1
|
Jia K, Cheng B, Huang L, Xu J, Liu F, Liao X, Liao K, Lu H. Activation of prep expression by Tet2 promotes the proliferation of bipotential progenitor cells during liver regeneration. Development 2025; 152:DEV204339. [PMID: 39976298 DOI: 10.1242/dev.204339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Biliary epithelial cell (BEC)-derived liver regeneration in zebrafish exhibits similarities to liver regeneration in chronic liver injury. However, the underlying mechanisms remain poorly understood. Here, we identified a serine peptidase called prolyl endopeptidase (Prep) as an indispensable factor during the BEC-derived liver regeneration process. prep was significantly upregulated and enriched in bipotential progenitor cells (BP-PCs). Through gain- and loss-of-function assays, prep was found to potently accelerate liver regeneration and drastically increase the proliferation of BP-PCs. Mechanistically, prep expression was directly regulated by ten-eleven translocation 2 (Tet2)-mediated DNA demethylation. More strikingly, Tet2 regulated prep expression by directly interacting and reducing the methylation of CpG sites in the prep promoter. Subsequently, Prep activated the PI3K-AKT-mTOR signaling pathway to regulate liver regeneration. Therefore, our study revealed the role and mechanism of Tet2-mediated DNA demethylation-associated upregulation of prep in the proliferation of BP-PCs during liver regeneration. These results identify promising targets for stimulating regeneration following chronic liver injury.
Collapse
Affiliation(s)
- Kun Jia
- Center for Clinical Medicine Research , First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs , Jinggangshan University, Ji'an 343009, China
- School of Marine Science , Ningbo University, Ningbo 315832, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering , Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Lirong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering , Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jiaxin Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering , Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs , Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs , Jinggangshan University, Ji'an 343009, China
| | - Kai Liao
- School of Marine Science , Ningbo University, Ningbo 315832, China
| | - Huiqiang Lu
- Center for Clinical Medicine Research , First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs , Jinggangshan University, Ji'an 343009, China
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering , Gannan Normal University, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
2
|
Zhu M, Li Y, Shen Q, Gong Z, Liu D. Sex hormone receptors, calcium-binding protein and Yap1 signaling regulate sex-dependent liver cell proliferation following partial hepatectomy. Dis Model Mech 2024; 17:dmm050900. [PMID: 39397390 PMCID: PMC11556313 DOI: 10.1242/dmm.050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Partial hepatectomy (PH) is commonly used to treat patients with hepatocellular carcinoma. The recovery of patients from PH depends on the initiation of liver regeneration, a process that mainly relies on liver cell proliferation. As sex affects the human liver regeneration progress, we investigated sex disparity in PH-induced liver regeneration in adult zebrafish. We found that, after PH, males began liver regeneration earlier than females in terms of liver cell proliferation and liver mass recovery, and this was associated with earlier activation of Yap1 signaling in male than female livers. We also found that androgen receptors regulated the sex-biased liver regeneration in a Yap1-dependent manner and that activated estrogen receptors are responsible for the later onset of female hepatocyte proliferation. Furthermore, we identified that S100A1, a calcium-binding protein, regulates the sex disparity in liver regeneration, as heterozygous S100A1 knockout inhibited Yap1 activity in male livers and delayed hepatocyte proliferation in males following PH. Thus, multiple pathways and/or their interplays contribute to the sex disparity in liver regeneration, suggesting that sex-biased therapeutic strategies are required for patients who have received PH-based therapies.
Collapse
Affiliation(s)
- Mingkai Zhu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Qiaosen Shen
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Martucci NJ, Stoops J, Bowen W, Orr A, Cotner MC, Michalopoulos GK, Bhushan B, Mars WM. A Novel Role for the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Delta Isoform in Hepatocellular Proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1511-1527. [PMID: 38705383 PMCID: PMC11393825 DOI: 10.1016/j.ajpath.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 05/07/2024]
Abstract
The phosphatidylinositol-4,5-bisphosphate 3-kinase delta isoform (Pik3cd), usually considered immune-specific, was unexpectedly identified as a gene potentially related to either regeneration and/or differentiation in animals lacking hepatocellular Integrin Linked Kinase (ILK). Since a specific inhibitor (Idelalisib, or CAL101) for the catalytic subunit encoded by Pik3cd (p110δ) has reported hepatotoxicity when used for treating chronic lymphocytic leukemia and other lymphomas, the authors aimed to elucidate whether there is a role for p110δ in normal liver function. To determine the effect on normal liver regeneration, partial hepatectomy (PHx) was performed using mice in which p110δ was first inhibited using CAL101. Inhibition led to over a 50% decrease in proliferating hepatocytes in the first 2 days after PHx. This difference correlated with phosphorylation changes in the HGF and EGF receptors (MET and EGFR, respectively) and NF-κB signaling. Ingenuity Pathway Analyses implicated C/EBPβ, HGF, and the EGFR heterodimeric partner, ERBB2, as three of the top 20 regulators downstream of p110δ signaling because their pathways were suppressed in the presence of CAL101 at 1 day post-PHx. A regulatory role for p110δ signaling in mouse and rat hepatocytes through MET and EGFR was further verified using hepatocyte primary cultures, in the presence or absence of CAL101. Combined, these data support a role for p110δ as a downstream regulator of normal hepatocytes when stimulated to proliferate.
Collapse
Affiliation(s)
- Nicole J Martucci
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Stoops
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary-Claire Cotner
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Shen W, Yang M, Chen H, He C, Li H, Yang X, Zhuo J, Lin Z, Hu Z, Lu D, Xu X. FGF21-mediated autophagy: Remodeling the homeostasis in response to stress in liver diseases. Genes Dis 2024; 11:101027. [PMID: 38292187 PMCID: PMC10825283 DOI: 10.1016/j.gendis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 02/01/2024] Open
Abstract
Liver diseases are worldwide problems closely associated with various stresses, such as endoplasmic reticulum stress. The exact interplay between stress and liver diseases remains unclear. Autophagy plays an essential role in maintaining homeostasis, and recent studies indicate tight crosstalk between stress and autophagy in liver diseases. Once the balance between damage and autophagy is broken, autophagy can no longer resist injury or maintain homeostasis. In recent years, FGF21 (fibroblast growth factor 21)-induced autophagy has attracted much attention. FGF21 is regarded as a stress hormone and can be up-regulated by an abundance of signaling pathways in response to stress. Also, increased FGF21 activates autophagy by a complicated signaling network in which mTOR plays a pivotal role. This review summarizes the mechanism of FGF21-mediated autophagy and its derived application in the defense of stress in liver diseases and offers a glimpse into its promising prospect in future clinical practice.
