA degradation has been investigated extensively, the translin/trax RNase complex has emerged recently as another pathway mediating microRNA degradation. Accordingly, we summarize herein key features of the translin/trax RNase complex as well as important gaps in our understanding of its regulation and function that are the focus of ongoing studies.
Collapse
Affiliation(s)
- Jay M Baraban
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Aparna Shah
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Xiuping Fu
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Park AJ, Havekes R, Fu X, Hansen R, Tudor JC, Peixoto L, Li Z, Wu YC, Poplawski SG, Baraban JM, Abel T. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. eLife 2017; 6. [PMID: 28927503 PMCID: PMC5606845 DOI: 10.7554/elife.27872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Xiuping Fu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Rolf Hansen
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Zhi Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Yen-Ching Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Shane G Poplawski
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States.,Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
34
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
35
|
Gupta A, Nair A, Ballal A, Chittela RK. C-terminal residues of rice translin are essential for octamer formation and nucleic acid binding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:600-608. [PMID: 28797959 DOI: 10.1016/j.plaphy.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Translin is a DNA/RNA binding protein involved in DNA repair and RNA metabolism. Previously, we had shown that rice translin (221 amino acids) exhibits biochemical activities similar to that of the human translin protein. Here we report the role of the C-terminal random coil in rice translin function by analyzing truncation (after 215th residue, Tra - 215) and substitution mutant proteins (Ser216Ala, Lys217Ala, Gln218Ala, Glu219Ala). Circular Dichroism (CD) analysis of Tra-215 showed deviations in comparison to Tra-WT. Truncation abolished the DNA binding activity and octamer formation as evidenced by the absence of ring like structures from TEM analysis. CD analysis of the substitution mutant proteins showed that the secondary structure was maintained in all the mutant proteins in comparison to wild type protein. Native PAGE and TEM analysis of the substitution mutants showed that Lys217Ala mutation completely abolished the octamer formation as rings and nucleic acid binding. Glu219Ala mutation also affected oligomerization but exhibited marginal RNA binding at higher protein concentrations and interestingly, failed to bind to DNA. However, Ser216Ala and Gln218Ala substitutions did not affect above mentioned activities of translin. Our results indicate that the C-terminal residues are one of the determinants of octamer formation in rice translin, with lysine at 217th position being the most important. Therefore, in conclusion, although the C-terminal residues do not form any defined secondary structure in the translin monomer, they are definitely involved in octamer formation and hence important for its molecular function. We have attempted to find the critical residues in translin function, which will advance our understanding of translin in DNA repair process in general and of rice translin in particular.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Anuradha Nair
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Rajani Kant Chittela
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India.
| |
Collapse
|
36
|
Structural Foundations of RNA Silencing by Argonaute. J Mol Biol 2017; 429:2619-2639. [PMID: 28757069 DOI: 10.1016/j.jmb.2017.07.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.
Collapse
|
37
|
Sahu S, Williams L, Perez A, Philip F, Caso G, Zurawsky W, Scarlata S. Regulation of the activity of the promoter of RNA-induced silencing, C3PO. Protein Sci 2017; 26:1807-1818. [PMID: 28714243 DOI: 10.1002/pro.3219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/29/2022]
Abstract
RNA-induced silencing is a process which allows cells to regulate the synthesis of specific proteins. RNA silencing is promoted by the protein C3PO (component 3 of RISC). We have previously found that phospholipase Cβ, which increases intracellular calcium levels in response to specific G protein signals, inhibits C3PO activity towards certain genes. Understanding the parameters that control C3PO activity and which genes are impacted by G protein activation would help predict which genes are more vulnerable to downregulation. Here, using a library of 1018 oligonucleotides, we show that C3PO binds oligonucleotides with structural specificity but little sequence specificity. Alternately, C3PO hydrolyzes oligonucleotides with a rate that is sensitive to substrate stability. Importantly, we find that oligonucleotides with higher Tm values are inhibited by bound PLCβ. This finding is supported by microarray analysis in cells over-expressing PLCβ1. Taken together, this study allows predictions of the genes whose post-transcriptional regulation is responsive to the G protein/phospholipase Cβ/calcium signaling pathway.
