1
|
Chen Z, Cheng Z, Ding C, Cao T, Chen L, Wang H, Li J, Huang X. ROS-Activated TRPM2 Channel: Calcium Homeostasis in Cardiovascular/renal System and Speculation in Cardiorenal Syndrome. Cardiovasc Drugs Ther 2025; 39:615-631. [PMID: 38108918 DOI: 10.1007/s10557-023-07531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is a nonselective calcium channel that is sensitive to oxidative stress (OS), and is widely expressed in multiple organs, such as the heart, kidney, and brain, which is inextricably related to calcium dyshomeostasis and downstream pathological events. Due to the increasing global burden of kidney or cardiovascular diseases (CVDs), safe and efficient drugs specific to novel targets are imperatively needed. Notably, investigation of the possibility to regard the TRPM2 channel as a new therapeutic target in ROS-related CVDs or renal diseases is urgently required because the roles of the TRPM2 channel in heart or kidney diseases have not received enough attention and thus have not been fully elaborated. Therefore, we aimed to review the involvement of the TRPM2 channel in cardiovascular disorders related to kidney or typical renal diseases and attempted to speculate about TRPM2-mediated mechanisms of cardiorenal syndrome (CRS) to provide representative perspectives for future research about novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, China
| | - Zaihua Cheng
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Congcong Ding
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyu Cao
- Biological anthropology, University of California, Santa Barbara, CA, USA
| | - Ling Chen
- Department of Cardiology, the First People's Hospital of Jiujiang, Jiujiang, China
| | - Hong Wang
- Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Junpei Li
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao Huang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
3
|
Shen SH, Wang RL, Yuan Q, Jian LY, Guo HH, Li HS, Liu XP, Huang RF. The roles of AMPK/mTOR autophagy pathway in the acute kidney injury-induced acute lung injury. CHINESE J PHYSIOL 2023; 66:73-84. [PMID: 37082995 DOI: 10.4103/cjop.cjop-d-22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Acute kidney injury (AKI) is one of the most challenging clinical problems in kidney disease due to serious complications and high mortality rate, which can lead to acute lung injury (ALI) through inflammatory reactions and oxidative stress. Adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has been reported to be involved in the development of renal ischemia-reperfusion through autophagy and it remains unclear whether AMPK/mTOR pathway has an effect on the AKI-induced ALI. In this study, we aimed to investigate the effects of autophagy-related AMPK/mTOR signaling pathway on inflammatory factors and oxidative stress in an AKI-induced ALI model. The 48 male Sprague-Dawley rats were divided into four groups randomly: (i) sham, (ii) ischemia/reperfusion injury (IRI), (iii) IRI + rapamycin (RA), and (iv) IRI + 3-methyladenine (3-MA). Unilateral flank incisions were made and right kidneys were excised. The left kidney was subjected to 60 min of ischemia followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, blood urea nitrogen (BUN), Wet/Dry ratio, indexes of inflammation, and oxidative stress were assayed. Histological examinations were performed. The protein expression of AMPK, mTOR, LC3-II/LC3-I ratio, and Beclin-1, ULK1 was evaluated by western blotting and immunohistochemistry. Compared to the rats from the sham group, IRI rats showed significantly pulmonary damage after AKI with increased Scr, BUN, Wet/Dry ratio, indexes of inflammation, and oxidative stress. The expression of AMPK, LC3-II/LC3-I ratio, Beclin-1, and ULK1 and were increased, while p62 and mTOR were decreased. In addition, RA treatment significantly attenuated lung injury by promoting autophagy through the activation of the AMPK/mTOR pathway, and 3-MA treatment exhibited adverse effects inversely. Therefore, the activation of the AMPK/mTOR pathway after renal IRI induction could significantly attenuate kidney injury and following AKI-induced ALI by inducing autophagy, which alienates inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Si-Heng Shen
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruo-Lin Wang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qi Yuan
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lu-Yong Jian
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hua-Hui Guo
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - He-Sheng Li
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xue-Pin Liu
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ren-Fa Huang
- Department of Nephropathy, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
4
|
The Effect of Nerolidol Renal Dysfunction following Ischemia-Reperfusion Injury in the Rat. Nutrients 2023; 15:nu15020455. [PMID: 36678327 PMCID: PMC9866594 DOI: 10.3390/nu15020455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Efforts to decrease the deleterious effects of renal ischemia-reperfusion injury (IRI) are ongoing. Recently, there has been increasing interest in using natural phytochemical compounds as alternative remedies in several diseases. Nerolidol is a natural product extracted from plants with floral odors and has been proven to be effective for the treatment of some conditions. We investigated the effect of nerolidol in a rat model of renal IRI. Nerolidol was dissolved in a vehicle and administered orally as single daily dose of 200 mg/kg for 5 days prior to IRI and continued for 3 days post IRI. G-Sham (n = 10) underwent sham surgery, whereas G-IRI (n = 10) and G-IRI/NR (n = 10) underwent bilateral warm renal ischemia for 30 min and received the vehicle/nerolidol, respectively. Renal functions and histological changes were assessed before starting the medication, just prior to IRI and 3 days after IRI. Nerolidol significantly attenuated the alterations in serum creatinine and urea, creatinine clearance, urinary albumin and the urinary albumin-creatinine ratio. Nerolidol also significantly attenuated the alterations in markers of kidney injury; proinflammatory, profibrotic and apoptotic cytokines; oxidative stress markers; and histological changes. We conclude that nerolidol has a renoprotective effect on IRI-induced renal dysfunction. These findings might have clinical implications.
