1
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Sanaye PM, Alsharif KF, Daglia M, Larsen DS, Khan H. The role of interleukin (IL)-2 cytokine family in Parkinson's disease. Cytokine 2025; 191:156954. [PMID: 40318236 DOI: 10.1016/j.cyto.2025.156954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, which primarily impacts the nervous system, marked by its immune and inflammatory characteristics. The interleukin-2 (IL-2) cytokine family has a crucial role in regulating both neuroinflammation and immune activity, positioning it as one of the critical immune pathways in PD. Balancing pro-inflammatory and anti-inflammatory signals in PD heavily depends on the IL-2 cytokine family, that includes IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. This balance is vital for neuron survival and resistance to degeneration. Disruptions in IL-2 signaling can upset the equilibrium among regulatory T cells (Tregs) and pro-inflammatory T cells, such as Th1 and Th17, further aggravating the chronic neuroinflammation typical of PD. In PD, a decline in IL-2 or receptor dysfunction can hinder Treg activity, leading to increased inflammation and neurodegeneration. Similarly, IL-15 and IL-21 supports cytotoxic immune cell function, including natural killer (NK) cells and CD8+ T cells, which may exacerbate neuronal damage by sustaining pro-inflammatory processes. Moreover, IL-4 and IL-7 have anti-inflammatory roles in maintaining T cell homeostasis, and their dysregulation can contribute to interruption of the blood-brain barrier and increased infiltration of immune cells into the central nervous system. Targeting the IL-2 cytokine family in Parkinson's disease has shown therapeutic potential by expanding Tregs, which reduce neuroinflammation and promote dopaminergic neuron survival. Recombinant IL-2 and IL-2/anti-IL-2 complexes have demonstrated efficacy in animal models, enhancing Treg function and leading to improved neuroprotection. Additionally, IL-4-based therapies have been explored for their ability to shift microglia toward a neuroprotective phenotype, further enhancing neuronal survival by modulating inflammatory responses and cellular metabolism. Current research is exploring how to optimize cytokine delivery while minimizing immune side effects, with the goal of developing more targeted therapies for PD.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari 4816118761, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Yasmin S, Ansari MY. A detailed examination of coronavirus disease 2019 (COVID-19): Covering past and future perspectives. Microb Pathog 2025; 203:107398. [PMID: 39986548 DOI: 10.1016/j.micpath.2025.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
The COVID-19 disease has spread rapidly across the world within just six months, affecting 169 million people and causing 3.5 million deaths globally (2021). The most affected countries include the USA, Brazil, India, and several European countries such as the UK and Russia. Healthcare professionals face new challenges in finding better ways to manage patients and save lives. In this regard, more comprehensive research is needed, including genomic and proteomic studies, personalized medicines and the design of suitable treatments. However, finding novel molecular entities (NME) using a standard or de novo strategy to drug development is a time-consuming and costly process. Another alternate strategy is discovering new therapeutic uses for old/existing/available medications, known as drug repurposing. There are a variety of computational repurposing methodologies, and some of them have been used to counter the coronavirus disease pandemic of 2019 (COVID-19). This review article compiles recently published data on the origin, transmission, pathogenesis, diagnosis, and management of the coronavirus by drug repurposing and vaccine development approach. We have attempted to screen probable drugs in clinical trials by using literature survey. This systematic review aims to create priorities for future research of drugs repurposed and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi, Uttar Pradesh (U.P.) 241124, India.
| |
Collapse
|
3
|
Herdicho FF, Fatmawati F, Alfiniyah C, Rois MA, Martini S, Aldila D, Nyabadza F. Optimal control of dengue hemorrhagic fever model by classifying sex in West Java Province, Indonesia. Sci Rep 2025; 15:17127. [PMID: 40382416 PMCID: PMC12085671 DOI: 10.1038/s41598-025-01742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Dengue hemorrhagic fever (DHF) is an infectious disease caused by the presence of the dengue virus that is spread worldwide regardless of age. An X-coded gene on the chromosome regulates the immune system. The gene can control the immune system which causes females to have higher amounts of CD4+ T cells and less susceptibility to inflammation, making them not easily infected with viruses. In this paper, we construct and analyze the model of DHF transmission by classifying the sex of human populations. The model parameters are estimated based on DHF data in West Java Province, Indonesia using the least-squares method. The results of the model analysis obtained two equilibria, namely the disease-free equilibrium (locally and globally asymptotically stable if [Formula: see text]) and the endemic equilibrium in special cases (globally asymptotically stable if [Formula: see text]). We then extend an optimal control model for dengue transmission, which includes fumigation and prevention as the control variables. The Pontryagin maximum principle is utilized to find the optimal control conditions. Next, based on the ICER calculation, implementing control in the form of a combination of fumigation and prevention is the best strategy in eliminating DHF cases and cost efficiency. We also suggest that prevention efforts should be differentiated between male and female due to the significant impact in eliminating DHF sufferers.
Collapse
Affiliation(s)
- Faishal Farrel Herdicho
- Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - F Fatmawati
- Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia.
| | - Cicik Alfiniyah
- Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Muhammad Abdurrahman Rois
- Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
- Department of Mathematics, Universitas Islam Negeri Salatiga, Salatiga, 50721, Indonesia
| | - Santi Martini
- Department of Epidemiology, Biostatistics, Population and Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Dipo Aldila
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Farai Nyabadza
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa
- Department of Applied Sciences, Emirates Aviation University, P.O. Box 53044, Dubai, United Arab Emirates
| |
Collapse
|
4
|
AbuBakr N, Mubarak R, Haggag T, Khaled H. Comparing the immune response of mRNA-based, inactivated COVID-19 and seasonal influenza vaccines and their effects on submandibular glands and associated lymph nodes in albino rats: biochemical, histological and immunohistochemical analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102393. [PMID: 40306363 DOI: 10.1016/j.jormas.2025.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVES This research attempted to compare the immune response of Pfizer, Sinovac, and Influvac tetra vaccines in addition to comparing their effects on the submandibular glands (SMGs) and associated lymph nodes in albino rats. MATERIAL AND METHODS Forty rats were allocated into four groups: group Ι (control), group II (Pfizer), group III (Sinovac) and group IV (Influvac tetra). Serum immunoglobulins G and A (IgG and IgA) were measured. Then, animals were sacrificed. Histological and immunohistochemical examinations were performed on the dissected SMGs and associated lymph nodes. RESULTS The Pfizer group had the highest mean IgG and IgA readings, followed by the Sinovac, Influenza and control groups, with a significant variation between every 2 groups. Histopathological examination of the SMGs of all groups showed nearly normal gland architecture resembling the control group. However, mild changes were observed in vaccinated groups. Lymph nodes' histopathological examination revealed inactive primary lymphoid follicles in the control group. However, all vaccinated groups revealed active lymph nodes with secondary lymphoid follicles. Regarding the area percentage of CD3 immunoexpression, the greatest value was reported in Pfizer group, followed by Sinovac, Influenza and control groups, with a significant difference between Pfizer and both Sinovac and influenza groups. However, no substantial variation was observed between Sinovac and Influenza groups. CONCLUSION All vaccines administered were effective. The Pfizer vaccination had the most T cells and the highest serum concentrations of IgG and IgA. All vaccines generally had a satisfactory safety profile with no impact on salivary gland histology.
Collapse
Affiliation(s)
- Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| | - Rabab Mubarak
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Dean of Faculty of Dentistry, Sphinx University, Assiut, Egypt
| | - Tahany Haggag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Heba Khaled
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Abas ASM, Sherif MH, Ibrahim S. Effects of Naringin and Zinc Treatment on Biochemical, Molecular, and Histological Alterations in Stomach and Pancreatic Tissues of STZ-Induced Diabetic Rats. Adv Biol (Weinh) 2025; 9:e2400688. [PMID: 39957607 DOI: 10.1002/adbi.202400688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Indexed: 02/18/2025]
Abstract
Diabetes mellitus is a chronic metabolic disorder that affects multiple organs, including the stomach. This research examines the effects of naringin and/or zinc on stomach and pancreatic tissues of streptozotocin-induced diabetic rats. Type 2 diabetes is induced by intraperitoneal injection of nicotinamide and streptozotocin. Three weeks after diabetes induction, rats receive eight weeks of treatment. Malondialdehyde and total antioxidant capacity are estimated colorimetrically. Asprosin and P-selectin levels are assessed via ELISA. Quantitative RT-PCR analysis of nuclear factor kappa B (NF-кB), peroxisome proliferator-activated receptor gamma (PPAR γ), and nuclear factor erythroid 2-related factor 2 (Nrf-2) genes is carried out. Tumor necrosis factor-alpha (TNF-α) is assessed immunohistochemically, and stomach and pancreatic tissues are examined histologically. Combined naringin and zinc treatment significantly reduces gastric Malondialdehyde, serum asprosin, and P-selectin levels in serum, stomach, and pancreas compared to diabetic rats. Additionally, gastric NF-кB expression is significantly lower, while PPAR γ and Nrf-2 expressions are significantly higher compared to diabetic rats. Immunohistochemical analysis and histopathological examination confirm these findings. In conclusion, combined naringin and zinc treatment significantly improves gastric alterations in diabetic rats by reducing oxidative stress and inflammation. Nonetheless, it shows no additional impacts on pancreatic tissue compared to naringin or zinc alone.
Collapse
Affiliation(s)
- Al-Shimaa M Abas
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed H Sherif
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sarah Ibrahim
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Li G, Hao Z, Wang H, Wang C, Liu D, Chen L, Sun Y. Pharmacological mechanism of action of Lianhua Qingwen in the treatment of COVID-19 and facial neuritis. World J Otorhinolaryngol Head Neck Surg 2025; 11:102-115. [PMID: 40070503 PMCID: PMC11891286 DOI: 10.1002/wjo2.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 03/14/2025] Open
Abstract
Objective Coronavirus disease-2019 (COVID-19) can cause not only respiratory symptoms but also facial paralysis. Lianhua Qingwen (LHQW) has been reported to have therapeutic effects on COVID-19 and facial neuritis (FN). We explored the potential mechanism of LHQW in the treatment of COVID-19 and FN through a network-pharmacology approach. Methods Active compounds and relevant targets of LHQW were obtained from the databases of Traditional Chinese Medicine Systems Pharmacology Database, HERB, UniProt Knowledge Base, SwissADME, and Swiss Target Prediction. Disease targets of COVID-19 and FN were acquired from Gene Cards. Database For Annotation, Visualization And Integrated Discovery and Metascape were used to search the biological functions of intersecting targets. After identifying the core targets and their corresponding ingredients, KEGG Mapper analyzes the localization of core targets in key pathways. AutoDock were employed to conduct molecular docking of the core targets and their corresponding ingredients. Results We obtained four core genes: interleukin (IL)-8, IL-1B, IL-6, and tumor necrosis factor (TNF)-α. Database searching revealed the anti-inflammatory and antiviral effects of LHQW may be related to the action of aleo-emodin, hyperforin, kaempferol, luteolin, and quercetin on these four genes by regulating the pathways of IL-17 and NOD-like receptor. The molecular-docking results of the four core targets and their corresponding active ingredients showed good binding activity between receptors and ligands. Conclusions We uncovered the active ingredients, potential targets, and biological pathways of LHQW for COVID-19 and FN coinfection. Our data provide a theoretical basis for further exploration of the mechanism of action of LHQW in treatment of COVID-19 and FN.
