1
|
Jiang KC, Zhu YH, Jiang ZL, Liu Y, Hussain W, Luo HY, Sun WH, Ji XY, Li DX. Regulation of PEST-containing nuclear proteins in cancer cells: implications for cancer biology and therapy. Front Oncol 2025; 15:1548886. [PMID: 40330830 PMCID: PMC12052563 DOI: 10.3389/fonc.2025.1548886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
The PEST-containing nuclear protein (PCNP) is a nuclear protein involved in the regulation of cell cycle progression, protein degradation, and tumorigenesis. PCNP contains a PEST sequence, a polypeptide structural motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T), which serves as a proteolytic recognition signal. The degradation of specific proteins via the PEST sequence plays a crucial role in modulating signaling pathways that control cell growth, differentiation, apoptosis, and stress responses. PCNP is primarily degraded through the ubiquitin-proteasome system (UPS) and the calpain pathway, with phosphorylation of threonine and serine residues further accelerating its degradation. The ubiquitination of PCNP by the ring finger protein NIRF in an E3 ligase-dependent manner is well documented, along with its involvement in the MAPK and PI3K/AKT/mTOR signaling pathways. Additionally, PCNP is implicated in p53-mediated cell cycle arrest and apoptosis, which are essential for inhibiting tumor growth. To explore the role of PCNP in cancer, this review examines its effects on cell growth, differentiation, proliferation, and apoptosis in lung adenocarcinoma, thyroid cancer, ovarian cancer, and other malignancies derived from glandular epithelial cells. By focusing on PCNP and its regulatory mechanisms, this study provides a scientific basis for further research on the biological functions of the PEST sequence in tumor development and cancer progression.
Collapse
Affiliation(s)
- Kai-Chun Jiang
- Department of Traditional Chinese Medicine, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Yong-Hao Zhu
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Zhi-Liang Jiang
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Yi Liu
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, Henan, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Huang-Yin Luo
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Wei-Hang Sun
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Oncology, Huaxian County Hospital, Anyang, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Ding-Xi Li
- The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Gomez Martinez AE, Lam T, Herr AE. Paired Analyses of Nuclear Protein Targets and Genomic DNA by Single-Cell Western Blot and Single-Cell PCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646125. [PMID: 40236107 PMCID: PMC11996381 DOI: 10.1101/2025.03.29.646125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-cell multimodal assays measure multiple layers of molecular information. Existing single-cell tools have limited capability to analyze nuclear proteins and genomic DNA from the same originating single cell. To address this gap, we designed and developed a microfluidic single-cell assay (SplitBlot), that pairs measurements of genomic DNA (PCR-based) and nucleo-cytoplasmic proteins (nuclear histone H3 and cytoplasmic beta-actin). To accomplish this paired multiomic measurement, we utilize microfluidic precision to fractionate protein molecules (both nuclear and cytoplasmic) from genomic DNA (nuclear). We create a fractionation axis that prepends a comet-like encapsulation of genomic DNA in an agarose molded microwell to a downstream single-cell western blot in polyacrylamide gel (PAG). For single-cell genomic DNA analysis, the agarose-encapsulated DNA is physically extracted from the microfluidic device for in-tube PCR, after release of genomic DNA from a molten agarose pallet (86% of pallets resulted in amplification of TurboGFP). For protein analysis, nucleo-cytoplasmic proteins are photocaptured to the PAG (via benzophenone) and probed in-situ (15 kDa histone H3 resolved from 42 kDa beta-actin with a separation resolution R s = 0.77, CV = 76%). The SplitBlot reported the amplification of TurboGFP DNA and the separation of nuclear histone H3 and cytoplasmic beta-actin from the same single U251 cells engineered to express TurboGFP. Demonstrated here, Split-Blot offers the capacity for precision genomic DNA vs. protein fractionation for subsequent split workflow consisting of in-tube PCR and on-chip single-cell western blotting, thus providing a tool for pairing genotype to nuclear and cytoplasmic protein expression at the single-cell level. TOC Graphic
Collapse
|
3
|