Collapse
Affiliation(s)
- Wei Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Modan Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianyong Zhuo
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
6
|
Ali Deeb A, Rauchfuß F, Gaßler N, Dondorf F, Rohland O, Tannapfel A, Settmacher U. Liver regeneration after two-stage liver transplantation is more effective than after other preconditioning procedures in colorectal liver metastases. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023; 30:615-624. [PMID: 36349494 DOI: 10.1002/jhbp.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Induction of liver regeneration represents an option to expand the resectability in patients with expected small future liver remnant (FLR). The aim of this cohort-study is to compare the liver regeneration between different surgical procedures, including novel procedures such as two-stage living donor liver transplantation using small-for-size grafts. METHODS Forty-three patients with colorectal liver metastases were included between 2004 and 2020. They underwent one of the following three procedures: portal vein embolization (PVE), associated liver partition with portal vein ligation for staged hepatectomy (ALPPS), and living donor two-stage liver transplantation (LT). The volume gain of the future liver remnant was analyzed in comparison between the three mentioned procedures. RESULTS The type of surgery performed had a significant correlation with liver regeneration with a strong effect on the benefit of ALPPS and liver transplantation, respectively (r = .6, p = .00003). The type of surgery was the only independent co-factor in the multiple regression, which showed a significant influence on FLR-increase favoring two-stage transplantation compared to the other two related procedures (ß = .12, T = 3.9, p = .0004). The histological and immunohistochemical studies also showed a clear advantage of proliferation to the benefits of two-stage liver transplantation compared with ALPPS. CONCLUSION Two-stage liver transplantation using small-for-size grafts induces better FLR-increase than portal vein embolization or ALPPS in patients with colorectal liver metastases.
Collapse
Affiliation(s)
- Aladdin Ali Deeb
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Nikolaus Gaßler
- Institute of Pathology, Jena University Hospital, Jena, Germany
| | - Felix Dondorf
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Oliver Rohland
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | | | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Lamanilao GG, Dogan M, Patel PS, Azim S, Patel DS, Bhattacharya SK, Eason JD, Kuscu C, Kuscu C, Bajwa A. Key hepatoprotective roles of mitochondria in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2023; 324:G207-G218. [PMID: 36648139 PMCID: PMC9988520 DOI: 10.1152/ajpgi.00220.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Treatment of advanced liver disease using surgical modalities is possible due to the liver's innate ability to regenerate following resection. Several key cellular events in the regenerative process converge at the mitochondria, implicating their crucial roles in liver regeneration. Mitochondria enable the regenerating liver to meet massive metabolic demands by coordinating energy production to drive cellular proliferative processes and vital homeostatic functions. Mitochondria are also involved in terminating the regenerative process by mediating apoptosis. Studies have shown that attenuation of mitochondrial activity results in delayed liver regeneration, and liver failure following resection is associated with mitochondrial dysfunction. Emerging mitochondria therapy (i.e., mitotherapy) strategies involve isolating healthy donor mitochondria for transplantation into diseased organs to promote regeneration. This review highlights mitochondria's inherent role in liver regeneration.
Collapse
Affiliation(s)
- Gene G Lamanilao
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Murat Dogan
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Prisha S Patel
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Shafquat Azim
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Disha S Patel
- Department of Legal Studies, Belmont University, Nashville, Tennessee, United States
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James D Eason
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Canan Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Cem Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Amandeep Bajwa
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
8
|
Metabolic regulation of cholestatic liver injury by D-2-hydroxyglutarate with the modulation of hepatic microenvironment and the mammalian target of rapamycin signaling. Cell Death Dis 2022; 13:1001. [PMID: 36435860 PMCID: PMC9701230 DOI: 10.1038/s41419-022-05450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Biliary atresia (BA) is a cholestatic liver disease in neonates with devastating obstructive intrahepatic and extrahepatic biliary ducts. Owing to the lack of an early diagnostic marker and limited understanding of its pathogenesis, BA often leads to death within 2 years. Therefore, this study aimed to develop early diagnostic methods and investigate the underlying pathogenesis of liver injury in BA using metabolomics. Metabolomics and organoid combined energy metabolism analysis was used to obtain new insights into BA diagnosis and pathobiology using patient samples, mice liver organoids, and a zebrafish model. Metabolomics revealed that D-2-hydroxyglutarate (D-2-HG) levels were significantly elevated in the plasma and liver of patients with BA and closely correlated with liver injuries and impaired liver regeneration. D-2-HG suppressed the growth and expansion of liver organoids derived from the intrahepatic biliary ducts. The energy metabolism analysis demonstrated that D-2-HG inhibited mitochondrial respiration and ATP synthase; however, it increased aerobic glycolysis in organoids. In addition, D-2-HG exposure caused liver degeneration in zebrafish larvae. Mechanistically, D-2-HG inhibited the activation of protein kinase B and the mammalian target of rapamycin signaling. These findings reveal that D-2-HG may represent a novel noninvasive diagnostic biomarker and a potential therapeutic target for infants with BA.
Collapse
|
9
|
Hu C, Zhao L, Zhang F, Li L. Regulation of autophagy protects against liver injury in liver surgery-induced ischaemia/reperfusion. J Cell Mol Med 2021; 25:9905-9917. [PMID: 34626066 PMCID: PMC8572770 DOI: 10.1111/jcmm.16943] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Transient ischaemia and reperfusion in liver tissue induce hepatic ischaemia/reperfusion (I/R) tissue injury and a profound inflammatory response in vivo. Hepatic I/R can be classified into warm I/R and cold I/R and is characterized by three main types of cell death, apoptosis, necrosis and autophagy, in rodents or patients following I/R. Warm I/R is observed in patients or animal models undergoing liver resection, haemorrhagic shock, trauma, cardiac arrest or hepatic sinusoidal obstruction syndrome when vascular occlusion inhibits normal blood perfusion in liver tissue. Cold I/R is a condition that affects only patients who have undergone liver transplantation (LT) and is caused by donated liver graft preservation in a hypothermic environment prior to entering a warm reperfusion phase. Under stress conditions, autophagy plays a critical role in promoting cell survival and maintaining liver homeostasis by generating new adenosine triphosphate (ATP) and organelle components after the degradation of macromolecules and organelles in liver tissue. This role of autophagy may contribute to the protection of hepatic I/R‐induced liver injury; however, a considerable amount of evidence has shown that autophagy inhibition also protects against hepatic I/R injury by inhibiting autophagic cell death under specific circumstances. In this review, we comprehensively discuss current strategies and underlying mechanisms of autophagy regulation that alleviates I/R injury after liver resection and LT. Directed autophagy regulation can maintain liver homeostasis and improve liver function in individuals undergoing warm or cold I/R. In this way, autophagy regulation can contribute to improving the prognosis of patients undergoing liver resection or LT.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fen Zhang
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, Kroh A, Duimel H, López-Iglesias C, Caro P, Heij LR, Schmeding M, Meierhofer D, Neumann UP, Cramer T. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol 2021; 255:270-284. [PMID: 34309874 DOI: 10.1002/path.5768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Activation of the mechanistic target of rapamycin (mTOR) pathway is frequently found in cancer, but mTOR inhibitors have thus far failed to demonstrate significant antiproliferative efficacy in the majority of cancer types. Besides cancer cell-intrinsic resistance mechanisms, it is conceivable that mTOR inhibitors impact on non-malignant host cells in a manner that ultimately supports resistance of cancer cells. Against this background, we sought to analyze the functional consequences of mTOR inhibition in hepatocytes for the growth of metastatic colon cancer. To this end, we established liver epithelial cell (LEC)-specific knockout (KO) of mTOR (mTORLEC ) mice. We used these mice to characterize the growth of colorectal liver metastases with or without partial hepatectomy to model different clinical settings. Although the LEC-specific loss of mTOR remained without effect on metastasis growth in intact liver, partial liver resection resulted in the formation of larger metastases in mTORLEC mice compared with wildtype controls. This was accompanied by significantly enhanced inflammatory activity in LEC-specific mTOR KO livers after partial liver resection. Analysis of NF-ĸB target gene expression and immunohistochemistry of p65 displayed a significant activation of NF-ĸB in mTORLEC mice, suggesting a functional importance of this pathway for the observed inflammatory phenotype. Taken together, we show an unexpected acceleration of liver metastases upon deletion of mTOR in LECs. Our results support the notion that non-malignant host cells can contribute to resistance against mTOR inhibitors and encourage testing whether anti-inflammatory drugs are able to improve the efficacy of mTOR inhibitors for cancer therapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Long Jiao