Collapse
|
5
|
Khanahmad H, Mirbod SM, Karimi F, Kharazinejad E, Owjfard M, Najaflu M, Tavangar M. Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury. Mol Biol Rep 2022; 49:11071-11079. [PMID: 36104583 DOI: 10.1007/s11033-022-07836-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca2 + charge and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney injury (AKI).Transient receptor potential (TRP) channels include an essential class of Ca2+ permeable cation channels, which are segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.TRPM channels include eight isoforms (TRPM1-TRPM8) and TRPM2 is the second member of this subfamily that has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels are triggered by several chemicals including hydrogen peroxide, Ca2+, and cyclic adenosine diphosphate (ADP) ribose (cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of medical science, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran, Isfahan University of Medical sciences, Isfahan, Iran
| | - Seyedeh Mahnaz Mirbod
- Resident of Cardiology, Department of cardiology, Isfahan University of Medical Science, Isfahan, Iran
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran., Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Karimi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
- Behbahan Faculty of Medical Sciences, No.8, Shahid Zibaei Blvd. Behbahan city, Behbahan, Khozestan province, Iran.
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran., Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Ebrahim Kharazinejad
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomy, Abadan University of Medical Sciences, Abadan, Iran, Abadan University of Medical Sciences, Abadan , Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran, Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrsa Tavangar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
CXCR4 inhibition attenuates calcium oxalate crystal deposition-induced renal fibrosis. Int Immunopharmacol 2022; 107:108677. [DOI: 10.1016/j.intimp.2022.108677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
|
7
|
Pontrelli P, Simone S, Rascio F, Pesce F, Conserva F, Infante B, Castellano G, Sallustio F, Fiorentino M, Zaza G, Gallone A, Battaglia M, Ditonno P, Stallone G, Gesualdo L, Grandaliano G. Pre-Transplant Expression of CCR-2 in Kidney Transplant Recipients Is Associated With the Development of Delayed Graft Function. Front Immunol 2022; 13:804762. [PMID: 35371047 PMCID: PMC8967482 DOI: 10.3389/fimmu.2022.804762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background Delayed graft function (DGF) leads to a reduced graft survival. Donors’ features have been always considered as key pathogenic factors in this setting. The aim of our study was to evaluate the recipients’ characteristics in the development of DGF. Methods We enrolled 932 kidney graft recipients from 466 donors; 226 recipients experienced DGF. In 290 donors, both recipients presented with early graft function (EGF, group A), in 50 both recipients experienced DGF (group B), and in 126 one recipient presented with DGF and the other with EGF (group C). In group C, we selected 7 couples of DGF/EGF recipients and we evaluated the transcriptomic profile by microarray on circulating mononuclear cells harvested before transplantation. Results were validated by qPCR in an independent group of 25 EGF/DGF couples. Findings In the whole study group, DGF was associated with clinical characteristics related to both donors and recipient. In group C, DGF was significantly associated with body mass index, hemodialysis, and number of mismatches. In the same group, we identified 411 genes differently expressed before transplantation between recipients discordant for the transplant outcome. Those genes were involved in immune dysfunction and inflammation. In particular, we observed a significant increase in DGF patients in the expression of C–C chemokine receptor type 2 (CCR2), the monocyte chemoattractant protein-1 (MCP-1) receptor. CCR-2 upregulation was confirmed in an independent cohort of patients. Conclusions Our results suggest that recipients’ clinical/immunological features, potentially modulated by dialysis, are associated with the development of DGF independently of donors’ features.
Collapse
Affiliation(s)
- Paola Pontrelli
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Federica Rascio
- Department of Medical and Surgical Sciences, Renal Unit, University of Foggia, Foggia, Italy
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Conserva
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Infante
- Department of Medical and Surgical Sciences, Renal Unit, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Department of Clinical Sciences and Community Health, Nephrology Unit, University of Milano and Fondazione Cà Grande Ospedale Maggiore Policlinico, Milano, Italy
| | - Fabio Sallustio
- Department of Internal Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Gianluigi Zaza
- Department of Medical and Surgical Sciences, Renal Unit, University of Foggia, Foggia, Italy
| | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Ditonno
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences, Renal Unit, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Grandaliano
- Department of Translational Medicine and Surgery, Nephrology Unit, Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| |
Collapse
|
8
|
Renal Tubular Epithelial TRPA1 Acts as An Oxidative Stress Sensor to Mediate Ischemia-Reperfusion-Induced Kidney Injury through MAPKs/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms22052309. [PMID: 33669091 PMCID: PMC7956664 DOI: 10.3390/ijms22052309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and inflammation play important roles in the pathophysiology of acute kidney injury (AKI). Transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable ion channel that is sensitive to reactive oxygen species (ROS). The role of TRPA1 in AKI remains unclear. In this study, we used human and animal studies to assess the role of renal TRPA1 in AKI and to explore the regulatory mechanism of renal TRPA1 in inflammation via in vitro experiments. TRPA1 expression increased in the renal tubular epithelia of patients with AKI. The severity of tubular injury correlated well with tubular TRPA1 or 8-hydroxy-2'-deoxyguanosine expression. In an animal model, renal ischemia-reperfusion injury (IR) increased tubular TRPA1 expression in wild-type (WT) mice. Trpa1-/- mice displayed less IR-induced tubular injury, oxidative stress, inflammation, and dysfunction in kidneys compared with WT mice. In the in vitro model, TRPA1 expression increased in renal tubular cells under hypoxia-reoxygenation injury (H/R) conditions. We demonstrated that H/R evoked a ROS-dependent TRPA1 activation, which elevated intracellular Ca2+ level, increased NADPH oxidase activity, activated MAPK/NF-κB signaling, and increased IL-8. Renal tubular TRPA1 may serve as an oxidative stress sensor and a crucial regulator in the activation of signaling pathways and promote the subsequent transcriptional regulation of IL-8. These actions might be evident in mice with IR or patients with AKI.