Collapse
Affiliation(s)
- Guang‐Jin Li
- Department of OtorhinolaryngologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| | - Zhi‐Hong Hao
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
- School of Clinical MedicineShandong Second Medical University (Weifang Medical University)WeifangShandongChina
| | - Han‐Jing Wang
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
- School of Clinical MedicineShandong Second Medical University (Weifang Medical University)WeifangShandongChina
| | - Chen Wang
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
- School of Clinical MedicineShandong Second Medical University (Weifang Medical University)WeifangShandongChina
| | - Da‐Wei Liu
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| | - Liang Chen
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| | - Yan Sun
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| |
Collapse
|
7
|
Kaur R, Kaushik D, Bansal V, Sharma A, Kumar M. Unrevealing the potential of macroalgae Porphyra sp. (nori) in food, pharmaceutics and health sector. J Food Sci 2025; 90:e70110. [PMID: 40111034 DOI: 10.1111/1750-3841.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Porphyra sp. (nori), a species of red seaweed, has garnered attention for its rich nutritional profile and diverse bioactive compounds. This review synthesizes current research on Porphyra nori, focusing on its composition, bioactive components, health benefits, and potential applications in functional foods and therapeutics. Key bioactives identified include polysaccharides, peptides, phenolics, and vitamins, each contributing to antioxidant, anti-inflammatory, and anticancer properties and also modulating the immune responses, supporting cardiovascular health, and influencing metabolic pathways. Furthermore, it serves as a valuable source of vitamin B12 and plays a crucial function in the synthesis of DNA, the generation of red blood cells, and the cognitive development of the neurological system. It reduces dependence on animal-derived sources for vitamin B12, whereas innovations in cultivation and processing methods significantly improve its absorption and market potential. Future research directions include elucidating molecular mechanisms, optimizing extraction methods, and exploring synergistic effects with other foods or pharmaceuticals. Porphyra nori emerges as a promising source of bioactive compounds, poised to contribute to personalized nutrition and preventive healthcare strategies.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Vikas Bansal
- Department of Food Technology, School of Engineering and Technology, Jaipur National University, Jaipur, Rajasthan, India
| | - Avinash Sharma
- Department of Biotechnology, Graphic Era (deemed to be University), Dehradun, Uttarakhand, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Pourmoradian S, Haghighian-Roudsari A, Khoubbin Khoshnazar TA, Milani-Bonab A. The lived experience of Iranian adults from coronavirus disease 2019 (COVID-19)-A qualitative study. Front Public Health 2025; 12:1362708. [PMID: 39935742 PMCID: PMC11810893 DOI: 10.3389/fpubh.2024.1362708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The widespread impact of the coronavirus disease 2019 (COVID-19) epidemic on human health causes sudden lifestyle changes, through social distancing and isolation at home, with social and economic consequences. This qualitative study aimed to identify the lived experiences of recovered adult patients from COVID-19 in Iran. Methods This qualitative research was conducted using a national phenomenological approach. The participants were patients who recovered from COVID-19 through their treatment period in the hospital or at home. Semi-structured in-depth interviews were applied for 45 participants who were invited using purposeful sampling and continued to achieve data saturation. The five-stage inductive process to analyze the structure of lived experience (IPSE) approach was used to analyze the data using MAXQDA 2020 software. Results According to the statements of the participants in the study, five types of experiences extracted during the period of suffering from the disease: nutritional problems, physical problems, the psychological burden caused by the disease, the supporting role of others in the disease tolerance, and the unpleasant and better experiences of the disease. Discussion Patients with COVID-19 disease experience many physical and psychosocial consequences which affect their quality of life. Therefore, sociopsychological support provided by psychologists and family members can have ameliorating effects in reducing disease consequences. Further interventional studies were needed to capture these aspects of diseases.
Collapse
Affiliation(s)
- Samira Pourmoradian
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Haghighian-Roudsari
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Milani-Bonab
- Food and Nutrition Policy and Planning Research Department, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Allagui I, Sdayria J, Athmouni K, Zammel N, Guesmi F, Saoudi M, Giuffrè AM, Allagui MS, Nahdi S, Harrath AH. Cleome arabica L mitigates bisphenol A-induced ovarian dysfunction and inflammation in Wistar rats: biochemical, histopathological, pharmacokinetic, and in silico studies. 3 Biotech 2025; 15:21. [PMID: 39720094 PMCID: PMC11663833 DOI: 10.1007/s13205-024-04169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
The present study evaluated the antioxidant and anti-inflammatory properties of Cleome arabica (CA) fruit extract against bisphenol A (BPA)-induced ovarian injury in female Wistar rats. The antioxidant activity was estimated by the total antioxidant capacity (TAC) and superoxide radical (NBT) content. For the in vivo analyses, 24 animals were divided into the following 4 groups: the control group; the BPA group (50 mg/kg BW BPA for 30 days); the BPA + CA group (50 mg/kg BW BPA and 50 mg/kg BW CA); and the CA group (50 mg/kg BW CA). The in vitro results demonstrated that CA exhibited strong antioxidant activity and scavenged O2•- radicals. . Pharmacokinetic properties were also explored, reflecting the physiological dynamics of the five active molecules (quercetin, catechin, kaempferol, rosmarinic acid, and naringenin). The in vivo findings revealed a significant increase in body weight associated with a significant increase in plasma C-reactive protein (CRP), proinflammatory cytokines (IL-1, IL-6, and TNF-α), and testosterone levels (p < 0.01). In addition, ovarian histological disruption was observed. However, co-administration of CA extract significantly improved ovarian histological integrity and attenuated inflammatory and androgenic disturbances. Moreover, in silico investigations showed that CA compounds interacted more strongly with the active sites of IL-1β, IL-6, or TNF-α. The best binding energy was observed between catechin (five H-bonds) and IL-1β and IL-6, at -6.0 and -6.1 kcal/mol, respectively, and between rosmarinic acid (four H-bonds) and TNF-α, at -6.4 kcal/mol. The present study supports the use of Cleome arabica in the treatment of infertility for female polycystic ovary syndrome (PCOS) patients.
Collapse
Affiliation(s)
- Ikram Allagui
- Laboratory of Animal Ecophysiology, Faculty of Science, University of Sfax Tunisia, P.O. Box 95, CP 3000 Sfax, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
| | - Jazia Sdayria
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
| | - Khaled Athmouni
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planctonology, Department of life sciences, Faculty of Sciences, University of Sfax Tunisia, Unit UR 11 ES 72/Street of Soukra Km 3,5, B.P. 1171, CP 3000 Sfax, Tunisia
| | - Nourhene Zammel
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Fatma Guesmi
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Carthage, Tunisia
| | - Mongi Saoudi
- Laboratory of Animal Ecophysiology, Faculty of Science, University of Sfax Tunisia, P.O. Box 95, CP 3000 Sfax, Tunisia
| | - Angelo Maria Giuffrè
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Mohamed Salah Allagui
- Laboratory of Animal Ecophysiology, Faculty of Science, University of Sfax Tunisia, P.O. Box 95, CP 3000 Sfax, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
| | - Saber Nahdi
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Jaber HM, Ebdah S, Al Haj Mahmoud SA, Abu-Qatouseh L, Jaber YH. Comparison of T cells mediated immunity and side effects of mRNA vaccine and conventional COVID-19 vaccines administrated in Jordan. Hum Vaccin Immunother 2024; 20:2333104. [PMID: 38584118 PMCID: PMC11000609 DOI: 10.1080/21645515.2024.2333104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Various COVID-19 vaccines can affect the immune system. Discrepancies have been noted in immune system characteristics, such as T-lymphocyte levels, between vaccinated and non-vaccinated individuals. This study investigates the variations in immune responses among the four administered COVID-19 vaccines, influencing factors, and clinical outcomes in Jordan. A total of 350 adults, who were at least two doses vaccinated, were interviewed and blood samples were collected for subsequent laboratory analyses. The study involved the quantification of T-cells specifically targeting anti-SARS CoV-2 using Flow cytometry analysis. BNT162b2 (Pfizer) recipients displayed significantly higher CD3+/CD4+ T-helper cell responses (90.84%, 87.46% - 94.22%) compared to non-Pfizer-BioNTech recipients {BBIBP-CorV (Sinopharm) and Sputnik V (Gamaleya Research Institute), then ChAdOx1 nCoV-19 (AstraZeneca)} (83.62%, 77.91% - 89.33%). The CD3+/CD8+ (T cytotoxic) level was notably elevated in non-Pfizer-BioNTech recipients {Sinopharm and Sputnik V then ChAdOx1 nCoV-19 AstraZeneca (73.94%, 69.38% - 78.49%) compared to BNT162b2 (Pfizer) recipients (58.26%, 53.07% - 63.44%). The CD3+ (T-cells) level showed no significant difference between BNT162b2 recipients (73.74%) and non-Pfizer-BioNTech recipients (77.83%), with both types generating T-cells. Comparing two doses of non-Pfizer-BioNTech vaccines with the third dose of BNT162b2 recipients (Pfizer), no difference in the type of immune reaction was observed, with non-Pfizer-BioNTech recipients still stimulating endogenous pathways like cell-mediated cytotoxic effects for cells. All COVID-19 vaccines administered in Jordan were effective, with respect to the total number of T cells. Non-Pfizer-BioNTech had higher in toxic T-cells and Pfizer-BioNTech was higher in helper T-cells that stimulate plasma cells to produce antibodies.
Collapse
Affiliation(s)
- Hatim M. Jaber
- Department of Community Medicine, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Saja Ebdah
- Department of Biological Sciences, Jordan University, Amman, Jordan
| | - Sameer A. Al Haj Mahmoud
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Luay Abu-Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy, University of Petra, Amman, Jordan
| | | |
Collapse
|
11
|
Megha KB, Reshma S, Amir S, Krishnan MJA, Shimona A, Alka R, Mohanan PV. Comprehensive Risk Assessment of Infection Induced by SARS-CoV-2. Mol Neurobiol 2024; 61:9851-9872. [PMID: 37817031 DOI: 10.1007/s12035-023-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
The pandemic COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which devastated the global economy and healthcare system. The infection caused an unforeseen rise in COVID-19 patients and increased the mortality rate globally. This study gives an overall idea about host-pathogen interaction, immune responses to COVID-19, recovery status of infection, targeted organs and complications associated, and comparison of post-infection immunity in convalescent subjects and non-infected individuals. The emergence of the variants and episodes of COVID-19 infections made the situation worsen. The timely introduction of vaccines and precautionary measures helped control the infection's severity. Later, the population that recovered from COVID-19 grew significantly. However, understanding the impact of healthcare issues resulting after infection is paramount for improving an individual's health status. It is now recognised that COVID-19 infection affects multiple organs and exhibits a broad range of clinical manifestations. So, post COVID-19 infection creates a high risk in individuals with already prevailing health complications. The identification of post-COVID-19-related health issues and their appropriate management is of greater importance to improving patient's quality of life. The persistence, sequelae and other medical complications that normally last from weeks to months after the recovery of the initial infection are involved with COVID-19. A multi-disciplinary approach is necessary for the development of preventive measures, techniques for rehabilitation and strategies for clinical management when it comes to long-term care.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - M J Ajai Krishnan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - A Shimona
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India.
| |
Collapse
|
12
|
Arslan I. Natural PAK1 inhibitors: potent anti-inflammatory effectors for prevention of pulmonary fibrosis in COVID-19 therapy. Nat Prod Res 2024; 38:3644-3656. [PMID: 37690001 DOI: 10.1080/14786419.2023.2254454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
One of the main efforts of scientists to study drug development is the discovery of novel antiviral agents that could be beneficial in the struggle against viruses that cause diseases in humans. Natural products are complex metabolites that are designed and synthesised by different sources in an attempt to optimise nature. Recently, natural products are still a source of biologically active molecules, facilitating drug discovery. A p21-activating kinase PAK1 is a key regulator of cytoskeletal actin assembly, phenotypic signalling, and transcription process which affects a wide range of cellular processes such as cell motility, invasion, metastasis, cell growth, angiogenesis, and cell cycle progression. Most recently, PAK1 was shown to be involved in the progression of coronavirus-caused pulmonary inflammation (lung fibrosis), but clinical data is not currently available yet. This review highlights the naturally occurring compounds that inhibit the oncogenic, melanogenic, and ageing kinase PAK1. Additionally, the potent anti-inflammatory effects of natural products in an attempt to prevent pulmonary fibrosis in COVID-19 have also been discussed.