Yang L, Gilbertsen A, Smith K, Xia H, Higgins L, Guerrero C, Henke CA. Proteomic analysis of the IPF mesenchymal progenitor cell nuclear proteome identifies abnormalities in key nodal proteins that underlie their fibrogenic phenotype. Proteomics 2022; 22:e2200018. [PMID: 35633524 PMCID: PMC9541064 DOI: 10.1002/pmic.202200018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
IPF is a progressive fibrotic lung disease whose pathogenesis remains incompletely understood. We have previously discovered pathologic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients. IPF MPCs display a distinct transcriptome and create sustained interstitial fibrosis in immune deficient mice. However, the precise pathologic alterations responsible for this fibrotic phenotype remain to be uncovered. Quantitative mass spectrometry and interactomics is a powerful tool that can define protein alterations in specific subcellular compartments that can be implemented to understand disease pathogenesis. We employed quantitative mass spectrometry and interactomics to define protein alterations in the nuclear compartment of IPF MPCs compared to control MPCs. We identified increased nuclear levels of PARP1, CDK1, and BACH1. Interactomics implicated PARP1, CDK1, and BACH1 as key hub proteins in the DNA damage/repair, differentiation, and apoptosis signaling pathways respectively. Loss of function and inhibitor studies demonstrated important roles for PARP1 in DNA damage/repair, CDK1 in regulating IPF MPC stemness and self-renewal, and BACH1 in regulating IPF MPC viability. Our quantitative mass spectrometry studies combined with interactomic analysis uncovered key roles for nuclear PARP1, CDK1, and BACH1 in regulating IPF MPC fibrogenicity.
Collapse
Affiliation(s)
- Libang Yang
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Adam Gilbertsen
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Karen Smith
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hong Xia
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - LeeAnn Higgins
- Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Candace Guerrero
- Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Craig A. Henke
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
4
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Balajee AS. Human RecQL4 as a Novel Molecular Target for Cancer Therapy. Cytogenet Genome Res 2021; 161:305-327. [PMID: 34474412 DOI: 10.1159/000516568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
6
|
Afzal A, Sarfraz M, Li GL, Ji SP, Duan SF, Khan NH, Wu DD, Ji XY. Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology. Cancer Med 2019; 8:6335-6343. [PMID: 31487123 PMCID: PMC6797571 DOI: 10.1002/cam4.2465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polypeptide sequences enriched with proline (P), glutamic acid (E), aspartic acid (D) and serine (S)/ threonine (T) (PEST) have been reported to be the most abundant and frequently distributed at the cellular level. There is growing evidence that PEST sequences act as proteolytic recognition signals for degradation of residual proteins which is critical for activation or deactivation of regulatory proteins involved in cellular signaling pathways of cell growth, differentiation, stress responses and physiological death. A PEST containing nuclear protein (PCNP) was demonstrated as a tumor suppressor in a neuroblastoma cancer model and tumor promoter in lung adenocarcinoma cancer model. Its unique properties like ubiquitination by NIRF, co‐localization with NIRF in nucleus and tumor progression attract the attention of researchers. PCNP was reported to be ubiquitinated by ring finger protein NIRF in E3 ligase manner and as modulator of MAPK and PI3K/AKT/mTOR signaling pathways. In this review, we summarize PCNP linked DNA damage response, Post translational modifications, and transportation to address initiation, prognosis, and resistance of tumor cells in terms of cell cycle regulation, transcription and apoptosis. Hence, we demonstrate PCNP as a novel target in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.,Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Guang-Lei Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Ping Ji
- Muncipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety (KLIBS), Henan University College of Medicine, Kaifeng, China
| |
Collapse
|
7
|
Kim DH, Hah J, Wirtz D. Mechanics of the Cell Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:41-55. [DOI: 10.1007/978-3-319-95294-9_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Cocchiola R, Romaniello D, Grillo C, Altieri F, Liberti M, Magliocca FM, Chichiarelli S, Marrocco I, Borgoni G, Perugia G, Eufemi M. Analysis of STAT3 post-translational modifications (PTMs) in human prostate cancer with different Gleason Score. Oncotarget 2017; 8:42560-42570. [PMID: 28489571 PMCID: PMC5522088 DOI: 10.18632/oncotarget.17245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