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Roman Eickhoff
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Antje Egners
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Sandra Jumpertz
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Johanna Roth
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Merve Erdem
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Andreas Kroh
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Hans Duimel
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy Core Lab, FHML and M4I Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Pilar Caro
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Lara R Heij
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,Pathology, RWTH University Hospital, Aachen, Germany
| | - Maximilian Schmeding
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | | | - Ulf P Neumann
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Thorsten Cramer
- Department of General, Visceral- and Transplantation Surgery, RWTH University Hospital, Aachen, Germany.,ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Xu F, Tautenhahn HM, Dirsch O, Dahmen U. Modulation of Autophagy: A Novel "Rejuvenation" Strategy for the Aging Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6611126. [PMID: 33628363 PMCID: PMC7889356 DOI: 10.1155/2021/6611126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
Abstract
Aging is a natural life process which leads to a gradual decline of essential physiological processes. For the liver, it leads to alterations in histomorphology (steatosis and fibrosis) and function (protein synthesis and energy generation) and affects central hepatocellular processes (autophagy, mitochondrial respiration, and hepatocyte proliferation). These alterations do not only impair the metabolic capacity of the liver but also represent important factors in the pathogenesis of malignant liver disease. Autophagy is a recycling process for eukaryotic cells to degrade dysfunctional intracellular components and to reuse the basic substances. It plays a crucial role in maintaining cell homeostasis and in resisting environmental stress. Emerging evidence shows that modulating autophagy seems to be effective in improving the age-related alterations of the liver. However, autophagy is a double-edged sword for the aged liver. Upregulating autophagy alleviates hepatic steatosis and ROS-induced cellular stress and promotes hepatocyte proliferation but may aggravate hepatic fibrosis. Therefore, a well-balanced autophagy modulation strategy might be suitable to alleviate age-related liver dysfunction. Conclusion. Modulation of autophagy is a promising strategy for "rejuvenation" of the aged liver. Detailed knowledge regarding the most devastating processes in the individual patient is needed to effectively counteract aging of the liver without causing obvious harm.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, Chemnitz 09111, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
12
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
13
|
Uchida Y, Ferdousi F, Zheng YW, Oda T, Isoda H. Global Gene Expression Profiling Reveals Isorhamnetin Induces Hepatic-Lineage Specific Differentiation in Human Amniotic Epithelial Cells. Front Cell Dev Biol 2020; 8:578036. [PMID: 33224947 PMCID: PMC7674172 DOI: 10.3389/fcell.2020.578036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Human amnion epithelial cells (hAECs), derived from discarded term placenta, is anticipated as a new stem cell resource because of their advantages over embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), such as no risk of tumorigenicity and minimal ethical issue. hAECs have been reported to differentiate into hepatic-like cells (HLCs) with variable functionalities suitable for cell-based therapy of end-stage liver diseases, drug screening, and drug toxicity tests. On the other hand, a new research stream has been evolving to use natural compounds as stimulants of stem cell differentiation because of their high availability and minimum side effects. Isorhamnetin is a naturally occurring flavonoid commonly found in fruits and vegetables and has been reported to improve hepatic fibrosis and steatosis. In this present study, we have screened the differentiation potential of isorhamnetin in hAECs. The cells were grown on 3D cell culture and were treated with 20 μM of synthesized isorhamnetin for 10 days without adding any additional growth factors. DNA microarray global gene expression analysis was conducted for differentially expressed genes between isorhamnetin-treated and untreated control cells, gene expression validation was carried out using RT-qPCR method, and finally, several hepatic functions were assessed. Microarray analysis showed that isorhamnetin could activate essential biological processes, molecular functions, and signaling pathways for hepatic differentiation. Hepatic progenitor markers, EPCAM and DLK1, were upregulated in the isorhamnetin-treated hAECs. AFP was downregulated, while ALB was upregulated on Day 10. Furthermore, isorhamnetin-treated cells could show increased CYP enzyme mRNA levels, ICG uptake and release, glycogen storage activity, and urea secretion. Additionally, isorhamnetin-treated cells did not show any trace of transdifferentiation evident by significant downregulation of several colon- and cholangiocyte-specific markers. However, longer treatment with isorhamnetin did not promote hepatic maturation. Altogether, our findings indicate that isorhamnetin has a promising effect on directing the hepatic-lineage specific differentiation in hAECs.
Collapse
Affiliation(s)
- Yoshiaki Uchida
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Drizyte-Miller K, Chen J, Cao H, Schott MB, McNiven MA. The small GTPase Rab32 resides on lysosomes to regulate mTORC1 signaling. J Cell Sci 2020; 133:jcs236661. [PMID: 32295849 PMCID: PMC7295596 DOI: 10.1242/jcs.236661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Epithelial cells, such as liver-resident hepatocytes, rely heavily on the Rab family of small GTPases to perform membrane trafficking events that dictate cell physiology and metabolism. Not surprisingly, disruption of several Rab proteins can manifest in metabolic diseases or cancer. Rab32 is expressed in many secretory epithelial cells but its role in cellular metabolism is virtually unknown. In this study, we find that Rab32 associates with lysosomes and regulates proliferation and cell size of Hep3B hepatoma and HeLa cells. Specifically, we identify that Rab32 supports the mechanistic target of rapamycin complex 1 (mTORC1) signaling under basal and amino acid-stimulated conditions. Consistent with inhibited mTORC1, an increase in nuclear TFEB localization and lysosome biogenesis is also observed in Rab32-depleted cells. Finally, we find that Rab32 interacts with mTOR kinase, and that loss of Rab32 reduces the association of mTOR and mTORC1 pathway proteins with lysosomes, suggesting that Rab32 regulates lysosomal mTOR trafficking. In summary, these findings suggest that Rab32 functions as a novel regulator of cellular metabolism through supporting mTORC1 signaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Hong Cao
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Micah B Schott
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A McNiven
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Xu F, Hua C, Tautenhahn HM, Dirsch O, Dahmen U. The Role of Autophagy for the Regeneration of the Aging Liver. Int J Mol Sci 2020; 21:ijms21103606. [PMID: 32443776 PMCID: PMC7279469 DOI: 10.3390/ijms21103606] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Age is one of the key risk factors to develop malignant diseases leading to a high incidence of hepatic tumors in the elderly population. The only curative treatment for hepatic tumors is surgical removal, which initiates liver regeneration. However, liver regeneration is impaired with aging, leading to an increased surgical risk for the elderly patient. Due to the increased risk, those patients are potentially excluded from curative surgery. Aging impairs autophagy via lipofuscin accumulation and inhibition of autophagosome formation. Autophagy is a recycling mechanism for eukaryotic cells to maintain homeostasis. Its principal function is to degrade endogenous bio-macromolecules for recycling cellular substances. A number of recent studies have shown that the reduced regenerative capacity of the aged remnant liver can be restored by promoting autophagy. Autophagy can be activated via multiple mTOR-dependent and mTOR-independent pathways. However, inducing autophagy through the mTOR-dependent pathway alone severely impairs liver regeneration. In contrast, recent observations suggest that inducing autophagy via mTOR-independent pathways might be promising in promoting liver regeneration. Conclusion: Activation of autophagy via an mTOR-independent autophagy inducer is a potential therapy for promoting liver regeneration, especially in the elderly patients at risk.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Chuanfeng Hua
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111 Chemnitz, Germany;
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
- Correspondence: ; Tel.: +49-03641-9325350
| |
Collapse
|
16
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
17
|
Boon R, Kumar M, Tricot T, Elia I, Ordovas L, Jacobs F, One J, De Smedt J, Eelen G, Bird M, Roelandt P, Doglioni G, Vriens K, Rossi M, Vazquez MA, Vanwelden T, Chesnais F, El Taghdouini A, Najimi M, Sokal E, Cassiman D, Snoeys J, Monshouwer M, Hu WS, Lange C, Carmeliet P, Fendt SM, Verfaillie CM. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines. Nat Commun 2020; 11:1393. [PMID: 32170132 PMCID: PMC7069944 DOI: 10.1038/s41467-020-15058-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.