Collapse
Affiliation(s)
- Shriya Sahu
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Leo Williams
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Alberto Perez
- Laufer Center for Computational Biology, Stony Brook University, Stony Brook, New York
| | - Finly Philip
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Giuseppe Caso
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York
| | - Walter Zurawsky
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609
| | - Suzanne Scarlata
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, New York.,Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609
| |
Collapse
|
38
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
39
|
Zhang Z, Hu F, Sung MW, Shu C, Castillo-González C, Koiwa H, Tang G, Dickman M, Li P, Zhang X. RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. eLife 2017; 6. [PMID: 28463111 PMCID: PMC5451212 DOI: 10.7554/elife.24466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/29/2017] [Indexed: 01/01/2023] Open
Abstract
RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI:http://dx.doi.org/10.7554/eLife.24466.001 DNA contains all the information needed to build a body, yet molecules of RNA carry these instructions to the sites in the cell where they can be used. Cells must control how much RNA they produce in order to ensure that they develop properly and can respond well to their environment. RNA silencing refers to a collection of mechanisms that use smaller RNA molecules called microRNAs to incapacitate certain RNA molecules and selectively switch off the genes that encode them to stop more from being made. One key player in RNA silencing is the multi-protein complex called RISC, which contains microRNA and a group of proteins called AGOs. Once the microRNA has identified its RNA target, the AGOs cut the RNA into two pieces, known as the 5’ cleavage fragment and 3’ cleavage fragment. The two resulting fragments need to be cleared away swiftly, so that the RISC can move on to the next target. While it was known how the 3’ cleavage fragment was removed, it was less clear how the 5’ cleavage fragment was dealt with. Previous studies had shown that the 5’ cleavage fragment was marked with a chemical called uridine, which somehow signals to the RISC that this fragment needs to be destroyed. Now, using biochemical techniques, Zhang et al. have identified two new proteins in the model plant Arabidopsis that attach to the AGO proteins and degrade the 5’ cleavage fragments that are marked with uridine. The two proteins are named RICE1 and RICE2. Zhang et al. then analyzed the three-dimensional shape of RICE1 and identified the ‘active’ region that is responsible for degrading the RNA fragments. When these active regions were blocked, the microRNA levels were low, but the uridine-marked 5’ cleavage fragments were high. Also, the RISC complex could not work properly, which lead to problems during the development of the plant. These results suggest that RICE proteins degrade 5’ cleavage fragments modified with uridine to activate RISC. RICE proteins are conserved between plants and animals, and it is likely that their counterparts in humans will have a similar role to the plant proteins. The next challenge will be to explore how RICE proteins work in more details, which may lead to new ways to manipulate the levels of microRNAs to change the architecture of the plant and to improve their tolerance to various stress conditions. DOI:http://dx.doi.org/10.7554/eLife.24466.002
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Fuqu Hu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Min Woo Sung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Chang Shu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Hisashi Koiwa
- Department of Horticulture, Texas A&M University, College Station, United States
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, United States
| | - Martin Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| |
Collapse
|
40
|
A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:99-175. [PMID: 28838543 DOI: 10.1016/bs.ircmb.2017.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (MiRNAs) are a class of endogenously encoded ~22 nucleotide, noncoding, single-stranded RNAs that contribute to development, body planning, stem cell differentiation, and tissue identity through posttranscriptional regulation and degradation of transcripts. Given their importance, it is predictable that dysregulation of MiRNAs, which target a wide variety of transcripts, can result in malignant transformation. In this review, we explore the discovery of MiRNAs, their mechanism of action, and the tools that aid in their discovery and study. Strikingly, many of the studies that have expanded our understanding of the contributions of MiRNAs to normal physiology and in the development of diseases have come from studies in the hematopoietic system and hematologic malignancies, with some of the earliest identified functions for mammalian MiRNAs coming from observations made in leukemias. So, with a special focus on the hematologic system, we will discuss how MiRNAs contribute to differentiation of stem cells and how dysregulation of MiRNAs contributes to the development of malignancy, by providing examples of specific MiRNAs that function as oncogenes or tumor suppressors, as well as of defects in MiRNA processing. Finally, we will discuss the promise of MiRNA-based therapeutics and challenges for the future study of disease-causing MiRNAs.
