1
|
Sharma A, Sharma G, Im SH. Gut microbiota in regulatory T cell generation and function: mechanisms and health implications. Gut Microbes 2025; 17:2516702. [PMID: 40517372 PMCID: PMC12169050 DOI: 10.1080/19490976.2025.2516702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/27/2025] [Accepted: 06/02/2025] [Indexed: 06/18/2025] Open
Abstract
The establishment and maintenance of immune homeostasis rely on a dynamic, bidirectional exchange of information between commensal microorganisms and the host immune system. At the center of this process are CD4+Foxp3+ regulatory T cells (Tregs), which have emerged as pivotal mediators to ensure immunological equilibrium. This review explores the sophisticated mechanisms by which the gut microbiota modulates the differentiation, expansion, and functional specialization of Tregs, orchestrating intestinal immune tolerance to support host-microbiota mutualism. We discuss the role of microbial-derived structural components and metabolites in shaping the immunoregulatory fitness of Tregs. Additionally, we explore the impact of gut microbial dysbiosis, where disrupted microbial-immune crosstalk compromises immune tolerance, contributing to the development of inflammatory and autoimmune disorders. Finally, we highlight the potential of microbiota-based strategies to recalibrate intestinal immunity and restore immune tolerance.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Innovation Research Center for Bio-Future Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Garima Sharma
- ImmunoPharm Group, ImmmunoBiome Inc, Pohang, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- ImmunoPharm Group, ImmmunoBiome Inc, Pohang, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Saravia J, Chi H. Immunometabolism of regulatory T cells in cancer. Oncogene 2025; 44:2011-2024. [PMID: 40468052 PMCID: PMC12167712 DOI: 10.1038/s41388-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/06/2025] [Accepted: 05/19/2025] [Indexed: 06/18/2025]
Abstract
Regulatory T (Treg) cells play critical roles in maintaining immune tolerance and tissue homeostasis, but impede anti-tumor immunity. Recent work has established how Treg cells metabolically adapt within the tumor microenvironment (TME), and these adaptations frequently provide a functional advantage over effector T cells. Further, enhanced Treg cell function in the TME may contribute to the limited efficacy of current immunotherapies, especially immune checkpoint blockade (ICB). Here, we review recent progress in understanding mechanisms of Treg cell heterogeneity and function in tumors, with a particular focus on cellular metabolism as an underlying factor by which Treg cells are uniquely poised to thrive in the TME and contribute to tumorigenesis. We describe how cellular metabolism and nutrient or metabolic communication shape Treg cell lineage identity and function in the TME. We also discuss the interplay between ICB and Treg cell metabolism and function, and highlight current strategies targeting Treg cell metabolism specifically in the TME. Understanding metabolic control of intratumoral Treg cells provides excellent opportunities to uncover new or combination therapies for cancer.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Xu H, Ding D, Han X, Miao K, Liang C, Yun H, Zhu W, Dey F, Zhao D, Wu Y, Reutlinger M, Yang J, Zhai G, Lin Z, Li C, Wu W, Xu B, Han L, Chen S, Huang X, Casagrande F, Hilbert M, Strebel Q, Wichert M, Westwood P, Schäfer R, Roth D, Heer D, Tian X, Ma T, Zhang T, Zhao J, Urich E, Xia G, Lassen K, Shen HC, Zou G. Discovery of ATP competitive PDHK1/2 dual inhibitors. Bioorg Med Chem Lett 2025; 122:130190. [PMID: 40107630 DOI: 10.1016/j.bmcl.2025.130190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Multiple screening approaches were carried out to identify novel chemistry starting for Pyruvate Dehydrogenase Kinases (PDHKs) inhibitors. Through hit triaging efforts and structure-based optimization, two series of ATP competitive inhibitors with single digit nanomolar enzymatic potency for PDHK1/2 and around 10-100-fold selectivity over PDHK4/3 were discovered. Approach of covalent inhibitor was explored to successfully improve the cellular target engagement to single digit micromolar range.
Collapse
Affiliation(s)
- Hongtao Xu
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Dong Ding
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Xingchun Han
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Kun Miao
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Chungen Liang
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Hongying Yun
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Wei Zhu
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Fabian Dey
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dan Zhao
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Yao Wu
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Michael Reutlinger
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - June Yang
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Guanglei Zhai
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Zhaohu Lin
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Chiho Li
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Waikong Wu
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Bruce Xu
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Li Han
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Shuai Chen
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Xinyi Huang
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Fabio Casagrande
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Manuel Hilbert
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Quentin Strebel
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Moreno Wichert
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Paul Westwood
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ramona Schäfer
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Doris Roth
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominik Heer
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Xiaojun Tian
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Tiantian Ma
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Tong Zhang
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Jie Zhao
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Eduard Urich
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Guliang Xia
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Kara Lassen
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hong C Shen
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China
| | - Ge Zou
- China Innovation Center of Roche, No. 371 Lishizhen Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Wang C, Wagner A, Fessler J, DeTomaso D, Zaghouani S, Zhou Y, Pierce K, Sobel RA, Clish C, Yosef N, Kuchroo VK. The glycolytic reaction PGAM restrains Th17 pathogenicity and Th17-dependent autoimmunity. Cell Rep 2025; 44:115799. [PMID: 40482033 DOI: 10.1016/j.celrep.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/19/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Glucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate how individual glycolytic reactions determine the pathogenicity of T helper 17 (Th17) cells using Compass, an algorithm we previously developed for inferring metabolic states from single-cell RNA sequencing. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in Th17 cells. Indeed, perturbation of phosphoglycerate mutase (PGAM), the enzyme catalyzing 3PG to 2PG conversion, induces a pathogenic gene expression program by suppressing a gene module associated with the least pathogenic state of Th17 cells. Finally, PGAM inhibition in Th17 cells exacerbates neuroinflammation in the adoptive transfer model of experimental autoimmune encephalomyelitis, consistently with PGAM promoting the non-pathogenic phenotype of Th17 cells. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of pathogenic Th17 cell differentiation.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Allon Wagner
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes Fessler
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - David DeTomaso
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Raymond A Sobel
- Palo Alto Veteran's Administration Health Care System and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Gao F, Peng H, Gou R, Zhou Y, Ren S, Li F. Exploring neutrophil extracellular traps: mechanisms of immune regulation and future therapeutic potential. Exp Hematol Oncol 2025; 14:80. [PMID: 40442839 PMCID: PMC12123823 DOI: 10.1186/s40164-025-00670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are complex, web-like structures consisting of DNA intertwined with antimicrobial proteins, which neutrophils release upon immune activation. These structures play a crucial role in pathogen elimination, particularly in infectious diseases. However, their involvement in various pathological conditions is multifaceted and context-dependent, while NETs contribute to host defense against infections, they can also exacerbate sterile inflammation, autoimmune disorders, and tumor progression. This review provides a comprehensive analysis of the molecular mechanisms governing NET formation and examines their interactions with immune cells, emphasizing how these interactions shape immune responses and drive disease dynamics. Furthermore, it explores ongoing clinical trials and emerging therapeutic strategies targeting NETs, offering critical insights into their potential translational applications in clinical practice.