Collapse
Affiliation(s)
- Ruben Boon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tine Tricot
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Ordovas
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research, IIS Aragón University of Zaragoza, Aragon I + D Foundation (ARAID), Zaragoza, Spain
| | - Frank Jacobs
- Janssen Research and Development, Beerse, Belgium
| | - Jennifer One
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan De Smedt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Matthew Bird
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Philip Roelandt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Translational Research in GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Marta Aguirre Vazquez
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Thomas Vanwelden
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - François Chesnais
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Universit Catholique de Louvain & Cliniques Universitaires St Luc, Institut de Recherche Clinique et Expérimentale (IREC), Brussels, Belgium
| | - David Cassiman
- Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jan Snoeys
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mario Monshouwer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christian Lange
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center of Cancer Biology, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
He J, Chen J, Wei X, Leng H, Mu H, Cai P, Luo L. Mammalian Target of Rapamycin Complex 1 Signaling Is Required for the Dedifferentiation From Biliary Cell to Bipotential Progenitor Cell in Zebrafish Liver Regeneration. Hepatology 2019; 70:2092-2106. [PMID: 31136010 DOI: 10.1002/hep.30790] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/18/2019] [Indexed: 12/11/2022]
Abstract
The liver has a high regenerative capacity. Upon two-thirds partial hepatectomy, the hepatocytes proliferate and contribute to liver regeneration. After severe liver injury, when the proliferation of residual hepatocytes is blocked, the biliary epithelial cells (BECs) lose their morphology and express hepatoblast and endoderm markers, dedifferentiate into bipotential progenitor cells (BP-PCs), then proliferate and redifferentiate into mature hepatocytes. Little is known about the mechanisms involved in the formation of BP-PCs after extreme liver injury. Using a zebrafish liver extreme injury model, we found that mammalian target of rapamycin complex 1 (mTORC1) signaling regulated dedifferentiation of BECs and proliferation of BP-PCs. mTORC1 signaling was up-regulated in BECs during extreme hepatocyte ablation and continuously expressed in later liver regeneration. Inhibition of mTORC1 by early chemical treatment before hepatocyte ablation blocked the dedifferentiation from BECs into BP-PCs. Late mTORC1 inhibition after liver injury reduced the proliferation of BP-PC-derived hepatocytes and BECs but did not affect BP-PC redifferentiation. mTOR and raptor mutants exhibited defects in BEC transdifferentiation including dedifferentiation, BP-PC proliferation, and redifferentiation, similar to the chemical inhibition. Conclusion: mTORC1 signaling governs BEC-driven liver regeneration by regulating the dedifferentiation of BECs and the proliferation of BP-PC-derived hepatocytes and BECs.
Collapse
Affiliation(s)
- Jianbo He
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Jingying Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangyong Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Leng
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongliang Mu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Pengcheng Cai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, Antonica F, Font-Cunill B, Raven A, Aiese Cigliano R, Belenguer G, Mort RL, Brand AH, Zernicka-Goetz M, Forbes SJ, Miska EA, Huch M. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat Cell Biol 2019; 21:1321-1333. [PMID: 31685987 PMCID: PMC6940196 DOI: 10.1038/s41556-019-0402-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.
Collapse
Affiliation(s)
- Luigi Aloia
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mikel Alexander McKie
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Grégoire Vernaz
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Lucía Cordero-Espinoza
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jelle van den Ameele
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesco Antonica
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Berta Font-Cunill
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexander Raven
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - German Belenguer
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, UK
| | - Andrea H Brand
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eric A Miska
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Meritxell Huch
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
20
|
Wei X, Luo L, Chen J. Roles of mTOR Signaling in Tissue Regeneration. Cells 2019; 8:cells8091075. [PMID: 31547370 PMCID: PMC6769890 DOI: 10.3390/cells8091075] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), is a serine/threonine protein kinase and belongs to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family. mTOR interacts with other subunits to form two distinct complexes, mTORC1 and mTORC2. mTORC1 coordinates cell growth and metabolism in response to environmental input, including growth factors, amino acid, energy and stress. mTORC2 mainly controls cell survival and migration through phosphorylating glucocorticoid-regulated kinase (SGK), protein kinase B (Akt), and protein kinase C (PKC) kinase families. The dysregulation of mTOR is involved in human diseases including cancer, cardiovascular diseases, neurodegenerative diseases, and epilepsy. Tissue damage caused by trauma, diseases or aging disrupt the tissue functions. Tissue regeneration after injuries is of significance for recovering the tissue homeostasis and functions. Mammals have very limited regenerative capacity in multiple tissues and organs, such as the heart and central nervous system (CNS). Thereby, understanding the mechanisms underlying tissue regeneration is crucial for tissue repair and regenerative medicine. mTOR is activated in multiple tissue injuries. In this review, we summarize the roles of mTOR signaling in tissue regeneration such as neurons, muscles, the liver and the intestine.
Collapse
Affiliation(s)
- Xiangyong Wei
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lingfei Luo
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jinzi Chen
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
21
|
Oldhafer F, Wittauer EM, Falk CS, DeTemple DE, Beetz O, Timrott K, Kleine M, Vondran FWR. Alloresponses of Mixed Lymphocyte Hepatocyte Culture to Immunosuppressive Drugs as an In-Vitro Model of Hepatocyte Transplantation. Ann Transplant 2019; 24:472-480. [PMID: 31406101 PMCID: PMC6705178 DOI: 10.12659/aot.915982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Hepatocyte transplantation (HCTx) has the potential for the treatment of end-stage liver disease. However, failure of engraftment and the long-term acceptance of cellular allografts remain significant challenges for its clinical application. The aim of this study was to investigate the efficacy of the immunosuppressive agents, Cyclosporine, Everolimus, and Belatacept to suppress the alloresponse of primary human hepatocytes in a mixed lymphocyte-hepatocyte culture (MLHC) and their potential hepatotoxicity in vitro. Material/Methods Primary human hepatocytes were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) in an MLHC. Proliferative alloresponses were determined by flow cytometry, and cytokine secretion was measured using Luminex-based multiplex technology. Using an MLHC, the alloresponses of primary human hepatocytes were compared in the presence and absence of Cyclosporine, Everolimus, and Belatacept. Cultured primary human hepatocytes were assessed for the production of albumin, urea, aspartate transaminase (AST) and DNA content. Metabolic activity was determined with the MTT assay. Results Immune responses induced by primary human hepatocytes were effectively suppressed by Cyclosporine, Everolimus, and Belatacept. Everolimus significantly reduced the metabolic activity of primary human hepatocytes in vitro, suggesting impairment of cell viability. However, further functional analysis showed no significant differences between treated and untreated controls. Conclusions Cyclosporine, Everolimus, and Belatacept suppressed the alloresponse of primary human hepatocytes in an MLHC without significant cytotoxicity or functional cell impairment.