Prostate Cancer (PCa) is a complex and heterogeneous disease. The androgen receptor (AR) and the signal transducer and activator of transcription 3 (STAT3) could be effective targets for PCa therapy. STAT3, a cytoplasmatic latent transcription factor, is a hub protein for several oncogenic signalling pathways and up-regulates the expression of numerous genes involved in tumor cell proliferation, angiogenesis, metastasis and cell survival. STAT3 activity can be modulated by several Post-Translational Modifications (PTMs) which reflect particular cell conditions and may be implicated in PCa development and progression. The aim of this work was to analyze STAT3 PTMs at different tumor stages and their relationship with STAT3 cellular functions. For this purpose, sixty-five prostatectomy, Formalin-fixed paraffin-embedded (FFPE) specimens, classified with different Gleason Scores, were subjected to immunoblotting, immunofluorescence staining and RT-PCR analysis. All experiments were carried out in matched non-neoplastic and neoplastic tissues. Data obtained showed different STAT3 PTMs profiles among the analyzed tumor grades which correlate with differences in the amount and distribution of specific STAT3 interactors as well as the expression of STAT3 target genes. These results highlight the importance of PTMs as an additional biomarker for the exactly evaluation of the PCa stage and the optimal treatment of this disease.
Collapse
Affiliation(s)
- Rossana Cocchiola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
- Fondazione Enrico ed Enrica Sovena, Rome, Italy
| | - Donatella Romaniello
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Caterina Grillo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Marcello Liberti
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Massimo Magliocca
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Chichiarelli
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Ilaria Marrocco
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Giuseppe Borgoni
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Perugia
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| |
Collapse
|
9
|
Expression patterns of sirtuin 1-AMPK-autophagy pathway in chronic colitis and inflammation-associated colon neoplasia in IL-10-deficient mice. Int Immunopharmacol 2016; 35:248-256. [PMID: 27085036 DOI: 10.1016/j.intimp.2016.03.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/19/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interleukin-10-deficient (IL-10 (-/-)) mice spontaneously develop chronic colitis and adenocarcinoma through the dysplasia sequence. Autophagy malfunction is associated to inflammatory bowel disease (IBD) and colorectal cancer (CRC) pathogenesis. Autophagy is regulated by silent information regulator-1 (SIRT1), a NAD+-dependent histone deacetylase. Our aim was to investigate the expression changes of SIRT1-AMPK-autophagy pathway in the progression from chronic colitis to CRC. METHODS We studied C57BL/6-IL-10-deficient mice between 6 and 18weeks of age. Macroscopic and histological analysis, and characterization of inflammatory and tumor biomarkers were performed. RESULTS IL-10-deficient mice developed colitis from the age of 6weeks onward. The severity of inflammation and dysplasia, and the proliferative activity increased gradually with age. IL-10 (-/-) mice were characterized by improved levels of TNF-α and decreased expression of SIRT1. Moreover, our findings show an increase in p-AMPK expression and an activation of the autophagy in IL-10 (-/-) mice from all stages, evidenced by the accumulation of LC3-II protein, the increase in Beclin 1 expression and the reduction in Bcl-2 levels. CONCLUSIONS SIRT1-AMPK-autophagy pathway may be involved in the maintenance of chronic inflammation and dysplasia development in the IL-10-deficient mice model. Modulation of this pathway could be a novel strategy for IBD and CRC treatment.
Collapse
|
10
|
Hendry WJ, Hariri HY, Alwis ID, Gunewardena SS, Hendry IR. Altered gene expression patterns during the initiation and promotion stages of neonatally diethylstilbestrol-induced hyperplasia/dysplasia/neoplasia in the hamster uterus. Reprod Toxicol 2014; 50:68-86. [PMID: 25242112 DOI: 10.1016/j.reprotox.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: (1) immunoblot analyses and (2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and (3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: (1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and (2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon.