Collapse
Affiliation(s)
- Fan Gao
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruixue Gou
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Wu Q, Ge Z, Lv C, He Q. Interacting roles of gut microbiota and T cells in the development of autoimmune hepatitis. Front Immunol 2025; 16:1584001. [PMID: 40491914 PMCID: PMC12146343 DOI: 10.3389/fimmu.2025.1584001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/29/2025] [Indexed: 06/11/2025] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive liver inflammatory disease mediated by an autoimmune response, with an increasing incidence rate. In severe cases, AIH will rapidly progress to liver cirrhosis and liver failure and even lead to death. The gut microbiota is a complex ecosystem that significantly regulates physiological and pathological processes among various digestive system diseases. It is widely acknowledged that there is a critical correlation between AIH and the gut microbiota. Numerous studies have demonstrated that the composition of gut microbiota in individuals with AIH differs markedly from that of healthy subjects. Immune cells, especially T cells, are pivotal in the development of AIH, closely interacting with the gut microbiota. In this review, we discuss the regulatory role of the gut microbiota in T cell-mediated development of AIH, as well as the effect of T cells on the composition of the gut microbiota in AIH. By modulating gut microbiota or immunity pathways, novel opportunities are provided to regulate the balance of the immune-microbial microenvironment, targeting the dual factor for autoimmune hepatitis therapies.
Collapse
Affiliation(s)
| | | | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qifeng He
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Changaei M, Azimzadeh Tabrizi Z, Karimi M, Kashfi SA, Koochaki Chahardeh T, Hashemi SM, Soudi S. From powerhouse to modulator: regulating immune system responses through intracellular mitochondrial transfer. Cell Commun Signal 2025; 23:232. [PMID: 40394666 PMCID: PMC12090700 DOI: 10.1186/s12964-025-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Mitochondria are traditionally known as the cells' powerhouses; however, their roles go far beyond energy suppliers. They are involved in intracellular signaling and thus play a crucial role in shaping cells' destiny and functionality, including immune cells. Mitochondria can be actively exchanged between immune and non-immune cells via mechanisms such as nanotubes and extracellular vesicles. The mitochondria transfer from immune cells to different cells is associated with physiological and pathological processes, including inflammatory disorders, cardiovascular diseases, diabetes, and cancer. On the other hand, mitochondrial transfer from mesenchymal stem cells, bone marrow-derived stem cells, and adipocytes to immune cells significantly affects their functions. Mitochondrial transfer can prevent exhaustion/senescence in immune cells through intracellular signaling pathways and metabolic reprogramming. Thus, it is emerging as a promising therapeutic strategy for immune system diseases, especially those involving inflammation and autoimmune components. Transferring healthy mitochondria into damaged or dysfunctional cells can restore mitochondrial function, which is crucial for cellular energy production, immune regulation, and inflammation control. Also, mitochondrial transfer may enhance the potential of current therapeutic immune cell-based therapies such as CAR-T cell therapy.
Collapse
Affiliation(s)
- Mostafa Changaei
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Azimzadeh Tabrizi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Adnan Kashfi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tina Koochaki Chahardeh
- Department of Basic Sciences, Biology and Health, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Niu C, Wei H, Pan X, Wang Y, Song H, Li C, Qie J, Qian J, Mo S, Zheng W, Zhuma K, Lv Z, Gao Y, Zhang D, Yang H, Liu R, Wang L, Tu W, Liu J, Chu Y, Luo F. Foxp3 confers long-term efficacy of chimeric antigen receptor-T cells via metabolic reprogramming. Cell Metab 2025:S1550-4131(25)00218-9. [PMID: 40328248 DOI: 10.1016/j.cmet.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 10/14/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
The tumor microenvironment, characterized by low oxygen tension and scarce nutrients, impairs chimeric antigen receptor (CAR)-T cell metabolism, leading to T cell exhaustion and dysfunction. Notably, Foxp3 confers a metabolic advantage to regulatory T cells under such restrictive conditions. Exploiting this property, we generated CAR-TFoxp3 cells by co-expressing Foxp3 with a third-generation CAR construct. The CAR-TFoxp3 cells exhibited distinct metabolic reprogramming, marked by downregulated aerobic glycolysis and oxidative phosphorylation coupled with upregulated lipid metabolism. This metabolic shift was driven by Foxp3's interaction with dynamin-related protein 1. Crucially, CAR-TFoxp3 cells did not acquire regulatory T cell immunosuppressive functions but instead demonstrated enhanced antitumor potency and reduced expression of exhaustion markers via Foxp3-mediated adaptation. The potent antitumor effect and absence of immunosuppression were confirmed in a humanized immune system mouse model. Our findings establish a metabolic reprogramming-based strategy to enhance CAR-T cell adaptability within the hostile tumor microenvironment while preserving therapeutic efficacy.