Collapse
|
41
|
Trubetskoy VS, Griffin JB, Nicholas AL, Nord EM, Xu Z, Peterson RM, Wooddell CI, Rozema DB, Wakefield DH, Lewis DL, Kanner SB. Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses. Nucleic Acids Res 2017; 45:1469-1478. [PMID: 28180327 PMCID: PMC5388421 DOI: 10.1093/nar/gkw828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/23/2023] Open
Abstract
The RNA interference (RNAi)-based therapeutic ARC-520 for chronic hepatitis B virus (HBV) infection consists of a melittin-derived peptide conjugated to N-acetylgalactosamine for hepatocyte targeting and endosomal escape, and cholesterol-conjugated RNAi triggers, which together result in HBV gene silencing. To characterize the kinetics of RNAi trigger delivery and 5΄-phosphorylation of guide strands correlating with gene knockdown, we employed a peptide-nucleic acid (PNA) hybridization assay. A fluorescent sense strand PNA probe binding to RNAi duplex guide strands was coupled with anion exchange high performance liquid chromatography to quantitate guide strands and metabolites. Compared to PCR- or ELISA-based methods, this assay enables separate quantitation of non-phosphorylated full-length guide strands from 5΄-phosphorylated forms that may associate with RNA-induced silencing complexes (RISC). Biodistribution studies in mice indicated that ARC-520 guide strands predominantly accumulated in liver. 5΄-phosphorylation of guide strands was observed within 5 min after ARC-520 injection, and was detected for at least 4 weeks corresponding to the duration of HBV mRNA silencing. Guide strands detected in RISC by AGO2 immuno-isolation represented 16% of total 5΄-phosphorylated guide strands in liver, correlating with a 2.7 log10 reduction of HBsAg. The PNA method enables pharmacokinetic analysis of RNAi triggers, elucidates potential metabolic processing events and defines pharmacokinetic-pharmacodynamic relationships.
Collapse
MESH Headings
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Female
- Gene Knockdown Techniques
- Hepatitis B Surface Antigens/blood
- Hepatitis B Surface Antigens/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Humans
- Kinetics
- Liver/metabolism
- Liver/virology
- Mice
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Peptide Nucleic Acids/genetics
- Peptide Nucleic Acids/metabolism
- Phosphorylation
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Induced Silencing Complex/genetics
- RNA-Induced Silencing Complex/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
| | - Jacob B. Griffin
- Department of Biology, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | - Anthony L. Nicholas
- Department of Chemistry, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | - Eric M. Nord
- Department of Chemistry, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | - Zhao Xu
- Department of Biology, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | - Ryan M. Peterson
- Department of Biology, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | | | - David B. Rozema
- Department of Chemistry, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | - Darren H. Wakefield
- Department of Chemistry, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| | | | - Steven B. Kanner
- Department of Biology, Arrowhead Pharmaceuticals, Inc., Madison, WI 53711, USA
| |
Collapse
|
42
|
Angart PA, Carlson RJ, Adu-Berchie K, Walton SP. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference. Nucleic Acid Ther 2016; 26:309-317. [PMID: 27399870 PMCID: PMC5067871 DOI: 10.1089/nat.2016.0612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Efficient short interfering RNA (siRNA)-mediated gene silencing requires selection of a sequence that is complementary to the intended target and possesses sequence and structural features that encourage favorable functional interactions with the RNA interference (RNAi) pathway proteins. In this study, we investigated how terminal sequence and structural characteristics of siRNAs contribute to siRNA strand loading and silencing activity and how these characteristics ultimately result in a functionally asymmetric duplex in cultured HeLa cells. Our results reiterate that the most important characteristic in determining siRNA activity is the 5' terminal nucleotide identity. Our findings further suggest that siRNA loading is controlled principally by the hybridization stability of the 5' terminus (Nucleotides: 1-2) of each siRNA strand, independent of the opposing terminus. Postloading, RNA-induced silencing complex (RISC)-specific activity was found to be improved by lower hybridization stability in the 5' terminus (Nucleotides: 3-4) of the loaded siRNA strand and greater hybridization stability toward the 3' terminus (Nucleotides: 17-18). Concomitantly, specific recognition of the 5' terminal nucleotide sequence by human Argonaute 2 (Ago2) improves RISC half-life. These findings indicate that careful selection of siRNA sequences can maximize both the loading and the specific activity of the intended guide strand.