Collapse
Affiliation(s)
- William J Hendry
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States.
| | - Hussam Y Hariri
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| | - Imala D Alwis
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Bioinformatics Core, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Isabel R Hendry
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| |
Collapse
|
11
|
Xia R, Zhou R, Tian Z, Zhang C, Wang L, Hu Y, Han J, Li J. High expression of H3K9me3 is a strong predictor of poor survival in patients with salivary adenoid cystic carcinoma. Arch Pathol Lab Med 2014; 137:1761-9. [PMID: 24283856 DOI: 10.5858/arpa.2012-0704-oa] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Histone methylation and acetylation play important roles in the carcinogenesis and progression of cancer. OBJECTIVE To investigate whether histone modifications influence the prognosis of patients with salivary adenoid cystic carcinoma (ACC). DESIGN The expression of histone H3 lysine 9 trimethylation (H3K9me3) and histone H3 lysine 9 acetylation (H3K9Ac) was assessed by immunohistochemistry in 66 specimens of primary ACC. Tests were used to determine the presence of any correlation between H3K9me3 and H3K9Ac levels and clinicopathologic parameters. Log-rank test and Cox proportional hazards regression models were used to analyze the survival data. RESULTS H3K9me3 expression was positively correlated with solid pattern tumors (P = .002) and distant metastasis (P = .001). Solid pattern tumors had lower H3K9Ac expression levels than cribriform-tubular pattern tumors (P = .03). Patients whose tumors showed high H3K9me3 expression and a solid pattern had a significantly poorer overall survival (OS) (P < .001 and P < .001, respectively) and disease-free survival (P < .001 and P = .01, respectively). Low H3K9Ac expression was correlated with poor OS (P = .05). The multivariate analysis indicated that high levels of H3K9me3 expression and solid pattern tumors were independent prognostic factors that significantly influenced OS (P = .004 and P = .04, respectively). H3K9me3 expression was identified as the only independent predictor of disease-free survival (P = .006). CONCLUSIONS Our results suggest that high levels of H3K9me3 expression are predictive of rapid cell proliferation and distant metastasis in ACC. Compared with histologic patterns, H3K9me3 might be a better predictive biomarker for the prognosis of patients with salivary ACC.
Collapse
Affiliation(s)
- Ronghui Xia
- From the Department of Oral Pathology, 9th People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China (Drs Xia, Tian, Zhang, Wang, Hu, Han, and Li); the Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, Maryland (Dr Xia); and the Department of Oral Medicine, Shanghai Stomatological Disease Center, Shanghai, China (Dr Zhou). Ronghui Xia and Rongrui Zhou contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Effect of lichong decoction on expression of IGF-I and proliferating cell nuclear antigen mRNA in rat model of uterine leiomyoma. J TRADIT CHIN MED 2013; 32:636-40. [PMID: 23427402 DOI: 10.1016/s0254-6272(13)60084-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To study the effect of Lichong Decoction (Lichong Decoction for strengthening anti-pathogenic Qi and eliminating blood stasis) on the expression of insulin-like growth factor-I (IGF-I) and proliferating cell nuclear antigen (PCNA) mRNA in a rat model of uterine leiomyoma. METHODS Fifty female Wistar rats were randomized into a normal control group, model group, Lichong Decoction group, Guizhifuling Capsule (Capsule containing Cassia Twig and Poria) group, and Mifepristone group. The uterine leiomyoma model was established by peritoneal injections of exogenous estrogen and progesterone hormone. The ultrastructural changes in cells of rat uterine tissues were observed with transmission electron microscopy, and the expression of IGF-I and PCNA mRNA was detected by real-time fluorescent quantitative PCR. RESULTS Following treatment, cells in the Lichong Decoction group appeared to be arranged normally, the cellular morphology were almost in a normal state, hyperplasia and hypertrophy of the chondriosome was reduced, collagen fibers were arranged in a regular manner, without obvious hyperplasia, and the expression of IGF-I and PCNA mRNA was significantly decreased compared with the model group (P < 0.01). CONCLUSIONS The effect of Lichong Decoction on uterine leiomyoma is related to its function in reducing the expression of IGF-I and PCNA mRNA.