Collapse
Affiliation(s)
- Idris Arslan
- Zonguldak Bülent Ecevit University, Faculty of Science, Molecular Biology and Genetics, Zonguldak, Turkey
| |
Collapse
|
13
|
Zhuang Z, Chen Y, Liu Z, Fu Y, Wang F, Bai L. Pharmacological validation of a novel exopolysaccharide from Streptomyces sp. 139 to effectively inhibit cytokine storms. Heliyon 2024; 10:e34392. [PMID: 39816356 PMCID: PMC11734065 DOI: 10.1016/j.heliyon.2024.e34392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys. This infiltration leads to secondary tissue damage, acute respiratory distress syndrome (ARDS), organismal damage, and even death. However, there is currently no designated treatment for cytokine storm and the resulting ARDS. Consequently, there is a pressing need to identify a pharmaceutical agent that can effectively mitigate cytokine storms. Ebosin is a new exopolysaccharide generated by Streptomyces sp.139 and pharmacological activity for cytokine storm is investigated in vivo. The results show that Ebosin significantly augments the survival rates of mice, and its effectiveness increases with higher doses. It significantly inhibited the expression of cytokines IL-5, IL-6, IL-9 and chemokine Eotaxin in serum and lung tissues. Ebosin can alleviate the pathological damage in the lungs, liver, and spleen caused by LPS. Additionally, it can inhibit the phosphorylation of IKKα/β, Stat3 and NF-κB p65 upon LPS stimulation in vitro. We hypothesized that Ebosin may decrease cytokine release by inhibiting the phosphorylation of IKKα/β, Stat3, and NF-κB p65, neutrophil infiltration in animals. The article preliminarily elucidated the activity and mechanism of Ebosin against cytokine storm, which provides a reference for the study of anti-cytokine storm activity of microbial natural products.
Collapse
Affiliation(s)
- Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Zhe Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu Fu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fei Wang
- The Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot, 010050, Inner Mongolia, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
14
|
Dulkadir R, Oztelcan Gunduz B. Differentiating COVID-19 and influenza in children: hemogram parameters as diagnostic tools. Front Public Health 2024; 12:1377785. [PMID: 39056079 PMCID: PMC11269124 DOI: 10.3389/fpubh.2024.1377785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is not always possible to differentiate between influenza and COVID-19 based on symptoms alone. This is a topic of significant importance as it aims to determine whether there are specific hematological parameters that can be used to distinguish between influenza and COVID-19 in children. Methodology Two hundred thirty-one children between the ages of 1 month and 18 years who presented to the children's outpatient clinic between June 2021 and June 2022 with similar symptoms and were tested with an influenza test and a COVID-19 PCR test were included in the study. Of the patients included in the study, 130 tested positive for COVID-19 and 101 positive for influenza. The patients were evaluated for hematological parameters. Results Age, eosinophils and monocyte factors were shown to be statistically significantly effective in COVID-19. The risk of COVID-19 increased 1,484-fold with age, 10,708-fold with increasing eosinophil count, and 1,591-fold with increasing monocyte count. The performance of the monocyte count and eosinophil count was assessed by receiver operating characteristic curve (ROC) analysis. According to the performed ROC analysis, the area under the curve (AUC) value was observed to be 0.990 for monocytes. According to the cutoff point >1.50, the sensitivity value was determined as 98.4% and the specificity value as 97.0%. AUC significance for eosinophils was found to be 0.989. According to the cutoff point >0.02, the sensitivity value was determined as 99.2% and the specificity value as 93.1%. Conclusion In the diagnosis of COVID-19, the eosinophil count and monocyte count are easily accessible, inexpensive, and important parameters in terms of differential diagnosis and can help in the differentiation of COVID-19 from influenza during seasonal outbreaks of the latter. Developing parameters for clinicians to use in diagnosing COVID-19 and influenza can facilitate their work in practice.
Collapse
|
15
|
Roy J, Banerjee A, Mukherjee S, Maji BK. Uncovering the coronavirus outbreak: present understanding and future research paths. J Basic Clin Physiol Pharmacol 2024; 35:241-251. [PMID: 39287470 DOI: 10.1515/jbcpp-2024-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION The review discusses the pathophysiological mechanisms of SARS-CoV-2, the modes of transmission, and the long-term health consequences of COVID-19, emphasizing the importance of research and successful public health initiatives. CONTENT COVID-19 taxonomy, pathophysiology, symptomatology, and epidemiological importance are the key objects of this research paper. This review explains how COVID-19 affects different systems of the body, including respiratory, cardiovascular, and reproductive systems of the human body. It describes the modes of entry of the virus into the cell; more precisely, ACE2 and TMPRSS2 in viral entry. In addition, the present study analyzes the situation of COVID-19 in India regarding vaccine development and the transmission rate related to socioeconomic factors. SUMMARY The manifestation of COVID-19 presents a lot of symptoms and post-acute problems, issues which are seriously impacting mental health and physical health as well. The present review summarizes current research into pathogenicity and the mode of virus transmission, together with immunological responses. Coupled with strong vaccination programs, public health initiatives should hold the key to fighting this pandemic. OUTLOOK Long-term effects and the development of treatment methods will need further study, as ambiguities on COVID-19 remain. Multidisciplinary collaboration across healthcare sectors in this respect is of paramount importance for the prevention of further spread and protection of public health.
Collapse
Affiliation(s)
- Jayati Roy
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| | - Bithin K Maji
- Department of Physiology (UG & PG), Serampore College, Serampore, West Bengal, India
| |
Collapse
|
16
|
Wu J, Zheng Y, Zhang LN, Gu CL, Chen WL, Chang MQ. Advanced nanomedicines and immunotherapeutics to treat respiratory diseases especially COVID-19 induced thrombosis. World J Clin Cases 2024; 12:2704-2712. [PMID: 38899301 PMCID: PMC11185334 DOI: 10.12998/wjcc.v12.i16.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Immunotherapy and associated immune regulation strategies gained huge attraction in order to be utilized for treatment and prevention of respiratory diseases. Engineering specifically nanomedicines can be used to regulate host immunity in lungs in the case of respiratory diseases including coronavirus disease 2019 (COVID-19) infection. COVID-19 causes pulmonary embolisms, thus new therapeutic options are required to target thrombosis, as conventional treatment options are either not effective due to the complexity of the immune-thrombosis pathophysiology. In this review, we discuss regulation of immune response in respiratory diseases especially COVID-19. We further discuss thrombosis and provide an overview of some antithrombotic nanoparticles, which can be used to develop nanomedicine against thrombo-inflammation induced by COVID-19 and other respiratory infectious diseases. We also elaborate the importance of immunomodulatory nanomedicines that can block pro-inflammatory signalling pathways, and thus can be recommended to treat respiratory infectious diseases.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Ying Zheng
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Li-Na Zhang
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Cai-Li Gu
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Wang-Li Chen
- Department of Respiratory and Oncology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| | - Min-Qiang Chang
- Department of Otorhinolaryngology, 72nd Group Army Hospital of PLA, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
17
|
Del Carmen Camacho-Rea M, Martínez-Gómez LE, Martinez-Armenta C, Martínez-Nava GA, Ortega-Peña S, Olea-Torres J, Herrera-López B, Suarez-Ahedo C, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, De Jesús Martínez-Ruiz F, Zayago-Angeles DM, Mata-Miranda MM, Vazquez-Zapien GJ, Martínez-Cuazitl A, Garcia-Galicia A, Granados J, Ramos L, Rodríguez-Pérez JM, Pineda C, López-Reyes A. Association of TLR8 Variants in Sex-Based Clinical Differences in Patients with COVID-19. Biochem Genet 2024:10.1007/s10528-024-10839-w. [PMID: 38814383 DOI: 10.1007/s10528-024-10839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
The host immune response might confer differential vulnerability to SARS-CoV-2 infection. The Toll-like receptor 8 (TLR8), could participated for severe COVID-19 outcomes. To investigated the relationship of TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G with COVID-19 outcomes and with biochemical parameters. A cross-sectional study of 830 laboratory-confirmed COVID-19 patients was performed, and classified into mild, severe, critical, and deceased outcomes. The TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G polymorphisms were genotyped. A logistic regression analysis was performed to determinate the association with COVID-19. A stratified analysis was by alleles was done with clinical and metabolic markets. In all outcomes, men presented the highest ferritin levels compared to women (P < 0.001). LDH levels were significantly different between sex in mild (P = 0.003), severe (P < 0.001) and deceased (P = 0.01) COVID-19 outcomes. The GGG haplotype showed an Odds Ratio of 1.55 (Interval Confidence 95% 1.05-2.32; P = 0.03) in men. Among patients with severe outcome, we observed that the carriers of the GGG haplotype had lower Ferritin, C-reactive protein and LDH levels than the CAA carriers (P < 0.01). After further stratified by sex, these associations were also seen in the male patients, except for D-dimer. Interestingly, among men patients, we could observe associations between TLR8 haplotypes and Ferritin (P < 0.001), D-dimer (P = 0.04), C-reactive protein, and Lactate dehydrogenase in mild (P = 0.04) group. Our results suggest that even though TLR8 haplotypes show a significant association with COVID-19 outcomes, they are associated with clinical markers in COVID-19 severity.
Collapse
Affiliation(s)
- María Del Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Laura Edith Martínez-Gómez
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Carlos Martinez-Armenta
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Gabriela Angélica Martínez-Nava
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Silvestre Ortega-Peña
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Jessel Olea-Torres
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Brígida Herrera-López
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Carlos Suarez-Ahedo
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | - Rosa P Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | - Juan Pablo Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | - Gilberto Vargas-Alarcón
- Centro de Innovación Médica Aplicada, Subdirección de Epidemiología E Infectología, Hospital General Dr. Manuel Gea González, CDMX, México
| | | | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, CDMX, México
| | - Felipe De Jesús Martínez-Ruiz
- Nuevo Hospital General Delegación Regional Sur de La Ciudad de México, Instituto de Seguridad y Servicios Sociales Para los Trabajadores del Estado (ISSSTE), CDMX, México
| | - Dulce María Zayago-Angeles
- Nuevo Hospital General Delegación Regional Sur de La Ciudad de México, Instituto de Seguridad y Servicios Sociales Para los Trabajadores del Estado (ISSSTE), CDMX, México
| | - Mónica Maribel Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, CDMX, México
| | - Gustavo Jesús Vazquez-Zapien
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, CDMX, México
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Militar de Medicina, Universidad del Ejército y Fuerza Aérea, CDMX, México
| | - Armando Garcia-Galicia
- Servicio de Cirugía General, Hospital Central Norte Petróleos Mexicanos (PEMEX), CDMX, México
| | - Julio Granados
- Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Luis Ramos
- Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | | | - Carlos Pineda
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México
| | - Alberto López-Reyes
- Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Calz México-Xochimilco 289, Coapa, Col. Arenal de Guadalupe, Tlalpan, 14389, CDMX, México.