Collapse
Affiliation(s)
- Congyi Niu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huan Wei
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuedi Wang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Congwen Li
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jingbo Qie
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kameina Zhuma
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zixin Lv
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiyuan Gao
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Feifei Luo
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
9
|
Zheng J, Yi Y, Tian T, Luo S, Liang X, Bai Y. ICI-induced cardiovascular toxicity: mechanisms and immune reprogramming therapeutic strategies. Front Immunol 2025; 16:1550400. [PMID: 40356915 PMCID: PMC12066601 DOI: 10.3389/fimmu.2025.1550400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, offering life-saving benefits to tumor patients. However, the utilize of ICI agents is often accompanied by immune-related adverse events (irAEs), among which cardiovascular toxicities have attracted more and more attention. ICI induced cardiovascular toxicities predominantly present as acute myocarditis and chronic atherosclerosis, both of which are driven by excessive immune activation. Reprogramming of T cells and macrophages has been demonstrated as a pivotal factor in the pathogenesis of these complications. Therapeutic strategies targeting glycolysis, fatty acid oxidation, reactive oxygen species (ROS) production and some other key signaling have shown promise in mitigating immune hyperactivation and inflammation. In this review, we explored the intricate mechanisms underlying ICI-induced cardiovascular toxicities and highlighted the protective potential of immune reprogramming. We emphasize the roles of T cell and macrophage reprogramming in the heart and vasculature, showcasing their contributions to both short-term and long-term regulation of cardiovascular health. Ultimately, a deeper understanding of these processes will not only enhance the safety of ICIs but also pave the way for innovative strategies to manage immune-related toxicities in cancers therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Bai
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Roubanis A, Hilaire M, Le Teuff M, Devergne O, Sparwasser T, Berod L, Salomon BL. A new method to measure cell metabolism of rare cells in vivo reveals a high oxidative phosphorylation dependence of lung T cells. Immunol Cell Biol 2025. [PMID: 40268295 DOI: 10.1111/imcb.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/25/2025]
Abstract
Regulation of cellular metabolism is a central element governing the fate and function of T cells. However, the in vivo metabolic characteristics of rare cells, such as nonlymphoid tissue T cells, are poorly understood because of experimental limitations. Most techniques measuring cell metabolism require large cell numbers. The recent SCENITH method allows for studying the metabolism of rare cells by flow cytometry. However, this technique requires cells to be isolated and cultured ex vivo, which may alter their metabolism. Here, we propose a new experimental approach, called in vivo SCENITH, to investigate the cellular metabolism of T cells in vivo at a steady state in the spleen and lungs. For this purpose, we administered the metabolic modulators directly in mice, instead of applying these reagents ex vivo, as in the classical SCENITH method. Whereas ex vivo manipulation impacted the viability and phenotype of T cells, this toxic effect was not observed in the in vivo SCENITH. We observed that conventional and regulatory T cells shared similar metabolic profiles. Importantly, whereas spleen T cells used both oxidative phosphorylation and glycolysis, the metabolism of T cells in the lungs was mainly based on oxidative phosphorylation. Finally, metabolic inhibitors that interfere with protein translation and energy availability downregulated Foxp3 expression in regulatory T cells. These results describe an expansion of SCENITH that allows to measure the metabolic profile of rare cells in vivo, revealing a high dependence on oxidative phosphorylation of lung T cells.
Collapse
Affiliation(s)
- Aristeidis Roubanis
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Morgane Hilaire
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Morgane Le Teuff
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM - CNRS - University Toulouse III, Toulouse, France
| | - Odile Devergne
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benoît L Salomon
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM - CNRS - University Toulouse III, Toulouse, France
| |
Collapse
|
11
|
Peralta Ramos JM, Castellani G, Kviatcovsky D, Croese T, Tsitsou-Kampeli A, Burgaletto C, Abellanas MA, Cahalon L, Phoebeluc Colaiuta S, Salame TM, Kuperman Y, Savidor A, Itkin M, Malitsky S, Ovadia S, Ferrera S, Kalfon L, Kadmani S, Samra N, Paz R, Rokach L, Furlan R, Aharon-Peretz J, Falik-Zaccai TC, Schwartz M. Targeting CD38 immunometabolic checkpoint improves metabolic fitness and cognition in a mouse model of Alzheimer's disease. Nat Commun 2025; 16:3736. [PMID: 40254603 PMCID: PMC12009998 DOI: 10.1038/s41467-025-58494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Protective immunity, essential for brain maintenance and repair, may be compromised in Alzheimer's disease (AD). Here, using high-dimensional single-cell mass cytometry, we find a unique immunometabolic signature in circulating CD4+ T cells preceding symptom onset in individuals with familial AD, featured by the elevation of CD38 expression. Using female 5xFAD mice, a mouse model of AD, we show that treatment with an antibody directed to CD38 leads to restored metabolic fitness, improved cognitive performance, and attenuated local neuroinflammation. Comprehensive profiling across distinct immunological niches in 5xFAD mice, reveals a high level of disease-associated CD4+ T cells that produce IL-17A in the dural meninges, previously linked to cognitive decline. Targeting CD38 leads to abrogation of meningeal TH17 immunity and cortical IL-1β, breaking the negative feedback loop between these two compartments. Taken together, the present findings suggest CD38 as an immunometabolic checkpoint that could be adopted as a pre-symptomatic biomarker for early diagnosis of AD, and might also be therapeutically targeted alone or in combination with other immunotherapies for disease modification.