Collapse
Affiliation(s)
- Phillip A Angart
- Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - Rebecca J Carlson
- Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - Kwasi Adu-Berchie
- Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - S Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| |
Collapse
|
43
|
Asada K, Canestrari E, Paroo Z. A druggable target for rescuing microRNA defects. Bioorg Med Chem Lett 2016; 26:4942-4946. [PMID: 27641467 DOI: 10.1016/j.bmcl.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/15/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Despite immense promise, development of microRNA (miRNA) therapeutics remains limited by pharmacodynamic challenges that have hindered progress of related oligonucleotide-based technologies. Recent discovery of enzymes that mediate miRNA metabolism represent potential pharmacological targets for directing miRNA function, circumventing barriers associated with oligonucleotides. We previously identified the Translin/Trax (TN/TX) ribonuclease complex as a pre-miRNA degrading enzyme that competes with pre-miRNA processing by Dicer. Here, we establish a high-throughput TN/TX assay and screened 2320 drug and natural product compounds for inhibitors of TN/TX. Secondary analyses demonstrate small molecule mediated inhibition of pre-miRNA degradation by TN/TX and enhanced miRNA processing by Dicer. This application of traditional enzyme-inhibitor pharmacology to the miRNA pathway establishes a druggable target for rescuing global miRNA defects, providing an important complement to current approaches towards miRNA therapeutics. More broadly, demonstrating feasibility of pharmacological targeting of the 'ribonucleome' is particularly important given emerging classes of regulatory RNA and growing understanding of their importance in health and disease.
Collapse
Affiliation(s)
- Ken Asada
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emanuele Canestrari
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zain Paroo
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
44
|
Garwain O, Scarlata S. Phospholipase Cβ-TRAX Association Is Required for PC12 Cell Differentiation. J Biol Chem 2016; 291:22970-22976. [PMID: 27624933 DOI: 10.1074/jbc.m116.744953] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 11/06/2022] Open
Abstract
When treated with nerve growth factor, PC12 cells will differentiate over the course of several days. Here, we have followed changes during differentiation in the cellular levels of phosphoinositide-specific phospholipase Cβ (PLCβ) and its activator, Gαq, which together mediate Ca2+ release. We also followed changes in the level of the novel PLCβ binding partner TRAX (translin-associated factor X), which promotes RNA-induced gene silencing. We find that the level of PLCβ increases 4-fold within 24 h, whereas Gαq increases only 1.4-fold, and this increase occurs ∼24 h later than PLCβ. Alternately, the level of TRAX remains constant over the 72 h tested. When PLCβ1 or TRAX is down-regulated, differentiation does not occur. The impact of PLCβ on differentiation appears independent of Gαq as down-regulating Gαq at constant PLCβ does not affect differentiation. Förster resonance energy transfer studies after PLCβ association with its partners indicate that PLCβ induced soon after nerve growth factor treatment associates with TRAX rather than Gαq Functional measurements of Ca2+ signals to assess the activity of PLCβ-Gαq complexes and measurements of the reversal of siRNA(GAPDH) to assess the activity of PLCβ-TRAX complexes additionally suggest that the newly synthesized PLCβ associates with TRAX to impact RNA-induced silencing. Taken together, our studies show that PLCβ, through its ability to bind TRAX and reverse RNA silencing of specific genes, plays a key role in switching PC12 cells to their differentiated state.