| |
Collapse
|
18
|
Popotas A, Casimir GJ, Corazza F, Lefèvre N. Sex-related immunity: could Toll-like receptors be the answer in acute inflammatory response? Front Immunol 2024; 15:1379754. [PMID: 38835761 PMCID: PMC11148260 DOI: 10.3389/fimmu.2024.1379754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
An increasing number of studies have highlighted the existence of a sex-specific immune response, wherein men experience a worse prognosis in cases of acute inflammatory diseases. Initially, this sex-dependent inflammatory response was attributed to the influence of sex hormones. However, a growing body of evidence has shifted the focus toward the influence of chromosomes rather than sex hormones in shaping these inflammatory sex disparities. Notably, certain pattern recognition receptors, such as Toll-like receptors (TLRs), and their associated immune pathways have been implicated in driving the sex-specific immune response. These receptors are encoded by genes located on the X chromosome. TLRs are pivotal components of the innate immune system, playing crucial roles in responding to infectious diseases, including bacterial and viral pathogens, as well as trauma-related conditions. Importantly, the TLR-mediated inflammatory responses, as indicated by the production of specific proteins and cytokines, exhibit discernible sex-dependent patterns. In this review, we delve into the subject of sex bias in TLR activation and explore its clinical implications relatively to both the X chromosome and the hormonal environment. The overarching objective is to enhance our understanding of the fundamental mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Alexandros Popotas
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Jacques Casimir
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Immunology, Centre Hospitalier Universitaire (CHU) Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Lefèvre
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pulmonology, Allergology and Cystic Fibrosis, Queen Fabiola Childrens University Hospital (Hôpital Universitaire des Enfants Reine Fabiola) – University Hospital of Brussels (Hôpital Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
19
|
Seyedalipour F, Alipour S, Mehdinezhad H, Akrami R, Shirafkan H. Incidence of Elevated Liver Enzyme Levels in Patients Receiving Remdesivir and Its Effective Factors. Middle East J Dig Dis 2024; 16:109-113. [PMID: 39131106 PMCID: PMC11316192 DOI: 10.34172/mejdd.2024.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background Emergency use of remdesivir was approved for COVID-19 in some countries. Based on the promising results of remdesivir, the most common side effects were nausea, worsening respiratory failure, increased alanine aminotransferase levels, and constipation. The aim of this study was to determine the incidence of elevated liver enzymes in patients with COVID-19 receiving remdesivir. Methods In this retrospective study, information was collected from patients' files. The study population included patients with moderate to severe COVID-19 who were admitted to Rouhani Babol Hospital. For daily patient selection, the list of patients was extracted from the system, and based on the census, the patient file was selected. Data were analyzed using Stata 16. Results 620 patients suffering from moderate to severe COVID-19 were included in this study, 43% of whom were men. Of these patients, 120 were selected as the control group who did not receive remdesivir. The increase in liver enzymes in patients receiving remdesivir compared with the control, for alanine transaminase (ALT) and aspartate transaminase (AST), respectively, was 6.20 and 3.64 times, but it was not statistically significant for alkaline phosphatase (ALP). Also, the increase in bilirubin levels in patients receiving remdesivir was not statistically significant. Conclusion The recipients of remdesivir had high liver enzymes, which is one of the possible side effects of this drug. The intensity of the enzymes was mild and moderate, and they were not dangerous to the health of any of the consumers. Deaths in patients with COVID-19 were not due to drug-induced liver complications but to other factors such as disease-related complications.
Collapse
Affiliation(s)
- Fatere Seyedalipour
- Clinical Research Development Unit of Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Shabnam Alipour
- Faculty of Pharmacy, Ayatollah Amoli branch, Islamic Azad University, Amol, Iran
| | - Hamed Mehdinezhad
- Department of Internal Medicine, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Rahim Akrami
- School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Shirafkan
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
20
|
Asiwe JN, Yovwin GD, Ekene NE, Ovuakporaye SI, Nnamudi AC, Nwangwa EK. Ginkgo biloba modulates ET-I/NO signalling in Lead Acetate induced rat model of endothelial dysfunction: Involvement of oxido-inflammatory mediators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:979-990. [PMID: 36960596 DOI: 10.1080/09603123.2023.2194612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the modulatory effect of Ginkgo biloba extract on lead acetate-induced endothelial dysfunction. Animals were administered GBE (50 mg/kg and 100 mg/kg orally) after exposures to lead acetate (25 mg/kg orally) for 14 days. Aorta was harvested after euthanasia, the tissue was homogenised, and supernatants were decanted after centrifuging. Oxidative, nitrergic, inflammatory, and anti-apoptotic markers were assayed using standard biochemical procedure, ELISA, and immunohistochemistry, respectively. GBE reduced lead-induced oxidative stress by increasing SOD, GSH, and CAT as well as reducing MDA levels in endothelium. Pro-inflammatory cytokines (TNF-α and IL-6) were reduced while increasing Bcl-2 protein expression. GBE lowered endothelin-I and raised nitrite levels. Histological changes caused by lead acetate were normalised by GBE. Our findings suggest that Ginkgo biloba extract restored endothelin-I and nitric oxide functions by increasing Bcl-2 protein expression and reducing oxido-inflammatory stress in endothelium.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Godwin D Yovwin
- Department of Family Medicine, Delta State University, Abraka, Nigeria
| | | | | | | | | |
Collapse
|
21
|
Zhou Y, Meng F, Köhler K, Bülow JM, Wagner A, Neunaber C, Bundkirchen K, Relja B. Age-related exacerbation of lung damage after trauma is associated with increased expression of inflammasome components. Front Immunol 2024; 14:1253637. [PMID: 38274788 PMCID: PMC10808399 DOI: 10.3389/fimmu.2023.1253637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Background Trauma, a significant global cause of mortality and disability, often leads to fractures and hemorrhagic shock, initiating an exaggerated inflammatory response, which harms distant organs, particularly the lungs. Elderly individuals are more vulnerable to immune dysregulation post-trauma, leading to heightened organ damage, infections, and poor health outcomes. This study investigates the role of NF-κB and inflammasomes in lung damage among aged mice post-trauma. Methods Twelve male C57BL/6J mice underwent hemorrhagic shock and a femoral fracture (osteotomy) with external fixation (Fx) (trauma/hemorrhage, THFx), while another 12 underwent sham procedures. Mice from young (17-26 weeks) and aged (64-72 weeks) groups (n=6) were included. After 24h, lung injury was assessed by hematoxylin-eosin staining, prosurfactant protein C (SPC) levels, HMGB1, and Muc5ac qRT-PCR. Gene expression of Nlrp3 and Il-1β, and protein levels of IL-6 and IL-1β in lung tissue and bronchoalveolar lavage fluid were determined. Levels of lung-infiltrating polymorphonuclear leukocytes (PMNL) and activated caspase-3 expression to assess apoptosis, as well as NLRP3, ASC, and Gasdermin D (GSDMD) to assess the expression of inflammasome components were analyzed via immunostaining. To investigate the role of NF-κB signaling, protein expression of phosphorylated and non-phosphorylated p50 were determined by western blot. Results Muc5ac, and SPC as lung protective proteins, significantly declined in THFx versus sham. THFx-aged exhibited significantly lower SPC and higher HMGB1 levels versus THFx-young. THFx significantly increased activated caspase-3 versus both sham groups, and THFx-aged had significantly more caspase-3 positive cells versus THFx-young. IL-6 significantly increased in both sham and THFx-aged groups versus corresponding young groups. THFx significantly enhanced PMNL in both groups versus corresponding sham groups. This increase was further heightened in THFx-aged versus THFx-young. Expression of p50 and phosphorylated p50 increased in all aged groups, and THFx-induced p50 phosphorylation significantly increased in THFx-aged versus THFx-young. THFx increased the expression of inflammasome markers IL-1β, NLRP3, ASC and GSDMD versus sham, and aging further amplified these changes significantly. Conclusion This study's findings suggest that the aging process exacerbates the excessive inflammatory response and damage to the lung following trauma. The underlying mechanisms are associated with enhanced activation of NF-κB and increased expression of inflammasome components.
Collapse
Affiliation(s)
- Yuzhuo Zhou
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
- Hannover Medical School, Department of Trauma Surgery, Hannover, Germany
| | - Fanshuai Meng
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
- Uniklinik RWTH Aachen, Department of Trauma and Reconstructive Surgery, Aachen, Germany
| | - Kernt Köhler
- Justus Liebig University Giessen, Institute of Veterinary Pathology, Giessen, Germany
| | - Jasmin Maria Bülow
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
| | - Alessa Wagner
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
| | - Claudia Neunaber
- Hannover Medical School, Department of Trauma Surgery, Hannover, Germany
| | - Katrin Bundkirchen
- Hannover Medical School, Department of Trauma Surgery, Hannover, Germany
| | - Borna Relja
- University Ulm, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Ulm, Germany
| |
Collapse
|
22
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
23
|
Januszewski M, Ziuzia-Januszewska L, Kudan M, Pluta K, Klapaczyński J, Wierzba W, Maciejewski T, Jakimiuk AA, Jakimiuk AJ. Liver damage profile in COVID-19 pregnant patients. Cell Commun Signal 2024; 22:5. [PMID: 38166966 PMCID: PMC10762912 DOI: 10.1186/s12964-023-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION SARS-CoV-2 unsparingly impacts all areas of medicine. Pregnant women are particularly affected by the pandemic and COVID-19 related liver damage seems to be another threat to maternal and fetal health. The aim of this study is to define liver damage profile including bile acids serum levels in COVID-19 pregnant patients and to determine predictors of disease aggravation and poor obstetrics outcomes. METHODS This study has been carried out in the Obstetrics and Gynecology Department, at the National Medical Institute in Warsaw, Poland between 01.02.2021 and 01.11.2022 The study cohort comprises 148 pregnant patients with COVID-19 and 102 pregnant controls who has been tested negative for SARS-CoV-2. RESULTS COVID-19 pregnant patients presented liver involvement at admission in 41,9%. Hepatotoxic damage accounted for 27 (19.85%), cholestatic type was diagnosed in 11 (8.09%) and mixed type of liver injury was presented in 19 (13.97%) of patients. Higher serum levels of AST, ALT, GGT, total bilirubin and bile acids as well as mixed type of liver injury at admission were correlated with severe form of an illness. AST and ALT above upper reference limit as well as hepatotoxic type of liver damage predisposed pregnant patients with COVID-19 to poor obstetrics outcomes. CONCLUSION Hepatic damage in pregnant women with COVID-19 is a common, mild, transaminase-dominant, or mixed type of injury, and often correlates with elevated inflammatory markers. SARS-CoV-2 test should be performed as a part of differential diagnosis in elevated liver function tests. Although bile acids serum levels were commonly elevated they seems to be clinically irrelevant in terms of pregnancy outcomes. Video Abstract.
Collapse
Affiliation(s)
- Marcin Januszewski
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Laura Ziuzia-Januszewska
- Department of Otolaryngology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Michal Kudan
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Kamil Pluta
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Jakub Klapaczyński
- Department of Hepatology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Waldemar Wierzba
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Tomasz Maciejewski
- Department of Obstetrics and Gynecology, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland
| | - Alicja A Jakimiuk
- Department of Plastic Surgery, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland
| | - Artur J Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Wołoska 137, 02-507, Warsaw, Poland.
- Center for Reproductive Health, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.
| |
Collapse
|
24
|
Bhagat C, Gurnani N, Godara S, Mathur R, Goel A, Meshram HS. A Retrospective and Comparative Analysis of Clinical Outcomes of Kidney Transplant Recipients During First and Second COVID-19 Waves in North-West India. Cureus 2024; 16:e51693. [PMID: 38313994 PMCID: PMC10838483 DOI: 10.7759/cureus.51693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Kidney transplant recipients (KTRs) are prone to coronavirus disease 2019 (COVID-19) disease secondary to chronic immunosuppressive therapy. There have been differences in mortality and morbidity amongst the general population with different COVID-19 waves. This study is done to understand the effects of different COVID-19 waves amongst KTRs. Methods This was a retrospective single-centre trial from a high-volume transplant centre in North India. The immunosuppression protocol was changed according to national guidelines, and predictors of survival were evaluated. Results A total of 62 patients got infected during the first COVID-19 wave (March 2020 to February 2021) and 50 patients during the second COVID-19 wave (March 2021 to December 2021). Analysis showed a higher incidence of severe COVID-19 disease (79% vs. 50%) in the first wave, while the rest of the baseline parameters were similar in both waves. Mortality was similar in both groups. In both groups, severe COVID-19 disease, the requirement of hospitalisation, invasive oxygen therapy, and CT score findings were significant predictors of survival. There was no change in survival with respect to immunosuppression modification. Allograft dysfunction was more common in the second wave (7 vs. 1). Baseline creatinine was significantly associated with allograft dysfunction in follow-up. Conclusion Patients had severe COVID-19 disease during the first wave; however, poor availability of healthcare services during the second wave led to more patients with allograft dysfunction. Though immunosuppression change is necessary to prevent flare-ups of COVID-19 infection, it is not associated with survival benefits.