Collapse
|
9
|
Madjene LC, Danelli L, Dahdah A, Vibhushan S, Bex-Coudrat J, Pacreau E, Vaugier C, Claver J, Rolas L, Pons M, Madera-Salcedo IK, Beghdadi W, El Ghoneimi A, Benhamou M, Launay P, Abrink M, Pejler G, Moura IC, Charles N, Daugas E, Perianin A, Blank U. Mast cell chymase protects against acute ischemic kidney injury by limiting neutrophil hyperactivation and recruitment. Kidney Int 2019; 97:516-527. [PMID: 31866111 DOI: 10.1016/j.kint.2019.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
Abstract
Here we investigated the role of murine mast cell protease 4 (MCPT4), the functional counterpart of human mast cell chymase, in an experimental model of renal ischemia reperfusion injury, a major cause of acute kidney injury. MCPT4-deficient mice had worsened kidney function compared to wildtype mice. MCPT4 absence exacerbated pathologic neutrophil infiltration in the kidney and increased kidney myeloperoxidase expression, cell death and necrosis. In kidneys with ischemia reperfusion injury, when compared to wildtype mice, MCPT4-deficient mice showed increased surface expression of adhesion molecules necessary for leukocyte extravasation including neutrophil CD162 and endothelial cell CD54. In vitro, human chymase mediated the cleavage of neutrophil expressed CD162 and also CD54, P- and E-Selectin expressed on human glomerular endothelial cells. MCPT4 also dampened systemic neutrophil activation after renal ischemia reperfusion injury as neutrophils expressed more CD11b integrin and produced more reactive oxygen species in MCPT4-deficient mice. Accordingly, after renal injury, neutrophil migration to an inflammatory site distal from the kidney was increased in MCPT4-deficient versus wildtype mice. Thus, contrary to the described overall aggravating role of mast cells, one granule-released mediator, the MCPT4 chymase, exhibits a potent anti-inflammatory function in renal ischemia reperfusion injury by controlling neutrophil extravasation and activation thereby limiting associated damage.
Collapse
Affiliation(s)
- Lydia Celia Madjene
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Luca Danelli
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Albert Dahdah
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Shamila Vibhushan
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Julie Bex-Coudrat
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Emeline Pacreau
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Celine Vaugier
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France; Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Laboratory of Excellence GR-Ex, Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Julien Claver
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Loïc Rolas
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Maguelonne Pons
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Iris Karina Madera-Salcedo
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Walid Beghdadi
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Alaa El Ghoneimi
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France; Department of Pediatric Surgery and Urology, Hopital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marc Benhamou
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Pierre Launay
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Magnus Abrink
- Immunology Section, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ivan Cruz Moura
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France; Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Laboratory of Excellence GR-Ex, Paris, France; CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Nicolas Charles
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Eric Daugas
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France; Service de Néphrologie, Hôpital Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Axel Perianin
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Ulrich Blank
- Center of Research on Inflammation, Inserm UMRS-1149, Paris, France; Center of Research on Inflammation, CNRS ERL 8252, Paris, France; Center of Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Paris, France.
| |
Collapse
|
10
|
Piotrowska A, Rojewska E, Pawlik K, Kreiner G, Ciechanowska A, Makuch W, Nalepa I, Mika J. Pharmacological Blockade of Spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a Selective CXCR2 Antagonist, Reduces Neuropathic Pain Following Peripheral Nerve Injury. Front Immunol 2019; 10:2198. [PMID: 31616413 PMCID: PMC6775284 DOI: 10.3389/fimmu.2019.02198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Recently, the role of CXCR2 in nociception has been noted. Our studies provide new evidence that the intrathecal administration of its CINC ligands (Cytokine-Induced Neutrophil Chemoattractant; CXCL1-3) induces pain-like behavior in naïve mice, and the effect occurring shortly after administration is associated with the neural location of CXCR2, as confirmed by immunofluorescence. RT-qPCR analysis showed, for the first time, raised levels of spinal CXCR2 after chronic constriction injury (CCI) of the sciatic nerve in rats. Originally, on day 2, we detected escalated levels of the spinal mRNA of all CINCs associated with enhancement of the protein level of CXCL3 lasting until day 7. Intrathecal administration of CXCL3 neutralizing antibody diminished neuropathic pain on day 7 after CCI. Interestingly, CXCL3 is produced in lipopolysaccharide-stimulated microglial, but not astroglial, primary cell cultures. We present the first evidence that chronic intrathecal administrations of the selective CXCR2 antagonist, NVP CXCR2 20, attenuate neuropathic pain symptoms and CXCL3 expression after CCI. Moreover, in naïve mice, this antagonist prevented CXCL3-induced hypersensitivity. However, NVP CXCR2 20 did not diminish glial activation, thus not enhancing morphine/buprenorphine analgesia. These results provide novel insight into the crucial role of CXCR2 in neuropathy based on CXCL3 modulation, which may become a potential therapeutic target in pain treatment.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
11
|