Collapse
|
13
|
Russo D, Durante C, Bulotta S, Puppin C, Puxeddu E, Filetti S, Damante G. Targeting histone deacetylase in thyroid cancer. Expert Opin Ther Targets 2012; 17:179-93. [DOI: 10.1517/14728222.2013.740013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Dai J, Zhang Z. PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS APPLIED MATERIALS & INTERFACES 2012; 4:6317-23. [PMID: 23106794 DOI: 10.1021/am3019367] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Delivery of proteins into cells may alter cellular functions as various proteins are involved in cellular signaling by activating or deactivating the corresponding pathways and, therefore, can be used in cancer therapy. In this study, we have demonstrated for the first time that PEGylated graphene oxide (GO) can be exploited as a nanovector for efficient delivery of proteins into cells. In this approach, GO was functionalized with amine-terminated 6-armed polyethylene glycol (PEG) molecules, thereby providing GO with proper physiological stability and biocompatibility. Proteins were then loaded onto PEG-grafted GO (GO-PEG) with high payload via noncovalent interactions. GO-PEG could deliver proteins to cytoplasm efficiently, protecting them from enzymatic hydrolysis. The protein delivered by GO-PEG reserves its biological activity that regulates the cell fate. As a result, delivery of ribonuclease A (RNase A) led to cell death and transport of protein kinase A (PKA) induced cell growth. Taken together, this work demonstrated the feasibility of PEGlyated GO as a promising protein delivery vector with high biocompatibility, high payload capacity and, more importantly, capabilities of protecting proteins from enzymatic hydrolysis and retaining their biological functions.
Collapse
Affiliation(s)
- He Shen
- Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Electrocatalytic oxidation of tyrosines shows signal enhancement in label-free protein biosensors. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Chang PJ, Bhavsar PK, Michaeloudes C, Khorasani N, Chung KF. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. J Allergy Clin Immunol 2012; 130:877-85.e5. [PMID: 22947346 DOI: 10.1016/j.jaci.2012.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/12/2012] [Accepted: 07/12/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Patients with severe asthma are less responsive to the beneficial effects of corticosteroid therapy. OBJECTIVE We investigated whether corticosteroid insensitivity was present in airway smooth muscle cells (ASMCs) of patients with severe asthma. METHODS ASMCs cultured from bronchial biopsy specimens of nonasthmatic control subjects (n = 12) and patients with nonsevere (n = 10) or severe (n = 10) asthma were compared for the effect of dexamethasone on suppression of TNF-α- and IFN-γ-induced CCL11 (eotaxin), CXCL8 (IL-8), and CX3CL1 (fractalkine) expression. The mechanisms of corticosteroid insensitivity are also determined. RESULTS CCL11 release was higher in ASMCs of patients with nonsevere but not severe asthma and nonasthmatic control subjects; CXCL8 and CX3CL1 release were similar in all groups. In patients with severe asthma, dexamethasone caused less suppression of CCL11 and CXCL8 release induced by TNF-α. Dexamethasone potentiated TNF-α- and IFN-γ-induced CX3CL1 release equally in all 3 groups. TNF-α-induced phosphorylated p38 mitogen-activated protein kinase levels were increased in ASMCs from patients with severe asthma compared with those from patients with nonsevere asthma and nonasthmatic subjects, whereas TNF-α-induced phosphorylated c-Jun N-terminal kinase and phosphorylated extracellular signal-related kinase levels were increased in all asthmatic groups. A p38 inhibitor increased the inhibitory effect of dexamethasone. CONCLUSIONS ASMCs of patients with severe asthma are corticosteroid insensitive; this might be secondary to heightened p38 mitogen-activated protein kinase levels.