Collapse
Affiliation(s)
- Felix Oldhafer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Eva-Maria Wittauer
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.,Institute of Transplant Immunology, Integrated Research and Treatment Centre Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Daphne E DeTemple
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Oliver Beetz
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Kai Timrott
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Moritz Kleine
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
22
|
Shi H, Zhang Y, Ji J, Xu P, Shi H, Yue X, Ren F, Chen Y, Duan Z, Chen D. Deficiency of apoptosis-stimulating protein two of p53 promotes liver regeneration in mice by activating mammalian target of rapamycin. Sci Rep 2018; 8:17927. [PMID: 30560875 PMCID: PMC6298958 DOI: 10.1038/s41598-018-36208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Although liver regeneration has been intensively studied in various ways, the mechanisms underlying liver regeneration remain elusive. Apoptosis-stimulating protein two of p53 (ASPP2) was discovered as a binding partner of p53 and plays an important role in regulating cell apoptosis and growth. However, the role of ASPP2 in hepatocyte proliferation and liver regeneration has not been reported. The expression profile of ASPP2 was measured in a mouse model with 70% partial hepatectomy (PHX). Liver regeneration and hepatocyte proliferation were detected in wild-type (ASPP2+/+) and ASPP2 haploinsufficient (ASPP2+/-) mice with PHX. The mammalian target of rapamycin (mTOR) and autophagy pathways were analyzed in the ASPP2+/+ and ASPP2+/- mice with PHX. After rapamycin or 3-methyladenine (3-MA) treatment, hepatocyte proliferation and liver regeneration were analyzed in the ASPP2+/+ and ASPP2+/- mice with PHX. ASPP2 expression was shown to be upregulated at the early stage and downregulated at the late stage. Compared to the ASPP2+/+ mice, liver regeneration was enhanced in ASPP2+/- mice with 70% PHX. In addition, compared to the ASPP2+/+ mice, the mTORC1 pathway was significantly upregulated and the autophagic pathway was downregulated in ASPP2+/-mice with 70% PHX. Inhibition of the mTORC1 pathway significantly suppressed liver regeneration in ASPP2+/- mice with 70% PHX. In contrast, disruption of the autophagic pathway further enhanced liver regeneration in ASPP2+/- mice with 70% PHX. ASPP2 deficiency can promote liver regeneration through activating the mTORC1 pathway, which further regulates downstream molecules, such as those related to autophagy and p70S6K expression in mouse model post-PHX.
Collapse
Affiliation(s)
- Hongbo Shi
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China.
| | - Yizhi Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Ji
- Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Ping Xu
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Honglin Shi
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Xiujuan Yue
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Feng Ren
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China
| | - Yu Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Dexi Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Center, Beijing, 100069, China.
| |
Collapse
|
23
|
Uribe M, Uribe-Echevarría S, Mandiola C, Zapata MI, Riquelme F, Romanque P. Insight on ALPPS - Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy - mechanisms: activation of mTOR pathway. HPB (Oxford) 2018; 20:729-738. [PMID: 29571618 DOI: 10.1016/j.hpb.2018.02.636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND ALPPS procedure has been introduced to increase the volume of future liver remnant. The mechanisms underlying the accelerated regeneration observed with ALPPS are unknown. It was hypothesized that AMPK/mTOR is activated as an integrating pathway for metabolic signals leading to proliferation and cell growth. Our aim was to analyze increase in liver volume, proliferation parameters and expression of AMPK/mTOR pathway-related molecules in patients undergoing ALPPS. METHODS A single center prospective study of patients undergoing ALPPS was performed from 2013 to 2015. Liver and serum samples, clinical laboratory results and CT-scan data were obtained. ELISA, Ki-67 immunostaining and qRT-PCR were performed in deportalized and remnant liver tissue in both stages of the procedure. RESULTS 11 patients were enrolled. Remnant liver volume increased 112 ± 63% (p < 0.05) in 9.1 ± 1.6 days. Proliferation-related cytokines IL-6, TNF-α, HGF and EGF significantly increased, while higher Ki-67 immunostaining and cyclin D expression were observed in remnant livers after ALPPS. mTOR, S6K1, 4E-BP1, TSC1 and TSC2 expression were significantly increased in remnant livers at second stage, while AMPK and Akt increased only in deportalized liver samples. CONCLUSION Rapid liver regeneration with ALPPS might be associated with hepatocyte proliferation induced by mTOR pathway activation.
Collapse
Affiliation(s)
- Mario Uribe
- Department of Surgery, Hospital del Salvador, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastián Uribe-Echevarría
- Department of Surgery, Hospital del Salvador, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carlos Mandiola
- Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María I Zapata
- Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Riquelme
- Department of Surgery, Hospital del Salvador, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pamela Romanque
- Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Ricci L, Srivastava M. Wound-induced cell proliferation during animal regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e321. [PMID: 29719123 DOI: 10.1002/wdev.321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Many animal species are capable of replacing missing tissues that are lost upon injury or amputation through the process of regeneration. Although the extent of regeneration is variable across animals, that is, some animals can regenerate any missing cell type whereas some can only regenerate certain organs or tissues, regulated cell proliferation underlies the formation of new tissues in most systems. Notably, many species display an increase in proliferation within hours or days upon wounding. While different cell types proliferate in response to wounding in various animal taxa, comparative molecular data are beginning to point to shared wound-induced mechanisms that regulate cell division during regeneration. Here, we synthesize current insights about early molecular pathways of regeneration from diverse model and emerging systems by considering these species in their evolutionary contexts. Despite the great diversity of mechanisms underlying injury-induced cell proliferation across animals, and sometimes even in the same species, similar pathways for proliferation have been implicated in distantly related species (e.g., small diffusible molecules, signaling from apoptotic cells, growth factor signaling, mTOR and Hippo signaling, and Wnt and Bmp pathways). Studies that explicitly interrogate molecular and cellular regenerative mechanisms in understudied animal phyla will reveal the extent to which early pathways in the process of regeneration are conserved or independently evolved. This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
25
|
Lutkewitte AJ, Schweitzer GG, Kennon-McGill S, Clemens MM, James LP, Jaeschke H, Finck BN, McGill MR. Lipin deactivation after acetaminophen overdose causes phosphatidic acid accumulation in liver and plasma in mice and humans and enhances liver regeneration. Food Chem Toxicol 2018. [PMID: 29534981 DOI: 10.1016/j.fct.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J Lutkewitte
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - George G Schweitzer
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stefanie Kennon-McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Brian N Finck
- Div. of Geriatrics and Nutritional Sciences, Dept. of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
26
|
Krüppel-like factor 6 is a transcriptional activator of autophagy in acute liver injury. Sci Rep 2017; 7:8119. [PMID: 28808340 PMCID: PMC5556119 DOI: 10.1038/s41598-017-08680-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is a transcription factor and tumor suppressor. We previously identified KLF6 as mediator of hepatocyte glucose and lipid homeostasis. The loss or reduction of KLF6 is linked to the progression of hepatocellular carcinoma, but its contribution to liver regeneration and repair in acute liver injury are lacking so far. Here we explore the role of KLF6 in acute liver injury models in mice, and in patients with acute liver failure (ALF). KLF6 was induced in hepatocytes in ALF, and in both acetaminophen (APAP)- and carbon tetrachloride (CCl4)-treated mice. In mice with hepatocyte-specific Klf6 knockout (DeltaKlf6), cell proliferation following partial hepatectomy (PHx) was increased compared to controls. Interestingly, key autophagic markers and mediators LC3-II, Atg7 and Beclin1 were reduced in DeltaKlf6 mice livers. Using luciferase assay and ChIP, KLF6 was established as a direct transcriptional activator of ATG7 and BECLIN1, but was dependent on the presence of p53. Here we show, that KLF6 expression is induced in ALF and in the regenerating liver, where it activates autophagy by transcriptional induction of ATG7 and BECLIN1 in a p53-dependent manner. These findings couple the activity of an important growth inhibitor in liver to the induction of autophagy in hepatocytes.