Tian H, Wu M, Zhou P, Huang C, Ye C, Wang L. The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation. Ren Fail 2018; 40:527-533. [PMID: 30277425 PMCID: PMC6171433 DOI: 10.1080/0886022x.2018.1487863] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To investigate the expression of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in renal ischemia-reperfusion injury and explore its role in acute kidney injury. Methods: 18 mice were randomly divided into a sham operation group (Sham) and an ischemia-reperfusion group (IR) in which animals were sacrificed at 6 h or 12 h after surgery. The kidneys were harvested to measure the expression of MALAT1 mRNA. HK2 cells were treated with cobalt chloride (CoCl2) to mimic hypoxia or transfected with siRNA to knockdown MALAT1 before CoCl2 treatment. After that, MALAT1 was analyzed by RT-PCR (reverse transcription-polymerase chain reaction). HIF-1ɑ (hypoxia-inducible factor-1 alpha) and NF-κB (nuclear factor-kappa B) was measured by Western blot. The concentrations of IL-6 (interleukin-6) and TNF-ɑ (tumor necrosis factor-alpha) in the media were detected by ELISA (enzyme-linked immunosorbent assay). Results: The expression of MALAT1 in the IR (6 h/12 h) group was significantly higher than that in the sham group. In HK2 cells, MALAT1 was significantly increased at 1 h, 3 h, and 6 h after CoCl2 treatment but had reduced to the basal level at 12 h and 24 h. Knockdown of MALAT1 by siRNA significantly up-regulated the expression of HIF-1ɑ and NF-κB proteins in CoCl2-treated HK2 cells. In addition, the concentrations of IL-6 and TNF-ɑ were increased by MALAT1 siRNA transfection in CoCl2-treated HK2 cells. Conclusion: The expression of MALAT1 is increased in renal ischemia-reperfusion injury. It is likely that MALAT1 inhibits the hypoxia-induced inflammatory response through the NF-κB pathway.
Collapse
Affiliation(s)
- Hongyan Tian
- a Department of Nephrology , The Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Ming Wu
- b Department of Nephrology , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Peihui Zhou
- a Department of Nephrology , The Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Chuiguo Huang
- c Department of Urology , the second affiliated hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Chaoyang Ye
- b Department of Nephrology , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Li Wang
- a Department of Nephrology , The Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
12
|
Esmaeilzadeh M, Sadeghi M, Galmbacher R, Daniel V, Knapp J, Heissler HE, Krauss JK, Mehrabi A. Time-course of plasma inflammatory mediators in a rat model of brain death. Transpl Immunol 2017; 43-44:21-26. [DOI: 10.1016/j.trim.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
|
13
|
He XH, Tang JJ, Wang YL, Zhang ZZ, Yan XT. Transduced Heme Oxygenase-1 Fusion Protein Reduces Renal Ischemia/Reperfusion Injury Through Its Antioxidant and Antiapoptotic Roles in Rats. Transplant Proc 2016; 47:1627-32. [PMID: 26293025 DOI: 10.1016/j.transproceed.2015.04.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/15/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Heme oxygenase-1 (HO-1) has a protective role against ischemia/reperfusion (I/R) injury. METHODS We produced an HO-1 fusion protein mediated by cell penetrated peptide PEP-1, also known as PEP-1-HO-1 fusion protein, and investigated its role in renal I/R injury in rats. Male Sprague-Dawley rats were subjected to 45 minutes of ischemia by occluding the bilateral renal arteries and 6 hours of reperfusion to prepare the model of renal I/R. Animals were randomized to receive PEP-1-HO-1 fusion protein or equal volume of physiologic saline 30 minutes before ischemia. RESULTS Administration of PEP-1-HO-1 fusion protein resulted in a significant increase in HO-1 expression. His-probe expression (1 part of the PEP-1-HO-1 fusion protein) was only observed in PEP-1-HO-1-treated animals. I/R caused renal dysfunction and increases in malondialdehyde level and cell apoptosis, and decreased superoxide dismutase activity. Treatment of PEP-1-HO-1 fusion protein reversed these changes. Furthermore, administration of PEP-1-HO-1 inhibited the I/R-induced increase in nuclear factor-κB activation. CONCLUSIONS These findings suggest that transduction of PEP-1-HO-1 attenuates renal I/R injury in rats, which might be partly attributable to its antioxidant and antiapoptotic effects.
Collapse
Affiliation(s)
- X-H He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - J-J Tang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Y-L Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Z-Z Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - X-T Yan
- Department of Anesthesiology, Shenzhen Boan Maternity and Child Health Hospital, Shenzhen, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Ischemia/reperfusion injury is an unavoidable companion after kidney transplantation and influences short-term as well as long-term graft outcome. Clinically ischemia/reperfusion injury is associated with delayed graft function, graft rejection, and chronic graft dysfunction. Ischemia/reperfusion affects many regulatory systems at the cellular level as well as in the renal tissue that eventually result in a distinct inflammatory reaction of the kidney graft. RECENT FINDINGS Underlying factors include energy metabolism, cellular changes of the mitochondria and cellular membranes, initiation of different forms of cell death-like apoptosis and necrosis together with a recently discovered mixed form termed necroptosis. Chemokines and cytokines together with other factors promote the inflammatory response leading to activation of the innate immune system as well as the adaptive immune system. If the inflammatory reaction continues within the graft tissue, a progressive interstitial fibrosis develops that impacts long-term graft outcome. SUMMARY It is of particular importance in kidney transplantation to understand the underlying mechanisms and effects of ischemia/reperfusion on the graft as this knowledge also opens strategies to prevent or treat ischemia/reperfusion injury after transplantation in order to improve graft outcome.