Collapse
Affiliation(s)
- Chandani Bhagat
- Nephrology, Institute of Liver and Biliary Sciences, New Delhi, IND
| | - Nishant Gurnani
- Urology, Employees' State Insurance Corporation (ESIC) Hospital, Faridabad, IND
| | - Suraj Godara
- Nephrology, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, IND
| | - Rajan Mathur
- Nephrology, Institute of Liver and Biliary Sciences, New Delhi, IND
| | - Ankur Goel
- Nephrology, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | | |
Collapse
|
25
|
Wolszczak-Biedrzycka B, Dorf J, Wojewódzka-Żelezniakowicz M, Żendzian-Piotrowska M, Dymicka-Piekarska VJ, Matowicka-Karna J, Maciejczyk M. Unveiling COVID-19 Secrets: Harnessing Cytokines as Powerful Biomarkers for Diagnosis and Predicting Severity. J Inflamm Res 2023; 16:6055-6070. [PMID: 38107380 PMCID: PMC10723593 DOI: 10.2147/jir.s439217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction In coronavirus disease (COVID-19), inflammation takes center stage, with a cascade of cytokines released, contributing to both inflammation and lung damage. The objective of this study is to identify biomarkers for diagnosing and predicting the severity of COVID-19. Materials and Methods Cytokine levels were determined in the serum from venous blood samples collected from 100 patients with COVID-19 and 50 healthy controls. COVID-19 patients classified based on the Modified Early Warning (MEWS) score. Cytokine concentrations were determined with a multiplex ELISA kit (Bio-Plex Pro™ Human Cytokine Screening Panel). Results The concentrations of all analyzed cytokines were elevated in the serum of COVID-19 patients relative to the control group, but no significant differences were observed in interleukin-9 (IL-9) and IL-12 p70 levels. In addition, the concentrations of IL-1α, IL-1β, IL-1ra, IL-2Rα, IL-6, IL-12 p40, IL-18, and tumor necrosis factor alpha (TNFα) were significantly higher in symptomatic patients with accompanying pneumonia without respiratory failure (stage 2) than in asymptomatic/mildly symptomatic patients (stage 1). Conclusion The study revealed that IL-1ra, IL-2Rα, IL-6, IL-8, IL-12 p40, IL-16, and IL-18 levels serve as potential diagnostic biomarkers in COVID-19 patients. Furthermore, elevated IL-1α levels proved to be valuable in assessing the severity of COVID-19.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-900, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, 15-089, Poland
| | | | | | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, 15-089, Poland
| |
Collapse
|
26
|
Fenninger F, Sherwood KR, Wu V, Wong P, DeMarco ML, Wang M, Benedicto V, Dwarka KA, Günther OP, Tate L, Yoshida E, Keown PA, Kadatz M, Lan JH. Comprehensive immune profiling of SARS-CoV-2 infected kidney transplant patients. FRONTIERS IN TRANSPLANTATION 2023; 2:1261023. [PMID: 38993862 PMCID: PMC11235348 DOI: 10.3389/frtra.2023.1261023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 07/13/2024]
Abstract
Introduction The immune responses of kidney transplant recipients against SARS-CoV-2 remains under studied. Methods In this prospective pilot study, we performed comprehensive immune profiling using cellular, proteomic, and serologic assays on a cohort of 9 kidney transplant recipients and 12 non-transplant individuals diagnosed with COVID-19. Results Our data show that in addition to having reduced SARS-CoV-2 specific antibody levels, kidney transplant recipients exhibited significant cellular differences including a decrease in naïve-but increase in effector T cells, a high number of CD28+ CD4 effector memory T cells, and increased CD8 T memory stem cells compared with non-transplant patients. Furthermore, transplant patients had lower concentrations of serum cytokine MIP-1β as well as a less diverse T cell receptor repertoire. Conclusion Overall, our results show that compared to non-transplant patients, kidney transplant recipients with SARS-CoV-2 infection exhibit an immunophenotype that is reminiscent of the immune signature observed in patients with severe COVID-19.
Collapse
Affiliation(s)
- Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen R. Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vivian Wu
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vincent Benedicto
- BC Provincial Immunology Laboratory, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Krishna A. Dwarka
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Logan Tate
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric Yoshida
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Paul A. Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Kadatz
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | - James H. Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
28
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Naik R, Avula S, Palleti SK, Gummadi J, Ramachandran R, Chandramohan D, Dhillon G, Gill AS, Paiwal K, Shaik B, Balachandran M, Patel B, Gurugubelli S, Mariswamy Arun Kumar AK, Nanjundappa A, Bellamkonda M, Rathi K, Sakhamuri PL, Nassar M, Bali A. From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus 2023; 15:e48046. [PMID: 37916248 PMCID: PMC10617653 DOI: 10.7759/cureus.48046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later renamed coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in early December 2019. Initially, the China office of the World Health Organization was informed of numerous cases of pneumonia of unidentified etiology in Wuhan, Hubei Province at the end of 2019. This would subsequently result in a global pandemic with millions of confirmed cases of COVID-19 and millions of deaths reported to the WHO. We have analyzed most of the data published since the beginning of the pandemic to compile this comprehensive review of SARS-CoV-2. We looked at the core ideas, such as the etiology, epidemiology, pathogenesis, clinical symptoms, diagnostics, histopathologic findings, consequences, therapies, and vaccines. We have also included the long-term effects and myths associated with some therapeutics of COVID-19. This study presents a comprehensive assessment of the SARS-CoV-2 virology, vaccines, medicines, and significant variants identified during the course of the pandemic. Our review article is intended to provide medical practitioners with a better understanding of the fundamental sciences, clinical treatment, and prevention of COVID-19. As of May 2023, this paper contains the most recent data made accessible.
Collapse
Affiliation(s)
- Roopa Naik
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
- Internal Medicine/Hospital Medicine, Geisinger Health System, Wilkes Barre, USA
| | - Sreekant Avula
- Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, USA
| | - Sujith K Palleti
- Nephrology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jyotsna Gummadi
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | | | | | - Gagandeep Dhillon
- Physician Executive MBA, University of Tennessee, Knoxville, USA
- Internal Medicine, University of Maryland Baltimore Washington Medical Center, Glen Burnie, USA
| | | | - Kapil Paiwal
- Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, IND
| | - Bushra Shaik
- Internal Medicine, Onslow Memorial Hospital, Jacksonville, USA
| | | | - Bhumika Patel
- Oral Medicine and Radiology, Howard University, Washington, D.C., USA
| | | | | | | | - Mahita Bellamkonda
- Hospital Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kanika Rathi
- Internal Medicine, University of Florida, Gainesville, USA
| | | | - Mahmoud Nassar
- Endocrinology, Diabetes, and Metabolism, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Atul Bali
- Internal Medicine/Nephrology, Geisinger Medical Center, Danville, USA
- Internal Medicine/Nephrology, Geisinger Health System, Wilkes-Barre, USA
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
30
|
Piccioni A, Franza L, Rosa F, Candelli M, Covino M, Ferrara M, Volonnino G, Bertozzi G, Vittoria Zamponi M, Maiese A, Savioli G, Franceschi F, La Russa R. The role of SARS-COV-2 infection in promoting abnormal immune response and sepsis: A comparison between SARS-COV-2-related sepsis and sepsis from other causes. INFECTIOUS MEDICINE 2023; 2:202-211. [PMID: 38073889 PMCID: PMC10699677 DOI: 10.1016/j.imj.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 12/22/2024]
Abstract
BACKGROUND COVID-19 caused by SARS-CoV-2 virus is characterized by respiratory compromise and immune system involvement, even leading to serious disorders, such as cytokine storm. METHODS We then conducted a literature review on the topic of sepsis and covid-19, and in parallel conducted an experimental study on the histological finding of patients who died from SARS-Covid 19 infection and a control group. RESULTS Sepsis associated with covid-19 infection has some similarities and differences from that from other causes. CONCLUSION In this paper the complex interplay between the 2 disorders was discussed, focusing on the similarities and on the effect that one could have on the other. A preliminary experimental section that demonstrates the multisystemic involvement in subjects who die from SARS-CoV-2 is also proposed.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
| | - Laura Franza
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Federico Rosa
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Institute of Legal Medicine, University of Foggia, 71100 Foggia, Italy
| | - Maria Vittoria Zamponi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Aniello Maiese
- Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 1-00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 1-00168 Rome, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Institute of Legal Medicine, University of Foggia, 71100 Foggia, Italy
| |
Collapse
|
31
|
Elhag W, Elamin BK, Idris E, Elsheikh A, Ghaleb K, Fallatah I, Hassan D, Elkhalifa M, Moglad E, Eleragi A. Clinico-Epidemiological Laboratory Findings of COVID- 19 Positive Patients in a Hospital in Saudi Arabia. Infect Drug Resist 2023; 16:4845-4856. [PMID: 37520449 PMCID: PMC10386838 DOI: 10.2147/idr.s418629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Background Understanding COVID-19's onset and clinical effects requires knowing host immune responses. Objective To investigate the presence of IgM, IgG, and cytokine levels (IL-2 and IL-6) in individuals with COVID-19 who have had their diagnosis confirmed by PCR. Methods This cross-sectional research included 70 adult ICU patients from King Abdullah Hospital in Bisha, Saudi Arabia. Subjects gave two blood samples. After hospital release, only 21 patients provided the second sample. Each patient provided a sample upon admission. Quantitative ELISAs evaluated IL-2, IL-6, and SARS-CoV-2-specific IgM and IgG antibodies. Results All patients were critically ill and unvaccinated against COVID-19. 46 (65.7%) of the patients were male, and their age range was 33-98 years (with a mean age of 66.5); 24.3%) were 51-61 years old. IgG was positive in all patients, although IgM predominated in 57/70 (81.4%) (6-1200 IU/mL). Total data analysis yielded these results. IL-6 was calculated at 10-1900 ng/mL, whereas IL-2 was 4-280. Discharged hospital patients had a statistically significant increase in IgM and IgG (P = 0.01, 0.004) but a statistically insignificant decline in IL-6 and IL-2 (P = 0.761, 0.071). Low IgM levels increased hospital stays. The study found lengthier hospital stays with higher IgG levels. Conclusion The identification of IgM and IgG antibodies, greater IL-6 levels, and lower IL-2 levels can help diagnose and monitor COVID-19 infection.
Collapse
Affiliation(s)
- Wafa Elhag
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, Bisha, Saudi Arabia
- Microbiology Department, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum, Sudan
| | - Bahaeldin K Elamin
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, Bisha, Saudi Arabia
- Department of Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Ebtehal Idris
- Medical Laboratories Department, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Azza Elsheikh
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Khaled Ghaleb
- Medical Laboratories Department, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Ibtihal Fallatah
- Laboratory and ICU (Medical Department) King Abdullah Hospital-Bisha, Bisha, Saudi Arabia
| | - Doaa Hassan
- Laboratory and ICU (Medical Department) King Abdullah Hospital-Bisha, Bisha, Saudi Arabia
| | - Mahmoud Elkhalifa
- Laboratory and ICU (Medical Department) King Abdullah Hospital-Bisha, Bisha, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ali Eleragi
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
32
|
Yi X, Fu D, Wang G, Wang L, Li J. Development and Validation of a Prediction Model of the Risk of Pneumonia in Patients with SARS-CoV-2 Infection. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:6696048. [PMID: 37496884 PMCID: PMC10368499 DOI: 10.1155/2023/6696048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Objective To establish a prediction model of pneumonia risk in SARS-CoV-2-infected patients to reduce unnecessary chest CT scans. Materials and Methods The model was constructed based on a retrospective cohort study. We selected SARS-CoV-2 test-positive patients and collected their clinical data and chest CT images from the outpatient and emergency departments of Hunan Provincial People's Hospital, China. Univariate and multivariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were utilized to identify predictors of pneumonia risk for patients infected with SARS-CoV-2. These predictors were then incorporated into a nomogram to establish the model. To ensure its performance, the model was evaluated from the aspects of discrimination, calibration, and clinical validity. In addition, a smoothed curve was fitted using a generalized additive model (GAM) to explore the association between the pneumonia grade and the model's predicted probability of pneumonia. Results We selected 299 SARS-CoV-2 test-positive patients, of whom 205 cases were in the training cohort and 94 cases were in the validation cohort. Age, CRP natural log-transformed value (InCRP), and monocyte percentage (%Mon) were found to be valid predictors of pneumonia risk. This predictive model achieved good discrimination of AUC in the training and validation cohorts which was 0.7820 (95% CI: 0.7254-0.8439) and 0.8432 (95% CI: 0.7588-0.9151), respectively. At the cut-off value of 0.5, it had a sensitivity and specificity of 70.75% and 66.33% in the training cohort and 76.09% and 73.91% in the validation cohort, respectively. With suitable calibration accuracy shown in calibration curves, decision curve analysis indicated high clinical value in predicting pneumonia probability in SARS-CoV-2-infected patients. The probability of pneumonia predicted by the model was positively correlated with the actual pneumonia classification. Conclusion This study has developed a pneumonia risk prediction model that can be utilized for diagnostic purposes in predicting the probability of pneumonia in patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Yi
- Department of Radiology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Guiliang Wang
- Department of Radiology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Lile Wang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Jirong Li
- Department of Radiology, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| |
Collapse
|
33
|
Wu WY, Jiao X, Song WX, Wu P, Xiao PQ, Huang XF, Wang K, Zhan SF. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC. Front Endocrinol (Lausanne) 2023; 14:1187882. [PMID: 37347115 PMCID: PMC10281056 DOI: 10.3389/fendo.2023.1187882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease that has posed a serious threat to people's daily lives and caused an unprecedented challenge to public health and people's health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. Methods LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. Results We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. Conclusion We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19.