Collapse
|
27
|
Senger S, Sperling J, Oberkircher B, Schilling MK, Kollmar O, Menger MD, Ziemann C. Portal branch ligation does not counteract the inhibiting effect of temsirolimus on extrahepatic colorectal metastatic growth. Clin Exp Metastasis 2017. [PMID: 28631253 DOI: 10.1007/s10585-017-9852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mTor-inhibitor temsirolimus (TEM) has potent anti-tumor activities on extrahepatic colorectal metastases. Treatment of patients with advanced disease may require portal branch ligation (PBL). While PBL can induce intrahepatic tumor growth, the effect of PBL on extrahepatic metastases under TEM treatment is unknown. Therefore, we analyzed the effects of TEM treatment on extrahepatic metastases during PBL-associated liver regeneration. GFP-transfected CT26.WT colorectal cancer cells were implanted into the dorsal skinfold chamber of BALB/c-mice. Mice were randomized to four groups (n = 8). One was treated daily with TEM (1.5 mg/kg), PBS-treated animals served as controls. Another group underwent PBL of the left liver lobe and received daily TEM treatment. Animals with PBL and PBS treatment served as controls. Tumor vascularization and growth as well as tumor cell migration, proliferation and apoptosis were studied over 14 days. In non-PBL animals TEM treatment inhibited tumor cell proliferation as well as vascularization and growth of the extrahepatic metastases. PBL did not influence tumor cell engraftment, vascularization and metastatic growth. Of interest, TEM treatment significantly reduced tumor cell engraftment, neovascularization and metastatic groth also after PBL. PBL does not counteract the inhibiting effect of TEM on extrahepatic colorectal metastatic growth.
Collapse
Affiliation(s)
- Sebastian Senger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of Neurosurgery, Saarland University, Homburg/Saar, Germany
| | - Jens Sperling
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Oberkircher
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Martin K Schilling
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Klinik St. Anna Ärztehaus Lützelmatt, Lucerne, Switzerland
| | - Otto Kollmar
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Department of General and Visceral Surgery, Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Christian Ziemann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany.
- Department of Cardiovascular Surgery, University Heart Center, University Medical Center, University of Freiburg, Freiburg, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery and Institute for Clinical and Experimental Surgery, Saarland Medical School, Saarland University, Kirrberger Straße 1, 66424, Homburg/Saar, Germany.
| |
Collapse
|
28
|
Deng K, Dong P, Wang W, Feng L, Xiong F, Wang K, Zhang S, Feng S, Wang B, Zhang J, Ren M. The TOR Pathway Is Involved in Adventitious Root Formation in Arabidopsis and Potato. FRONTIERS IN PLANT SCIENCE 2017; 8:784. [PMID: 28553309 PMCID: PMC5427086 DOI: 10.3389/fpls.2017.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 05/14/2023]
Abstract
In the agriculture industry, adventitious root formation is a core issue of plants asexual propagation. However, the underlying molecular mechanism of adventitious root formation is far beyond understanding. In present study we found that target of rapamycin (TOR) signaling plays a key role in adventitious root formation in potato and Arabidopsis. The core components of TOR complex including TOR, RAPTOR, and LST8 are highly conserved in potato, but the seedlings of potato are insensitive to rapamycin, implying FK506 Binding Protein 12 KD (FKBP12) lost the function to bridge the interaction of rapamycin and TOR in potato. To dissect TOR signaling in potato, the rapamycin hypersensitive potato plants (BP12-OE) were engineered by introducing yeast FKBP12 (ScFKBP12) into potato. We found that rapamycin can significantly attenuate the capability of adventitious root formation in BP12-OE potatoes. KU63794 (KU, an active-site TOR inhibitor) combined with rapamycin can more significantly suppress adventitious root formation of BP12-OE potato than the single treatments, such as KU63794 or rapamycin, indicating its synergistic inhibitory effects on potato adventitious root formation. Furthermore, RNA-seq data showed that many genes associated with auxin signaling pathway were altered when BP12-OE potato seedlings were treated with rapamycin + KU, suggesting that TOR may play a major role in adventitious root formation via auxin signaling. The auxin receptor mutant tir1 was sensitive to TOR inhibitors and the double and quadruple mutants including tir1afb2, tir1afb3, and tir1afb1afb2afb3 displayed more sensitive to asTORis than single mutant tir1. Consistently, overexpression of AtTIR1 in Arabidopsis and potato can partially overcome the inhibitory effect of asTORis and promote adventitious root formation under asTORis treatments. These observations suggest that TOR signaling regulates adventitious root formation by mediating auxin signaling in Arabidopsis and potato.