Collapse
Affiliation(s)
- Po-Jui Chang
- Airway Disease, National Heart and Lung Institute, Imperial College London, and the Biomedical Research Unit, Royal Brompton NHS Foundation Trust, London, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Bidoia C. Human T-lymphotropic virus proteins and post-translational modification pathways. World J Virol 2012; 1:115-30. [PMID: 24175216 PMCID: PMC3782272 DOI: 10.5501/wjv.v1.i4.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 06/04/2012] [Accepted: 07/13/2012] [Indexed: 02/05/2023] Open
Abstract
Cell life from the cell cycle to the signaling transduction and response to stimuli is finely tuned by protein post-translational modifications (PTMs). PTMs alter the conformation, the stability, the localization, and hence the pattern of interactions of the targeted protein. Cell pathways involve the activation of enzymes, like kinases, ligases and transferases, that, once activated, act on many proteins simultaneously, altering the state of the cell and triggering the processes they are involved in. Viruses enter a balanced system and hijack the cell, exploiting the potential of PTMs either to activate viral encoded proteins or to alter cellular pathways, with the ultimate consequence to perpetuate through their replication. Human T-lymphotropic virus type 1 (HTLV-1) is known to be highly oncogenic and associates with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis and other inflammatory pathological conditions. HTLV-1 protein activity is controlled by PTMs and, in turn, viral activity is associated with the modulation of cellular pathways based on PTMs. More knowledge is acquired about the PTMs involved in the activation of its proteins, like Tax, Rex, p12, p13, p30, HTLV-I basic leucine zipper factor and Gag. However, more has to be understood at the biochemical level in order to counteract the associated fatal outcomes. This review will focus on known PTMs that directly modify HTLV-1 components and on enzymes whose activity is modulated by viral proteins.
Collapse
Affiliation(s)
- Carlo Bidoia
- Carlo Bidoia, Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Zhang H, Tian Y, Li Y, Kulasingam V, Drabovich A, Smith CR, Batruch I, Oran PE, Fredolini C, Luchini A, Liotta L, Petricoin E, Diamandis EP, Chan DW, Nelson R, Lopez MF. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res 2012; 11:3986-95. [PMID: 22639787 DOI: 10.1021/pr300014s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.
Collapse
Affiliation(s)
- Amol Prakash
- Thermo Fisher Scientific, BRIMS (Biomarker Research in Mass Spectrometry), Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 2012. [PMID: 22498958 DOI: 10.1039/c2cs15331a.mass] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 2012; 41:3912-28. [PMID: 22498958 DOI: 10.1039/c2cs15331a] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health.
Collapse
Affiliation(s)
- Thomas E Angel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin. Pathol Oncol Res 2012; 18:713-20. [PMID: 22270866 DOI: 10.1007/s12253-012-9499-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/04/2012] [Indexed: 12/28/2022]
Abstract
We studied the effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, on colon cancer. The expression of HDACs in colorectal cancer specimens and the effects of SAHA on colon cancer cells and tumors of nude mice were assessed. Treatment with SAHA (3 μm) for 72 h induced downregulation of different subtypes of HDAC proteins and also induced acetylation of histone 3 and histone 4. SAHA significantly inhibited the expression of the oncogenic protein c-myc and also increased the expression of the p53 and Rb proteins. The immunohistochemical staining of HDACs, including HDAC1, HDAC2, HDAC3, and HDAC4, was significantly increased in colorectal adenocarcinoma specimens compared to healthy control tissues. In addition, murine studies showed that 100 mg/kg SAHA administered by intraperitoneal injection significantly induced tumor necrosis and inhibited the growth of colon tumors. Immunohistochemistry of the tumor tissues from nude mice revealed that SAHA inhibited the expression of different subtypes of histone deacetylase, the anti-apoptotic proteins cyclin D1, survivin, and also inhibited cell proliferative as determined by Ki67 expression. SAHA inhibited the growth of colon tumors by decreasing histone deacetylases and the expression of cyclin D1 and survivin in nude mice.
Collapse
|