Collapse
Affiliation(s)
| | - Giulia Castellani
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | - Liora Cahalon
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tomer-Meir Salame
- Department Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Ovadia
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shiran Kadmani
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Rotem Paz
- Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lior Rokach
- Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Judith Aharon-Peretz
- Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Kim EY, Abides J, Keller CR, Martinez SR, Li W. Tumor Microenvironment Lactate: Is It a Cancer Progression Marker, Immunosuppressant, and Therapeutic Target? Molecules 2025; 30:1763. [PMID: 40333742 PMCID: PMC12029365 DOI: 10.3390/molecules30081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
The "Warburg effect" is a term coined a century ago for the preferential use of glycolysis over aerobic respiration in tumor cells for energy production, even under aerobic conditions. Although this is a less efficient mechanism of generating energy from glucose, aerobic glycolysis, in addition to the canonical anaerobic glycolysis, is an effective means of lactate production. The abundant waste product, lactate, yielded by the dual glycolysis in a tumor, has been discovered to be a major biomolecule that drives cancer progression. Lactate is a metabolic energy source that, via cell membrane lactate transporters, shuttles in and out of cancer cells as well as cancer cell-associated stromal cells and immune cells within the tumor microenvironment (TME). Additionally, lactate serves as a pH tuner, signaling ligand and transducer, epigenetic and gene transcription regulator, TME modifier, immune suppressor, chemoresistance modulator, and prognostic marker. With such broad functionalities, the production-consumption-reproduction of TME lactate fuels tumor growth and dissemination. Here, we elaborate on the lactate sources that contribute to the pool of lactate in the TME, the functions of TME lactate, the influence of the TME lactate on immune cell function and local tissue immunity, and anticancer therapeutic approaches adopting lactate manipulations and their efficacies. By scrutinizing these properties of the TME lactate and others that have been well addressed in the field, it is expected that a better weighing of the influence of the TME lactate on cancer development, progression, prognosis, and therapeutic efficacy can be achieved.
Collapse
Affiliation(s)
- Eugene Y. Kim
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Joyce Abides
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
- Doctor of Medicine Program, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| | - Steve R. Martinez
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (E.Y.K.); (J.A.); (C.R.K.)
| |
Collapse
|
13
|
Jiang C, Zeng X, Wang J, Wu X, Song L, Yang L, Li Z, Xie N, Yuan X, Wei Z, Guan Y. Andrographolide sulfonate alleviates rheumatoid arthritis by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation. Chin J Nat Med 2025; 23:480-491. [PMID: 40274350 DOI: 10.1016/s1875-5364(25)60855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 04/26/2025]
Abstract
Andrographolide sulfonate (AS) is a sulfonated derivative of andrographolide extracted from Andrographis paniculata (Burm.f.) Nees, and has been approved for several decades in China. The present study aimed to investigate the novel therapeutic application and possible mechanisms of AS in the treatment of rheumatoid arthritis. Results indicated that administration of AS by injection or gavage significantly reduced the paw swelling, improved body weights, and attenuated pathological changes in joints of rats with adjuvant-induced arthritis. Additionally, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in the serum and ankle joints were reduced. Bioinformatics analysis, along with the spleen index and measurements of IL-17 and IL-10 levels, suggested a potential relationship between AS and Th17 cells under arthritic conditions. In vitro, AS was shown to block Th17 cell differentiation, as evidenced by the reduced percentages of CD4+ IL-17A+ T cells and decreased expression levels of RORγt, IL-17A, IL-17F, IL-21, and IL-22, without affecting the cell viability and apoptosis. This effect was attributed to the limited glycolysis, as indicated by metabolomics analysis, reduced glucose uptake, and pH measurements. Further investigation revealed that AS might bind to hexokinase2 (HK2) to down-regulate the protein levels of HK2 but not glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or pyruvate kinase M2 (PKM2), and overexpression of HK2 reversed the inhibition of AS on Th17 cell differentiation. Furthermore, AS impaired the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signals in vivo and in vitro, which was abolished by the addition of lactate. In conclusion, AS significantly improved adjuvant-induced arthritis (AIA) in rats by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation.
Collapse
Affiliation(s)
- Chunhong Jiang
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Wang
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China
| | - Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Lijuan Song
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ze Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injection, Ganzhou 341000, China
| | - Xiaomei Yuan
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory for Emerging Infectious Diseases, Joint Institute of Virology (Shantou University and The University of Hong Kong), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Zhong J, Bæk O, Doughty R, Jørgensen BM, Jensen HE, Thymann T, Sangild PT, Brunse A, Nguyen DN. Reduced parenteral glucose supply during neonatal infection attenuates neurological and renal pathology associated with modulation of innate and Th1 immunity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167723. [PMID: 39978441 DOI: 10.1016/j.bbadis.2025.167723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Premature infants are highly susceptible to infections that can lead to sepsis with life-threatening organ dysfunctions. The clinical practice of high parenteral glucose supply in preterm infants can exacerbate infection outcomes through excessive glycolysis-induced inflammatory response. This in turn can affect the health of vital preterm organs, including the brain and kidneys. We hypothesized that reduced parenteral glucose supply to infected preterm newborns may help protect against pathology in these two key organs. METHODS Cesarean-delivered preterm pigs were nourished with high or low parenteral glucose levels (21 % vs. 5 %), infused with Staphylococcus epidermidis or saline, and monitored in heated, oxygenated incubators until 22 h. Blood, brain, and kidney samples were collected for histological, immunohistological, q-PCR, ELISA, and biochemical analyses. RESULTS Infection led to multiple pathological changes (e.g. edema), increased inflammation and tissue injury (indicated by gene expression data) in both brain and kidneys of preterm piglets. Reduced glucose supply in infected animals alleviated histopathological manifestations in the brain, and reduced neuroinflammation with enhanced M2 microglial phenotype. Reduced glucose supply also decreased plasma creatinine, and the severity of renal edema, tubular vacuolization and dilatation. Multiple genes related to innate and Th1 immunity in both organs were dampened by reduced glucose supply. Correlation analysis showed that renal inflammation was more closely connected to systemic inflammation compared to neuroinflammation. CONCLUSION Reduced glucose supply can reduce renal and neuro-inflammation during neonatal infection, thereby protecting brain and kidney health in infected preterm neonates.