Collapse
|
15
|
Guidance cue netrin-1 and the regulation of inflammation in acute and chronic kidney disease. Mediators Inflamm 2014; 2014:525891. [PMID: 24991088 PMCID: PMC4065723 DOI: 10.1155/2014/525891] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 01/21/2023] Open
Abstract
Acute kidney injury (AKI) is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems. Cell migration also plays an important role in embryonic development and inflammation, and this process is highly regulated to ensure tissue homeostasis. One such paradigm exists in the developing nervous system, where neuronal migration is mediated by a balance between chemoattractive and chemorepulsive signals. The ability of the guidance molecule netrin-1 to repulse or abolish attraction of neuronal cells expressing the UNC5B receptor makes it an attractive candidate for the regulation of inflammatory cell migration. Recent identification of netrin-1 as regulators of immune cell migration has led to a large number of studies looking into how netrin-1 controls inflammation and inflammatory cell migration. This review will focus on recent advances in understanding netrin-1 mediated regulation of inflammation during acute and chronic kidney disease and whether netrin-1 and its receptor activation can be used to treat acute and chronic kidney disease.
Collapse
|
16
|
Impact of kidney function and urinary protein excretion on pulmonary function in Japanese patients with chronic kidney disease. Clin Exp Nephrol 2013; 18:763-9. [PMID: 24337681 DOI: 10.1007/s10157-013-0920-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Although the cardiorenal relationship in chronic kidney disease has been investigated, information about the lung-kidney relationship is limited. Here, we investigated the impact of kidney function and urinary protein excretion on pulmonary dysfunction. METHODS The data from pulmonary function tests and kidney function (estimated glomerular filtration rate [eGFR] and urinary protein) between 1 April 2005 and 30 June 2010 were selected from our laboratory database. Data were classified into 4 categories according to eGFR and proteinuria. Category 1, eGFR ≥60 ml/min/1.73 m(2) and urinary protein <0.3 g/gCr; category 2, eGFR <60 ml/min/1.73 m(2) and urinary protein <0.3 g/gCr; category 3, eGFR ≥60 ml/min/1.73 m(2) and urinary protein ≥0.3 g/gCr; and category 4, eGFR <60 ml/min/1.73 m(2) and urinary protein ≥0.3 g/gCr. Pulmonary function data were evaluated according to these 4 categories. RESULTS A total of 133 participants without major respiratory disease, abnormal computed tomography and smoking history were enrolled. Hemoglobin (Hb)-adjusted percentage carbon monoxide diffusing capacity (%DLCO) in category 4 (46.2 ± 7.5) and category 2 (63.6 ± 17.8) were significantly lower than in category 1 (75.8 ± 18.9) (P < 0.05). In addition, Hb-adjusted %DLCO was weakly correlated with eGFR in participants with urinary protein <0.3 g/gCr (R = 0.30, P = 0.001). Hb-adjusted %DLCO was strongly correlated with eGFR in participants with urinary protein ≥0.3 g/gCr (R = 0.81, P < 0.001). Other pulmonary function test markers (percentage (%) vital capacity, % forced expiratory volume in one second (FEV1), FEV1/forced vital capacity, % total lung capacity, and % residual volume) were not significantly different between categories. CONCLUSION This study suggests that decreased eGFR is associated with decreased %DLCO in proteinuric patients.
Collapse
|
17
|
Sickinger S, Maier H, König S, Vallant N, Kofler M, Schumpp P, Schwelberger H, Hermann M, Obrist P, Schneeberger S, Margreiter R, Troppmair J, Pratschke J, Aigner F. Lipocalin-2 as mediator of chemokine expression and granulocyte infiltration during ischemia and reperfusion. Transpl Int 2013; 26:761-9. [PMID: 23701109 DOI: 10.1111/tri.12116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/11/2013] [Accepted: 04/20/2013] [Indexed: 11/28/2022]
Abstract
Lipocalin-2 (Lcn2) expression contributes to ischemia and reperfusion injury (IRI) by enhancing pro-inflammatory responses. The aim of this work was to elucidate the regulation of Lcn2 during hypoxia and its effects on the expression of key chemokines and adhesion molecules. Lcn2 wt and Lcn2(-/-) mice were used in a heterotopic heart transplantation model. Quantitative RT-PCR was applied for chemokine gene expression analysis. Reporter gene studies were used to elucidate the regulation of the Lcn2 promoter by hypoxia. HIF-1β expression led to a 2.4-fold induction of the Lcn2 promoter. Apart from an earlier onset of granulocyte infiltration in the Lcn2 wt setting after 2 h of reperfusion compared with the Lcn2(-/-) setting (P < 0.013), exogenous application of recombinant Lcn2 revealed a trend toward increase of granulocyte infiltration. Analyzed chemokines were expressed significantly higher in the Lcn2 wt setting at 2 h of reperfusion (P ≤ 0.05). The number of apoptotic cells observed in Lcn2(-/-) grafts was significantly higher than in the Lcn2 wt setting. Our results indicate that Lcn2 affects granulocyte infiltration in the reperfused graft by modulating the expression of chemokines, their receptors and the apoptotic rate.
Collapse
Affiliation(s)
- Stephan Sickinger
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PTH. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol 2012; 166:194-209. [PMID: 21745189 DOI: 10.1111/j.1476-5381.2011.01590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury.