Collapse
Affiliation(s)
- Osama Garwain
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Suzanne Scarlata
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| |
Collapse
|
45
|
Zhang J, Liu H, Yao Q, Yu X, Chen Y, Cui R, Wu B, Zheng L, Zuo J, Huang Z, Ma J, Gan J. Structural basis for single-stranded RNA recognition and cleavage by C3PO. Nucleic Acids Res 2016; 44:9494-9504. [PMID: 27596600 PMCID: PMC5100593 DOI: 10.1093/nar/gkw776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Translin and translin-associated factor-x are highly conserved in eukaroytes; they can form heteromeric complexes (known as C3POs) and participate in various nucleic acid metabolism pathways. In humans and Drosophila, C3POs cleave the fragmented siRNA passenger strands and facilitate the activation of RNA-induced silencing complex, the effector complex of RNA interference (RNAi). Here, we report three crystal structures of Nanoarchaeum equitans (Ne) C3PO. The apo-NeC3PO structure adopts an open form and unravels a potential substrates entryway for the first time. The NeC3PO:ssRNA and NeC3PO:ssDNA complexes fold like closed football with the substrates captured at the inner cavities. The NeC3PO:ssRNA structure represents the only catalytic form C3PO complex available to date; with mutagenesis and in vitro cleavage assays, the structure provides critical insights into the substrate binding and the two-cation-assisted catalytic mechanisms that are shared by eukaryotic C3POs. The work presented here further advances our understanding on the RNAi pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingqing Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiang Yu
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiqing Chen
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ruixue Cui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lina Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junjun Zuo
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA .,College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
46
|
Sarnow P, Sagan SM. Unraveling the Mysterious Interactions Between Hepatitis C Virus RNA and Liver-Specific MicroRNA-122. Annu Rev Virol 2016; 3:309-332. [PMID: 27578438 DOI: 10.1146/annurev-virology-110615-042409] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many viruses encode or subvert cellular microRNAs (miRNAs) to aid in their gene expression, amplification strategies, or pathogenic signatures. miRNAs typically downregulate gene expression by binding to the 3' untranslated region of their mRNA targets. As a result, target mRNAs are translationally repressed and subsequently deadenylated and degraded. Curiously, hepatitis C virus (HCV), a member of the Flaviviridae family, recruits two molecules of liver-specific microRNA-122 (miR-122) to the 5' end of its genome. In contrast to the canonical activity of miRNAs, the interactions of miR-122 with the viral genome promote viral RNA accumulation in cultured cells and in animal models of HCV infection. Sequestration of miR-122 results in loss of viral RNA both in cell culture and in the livers of chronic HCV-infected patients. This review discusses the mechanisms by which miR-122 is thought to enhance viral RNA abundance and the consequences of miR-122-HCV interactions. We also describe preliminary findings from phase II clinical trials in patients treated with miR-122 antisense oligonucleotides.
Collapse
Affiliation(s)
- Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada;
| |
Collapse
|
47
|
Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods 2016; 103:157-66. [PMID: 27083402 PMCID: PMC4921303 DOI: 10.1016/j.ymeth.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) is an extremely useful tool for inhibiting gene expression. It can be triggered by transfected synthetic small interfering RNA (siRNA) or by expressed small hairpin RNA (shRNA). The cellular machinery processes the latter into siRNA in vivo. shRNA is preferred or required in genetic screens and specific RNAi approaches in gene therapy settings. Despite its many successes, the field of shRNAs faces many challenges. Insufficient knockdowns and off-target effects become obstacles for shRNA usage in many applications. Numerous failures are triggered by pitfalls in shRNA design that is often associated with impoverished biogenesis. Here, based on current understanding of the miRNA maturation pathway, we discuss the principles of different shRNA design (pre-miRNA-like, pri-miRNA-like and Ago-shRNA) with an emphasis on the RNA structure. We also provide detailed instructions for an optimal design of pre-miRNA-like shRNA.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Gene Regulation and Chromosome Biology Laboratory, Center For Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Shuo Gu
- Gene Regulation and Chromosome Biology Laboratory, Center For Cancer Research, National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
48
|
Fu X, Shah A, Baraban JM. Rapid reversal of translational silencing: Emerging role of microRNA degradation pathways in neuronal plasticity. Neurobiol Learn Mem 2016; 133:225-232. [PMID: 27107971 DOI: 10.1016/j.nlm.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
As microRNAs silence translation, rapid reversal of this process has emerged as an attractive mechanism for driving de novo protein synthesis mediating neuronal plasticity. Herein, we summarize recent studies identifying neuronal stimuli that trigger rapid decreases in microRNA levels and reverse translational silencing of plasticity transcripts. Although these findings indicate that neuronal stimulation elicits rapid degradation of selected microRNAs, we are only beginning to decipher the molecular pathways involved. Accordingly, we present an overview of several molecular pathways implicated in mediating microRNA degradation: Lin-28, translin/trax, and MCPIP1. As these degradation pathways target distinct subsets of microRNAs, they enable neurons to reverse silencing rapidly, yet selectively.