Collapse
Affiliation(s)
- Jingren Zhong
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Richard Doughty
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Benjamin Meyer Jørgensen
- Section of Pathological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Section of Pathological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Pediatrics, Odense University Hospital, Odense, Denmark; Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Anders Brunse
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| | - Duc Ninh Nguyen
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
15
|
Frisch AT, Wang Y, Xie B, Yang A, Ford BR, Joshi S, Kedziora KM, Peralta R, Wilfahrt D, Mullett SJ, Spahr K, Lontos K, Jana JA, Dean VG, Gunn WG, Gelhaus S, Poholek AC, Rivadeneira DB, Delgoffe GM. Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy. Cell Metab 2025; 37:870-885.e8. [PMID: 39879981 PMCID: PMC12101091 DOI: 10.1016/j.cmet.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo. We used dichloroacetate (DCA) to modulate glycolytic metabolism during expansion, resulting in elevated mitochondrial capacity, stemness, and improved antitumor efficacy in murine T cell receptor (TCR)-Tg and human CAR-T cells. DCA-conditioned T cells surprisingly show no elevated intratumoral effector function but rather have improved engraftment. DCA conditioning decreases reliance on glucose, promoting usage of serum-prevalent physiologic carbon sources. Further, DCA conditioning promotes metabolic flux from mitochondria to chromatin, resulting in increased histone acetylation at key longevity genes. Thus, hyperglycemic culture conditions promote expansion at the expense of metabolic flexibility and suggest pharmacologic metabolic rewiring as a beneficial strategy for improvement of cellular immunotherapies.
Collapse
Affiliation(s)
- Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yiyang Wang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University, Beijing, China
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aaron Yang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronal Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jessica A Jana
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria G Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William G Gunn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Shi Y, Zhang H, Miao C. Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives. Cell Death Discov 2025; 11:123. [PMID: 40155378 PMCID: PMC11953409 DOI: 10.1038/s41420-025-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
T cell metabolism and differentiation significantly shape the initiation, progression, and resolution of inflammatory responses. Upon activation, T cells undergo extensive metabolic shifts to meet distinct functional demands across various inflammatory stages. These metabolic alterations are not only critical for defining different T cell subsets, but also for sustaining their activity in inflammatory environments. Key signaling pathways-including mTOR, HIF-1α, and AMPK regulate these metabolic adaptions, linking cellular energy states with T cell fate decisions. Insights into the metabolic regulation of T cells offer potential therapeutic strategies to manipulate T cell function, with implications for treating autoimmune diseases, chronic inflammation, and cancer by targeting specific metabolic pathways.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Chen B, Zhang C, Zhou M, Deng H, Xu J, Yin J, Chen C, Zhang D, Pu Y, Zheng L, Wang B, Fu J. CD4+ T-cell metabolism in the pathogenesis of Sjogren's syndrome. Int Immunopharmacol 2025; 150:114320. [PMID: 39970711 DOI: 10.1016/j.intimp.2025.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS. In this review, we summarize the effects of disturbances in distinct metabolic processes, such as glycolysis, fatty acid metabolism, glutamine decomposition, mitochondrial dynamics, and ferroptosis, on how to support the effector functions of CD4+ T cells in the SS. We also discuss potential drugs with high value in the treatment of SS through metabolic normalization in CD4+ T cells. Finally, we propose possible directions for future targeted therapy for immunometabolism in SS.
Collapse
Affiliation(s)
- Baixi Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenji Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Mengyuan Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hongyu Deng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jiabao Xu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg 97255, Germany
| | - Junhao Yin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Changyu Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200001, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Jiayao Fu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
18
|
Gabele A, Sprang M, Cihan M, Welzel M, Nurbekova A, Romaniuk K, Dietzen S, Klein M, Bündgen G, Emelianov M, Harms G, Rajalingam K, Ziesmann T, Pape K, Wasser B, Gomez-Zepeda D, Braband K, Delacher M, Lemmermann N, Bittner S, Andrade-Navarro MA, Tenzer S, Luck K, Bopp T, Distler U. Unveiling IRF4-steered regulation of context-dependent effector programs in CD4 + T cells under Th17- and Treg-skewing conditions. Cell Rep 2025; 44:115407. [PMID: 40067830 DOI: 10.1016/j.celrep.2025.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 11/16/2024] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) is crucial for the fate determination of pro-inflammatory T helper (Th) 17 and the functionally opposing group of immunomodulatory regulatory T (Treg) cells. However, the molecular mechanisms of how IRF4 steers diverse transcriptional programs in Th17 and Treg cells are far from being definitive. Here, we integrated data derived from affinity-purification and full mass-spectrometry-based proteome analysis with chromatin immunoprecipitation sequencing. This allowed the characterization of subtype-specific molecular programs and the identification of IRF4 interactors in the Th17/Treg context. Our data reveal that IRF4-interacting transcription factors are recruited to IRF composite elements for the regulation of cell-type-specific transcriptional programs as exemplarily demonstrated for FLI1, which, in cooperation with IRF4, promotes Th17-specific gene expression. FLI1 inhibition markedly impaired Th17 differentiation. The present "omics" dataset provides a valuable resource for studying IRF4-mediated gene regulatory programs in pro- and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna Gabele
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mert Cihan
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Assel Nurbekova
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Karolina Romaniuk
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sarah Dietzen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Novo Nordisk Pharma GmbH, 55124 Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Georg Bündgen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maxim Emelianov
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gregory Harms
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Krishnaraj Rajalingam
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tanja Ziesmann
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin Pape
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - David Gomez-Zepeda
- Helmholtz Institute for Translational Oncology, 55131 Mainz, Germany; Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Kathrin Braband
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Niels Lemmermann
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute of Virology, Medical Faculty, University Bonn, 53127 Bonn, Germany
| | - Stefan Bittner
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Helmholtz Institute for Translational Oncology, 55131 Mainz, Germany; Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Katja Luck
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
19
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
20
|
Llibre A, Kucuk S, Gope A, Certo M, Mauro C. Lactate: A key regulator of the immune response. Immunity 2025; 58:535-554. [PMID: 40073846 DOI: 10.1016/j.immuni.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities. These properties have been particularly studied in the context of both adaptive and innate immune responses. Here, we review the diverse roles of lactate in the regulation of the immune system during homeostasis and disease pathogenesis (including cancer, infection, cardiovascular diseases, and autoimmunity). Furthermore, we describe recently proposed therapeutic interventions for manipulating lactate metabolism in human diseases.