Collapse
Affiliation(s)
- Wen-yu Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Jiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-xin Song
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-qi Xiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
34
|
Hooshmandi E, Abolhasani Foroughi A, Poursadeghfard M, KianiAra F, Ostovan VR, Nazeri M. Transverse Myelitis as a Rare Neurological Complication of Coronavirus Disease 2019: A Case Report and Literature Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:219-226. [PMID: 36895458 PMCID: PMC9989242 DOI: 10.30476/ijms.2022.92813.2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 03/11/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is primarily a respiratory virus. However, an increasing number of neurologic complications associated with this virus have been reported, e.g., transverse myelitis (TM). We report a case of a 39-year-old man admitted to Namazi Hospital affiliated with Shiraz University of Medical Sciences, Shiraz, Iran. In December 2020, the patient was infected with Coronavirus Disease 2019 (COVID-19). During hospitalization, the patient suffered from sudden onset of paraplegia, and urinary retention, and had a T6-T7 sensory level. TM was diagnosed and an extensive workup was performed to rule out other etiologies. Eventually, para-infectious TM associated with COVID-19 was concluded. The patient received pulse methylprednisolone therapy of 1 g/day for 10 consecutive days followed by seven sessions of plasma exchange without a favorable response. The patient then underwent regular physical rehabilitation and tapering oral administration of prednisolone 1 mg/Kg. As a result, weakness in the lower extremities improved slightly after six months. Overall, we suspect a correlation between COVID-19 and TM, however, further studies are required to substantiate the association.
Collapse
Affiliation(s)
- Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh KianiAra
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Nazeri
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Barough SS, Safavi-Naini SAA, Siavoshi F, Tamimi A, Ilkhani S, Akbari S, Ezzati S, Hatamabadi H, Pourhoseingholi MA. Generalizable machine learning approach for COVID-19 mortality risk prediction using on-admission clinical and laboratory features. Sci Rep 2023; 13:2399. [PMID: 36765157 PMCID: PMC9911952 DOI: 10.1038/s41598-023-28943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
We aimed to propose a mortality risk prediction model using on-admission clinical and laboratory predictors. We used a dataset of confirmed COVID-19 patients admitted to three general hospitals in Tehran. Clinical and laboratory values were gathered on admission. Six different machine learning models and two feature selection methods were used to assess the risk of in-hospital mortality. The proposed model was selected using the area under the receiver operator curve (AUC). Furthermore, a dataset from an additional hospital was used for external validation. 5320 hospitalized COVID-19 patients were enrolled in the study, with a mortality rate of 17.24% (N = 917). Among 82 features, ten laboratories and 27 clinical features were selected by LASSO. All methods showed acceptable performance (AUC > 80%), except for K-nearest neighbor. Our proposed deep neural network on features selected by LASSO showed AUC scores of 83.4% and 82.8% in internal and external validation, respectively. Furthermore, our imputer worked efficiently when two out of ten laboratory parameters were missing (AUC = 81.8%). We worked intimately with healthcare professionals to provide a tool that can solve real-world needs. Our model confirmed the potential of machine learning methods for use in clinical practice as a decision-support system.
Collapse
Affiliation(s)
- Siavash Shirzadeh Barough
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Ahmad Safavi-Naini
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Siavoshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Tamimi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Surgery, Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School and Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Setareh Akbari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Ezzati
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Hatamabadi
- Department of Emergency Medicine, School of Medicine, Safety Promotion and Injury Prevention Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Pourhoseingholi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Khatun K, Farhana N. Assessment of Level of Depression and Associated Factors among COVID-19-Recovered Patients: a Cross-Sectional Study. Microbiol Spectr 2023; 11:e0465122. [PMID: 36752623 PMCID: PMC10100670 DOI: 10.1128/spectrum.04651-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has psychological consequences such as increased risk of depression, anxiety, and stress problems, exacerbating human health disparities. This study aimed to analyze depression and its causes in COVID-19-recovered patients in Bangladesh. A cross-sectional study was conducted on COVID-19-recovered patients who attended follow-up visits after 14 days to 3 months at Dhaka Medical College Hospital (DMCH) and Dhaka North City Corporation Hospital (DNCCH), Dhaka, Bangladesh, from 1 January to 31 December 2021. Respondents were face-to-face interviewed with a semistructured questionnaire after written agreement. The Patient Health Questionnaire (PHQ-9) was used to assess respondents' depression, and data were analyzed using SPSS version 23, with a P value of <0.05 indicating statistical significance. A total of 325 COVID-19-recovered patients aged from 15 to 65 years (mean, 44.34 ± 13.87 years) were included in this study, the highest proportion (23.1%) of them were aged 46 to 55 years, and the majority (61.5%) of them were male. There were 69.5% of respondents who had no signs of depression while 31% of them did have signs, with 26.7% being mildly depressed, 2.5% being extremely depressed, and 1.2% being severely depressed. Diabetes mellitus, hospitalization duration, social distancing, social media posts on COVID-19, loss of employment, family damage, and fear of reinfection were significantly associated with depression level of respondents. This study gives us a glimpse into the psychological health of COVID-19-recovered patients, and its findings highlight the imperative of alleviating their psychological anguish in Bangladesh. IMPORTANCE The COVID-19 pandemic had a significant psychological impact on healthy populations, with increased depression, perceived stress, posttraumatic stress disorder, and insomnia reported. The COVID-19 pandemic affects people's mental health by instilling fear of infection and depression. In the post-COVID-19 syndrome, depressive symptoms and clinically significant depression may have serious consequences for quality-of-life outcomes. To combat the spread of COVID-19, the Bangladesh government has implemented a number of measures, including lockdown, social distancing, self-isolation, and quarantine. Given the negative consequences, it is critical to investigate potential factors and mechanisms that may shed light on mental health improvement. The purpose of the study is to determine the level of depression in patients 3 months after recovering from acute COVID-19. The study's findings highlight the need for COVID-19-infected people in Bangladesh to receive health education and interventions.
Collapse
Affiliation(s)
- Khadeza Khatun
- Department of Hospital Management, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| | - Nasreen Farhana
- Department of Microbiology and Mycology, National Institute of Preventive and Social Medicine (NIPSOM), Dhaka, Bangladesh
| |
Collapse
|
37
|
Peng W, Xu Y, Han D, Feng F, Wang Z, Gu C, Zhou X, Wu Q. Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis. Arch Physiol Biochem 2023; 129:253-260. [PMID: 32915649 PMCID: PMC7544918 DOI: 10.1080/13813455.2020.1817944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The clinical efficacy of matrine in treating coronavirus disease (COVID-19) has been confirmed; however, its underlying mechanism of action remains unknown. METHODS TCMSP, SwissTargetPrediction, SEA, GeneCards, CTD, and TTD were used to identify potential targets for matrine in SARS-CoV-2. Cytoscape software was used to determine the target-pathway network for topographical analysis. The online STRING analysis platform and Cytoscape were together used to generate a PPI network and for GO and KEGG pathway enrichment analysis. Finally, molecular docking simulations were performed to study matrine-Mpro, matrine-ACE2, and matrine-RdRp interactions. RESULTS Ten common matrine targets were obtained, particularly including TNF-α, IL-6, and CASP3. GO and KEGG pathway enrichment analysis revealed five significantly enriched signalling pathways involved in cell proliferation, apoptosis, programmed cell death, and immune responses. CONCLUSIONS During COVID-19 treatment, matrine regulates viral replication, host cell apoptosis, and inflammation by targeting the TNF-α, IL-6, and CASP3 in the TNF signalling pathway.
Collapse
Affiliation(s)
- Wenpan Peng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fanchao Feng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhichao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- CONTACT Xianmei Zhou Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Qi Wu Department of Physiology, Xuzhou Medical University, Xuzhou, 221009, China
| |
Collapse
|
38
|
Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG. COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells. World J Gastroenterol 2023; 29:425-449. [PMID: 36688024 PMCID: PMC9850933 DOI: 10.3748/wjg.v29.i3.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global health and economic challenge. Hepatic injuries have been approved to be associated with severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. The viral tropism pattern of SARS-CoV-2 can induce hepatic injuries either by itself or by worsening the conditions of patients with hepatic diseases. Besides, other factors have been reported to play a crucial role in the pathological forms of hepatic injuries induced by SARS-CoV-2, including cytokine storm, hypoxia, endothelial cells, and even some treatments for COVID-19. On the other hand, several groups of people could be at risk of hepatic COVID-19 complications, such as pregnant women and neonates. The present review outlines and discusses the interplay between SARS-CoV-2 infection and hepatic injury, hepatic illness comorbidity, and risk factors. Besides, it is focused on the vaccination process and the role of developed vaccines in preventing hepatic injuries due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | | | - Mahmoud M Ali
- Department of Pharmacology, Al-Azhar University, Assiut 71524, Egypt
| | - Osama M Ghogar
- Department of Biochemistry Faculty of Pharmacy, Badr University in Assiut, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
39
|
Muacevic A, Adler JR, Tripathy S, Bhuniya S, Mangaraj M, Ramadass B, Sahu S, Bandyopadhyay D, Dash P, Saharia GK. Analysis of Biochemical and Inflammatory Markers for Predicting COVID-19 Severity: Insights From a Tertiary Healthcare Institution of Eastern India. Cureus 2023; 15:e33893. [PMID: 36819455 PMCID: PMC9934847 DOI: 10.7759/cureus.33893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Background Coronavirus disease-19 (COVID-19) patients often deteriorate rapidly based on viral infection-related inflammation and the subsequent cytokine storm. The clinical symptoms were found to be inconsistent with laboratory findings. There is a need to develop biochemical severity score to closely monitor COVID-19 patients. Methods This study was conducted in the department of biochemistry at All India Institute of Medical Sciences (AIIMS) Bhubaneswar in collaboration with the intensive care unit. Laboratory data of 7,395 patients diagnosed with COVID-19 during the first three waves of the pandemic were analyzed. The serum high sensitivity high-sensitivity C-reactive protein (hs-CRP, immuno-turbidity method), lactate dehydrogenase (LDH, modified Wacker et al. method), and liver enzymes (kinetic-UV method) were estimated by fully automated chemistry analyzer. Serum ferritin and interleukin-6 (IL-6) were measured by one-step immunoassay using chemiluminescence technology. Three models were used in logistic regression to check for the predictive potential of biochemical parameters, and a COVID-19 biochemical severity score was calculated using a non-linear regression algorithm. Results The receiver operating characteristic curve found age, urea, uric acid, CRP, ferritin, IL6, and LDH with the highest odds of predicting ICU admission for COVID-19 patients. COVID-19 biochemical severity scores higher than 0.775 were highly predictive (odds ratio of 5.925) of ICU admission (AUC=0.740, p<0.001) as compared to any other individual parameter. For the validation, 30% of the total dataset was used as testing data (n=2095) with a sensitivity of 68.3%, specificity of 74.5%, and odds ratio of 6.304. Conclusion Age, urea, uric acid, ferritin, IL6, LDH, and CRP-based predictive probability algorithm calculating COVID-19 severity was found to be highly predictive of ICU admission for COVID-19 patients.