Collapse
Affiliation(s)
- Kexuan Deng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Wanjing Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Fangjie Xiong
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Kai Wang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Shumin Zhang
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Shun Feng
- School of Life Sciences, Chongqing UniversityChongqing, China
| | - Bangjun Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest UniversityChongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing UniversityChongqing, China
| |
Collapse
|
29
|
Li Z, Zhang J, Mulholland M, Zhang W. mTOR activation protects liver from ischemia/reperfusion-induced injury through NF-κB pathway. FASEB J 2017; 31:3018-3026. [PMID: 28356345 DOI: 10.1096/fj.201601278r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
Hepatic steatosis renders liver more vulnerable to ischemia/reperfusion injury (IRI), which commonly occurs in transplantation, trauma, and liver resection. The underlying mechanism is not fully characterized. We aimed to clarify the role of mechanistic target of rapamycin (mTOR) signaling in hepatic ischemia/reperfusion injury (HIRI) in normal and steatotic liver using Alb-TSC1-/- (AT) and Alb-mTOR-/- (Am) transgenic mice. Steatotic liver induced by high-fat diet was more vulnerable to IRI. Activation of hepatic mTOR in AT mice decreased lipid accumulation attenuated HIRI as measured by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, circulating levels of alanine aminotransferase and lactate dehydrogenase, and inflammatory mediators such as monocyte chemoattractant protein 1 (MCP-1), TNF-α, and IL-6 and hepatic cleaved caspase 3 in mice fed either a normal chow diet or a high-fat diet. The effects of mTOR activation on hepatic cleaved caspase 3 were reversed by rapamycin, an inhibitor of mTOR signaling. Inhibition of hepatic mTOR in Am mice increased hepatic lipid deposition and HIRI. The increment in hepatic susceptibility to IRI was significantly attenuated by pretreatment with IKKβ inhibitor. Further, suppression of mTOR facilitated nuclear translocation of NF-κB p65. In conclusion, our study suggests that mTOR activity in hepatocytes decreases hepatic vulnerability to injury through a mechanism dependent on NF-κB proinflammatory cytokine signaling pathway in both normal and steatotic liver.-Li, Z., Zhang, J., Mulholland, M., Zhang, W. mTOR activation protects liver from ischemia/reperfusion-induced injury through NF-κB pathway.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jing Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA .,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
30
|
Zhou X, Liu XZ, Fan GT, Wu SJ, Zhao JN, Shi X. Expression of Matrix Metalloproteinase-9 and CD34 in Giant Cell Tumor of Bone. Orthop Surg 2017; 8:220-5. [PMID: 27384731 DOI: 10.1111/os.12250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/19/2016] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Giant cell tumor of bone (GCTB) invades extensively and metastasizes, however, the pathological grade and imaging findings are not accurate predictors of its prognosis. Thus, the aim of this study was to explore the relationships between expression of cluster of differentiation (CD)34 and matrix metalloproteinase-9 (MMP-9) and the biological behavior of GCTB with the hope of identifying predictors of prognosis. METHODS Sixty-eight patients with GCTBs attending our institution from September 2008 to August 2013 were enrolled in this prospective study and grouped according to tumor location. Relevant patient characteristics were assessed. Additionally, the expression of CD34 and MMP-9 in these patients was assayed by an immunohistochemistry staining procedure and the relationships between CD34/MMP-9 and microvessel density (MVD) analyzed by Spearman correlation analysis. RESULTS It was found that CD34 factor localizes in the cytoplasm of the endothelial cells of small blood vessels in the tumor stroma and is strongly expressed in GCTBs. In addition, radiological grading showed that there was significantly more CD34 antibody-labeled MVD in invasive than in non-invasive tumors (P < 0.05) and significantly more CD34 antibody-labeled MVD in patients who developed recurrences than in those who did not (P < 0.05). Expression of MMP-9 was localized in the cytoplasm of tumor cells and the rate of MMP-9 positivity in GCTBs was significantly higher in active and invasive tumors than in non-invasive tumors (P < 0.01). Moreover, there were significantly more MVDs in MMP-9-positive than in MMP-9 negative tumors (P < 0.01). CD34 and MMP-9 are positively correlated with MVD values in GCTBs and closely correlated with their grade of malignancy. CONCLUSION Expression of CD34 and MMP-9 accurately predicts clinical behavior detection and prognosis of GCTBs.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Zhou Liu
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Gen-Tao Fan
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Su-Jia Wu
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Jian-Ning Zhao
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xin Shi
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Lou K, Yang M, Duan E, Zhao J, Yu C, Zhang R, Zhang L, Zhang M, Xiao Z, Hu W, He Z. Rosmarinic acid stimulates liver regeneration through the mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1574-1582. [PMID: 27823621 DOI: 10.1016/j.phymed.2016.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rosemary (Rosmarinus offcinsalis L) has a liver protection function under various conditions of liver damage. Rosmarinic acid, one of the pharmacological constituents of rosemary, exhibited protective effects against organ injury, including acute liver injury. HYPOTHESIS We hypothesize that RA stimulates liver regeneration. STUDY DESIGN In the present study, we investigated the effects and mechanism of RA administration on liver regeneration using partial hepatectomy (PH), a well-validated liver regeneration model in mice. METHODS We use a 2/3 partial hepatectomy (PH) model to induce liver regeneration. RA was administered prior to and simultaneously with PH. The regeneration process was estimated by the index of the liver to body weight (ILBW) and the expression of proliferating cell nuclear antigen (PCNA) and liver transaminases. RESULTS The administration of rosmarinic acid stimulated hepatocyte proliferation based on activation of the mTOR/S6K pathway. Rosmarinic acid treatment also rescued impaired liver function due to PH. CONCLUSION These data demonstrate that RA is potentially useful to promote liver regeneration.
Collapse
Affiliation(s)
- Kaihan Lou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Erdan Duan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Jiahui Zhao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Cong Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Rongping Zhang
- Biomedical Engineering Research Centre, Kunming Medical University, Kunming 650500, China
| | - Lanchun Zhang
- Biomedical Engineering Research Centre, Kunming Medical University, Kunming 650500, China
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhicheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne 3800, Australia
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne 3800, Australia.
| |
Collapse
|
32
|
Paranjpe S, Bowen WC, Mars WM, Orr A, Haynes MM, DeFrances MC, Liu S, Tseng GC, Tsagianni A, Michalopoulos GK. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology 2016; 64:1711-1724. [PMID: 27397846 PMCID: PMC5074871 DOI: 10.1002/hep.28721] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Receptor tyrosine kinases MET and epidermal growth factor receptor (EGFR) are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also participate in the early part of the process. Regeneration employs effective redundancy schemes to compensate for the missing signals. Elimination of any single extracellular signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling (MET knockout + EGFR-inhibited mice) abolishes liver regeneration, prevents restoration of liver mass, and leads to liver decompensation. MET knockout or simply EGFR-inhibited mice had distinct and signaling-specific alterations in Ser/Thr phosphorylation of mammalian target of rapamycin, AKT, extracellular signal-regulated kinases 1/2, phosphatase and tensin homolog, adenosine monophosphate-activated protein kinase α, etc. In the combined MET and EGFR signaling elimination of MET knockout + EGFR-inhibited mice, however, alterations dependent on either MET or EGFR combined to create shutdown of many programs vital to hepatocytes. These included decrease in expression of enzymes related to fatty acid metabolism, urea cycle, cell replication, and mitochondrial functions and increase in expression of glycolysis enzymes. There was, however, increased expression of genes of plasma proteins. Hepatocyte average volume decreased to 35% of control, with a proportional decrease in the dimensions of the hepatic lobules. Mice died at 15-18 days after hepatectomy with ascites, increased plasma ammonia, and very small livers. CONCLUSION MET and EGFR separately control many nonoverlapping signaling endpoints, allowing for compensation when only one of the signals is blocked, though the combined elimination of the signals is not tolerated; the results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation. (Hepatology 2016;64:1711-1724).
Collapse
Affiliation(s)
- Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Meagan M Haynes
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Marie C DeFrances
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Silvia Liu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Anastasia Tsagianni
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
33
|
Oldhafer F, Bock M, Falk CS, Vondran FWR. Immunological aspects of liver cell transplantation. World J Transplant 2016; 6:42-53. [PMID: 27011904 PMCID: PMC4801804 DOI: 10.5500/wjt.v6.i1.42] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/21/2015] [Accepted: 12/08/2015] [Indexed: 02/05/2023] Open
Abstract
Within the field of regenerative medicine, the liver is of major interest for adoption of regenerative strategies due to its well-known and unique regenerative capacity. Whereas therapeutic strategies such as liver resection and orthotopic liver transplantation (OLT) can be considered standards of care for the treatment of a variety of liver diseases, the concept of liver cell transplantation (LCTx) still awaits clinical breakthrough. Success of LCTx is hampered by insufficient engraftment/long-term acceptance of cellular allografts mainly due to rejection of transplanted cells. This is in contrast to the results achieved for OLT where long-term graft survival is observed on a regular basis and, hence, the liver has been deemed an immune-privileged organ. Immune responses induced by isolated hepatocytes apparently differ considerably from those observed following transplantation of solid organs and, thus, LCTx requires refined immunological strategies to improve its clinical outcome. In addition, clinical usage of LCTx but also related basic research efforts are hindered by the limited availability of high quality liver cells, strongly emphasizing the need for alternative cell sources. This review focuses on the various immunological aspects of LCTx summarizing data available not only for hepatocyte transplantation but also for transplantation of non-parenchymal liver cells and liver stem cells.