Collapse
Affiliation(s)
- Xiuping Fu
- Solomon H. Snyder Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Aparna Shah
- Solomon H. Snyder Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States.
| |
Collapse
|
49
|
Castellanos-Gonzalez A, Perry N, Nava S, White AC. Preassembled Single-Stranded RNA-Argonaute Complexes: A Novel Method to Silence Genes in Cryptosporidium. J Infect Dis 2016; 213:1307-14. [PMID: 26656125 PMCID: PMC4799669 DOI: 10.1093/infdis/jiv588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/27/2015] [Indexed: 11/14/2022] Open
Abstract
Cryptosporidiosis is a common cause of diarrhea morbidity and mortality worldwide. Research progress on this infection has been slowed by lack of methods to genetically manipulate Cryptosporidium parasites. Small interfering RNA (siRNA) is widely used to study gene function, but Cryptosporidium species lack the enzymes necessary to process siRNA. By preassembling complexes with the human enzyme Argonaute 2 (hAgo2) and Cryptosporidium single-stranded RNA (ssRNA), we induced specific slicing in Cryptosporidium RNA targets. We demonstrated the reduction in expression of target genes at the mRNA and protein levels by transfecting live parasites with ssRNA-hAgo2 complexes. Furthermore we used this method to confirm the role of selected molecules during host cell invasion. This novel method provides a novel means of silencing Cryptosporidium genes to study their role in host-parasite interactions and as potential targets for chemotherapy.
Collapse
Affiliation(s)
| | - Nicolas Perry
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Samantha Nava
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - A Clinton White
- Infectious Disease Division, Department of Internal Medicine, University of Texas Medical Branch, Galveston
| |
Collapse
|
50
|
Wang JY, Chen SY, Sun CN, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene 2016; 35:1657-1670. [PMID: 26096928 DOI: 10.1038/onc.2015.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
DNA repair is critical for the maintenance of genome stability. Upon genotoxic stress, dysregulated DNA repair may induce apoptosis. Translin-associated factor X (TRAX), which was initially identified as a binding partner of Translin, has been implicated in genome stability. However, the exact role of TRAX in DNA repair remains largely unknown. Here, we showed that TRAX participates in the ATM/H2AX-mediated DNA repair machinery by interacting with ATM and stabilizing the MRN complex at double-strand breaks. The exogenous expression of wild-type (WT) TRAX, but not a TRAX variant lacking the nuclear localization signal (NLS), rescued the vulnerability of TRAX-null mouse embryo fibroblasts (MEFs). This finding confirms the importance of the nuclear localization of TRAX in the repair of DNA damage. Compared with WT MEFs, TRAX-null MEFs exhibited impaired DNA repair (for example, reduced phosphorylation of ATM and H2AX) after treatment with ultra violet-C or γ-ray irradiation and a higher incidence of p53-mediated apoptosis. Our findings demonstrate that TRAX is required for MRN complex-ATM-H2AX signaling, which optimizes DNA repair by interacting with the activated ATM and protects cells from genotoxic stress-induced apoptosis.
Collapse
Affiliation(s)
- J-Y Wang
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - S-Y Chen
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - C-N Sun
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - T Chien
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Y Chern
- Neuroscience Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|