Collapse
Affiliation(s)
- Alba Llibre
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Salih Kucuk
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Atrayee Gope
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
Duan X, Lv X, Wang X, Zhang Y, Hu Y, Li H, Zhou Y, Jing Y. Impact of immune cell metabolism on membranous nephropathy and prospective therapy. Commun Biol 2025; 8:405. [PMID: 40065158 PMCID: PMC11893770 DOI: 10.1038/s42003-025-07816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure. Central to MN is immune system dysfunction, particularly the dysregulation of B and T cell responses. B cells contribute to renal injury through the production of autoantibodies, particularly IgG targeting the phospholipase A2 receptor (PLA2R) on podocytes, while T cells modulate immune responses that influence disease progression. Metabolic reprogramming alters lymphocyte survival, differentiation, proliferation, and function, potentially triggering autoimmune processes. Although the link between immune cell metabolism and MN remains underexplored, this review highlights recent advances in understanding immune metabolism and its role in MN. These insights may provide novel biomarkers and therapeutic strategies for MN treatment.
Collapse
Affiliation(s)
- Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
22
|
Wilander BA, Rathmell JC. Metabolic and stress response adaptations in T cells to fever and physiological heat. Trends Immunol 2025; 46:195-205. [PMID: 39984354 PMCID: PMC11922645 DOI: 10.1016/j.it.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
Fevers are an ancient feature of the inflammatory microenvironment. While fevers may improve the immune response to pathogens, mechanisms are unclear. We explore recent studies of how fever-range temperatures inform mammalian T cell metabolism, differentiation, and stress responses. Recent evidence indicates that metabolic programs initiated by fever are maintained upon return to thermo-normality, potentially providing a lasting benefit. Despite its impact, temperature remains overlooked and warrants further study. This is especially apparent when considering the wide temperature differential between tissues within the body and during inflammatory disease progression. We propose that differences in the metabolic and stress responses between T cell subsets upon thermal stress contribute to determining immune cell makeup and fate during inflammation.
Collapse
Affiliation(s)
- Benjamin A Wilander
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
23
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
24
|
Hisada R, Kono M. Recent advances in immunometabolism in rheumatic diseases. Curr Opin Rheumatol 2025; 37:142-148. [PMID: 39513377 DOI: 10.1097/bor.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE OF REVIEW Aberrant autoreactive innate and adaptive immune responses cause systemic autoimmune diseases. Autoimmunity has been linked to abnormal metabolic states, and immunometabolism has emerged as a critical field in understanding the pathogenesis of rheumatic diseases. We aimed to explore the latest research on metabolic reprogramming in various immune cell types, including T cells, B cells, neutrophils, dendritic cells, monocytes, and macrophages, in the context of rheumatic diseases. RECENT FINDINGS Each immune cell utilizes preferred metabolic pathways, and the cell activation dramatically modifies metabolic status. The inhibition of these pathways alters cell survival, differentiation, proliferation, and cytokine production - all of which contribute to rheumatic disease progression. SUMMARY Targeting metabolic pathways or introducing anti-inflammatory metabolites, such as itaconate, could be novel therapeutic strategies for rheumatic diseases. Further research should focus on strategies for translating basic research findings to bedside applications.
Collapse
Affiliation(s)
- Ryo Hisada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
25
|
Cassina P, Miquel E, Martínez-Palma L, Cassina A. Mitochondria and astrocyte reactivity: Key mechanism behind neuronal injury. Neuroscience 2025; 567:227-234. [PMID: 39788313 DOI: 10.1016/j.neuroscience.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system. Although astrocytes are typically considered to exhibit low mitochondrial respiratory chain activity, they possess a noteworthy mitochondrial network. Interestingly, both the morphology and activity of these organelles change following glial reactivity. Despite receiving less attention compared to studies on neuronal mitochondria, recent studies indicate that mitochondria play a crucial role in driving the transition of astrocytes from a quiescent to a reactive state in various neurological disorders. Notably, stimulating mitochondria in astrocytes has been shown to reduce damage associated with the neurodegenerative disease amyotrophic lateral sclerosis. Here, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage. In this review, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Departemento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
26
|
Kim J, Li J, Wei J, Lim SA. Regulatory T Cell Metabolism: A Promising Therapeutic Target for Cancer Treatment? Immune Netw 2025; 25:e13. [PMID: 40078783 PMCID: PMC11896657 DOI: 10.4110/in.2025.25.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining immune homeostasis by suppressing excessive immune responses. In the context of cancer, however, Tregs promote immune evasion and tumor progression, particularly through their unique adaptations within the tumor microenvironment (TME). Recent research has emphasized how metabolic characteristics shape Treg activation, migration, and immunosuppressive function, revealing the impact of metabolic pathways on Treg fitness in homeostasis and within the TME. In this review, we first provide an overview of Tregs in cancer immunology, discussing their immunosuppressive roles and properties specific to the TME. We then examine the metabolic requirements for Treg activation and migration under normal conditions, followed by a discussion of how hypoxia, lactate accumulation, nutrient limitation, oxidative stress, and other TME-specific factors alter Treg metabolism and contribute to cancer immune evasion. Finally, we explore therapeutic strategies that target Treg metabolism within the TME, including pharmacological modulation of specific metabolic pathways to diminish Treg-mediated immunosuppression. Thus, we could suggest future directions and clinical implications for Treg-targeted metabolic modulation as a complementary approach in cancer treatment, setting the stage for novel strategies in immunotherapy.