Collapse
|
40
|
Dobre D, Schwan R, Jansen C, Schwitzer T, Martin O, Ligier F, Rolland B, Ahad PA, Capdevielle D, Corruble E, Delamillieure P, Dollfus S, Drapier D, Bennabi D, Joubert F, Lecoeur W, Massoubre C, Pelissolo A, Roser M, Schmitt C, Teboul N, Vansteene C, Yekhlef W, Yrondi A, Haoui R, Gaillard R, Leboyer M, Thomas P, Gorwood P, Laprevote V. Clinical features and outcomes of COVID-19 patients hospitalized for psychiatric disorders: a French multi-centered prospective observational study. Psychol Med 2023; 53:342-350. [PMID: 33902760 PMCID: PMC8144831 DOI: 10.1017/s0033291721001537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with psychiatric disorders are exposed to high risk of COVID-19 and increased mortality. In this study, we set out to assess the clinical features and outcomes of patients with current psychiatric disorders exposed to COVID-19. METHODS This multi-center prospective study was conducted in 22 psychiatric wards dedicated to COVID-19 inpatients between 28 February and 30 May 2020. The main outcomes were the number of patients transferred to somatic care units, the number of deaths, and the number of patients developing a confusional state. The risk factors of confusional state and transfer to somatic care units were assessed by a multivariate logistic model. The risk of death was analyzed by a univariate analysis. RESULTS In total, 350 patients were included in the study. Overall, 24 (7%) were transferred to medicine units, 7 (2%) died, and 51 (15%) patients presented a confusional state. Severe respiratory symptoms predicted the transfer to a medicine unit [odds ratio (OR) 17.1; confidence interval (CI) 4.9-59.3]. Older age, an organic mental disorder, a confusional state, and severe respiratory symptoms predicted mortality in univariate analysis. Age >55 (OR 4.9; CI 2.1-11.4), an affective disorder (OR 4.1; CI 1.6-10.9), and severe respiratory symptoms (OR 4.6; CI 2.2-9.7) predicted a higher risk, whereas smoking (OR 0.3; CI 0.1-0.9) predicted a lower risk of a confusional state. CONCLUSION COVID-19 patients with severe psychiatric disorders have multiple somatic comorbidities and have a risk of developing a confusional state. These data underline the need for extreme caution given the risks of COVID-19 in patients hospitalized for psychiatric disorders.
Collapse
Affiliation(s)
- Daniela Dobre
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
| | - Raymund Schwan
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | - Claire Jansen
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | - Thomas Schwitzer
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | | | - Fabienne Ligier
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
- EA 4360 APEMAC, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | - Benjamin Rolland
- Service Universitaire d'Addictologie de Lyon (SUAL), CH Le Vinatier, Bron, France
- Services hospitalo-universitaires d'addictologie, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, UCBL, Centre de recherche en neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, PSYR2, Bron, France
| | - Pierre Abdel Ahad
- Pôle hospitalo-universitaire de psychiatrie adultes Paris 15ème, GHU Paris psychiatrie et neurosciences, site Sainte-Anne, Paris, France
| | - Delphine Capdevielle
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- University Department of Adult Psychiatry, CHU, Montpellier, France
| | - Emmanuelle Corruble
- Université department of Adult Psychiatry, Hôpital La Colombière, CHU de Montpellier, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin BicêtreF-94275, France
| | - Pascal Delamillieure
- CHU de Caen, Service de psychiatrie, Centre Esquirol, CaenF-14000, France
- Imagerie et Stratégies Thérapeutiques de la Schizophrénie (ISTS) EA 7466, Normandie Univ, GIP Cyceron, CaenF-14000, France
- UFR Santé, Normandie Univ, CaenF-14000, France
| | - Sonia Dollfus
- CHU de Caen, Service de psychiatrie, Centre Esquirol, CaenF-14000, France
- Imagerie et Stratégies Thérapeutiques de la Schizophrénie (ISTS) EA 7466, Normandie Univ, GIP Cyceron, CaenF-14000, France
- UFR Santé, Normandie Univ, CaenF-14000, France
| | - Dominique Drapier
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, RennesF-35703, France
- EA 47 12 Comportement et Noyaux Gris Centraux, Université Rennes 1, RennesF-35703, France
| | - Djamila Bennabi
- Service de psychiatrie de l'adulte, CHRU de Besançon, F-25000Besançon, France
- Centre expert dépression résistante FondaMental, F-25000Besançon, France
| | - Fabien Joubert
- Département d'Information Médicale, CH Le Vinatier, Bron, France
| | | | - Catherine Massoubre
- Service Universitaire de Psychiatrie, EA TAPE 7423, CHU de Saint-Etienne, Saint Etienne, France
| | - Antoine Pelissolo
- UPEC, Université Paris-Est, Faculté de médecine, CréteilF-94000, France
- AP-HP, DMU IMPACT, Hôpitaux universitaires Henri-Mondor, Service de Psychiatrie, CréteilF-94000, France
- INSERM U955, Laboratoire Neuro-Psychiatrie translationnelle, CréteilF-94000, France
| | - Mathilde Roser
- UPEC, Université Paris-Est, Faculté de médecine, CréteilF-94000, France
- AP-HP, DMU IMPACT, Hôpitaux universitaires Henri-Mondor, Service de Psychiatrie, CréteilF-94000, France
- INSERM U955, Laboratoire Neuro-Psychiatrie translationnelle, CréteilF-94000, France
| | - Christophe Schmitt
- Département d'Information Médicale, Centre Hospitalier de Jury, MetzF-57073, France
| | - Noé Teboul
- Département d'Information Médicale, CH Le Vinatier, Bron, France
| | - Clément Vansteene
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, 1 Rue Cabanis, 75014Paris, France
- INSERM U894, Centre de Psychiatrie et Neurosciences (CPN), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Wanda Yekhlef
- Département Soins Somatiques-Préventions-Santé Publique, Pôle CRISTALES, EPS de Ville-Evrard, Neuilly sur Marne, France
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU de Toulouse, Hôpital Purpan, Toulouse, France
- ToNIC Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Radoine Haoui
- Pôle de Psychiatrie Générale Rive Gauche, Centre Hospitalier Gérard Marchant, F-31057Toulouse, France
| | - Raphaël Gaillard
- Pôle hospitalo-universitaire de psychiatrie adultes Paris 15ème, GHU Paris psychiatrie et neurosciences, site Sainte-Anne, Paris, France
- Université de Paris, Paris, France
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Marion Leboyer
- UPEC, Université Paris-Est, Faculté de médecine, CréteilF-94000, France
- AP-HP, DMU IMPACT, Hôpitaux universitaires Henri-Mondor, Service de Psychiatrie, CréteilF-94000, France
- INSERM U955, Laboratoire Neuro-Psychiatrie translationnelle, CréteilF-94000, France
| | - Pierre Thomas
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition (PSY), F-59000Lille, France
- CHU Lille, Pôle de Psychiatrie, F-59000Lille, France
| | - Philip Gorwood
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, 1 Rue Cabanis, 75014Paris, France
- Institute of Psychiatry and Neuroscience of Paris, University of Paris, INSERM U1266, Paris, France
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, Paris, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| |
Collapse
|
41
|
Cheng ZJ, Li B, Zhan Z, Zhao Z, Xue M, Zheng P, Lyu J, Hu C, He J, Chen R, Sun B. Clinical Application of Antibody Immunity Against SARS-CoV-2: Comprehensive Review on Immunoassay and Immunotherapy. Clin Rev Allergy Immunol 2023; 64:17-32. [PMID: 35031959 PMCID: PMC8760112 DOI: 10.1007/s12016-021-08912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
The current COVID-19 global pandemic poses immense challenges to global health, largely due to the difficulty to detect infection in the early stages of the disease, as well as the current lack of effective antiviral therapy. Research and understanding of the human immune system can provide important theoretical and technical support for the clinical diagnosis and treatment of COVID-19, the clinical implementations of which include immunoassays and immunotherapy, which play a crucial role in the fight against the pandemic. This review consolidates the current scientific evidence for immunoassay, which includes multiple methods of detecting antigen and antibody against SARS-CoV-2. We compared the characteristics, advantages and disadvantages, and clinical applications of these three detection techniques. In addition to detecting viral infections, knowledge on the body's immunity against the virus is desirable; thus, the immunotherapy-based neutralizing antibody (nAb) detection methods were discussed. We also gave a brief introduction to the new immunoassay technology such as biosensing. This was followed by an in-depth and extensive review on a variety of immunotherapy methods. It includes convalescent plasma therapy, neutralizing antibody-based treatments targeting different regions of SARS-CoV-2, immunotherapy targeted on the host cell including inhibiting the host cell receptor and cytokine storm, as well as cocktail antibodies, cross-neutralizing antibodies, and immunotherapy based on cross-reactivity between viral epitopes and autoepitopes and autoantibody. Despite the development of various immunological testing methods and antibody therapies, the current global situation of COVID-19 is still tense. We need more efficient detection methods and more reliable antibody therapies. The up-to-date knowledge on therapeutic strategies will likely help clinicians worldwide to protect patients from life-threatening viral infections.
Collapse
Affiliation(s)
- Zhangkai J. Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Bizhou Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Zhiqing Zhan
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Zifan Zhao
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Jiali Lyu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Chundi Hu
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| |
Collapse
|
42
|
Krieger I, Erez G, Weinstein O, Cohen AD, Tzur Bitan D. COVID-19 Morbidity Among Individuals with Autistic Spectrum Disorder: A Matched Controlled Population-Based Study. J Autism Dev Disord 2023; 53:789-794. [PMID: 34240292 PMCID: PMC8265716 DOI: 10.1007/s10803-021-05187-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
In this study we aimed to assess whether individuals with ASD are prone to higher infection rates, or to severe COVID-19 illness. Individuals with ASD and age- and gender-matched controlled counterparts (total n = 32,812) were assessed for COVID-19 infection rates and hospitalizations. Results indicated higher infection rates among individuals with ASD, with the largest effect among individuals aged 40-60 (OR = 2.05, 95%CI 1.33-3.15, p < .001), as well as higher odds for hospitalizations, evident primarily in men (OR = 2.40, 95%CI 1.14-5.02, p = 0.02) but not women. Medical and environmental risk factors may associate ASD with higher infection and morbidity rates. Healthcare policy providers should consider proactive steps to protect this population from the associated risks.
Collapse
Affiliation(s)
- Israel Krieger
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Erez
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orly Weinstein
- Hospital Division, Clalit Health Services, Tel Aviv, Israel ,Department of Health Systems administration, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Arnon Dov Cohen
- Department of Quality Measurements and Research, Clalit Health Services, Tel Aviv, Israel ,Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dana Tzur Bitan
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Behavioral Sciences, Ariel University, Ariel, Israel.
| |
Collapse
|
43
|
Chichanovskaya LV, Slyusar TA, Abramenko YV, Nekrasova TM, Slyusar IN. [Clinico-psychological profile and life quality of patients with post-COVID syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:53-58. [PMID: 37084365 DOI: 10.17116/jnevro202312304153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
OBJECTIVE To study clinico-psychological profile and life quality of patients with post-COVID syndrome. MATERIAL AND METHODS We examined 162 patients aged 24-60 years with confirmed SARS-CoV-2 infection which having symptoms that served as the basis for the diagnosis of post-COVID syndrome. Patients underwent general neurological and somatic examination with allocation of the corresponding neurological syndromes. The intensity and quality of pain were assessed using the McGill Pain questionnaire. The level of psychosocial stress was determined by the Holmes-Ray questionnaire, the identification and severity of asthenia - by the MFI-20 asthenia scale. The level of reactive and personal anxiety was studied according to the Spielberger-Khanin questionnaire, depression - according to the Beck scale. The assessment of life quality was carried out using the Russian version of SF-36 questionnaire. To correct the identified disorders, Mexidol was used according to the scheme: 500 mg once daily intravenously for 14 days, followed by Mexidol FORTE 250 750 mg per day orally (250 mg 3 times a day) for 2 months. RESULTS The course of treatment with Mexidol in patients with post-COVID syndrome led to decrease in the severity of subjective and objective symptoms, asthenic, anxiety and depressive disorders, and improved the life quality of patients. CONCLUSION The high efficacy and safety of sequential therapy with Mexidol (injections followed by tablets of Mexidol FORTE 250) has been shown.