Collapse
Affiliation(s)
- N M Rogers
- Transplant Immunology Laboratory, Hanson Institute, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
19
|
Bagul A. Ischaemic/reperfusion injury: Role of infliximab. World J Transplant 2012; 2:35-40. [PMID: 24175194 PMCID: PMC3782232 DOI: 10.5500/wjt.v2.i3.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 04/12/2012] [Accepted: 06/01/2012] [Indexed: 02/05/2023] Open
Abstract
Ischaemia/reperfusion (I/R) injury is an underlying complex interrelated patho-physiological process which effects the outcome of many clinical situations, in particular transplantation. Tumor necrosis factor (TNF)-α is a pleiotropic inflammatory cytokine; a trimeric protein encoded within the major histocompatibility complex which plays a pivotal role in this disease process. This review is based at looking into an update, particularly the new insights in the mechanisms of action of TNF antagonist such as infliximab. Infliximab may thus play a dual role in the field of transplantation where it might not only down regulate the I/R injury, it may also have a beneficial role in the reduction of acute rejection.
Collapse
Affiliation(s)
- Atul Bagul
- Atul Bagul, Transplant Division, III Department, University of Leicester, Leicester-UK and University Hospitals of Leicester, Leicester LE5 4PW, United Kingdom
| |
Collapse
|
20
|
Effects of adipose-derived mesenchymal cells on ischemia-reperfusion injury in kidney. Clin Exp Nephrol 2012; 16:679-89. [PMID: 22398959 DOI: 10.1007/s10157-012-0614-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/05/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a critical condition for kidney and other remote organs, including the lung. However, available treatments for AKI are limited. In this study, we explored the effect of adipose-derived mesenchymal cells on a mouse model of AKI. METHODS Adipose-derived mesenchymal cells were isolated from mouse subcutaneous and peritoneal adipose tissue by digestion with collagenase type I. The left renal artery and vein of C57BL/6 mice were clamped for 45 min to induce ischemia and were injected with the adipose-derived mesenchymal cells [1 × 10(5) cells/0.2 ml phosphate-buffered saline (PBS)] or 0.2 ml PBS via the tail vein on days 0, 1, and 2. RESULTS The adipose-derived mesenchymal cells had stem-cell surface markers and multilineage differentiating potentials. Administered adipose-derived mesenchymal cells homed primarily into lung. Interestingly, repeated administration of adipose-derived mesenchymal cells reduced acute tubular necrosis and interstitial macrophage infiltration in the injured kidney, accompanied with reduced cytokine and chemokine expression. CONCLUSION Adipose-derived mesenchymal cells can be used as cell-based therapy for ischemic kidney injury.
Collapse
|
21
|
Furuichi K, Kokubo S, Hara A, Imamura R, Wang Q, Kitajima S, Toyama T, Okumura T, Matsushima K, Suda T, Mukaida N, Kaneko S, Wada T. Fas Ligand Has a Greater Impact than TNF-α on Apoptosis and Inflammation in Ischemic Acute Kidney Injury. NEPHRON EXTRA 2012; 2:27-38. [PMID: 22479266 PMCID: PMC3318938 DOI: 10.1159/000335533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background/Aim Fas ligand (FasL) and tumor necrosis factor (TNF)-α are major pro-apoptotic molecules and also induce inflammation through cytokine and chemokine production. Although precise intracellular mechanisms of action have been reported for each molecule, the differential impact of these molecules on kidney injury in vivo still requires clarification. Methods We explored the differential impact of FasL and TNF-α upon apoptosis and inflammation in ischemic acute kidney injury using neutralizing anti-FasL antibodies and TNF-α receptor 1 (TNFR1)-deficient mice. Results TNFR1 deficiency was associated with a lesser anti-inflammatory effect upon leukocyte infiltration and tubular necrosis than treatment with anti-FasL antibody. Furthermore, the number of TUNEL-positive cells was significantly reduced in anti-FasL antibody-treated mice, whereas it was only partially diminished in TNFR1-deficient mice. In vitro studies confirmed these findings. FasL administration induced both apoptosis and cytokine/chemokine production from cultured tubular epithelial cells. However, TNF-α had a limited effect upon tubular epithelial cells. Conclusion In ischemic acute kidney injury, FasL has a greater impact than TNF-α on the apoptosis and inflammatory reaction through cytokine/chemokine production from tubular epithelial cells.