Collapse
Affiliation(s)
- Jihyoun Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Jiaoran Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Seon Ah Lim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
27
|
Lu Y, Wang Y, Ruan T, Wang Y, Ju L, Zhou M, Liu L, Yao D, Yao M. Immunometabolism of Tregs: mechanisms, adaptability, and therapeutic implications in diseases. Front Immunol 2025; 16:1536020. [PMID: 39917294 PMCID: PMC11798928 DOI: 10.3389/fimmu.2025.1536020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Immunometabolism is an emerging field that explores the intricate interplay between immune cells and metabolism. Regulatory T cells (Tregs), which maintain immune homeostasis in immunometabolism, play crucial regulatory roles. The activation, differentiation, and function of Tregs are influenced by various metabolic pathways, such as the Mammalian targets of rapamycin (mTOR) pathway and glycolysis. Correspondingly, activated Tregs can reciprocally impact these metabolic pathways. Tregs also possess robust adaptive capabilities, thus enabling them to adapt to various microenvironments, including the tumor microenvironment (TME). The complex mechanisms of Tregs in metabolic diseases are intriguing, particularly in conditions like MASLD, where Tregs are significantly upregulated and contribute to fibrosis, while in diabetes, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), they show downregulation and reduced anti-inflammatory capacity. These phenomena suggest that the differentiation and function of Tregs are influenced by the metabolic environment, and imbalances in either can lead to the development of metabolic diseases. Thus, moderate differentiation and inhibitory capacity of Tregs are critical for maintaining immune system balance. Given the unique immunoregulatory abilities of Tregs, the development of targeted therapeutic drugs may position them as novel targets in immunotherapy. This could contribute to restoring immune system balance, resolving metabolic dysregulation, and fostering innovation and progress in immunotherapy.
Collapse
|
28
|
Min F, Wang Z, Shao H, Zheng S, Cheng Y, Liu W, Wang J, Wang M, Wu Y, Chen H. Oral exposure to ovalbumin alters glucose metabolism in sensitized mice: upregulation of HIF-1α-mediated glycolysis. Food Funct 2025; 16:628-639. [PMID: 39711353 DOI: 10.1039/d4fo04019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Food allergies are pathological adverse reactions against harmless dietary proteins. While studies have shown the involvement of host metabolic changes (e.g., lipid metabolism and amino acid metabolism) in the development of food allergy (FA), the adaptive changes in glucose metabolism induced by food allergen exposure remain largely unclear. In this study, BALB/c mice were sensitized intraperitoneally with an ovalbumin (OVA)/aluminum adjuvant, followed by oral OVA challenges to induce anaphylaxis. Increased levels of serum OVA-specific IgE and MCPT-1, and Th2 response bias were also presented in FA mice. Subsequently, the intestinal untargeted metabolomic analysis revealed the signature enrichment of glycolysis, manifested by increases in glycolytic metabolites including glucose-6-phosphate, fructose-6-phosphate, 2-phosphoglycerate, and lactate in FA mice. Consistently, the serum lactate level was found to be significantly elevated in allergic mice. Oral administration of OVA also upregulated the expression of critical metabolic enzymes in glycolysis, namely hexokinase 2, phosphoglycerate mutase 1, and lactate dehydrogenase. Moreover, the hypoxia inducible factor-1 (HIF-1) signaling pathway was activated in FA mice, and the expression of HIF-1α, known as the upstream regulator of glycolysis, was increased after oral OVA challenges. In vitro inhibition of HIF-1α was found to impede mast cell inflammatory responses to allergens. In summary, this study demonstrated that OVA-induced FA exhibited a glucose metabolic feature of HIF-1α-mediated glycolysis upregulation, suggesting the potential of HIF-1α/glycolysis targeted strategies in the alleviation of FA.
Collapse
Affiliation(s)
- Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Huming Shao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Shuangyan Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, PR China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China
| | - Youdou Cheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Jian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, PR China
| | - Meini Wang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, PR China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, PR China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, PR China
| |
Collapse
|
29
|
Hu W, Li F, Liang Y, Liu S, Wang S, Shen C, Zhao Y, Wang H, Zhang Y. Glut3 overexpression improves environmental glucose uptake and antitumor efficacy of CAR-T cells in solid tumors. J Immunother Cancer 2025; 13:e010540. [PMID: 39824530 PMCID: PMC11749199 DOI: 10.1136/jitc-2024-010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors. However, the impact of glucose restriction remains unknown in CAR-T cell therapy. METHODS Glucose transporters were detected and overexpressed in CAR-T cells. The impacts of glucose restriction on CAR-T cells were checked in vitro and in vivo. RESULTS Glucose restriction significantly decreased CAR-T cell activation, effector function, and expansion. CAR-T cells expressed high levels of the glucose transporter Glut1, which has a low affinity for glucose. Overexpression of Glut1 failed to improve CAR-T cell function under glucose-restricted conditions. In contrast, the function and antitumor potential of CAR-T cells was enhanced by the overexpression of Glut3, which has the highest affinity for glucose among the Glut transporter family and is expressed in minor parts of CAR-T cells. Glut3-overexpressing CAR-T cells demonstrated increased tumoricidal efficacy in multiple xenografts and syngenetic mouse models. Furthermore, Glut3 overexpression activated the PI3K/Akt pathway and increased OXPHOS and mitochondrial fitness. CONCLUSIONS We provide a direct and effective approach to enhance low glucose uptake levels by CAR-T cells and improve their antitumor efficacy against solid tumors.