Collapse
|
44
|
Chen L, Chen R, Yao M, Feng Z, Yuan G, Ye F, Nguyen K, Karn J, McComsey GA, McIntyre TM, Jin G. COVID-19 plasma exosomes promote proinflammatory immune responses in peripheral blood mononuclear cells. Sci Rep 2022; 12:21779. [PMID: 36526691 PMCID: PMC9756928 DOI: 10.1038/s41598-022-26457-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated serum cytokine production in COVID-19 patients is associated with disease progression and severity. However, the stimuli that initiate cytokine production in patients remain to be fully revealed. Virus-infected cells release virus-associated exosomes, extracellular vesicles of endocytic origin, into the blood to deliver viral cargoes able to regulate immune responses. Here, we report that plasma exosomes of COVID-19 patients contain SARS-CoV-2 double stranded RNA (dsRNA) and stimulate robust production of interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and other inflammatory cytokines and chemokines by human peripheral mononuclear cells. Exosome depletion abolished these stimulated responses. COVID-19 plasma exosomes induced proinflammatory responses in CD4+ T cells, CD8+ T cells, and CD14+ monocytes but not significantly in regulatory T cells, Th17 T cells, or central memory T cells. COVID-19 plasma exosomes protect the SARS-CoV-2 dsRNA cargo from RNase and deliver the dsRNA into recipient cells. These exosomes significantly increase expression of endosomal toll-like receptor 3 (TLR3), TLR7, TLR8, and TLR9 in peripheral T cells and monocytes. A pharmacological inhibitor of TLR3 considerably reduced cytokine and chemokine production by CD4+ and CD8+ T cells but not by CD14+ monocytes, highlighting divergent signaling pathways of immune cells in response to COVID-19 plasma exosomes. Our results identify a novel model of intercellular crosstalk following SARS-CoV-2 infection that evoke immune responses positioned to contribute to elevated cytokine production associated with COVID-19 progression, severity, and long-haul symptoms.
Collapse
Affiliation(s)
- Lechuang Chen
- Rammelkamp Center for Research and Department of Medicine, Case Western Reserve University School of Medicine, the MetroHealth System Cleveland, Cleveland, OH, 44109, USA
| | - Rui Chen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Min Yao
- Department of Radiation Oncology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Zhimin Feng
- Rammelkamp Center for Research and Department of Medicine, Case Western Reserve University School of Medicine, the MetroHealth System Cleveland, Cleveland, OH, 44109, USA
| | - Guoxiang Yuan
- Rammelkamp Center for Research and Department of Medicine, Case Western Reserve University School of Medicine, the MetroHealth System Cleveland, Cleveland, OH, 44109, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Grace A McComsey
- Department of Pediatrics and Medicine, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Thomas M McIntyre
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Ge Jin
- Rammelkamp Center for Research and Department of Medicine, Case Western Reserve University School of Medicine, the MetroHealth System Cleveland, Cleveland, OH, 44109, USA.
| |
Collapse
|
45
|
Huang HI, Chio CC, Lin JY, Chou CJ, Lin CC, Chen SH, Yu LS. EV-A71 induced IL-1β production in THP-1 macrophages is dependent on NLRP3, RIG-I, and TLR3. Sci Rep 2022; 12:21425. [PMID: 36503883 PMCID: PMC9741760 DOI: 10.1038/s41598-022-25458-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Enterovirus A71 (EV-A71) is an emerging enterovirus that can cause neurological complications. Enhanced serum IL-1β levels were observed in EV-A71 patients with severe neurological symptoms. However, the roles of sensors in enterovirus-induced IL-1β production are unclear. In this study, we identified that pattern recognition receptors, including RIG-I, TLR3, and TLR8, are implicated in EV-A71-triggered IL-1β release in human macrophages. EV-A71 infection results in caspase-1 and caspase-8, which act as regulators of EV-A71-induced NLRP3 and RIG-I inflammasome activation. Moreover, knockdown of the expression of TLR3 and TLR8 decreased the released IL-1β in an NLRP3-dependent manner. Since TLR3 and TLR8 ligands promote NLRP3 inflammasome activation via caspase-8, the alternative pathway may be involved. In summary, these results indicate that activation of the NLRP3 and RIG-I inflammasomes in EV-A71-infected macrophages is mediated by caspase-1 and caspase-8 and affected by TLRs, including TLR3 and TLR8.
Collapse
Affiliation(s)
- Hsing-I Huang
- grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.454211.70000 0004 1756 999XDepartment of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chi-Chong Chio
- grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jhao-Yin Lin
- grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chia-Jung Chou
- grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chia-Chen Lin
- grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shih-Hsiang Chen
- grid.454211.70000 0004 1756 999XDivision of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Liang-Sheng Yu
- grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
46
|
Kurokawa M, Kurokawa R, Lin AY, Capizzano AA, Baba A, Kim J, Johnson TD, Srinivasan A, Moritani T. Neurological and Neuroradiological Manifestations in Neonates Born to Mothers With Coronavirus Disease 2019. Pediatr Neurol 2022; 141:9-17. [PMID: 36731229 PMCID: PMC9741496 DOI: 10.1016/j.pediatrneurol.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate the complications that occurred in neonates born to mothers with coronavirus disease 2019 (COVID-19), focusing on neurological and neuroradiological findings, and to compare differences associated with the presence of maternal symptoms. METHODS Ninety neonates from 88 mothers diagnosed with coronavirus disease 2019 (COVID-19) during pregnancy were retrospectively reviewed. Neonates were divided into two groups: symptomatic (Sym-M-N, n = 34) and asymptomatic mothers (Asym-M-N, n = 56). The results of neurological physical examinations were compared between the groups. Data on electroencephalography, brain ultrasound, and magnetic resonance imaging abnormalities were collected for neonates with neurological abnormalities. RESULTS Neurological abnormalities at birth were found in nine neonates (Sym-M-N, seven of 34, 20.6%). Decreased tone was the most common physical abnormality (n = 7). Preterm and very preterm birth (P < 0.01), very low birth weight (P < 0.01), or at least one neurological abnormality on physical examination (P = 0.049) was more frequent in Sym-M-N neonates. All infants with abnormalities on physical examination showed neuroradiological abnormalities. The most common neuroradiological abnormalities were intracranial hemorrhage (n = 5; germinal matrix, n = 2; parenchymal, n = 2; intraventricular, n = 1) and hypoxic brain injury (n = 3). CONCLUSIONS Neonates born to mothers with symptomatic COVID-19 showed an increased incidence of neurological abnormalities. Most of the mothers (96.4%) were unvaccinated before the COVID-19 diagnosis. Our results highlight the importance of neurological and neuroradiological management in infants born to mothers with COVID-19 and the prevention of maternal COVID-19 infection.
Collapse
Affiliation(s)
- Mariko Kurokawa
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Ryo Kurokawa
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan.
| | - Ava Yun Lin
- Division of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Aristides A Capizzano
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - John Kim
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Timothy D Johnson
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Ashok Srinivasan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
47
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
48
|
Asadi Anar M, Foroughi E, Sohrabi E, Peiravi S, Tavakoli Y, Kameli Khouzani M, Behshood P, Shamshiri M, Faridzadeh A, Keylani K, Langari SF, Ansari A, Khalaji A, Garousi S, Mottahedi M, Honari S, Deravi N. Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19. Front Pharmacol 2022; 13:1036093. [PMID: 36532776 PMCID: PMC9748354 DOI: 10.3389/fphar.2022.1036093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
The emerging COVID-19 pandemic led to a dramatic increase in global mortality and morbidity rates. As in most infections, fatal complications of coronavirus affliction are triggered by an untrammeled host inflammatory response. Cytokine storms created by high levels of interleukin and other cytokines elucidate the pathology of severe COVID-19. In this respect, repurposing drugs that are already available and might exhibit anti-inflammatory effects have received significant attention. With the in vitro and clinical investigation of several studies on the effect of antidepressants on COVID-19 prognosis, previous data suggest that selective serotonin reuptake inhibitors (SSRIs) might be the new hope for the early treatment of severely afflicted patients. SSRIs' low cost and availability make them potentially eligible for COVID-19 repurposing. This review summarizes current achievements and literature about the connection between SSRIs administration and COVID-19 prognosis.
Collapse
Affiliation(s)
- Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elika Sohrabi
- Department of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Samira Peiravi
- Department of Emergency Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | | | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | - Melika Shamshiri
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Faride Langari
- Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ansari
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Honari
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Meng H, Wang S, Tang X, Guo J, Xu X, Wang D, Jin F, Zheng M, Yin S, He C, Han Y, Chen J, Han J, Ren C, Gao Y, Liu H, Wang Y, Jin R. Respiratory immune status and microbiome in recovered COVID-19 patients revealed by metatranscriptomic analyses. Front Cell Infect Microbiol 2022; 12:1011672. [PMID: 36483456 PMCID: PMC9724627 DOI: 10.3389/fcimb.2022.1011672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently a severe threat to global public health, and the immune response to COVID-19 infection has been widely investigated. However, the immune status and microecological changes in the respiratory systems of patients with COVID-19 after recovery have rarely been considered. We selected 72 patients with severe COVID-19 infection, 57 recovered from COVID-19 infection, and 65 with non-COVID-19 pneumonia, for metatranscriptomic sequencing and bioinformatics analysis. Accordingly, the differentially expressed genes between the infected and other groups were enriched in the chemokine signaling pathway, NOD-like receptor signaling pathway, phagosome, TNF signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, and C-type lectin receptor signaling pathway. We speculate that IL17RD, CD74, and TNFSF15 may serve as disease biomarkers in COVID-19. Additionally, principal coordinate analysis revealed significant differences between groups. In particular, frequent co-infections with the genera Streptococcus, Veillonella, Gemella, and Neisseria, among others, were found in COVID-19 patients. Moreover, the random forest prediction model with differential genes showed a mean area under the curve (AUC) of 0.77, and KCNK12, IL17RD, LOC100507412, PTPRT, MYO15A, MPDZ, FLRT2, SPEG, SERPINB3, and KNDC1 were identified as the most important genes distinguishing the infected group from the recovered group. Agrobacterium tumefaciens, Klebsiella michiganensis, Acinetobacter pittii, Bacillus sp. FJAT.14266, Brevundimonas naejangsanensis, Pseudopropionibacterium propionicum, Priestia megaterium, Dialister pneumosintes, Veillonella rodentium, and Pseudomonas protegens were selected as candidate microbial markers for monitoring the recovery of COVID patients. These results will facilitate the diagnosis, treatment, and prognosis of COVID patients recovering from severe illness.
Collapse
Affiliation(s)
- Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuang Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Guo
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinming Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Dagang Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Jin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shangqi Yin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chaonan He
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jin Chen
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinyu Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chaobo Ren
- Translational R&D Center, Guangzhou Vision Medicals Co. LTD, Guangzhou, China
| | - Yantao Gao
- Translational R&D Center, Guangzhou Vision Medicals Co. LTD, Guangzhou, China
| | - Huifang Liu
- Translational R&D Center, Guangzhou Vision Medicals Co. LTD, Guangzhou, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Erb A, Zissler UM, Oelsner M, Chaker AM, Schmidt-Weber CB, Jakwerth CA. Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons. BIOSENSORS 2022; 12:929. [PMID: 36354438 PMCID: PMC9688329 DOI: 10.3390/bios12110929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).
Collapse
Affiliation(s)
- Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| |
Collapse
|