Collapse
Affiliation(s)
- Kengo Furuichi
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Trophic Factor and FR167653 Supplementation During Cold Storage Rescue Chronic Renal Injury. J Urol 2011; 185:1139-46. [DOI: 10.1016/j.juro.2010.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Indexed: 01/14/2023]
|
23
|
Feng Z, Ting J, Alfonso Z, Strem BM, Fraser JK, Rutenberg J, Kuo HC, Pinkernell K. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transplant 2010; 25:3874-84. [PMID: 20921297 PMCID: PMC2989793 DOI: 10.1093/ndt/gfq603] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. Acute kidney injury (AKI) represents a major clinical problem with high mortality and limited causal treatments. The use of cell therapy has been suggested as a potential modality to improve the course and outcome of AKI. Methods. We investigated the possible renoprotection of freshly isolated, uncultured adipose tissue-derived stem and regenerative cells (ADRCs) before and after cryopreservation in a rat ischemia–reperfusion (I–R) model of AKI. Results. We demonstrated that ADRC therapy drastically reduced mortality (survival 100% vs. 57%, ADRC vs. controls, respectively) and significantly reduced serum creatinine (sCr on Day 3: 3.03 ± 1.58 vs. 7.37 ± 2.32 mg/dL, ADRC vs. controls, respectively). Histological analysis further validated a significantly reduced intratubular cast formation, ameliorated acute tubular epithelial cell necrosis and mitigated macrophage infiltration. Furthermore, a reduced RNA expression of CXCL2 and IL-6 was found in the ADRC group which could explain the reduced macrophage recruitment. Use of cryopreserved ADRCs resulted in an equally high survival (90% vs. 33% in the control group) and similarly improved renal function (sCr on Day 3: 4.64 ± 2.43 vs. 7.24 ± 1.40 mg/dL in controls). Conclusions. Collectively, these results suggest a potential clinical role for ADRC therapy in patients with AKI. Importantly, cryopreservation of ADRCs could offer an autologous treatment strategy for patients who are at high risk for AKI during planned interventions.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Regenerative Cell Technology, Cytori Therapeutics, Inc., 3020 Callan Road, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tadagavadi RK, Wang W, Ramesh G. Netrin-1 Regulates Th1/Th2/Th17 Cytokine Production and Inflammation through UNC5B Receptor and Protects Kidney against Ischemia–Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2010; 185:3750-8. [DOI: 10.4049/jimmunol.1000435] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Lutz J, Thürmel K, Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:27. [PMID: 20509932 PMCID: PMC2894818 DOI: 10.1186/1476-9255-7-27] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/28/2010] [Indexed: 01/26/2023]
Abstract
Inflammatory reactions in the graft have a pivotal influence on acute as well as long-term graft function. The main reasons for an inflammatory reaction of the graft tissue are rejection episodes, infections as well as ischemia/reperfusion (I/R) injury. The latter is of particular interest as it affects every solid organ during the process of transplantation. I/R injury impairs acute as well as long-term graft function and is associated with an increased number of acute rejection episodes that again affect long-term graft outcome. I/R injury is the result of ATP depletion during prolonged hypoxia. Further tissue damage results from the reperfusion of the tissue after the ischemic insult. Adaptive cellular responses activate the innate immune system with its Toll-like receptors and the complement system as well as the adaptive immune system. This results in a profound inflammatory tissue reaction with immune cells infiltrating the tissue. The damage is mediated by various cytokines, chemokines, adhesion molecules, and compounds of the extracellular matrix. The expression of these factors is regulated by specific transcription factors with NF-κB being one of the key modulators of inflammation. Strategies to prevent or treat I/R injury include blockade of cytokines/chemokines, adhesion molecules, NF-κB, specific MAP kinases, metalloproteinases, induction of protective genes, and modulation of the innate immune system. Furthermore, preconditioning of the donor is an area of intense research. Here pharmacological treatment as well as new additives to conventional cold storage solutions have been analyzed together with new techniques for the perfusion of grafts, or methods of normothermic storage that would avoid the problem of cold damage and graft ischemia. However, the number of clinical trials in the field of I/R injury is limited as compared to the large body of experimental knowledge that accumulated during recent years in the field of I/R injury. Future activities in the treatment of I/R injury should focus on the translation of experimental protocols into clinical trials in order to reduce I/R injury and, thus, improve short- as well as long-term graft outcome.
Collapse
Affiliation(s)
- Jens Lutz
- Department of Nephrology, II, Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Germany.
| | | | | |
Collapse
|
26
|
Jayle C, Faure JP, Thuillier R, Goujon JM, Richer JP, Hauet T. Influence of nephron mass and a phosphorylated 38 mitogen-activated protein kinase inhibitor on the development of early and long-term injury after renal warm ischaemia. Br J Surg 2009; 96:799-808. [PMID: 19526623 DOI: 10.1002/bjs.6589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Renal ischaemia is accompanied by acute and chronic complications. Tumour necrosis factor (TNF) alpha production via p38 mitogen-activated protein kinase (MAPK) is one of the pivotal mechanisms linking ischaemia to inflammation and could be a therapeutic target. FR167653 (FR), an inhibitor of p38 MAPK and TNF-alpha production, may ameliorate renal damage through its effects on TNF-alpha. METHODS Warm ischaemia (WI) was induced in male pigs by bilateral clamping of the renal pedicle for 60 min or unilateral renal clamping after contralateral nephrectomy. FR was administered before and during WI, and continuously for 3 h during reperfusion in pigs exposed to the same WI conditions. Experimental groups were compared with sham-operated pigs and those subjected to unilateral nephrectomy without renal ischaemia. Renal function, fibrosis and inflammation were evaluated, and expression of monocyte chemoattractant protein 1, transforming growth factor beta and TNF-alpha was determined after 12 weeks. RESULTS FR significantly reduced renal failure in groups subjected to unilateral nephrectomy and bilateral renal ischaemia. Proteinuria was significantly reduced, and inflammation and expression of proinjury proteins were diminished, accompanied by a reduction in renal fibrosis. CONCLUSION Control of TNF-alpha production and activity prevents renal damage after prolonged WI.