Collapse
|
34
|
Amiri F, Molaei S, Bahadori M, Nasiri F, Deyhim MR, Jalili MA, Nourani MR, Habibi Roudkenar M. Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure. IRANIAN BIOMEDICAL JOURNAL 2016; 20:135-44. [PMID: 26899739 PMCID: PMC4949977 DOI: 10.7508/ibj.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentials of autophagy-modulated MSCs for the treatment of acute liver failure (ALF) in mice. Methods: ALF was induced in mice by intraperitoneal injection of 1.5 ml/kg carbon tetrachloride. Mice were intravenously infused with MSCs, which were suppressed in their autophagy pathway. Blood and liver samples were collected at different intervals (24, 48 and 72 h) after the transplantation of MSCs. Both the liver enzymes and tissue necrosis levels were evaluated using biochemical and histopathological assessments. The survival rate of the transplanted mice was also recorded during one week. Results: Biochemical and pathological results indicated that 1.5 ml/kg carbon tetrachloride induces ALF in mice. A significant reduction of liver enzymes and necrosis score were observed in autophagy-modulated MSC-transplanted mice compared to sham (with no cell therapy) after 24 h. After 72 h, liver enzymes reached their normal levels in mice transplanted with autophagy-suppressed MSCs. Interestingly, normal histology without necrosis was also observed. Conclusion: Autophagy suppression in MSCs ameliorates their liver regeneration potentials due to paracrine effects and might be suggested as a new strategy for the improvement of cell therapy in ALF.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Molaei
- School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Nasiri
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Ali Jalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Nourani
- Research Center of Molecular Biology, Baqiyatallah Medical Sciences University, Tehran, Iran
| | - Mehryar Habibi Roudkenar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
35
|
The carvacrol ameliorates acute pancreatitis-induced liver injury via antioxidant response. Cytotechnology 2015; 68:1131-46. [PMID: 26350272 DOI: 10.1007/s10616-015-9871-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Acute pancreatitis (AP) may cause significant persistent multi-organ dysfunction. Carvacrol (CAR) possesses a variety of biological and pharmacological properties. The aim of the present study was to analyze the hepatic protection of CAR on AP induced by cerulein and to explore the underlying mechanism using in vivo studies. The rats were randomized into groups to receive (1) no therapy; (2) 50 µg/kg cerulein at 1-h intervals by four intraperitoneal injection (i.p.); (3) 50, 100 and 200 mg/kg CAR by one i.p.; and (4) cerulein + CAR after 2 h of cerulein injection. 12 h later, serum was provided to assess the blood AST, ALT and LDH values. Also, liver tissues were obtained for histological and biochemical measurements. Liver oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as MDA and changes in tissue antioxidant enzyme levels, SOD, CAT and GSH-Px. Histopathological examination was performed using scoring systems. Oxidative damage to DNA was quantitated in studied tissues of experimental animals by measuring the increase in 8-hydroxydeoxyguanosine (8-OHdG) formations. We found that the increasing doses of CAR decreased pancreatitis-induced MDA and 8-OH-dG levels. Moreover, the liver SOD, CAT and GSH-Px activities in the AP + CAR group were higher than that of the rats in the AP group. In the treatment groups, AST, ALT and LDH were reduced. Besides, necrosis, coagulation and inflammation in the liver were alleviated (p < 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to hepatic dysfunction.
Collapse
|
36
|
mTOR-Dependent Suppression of Remnant Liver Regeneration in Liver Failure After Massive Liver Resection in Rats. Dig Dis Sci 2015; 60:2718-29. [PMID: 25956703 DOI: 10.1007/s10620-015-3676-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/17/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Massive hepatectomy often leads to fatal liver failure because of a small remnant liver volume. The aim of this study was to investigate the potential mechanisms leading to liver failure. METHODS Sprague-Dawley rats had performed a sham operation, 85 % partial hepatectomy (PH) or 90 % PH, and all had free access to water with or without supplemented glucose. Liver function and survival were evaluated. Liver parenchymal injury was assessed by evaluating hepatic pathology, blood biochemistry, and apoptotic and necrotic alterations. The regeneration response was assessed by the weight gain of the remnant liver, hepatocyte proliferation markers, and regeneration-related molecules. RESULTS The 90 % hepatectomy resulted in a significantly lower survival rate and impaired liver function; however, no significant more serious liver parenchymal injuries were detected. TNF-α, HGF, myc and IL-6 were either similarly expressed or overexpressed; however, the increase in remnant liver weight, mitotic index, and the presence of Ki-67 and PCNA were significantly lower in the 90 %-hepatectomized rats. mTOR, p70S6K and 4EBP1 were not activated in the remnant liver after a 90 % hepatectomy as obviously as those after an 85 % hepatectomy, which was concomitant with the higher expression of phospho-AMPK and a lower intrahepatic ATP level. Glucose treatment significantly improved the survival rate of 90 %-hepatectomized rats. CONCLUSIONS Suppression of remnant liver regeneration was observed in the 90 % PH and contributed to fatal liver failure. This suppressed liver regenerative capacity was related to the inhibited activation of mTOR signaling.
Collapse
|
37
|
Guan Y, Zhang L, Li X, Zhang X, Liu S, Gao N, Li L, Gao G, Wei G, Chen Z, Zheng Y, Ma X, Siwko S, Chen JL, Liu M, Li D. Repression of Mammalian Target of Rapamycin Complex 1 Inhibits Intestinal Regeneration in Acute Inflammatory Bowel Disease Models. THE JOURNAL OF IMMUNOLOGY 2015; 195:339-46. [PMID: 26026060 DOI: 10.4049/jimmunol.1303356] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway integrates environmental cues to regulate cell growth and survival through various mechanisms. However, how mTORC1 responds to acute inflammatory signals to regulate bowel regeneration is still obscure. In this study, we investigated the role of mTORC1 in acute inflammatory bowel disease. Inhibition of mTORC1 activity by rapamycin treatment or haploinsufficiency of Rheb through genetic modification in mice impaired intestinal cell proliferation and induced cell apoptosis, leading to high mortality in dextran sodium sulfate- and 2,4,6-trinitrobenzene sulfonic acid-induced colitis models. Through bone marrow transplantation, we found that mTORC1 in nonhematopoietic cells played a major role in protecting mice from colitis. Reactivation of mTORC1 activity by amino acids had a positive therapeutic effect in mTORC1-deficient Rheb(+/-) mice. Mechanistically, mTORC1 mediated IL-6-induced Stat3 activation in intestinal epithelial cells to stimulate the expression of downstream targets essential for cell proliferation and tissue regeneration. Therefore, mTORC1 signaling critically protects against inflammatory bowel disease through modulation of inflammation-induced Stat3 activity. As mTORC1 is an important therapeutic target for multiple diseases, our findings will have important implications for the clinical usage of mTORC1 inhibitors in patients with acute inflammatory bowel disease.
Collapse
Affiliation(s)
- Yuting Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Long Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinyan Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shijie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Na Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ganglong Gao
- Fengxian Hospital, Southern Medical University, Shanghai 201499, China; and
| | - Gaigai Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yansen Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030
| | - Jin-Lian Chen
- Fengxian Hospital, Southern Medical University, Shanghai 201499, China; and
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| |
Collapse
|