Collapse
Affiliation(s)
- C Jayle
- Institut National de la Santé et de la Recherche Médical U927 and University of Poitiers, Poitiers, France
| | | | | | | | | | | |
Collapse
|
27
|
Chen B, Liao WQ, Xu N, Xu H, Wen JY, Yu CA, Liu XY, Li CL, Zhao SM, Campbell W. Adiponectin protects against cerebral ischemia-reperfusion injury through anti-inflammatory action. Brain Res 2009; 1273:129-37. [PMID: 19362080 DOI: 10.1016/j.brainres.2009.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 02/07/2023]
Abstract
Adiponectin (APN), a circulating adipose-derived hormone regulating inflammation and energy metabolism, has beneficial actions on cardio- and cerebrovascular disorders. Hypoadiponectinemia is associated with ischemic cerebrovascular disease, however, little is known about the cerebroprotective action of APN as well as its molecular mechanisms. In the present study, the role of APN in the pathogenesis of acute cerebral injury was investigated. Rats were divided into three groups: (i) a sham operation group; (ii) an ischemia/reperfusion (I/R) group, rats were subjected to 1 h middle cerebral artery occlusion followed by 23 h reperfusion (I/R); (iii) a APN-treated group, two bolus of 5 microg APN was administered through jugular vein before and after operation. I/R resulted in obvious cerebral infarct size, neurological deficits, and increased expression of endogenous immunoglobin G and matrix metalloproteinase 9, which can be significantly diminished by administration of APN. We also found that APN can significantly inhibited cerebral expression of myeloperoxidase, a distinct indicator of inflammatory cell infiltration, and inflammatory cytokines, interleukin (IL)-1beta, tumor necrosis factor-alpha and IL-8 in response to I/R, suggesting that APN exerts potent anti-inflammatory actions. Furthermore, nuclear factor (NF)-kappaB (p65), a critical transcription factor involved in inflammatory reactions, was observed predominantly located in the nucleus after I/R, whereas APN can obviously inhibit its translocation from cytoplasm into the nucleus. Results of this study demonstrate that APN exerts a potent cerebroprotective function through its anti-inflammatory action, and NF-kappaB (p65) is a key component in this process. APN might be potential molecular targets for ischemic stroke therapy.
Collapse
Affiliation(s)
- Bi Chen
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marinella MA. Hematologic abnormalities following renal transplantation. Int Urol Nephrol 2009; 42:151-64. [PMID: 19301140 DOI: 10.1007/s11255-009-9558-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 03/03/2009] [Indexed: 11/27/2022]
Abstract
Recipients of renal allografts are surviving longer and, consequently, may experience a variety of complications related not only to the transplanted kidney, but also to the hematopoietic system. Common hematologic complications in the renal transplant patient include abnormalities of one cell line, such as post-transplantation erythrocytosis or anemia, that are often treatable with simple measures. Conversely, pathologies involving the leukocyte and platelet population often exist in the context of pancytopenia, which may be a manifestation of systemic infection (e.g., cytomegalovirus, human herpesvirus 8) or malignancy (post-transplantation lymphoproliferative disorders). Uncommon, but life-threatening, processes complicating renal transplantation include hepatosplenic gammadelta T-cell lymphoma and viral-induced hemophagocytic syndrome, both of which are associated with severe pancytopenia and, often, death. Since this patient population is often managed in a multidisciplinary fashion by nephrologists, infection specialists, transplant surgeons, hematologists, and internal medicine physicians, a succinct review of this topic is warranted.
Collapse
Affiliation(s)
- Mark A Marinella
- Wright State University School of Medicine, Dayton, OH 45429, USA.
| |
Collapse
|
29
|
Cau J, Favreau F, Zhang K, Febrer G, de la Motte GR, Ricco JB, Goujon JM, Hauet T. FR167653 improves renal recovery and decreases inflammation and fibrosis after renal ischemia reperfusion injury. J Vasc Surg 2009; 49:728-40. [PMID: 19268775 DOI: 10.1016/j.jvs.2008.09.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 09/25/2008] [Accepted: 09/27/2008] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Acute tubular necrosis (ATN) secondary to induced warm ischemia (WI) results in inflammatory and delayed fibrotic processes and remains a common clinical problem with serious consequences. Because tumor necrosis factor-alpha (TNF-alpha) is a prominent proinflammatory factor implicated in the pathophysiology of acute renal ischemia reperfusion injury (IRI), we hypothesized that FR167653 (FR), a potent inhibitor of TNF-alpha and interleukin-1beta production, may reduce IRI. METHODS IRI was induced in male pigs by bilateral clamping of the renal pedicle for 90 minutes (WI90), or unilateral renal clamping (90 minutes) after contralateral nephrectomy (1/2Nx90), or unilateral renal clamping without contralateral nephrectomy (WIuni90). FR was administered intravenously 60 minutes before WI (1 mg/kg/h), during WI, and continuously for 3 hours (1 mg/kg/h) during reperfusion in treated groups (FRWI90, FR1/2Nx90, or FRWIuni90). Blood and urine samples were collected between day 1 and 3 months after reperfusion for assessment of renal function. Kidneys were excised and renal tissues were collected at 3 months for morphologic and inflammation evaluation and protein analysis. Experimental groups were compared with sham operated (control) and heminephrectomized (Unif) groups without renal ischemia. RESULTS Three WI90 animals (43%) and five 1/2Nx90 (70%) were euthanized and necropsied at day 7 because of no urine production or poor conditions. Mortality was significantly improved after FR treatment. Survival was 100% in the control, Unif, WIuni90, and FR groups. In Unif groups, FR significantly reduced renal failure and bilateral renal ischemia (P < .05). At 3 months, proteinuria was significantly reduced in FR-treated groups (P < .01). Inflammatory cells count was also dramatically diminished in FR-treated pigs (P < .01 for CD3-positive cells). The second aspect of transient ischemia is the fibrotic process determined at 3 months. FR treatment was characterized by a reduction of renal fibrosis, particularly in Unif groups. TNF-alpha protein expression was diminished in FR-treated groups. CONCLUSION This is the first evidence that FR reduced the early and long-term effect of WI in the severe ischemia model. This effect was particularly marked against fibrosis and inflammation, which would contribute to deterioration of a patient's renal function.
Collapse
Affiliation(s)
- Jerome Cau
- Inserm, U927, University Poitiers, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shimizua J, Inatsu A, Oshima S, Shimizu E, Kubota T, Suzuki N. A clinicopathologic evaluation of renal artery stenosis with abdominal aortic aneurysm. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|