Collapse
Affiliation(s)
- Wenhao Hu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Feng Li
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Zhongyuan Cell Therapy and Immunotherapy Laboratory, Henan Academy of Innovations in Medical Science, Zhengzhou, People's Republic of China
| | - Yue Liang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shumin Wang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chunyi Shen
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuyu Zhao
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Zhongyuan Cell Therapy and Immunotherapy Laboratory, Henan Academy of Innovations in Medical Science, Zhengzhou, People's Republic of China
| | - Hui Wang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Zhongyuan Cell Therapy and Immunotherapy Laboratory, Henan Academy of Innovations in Medical Science, Zhengzhou, People's Republic of China
- School of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
30
|
Yang B, Li Z, Li P, Liang B, Liu Y, Feng E. Role of T cell metabolism in brain tumor development: a genetic and metabolic approach. BMC Neurol 2025; 25:12. [PMID: 39780065 PMCID: PMC11708232 DOI: 10.1186/s12883-024-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Malignant brain tumors are among the most lethal cancers. Recent studies emphasized the crucial involvement of the immune system, especially T cells, in driving tumor progression and influencing patient outcomes. The emerging field of immunometabolism has shown that metabolic pathways play a pivotal role in regulating immune responses within the tumor microenvironment. This study aims to clarify the relationships between specific T cell phenotypes, circulating metabolites, and malignant brain tumors. METHODS We utilized a multiple mendelian randomization approach to investigate the associations between T cell phenotypes and malignant brain tumors, as well as the role of plasma metabolites in mediating these interactions. Instrumental variables were selected based on stringent criteria, and multiple mendelian randomization methods were utilized to identify causal pathways and metabolites potentially mediating these effects. RESULTS Our analysis identified significant associations between seven distinct T cell phenotypes, including various CD8 + and regulatory T cell subsets, and the presence of malignant brain tumors. We also identified 87 plasma metabolites correlated with these tumors. Notably, metabolites such as octadecanedioylcarnitine (C18-DC) and eicosanedioate (C20-DC) were implicated in modulating the risk of developing malignant brain tumors. Furthermore, metabolites such as 5-dodecenoate (12:1n7) and arachidonate (20:4n6) were found to influence tumor risk, particularly in relation to CD28 - CD8 + T cells. CONCLUSION The study identifies key T cell phenotypes and plasma metabolites involved in the pathogenesis of malignant brain tumors, offering potential biomarkers and therapeutic targets for future interventions.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Zhenyu Li
- Department of Neonatology , The First Hospital of Jilin University, Changchun, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Bo Liang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Yuhan Liu
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
31
|
Zhao X, Zhang J, Li C, Kuang W, Deng J, Tan X, Li C, Li S. Mitochondrial mechanisms in Treg cell regulation: Implications for immunotherapy and disease treatment. Mitochondrion 2025; 80:101975. [PMID: 39491776 DOI: 10.1016/j.mito.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis and preventing autoimmune diseases. Recent advances in immunometabolism have revealed the pivotal role of mitochondrial dynamics and metabolism in shaping Treg functionality. Tregs depend on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to support their suppressive functions and long-term survival. Mitochondrial processes such as fusion and fission significantly influence Treg activity, with mitochondrial fusion enhancing bioenergetic efficiency and reducing reactive oxygen species (ROS) production, thereby promoting Treg stability. In contrast, excessive mitochondrial fission disrupts ATP synthesis and elevates ROS levels, impairing Treg suppressive capacity. Furthermore, mitochondrial ROS act as critical signaling molecules in Treg regulation, where controlled levels stabilize FoxP3 expression, but excessive ROS leads to mitochondrial dysfunction and immune dysregulation. Mitophagy, as part of mitochondrial quality control, also plays an essential role in preserving Treg function. Understanding the intricate interplay between mitochondrial dynamics and Treg metabolism provides valuable insights for developing novel therapeutic strategies to treat autoimmune disorders and enhance immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weiying Kuang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianghong Deng
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Coulombeau R, Selck C, Giang N, Al‐Mohammad A, Ng N, Maher AK, Argüello R, Scalfari A, Varley J, Nicholas R, Dominguez‐Villar M. Sphingosine-1-Phosphate Signalling Inhibition Suppresses Th1-Like Treg Generation by Reversing Mitochondrial Uncoupling. Immunology 2025; 174:153-166. [PMID: 39444366 PMCID: PMC11652410 DOI: 10.1111/imm.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory environments induce the generation of dysfunctional IFNγ+T-bet+FOXP3+ Th1-like Tregs, which show defective function and are found in autoimmune conditions including multiple sclerosis (MS). The pathways that control the generation of Th1-like Tregs are not well understood. Sphingosine-1-phosphate (S1P) signalling molecules are upregulated in Th1-like Tregs, and in vivo S1P inhibition with Fingolimod (FTY720) inhibits the expression of genes responsible for Treg plasticity in MS patients. However, the underlying mechanisms are unknown. Here we show that S1P signalling inhibition by FTY720 inhibits the generation of Th1-like Tregs and rescues their suppressive function. These effects are mediated by a decrease in mTORC1 signalling and reversal of the mitochondrial uncoupling that Tregs undergo during their reprogramming into Th1-like Tregs in vitro. Finally, these results are validated in in vivo-generated Th1-like Tregs, as Tregs from MS patients treated with FTY720 display decreased Th1-like Treg frequency, increased suppressive function and mitochondrial metabolism rebalance. These results highlight the involvement of mitochondrial uncoupling in Treg reprogramming and identify S1P signalling inhibition as a target to suppress the generation of dysfunctional Th1-like Tregs.
Collapse
Affiliation(s)
- Rachel Coulombeau
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Claudia Selck
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Nicolas Giang
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | | | - Natalie Ng
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Allison K. Maher
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| | - Rafael Argüello
- Immunometabolism and TranslationAix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Antonio Scalfari
- Centre of Neuroscience, Department of MedicineCharing Cross HospitalLondonUK
| | - James Varley
- Centre of NeuroscienceImperial College Healthcare NHS TrustLondonUK
| | - Richard Nicholas
- Centre of NeuroscienceImperial College Healthcare NHS TrustLondonUK
| | | |
Collapse
|
33
|
Griffin KV, Saunders MN, Lyssiotis CA, Shea LD. Engineering immunity using metabolically active polymeric nanoparticles. Trends Biotechnol 2024:S0167-7799(24)00345-7. [PMID: 39732608 DOI: 10.1016/j.tibtech.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes. In this review we discuss the role that polymeric NPs can play in shaping immunometabolism and subsequent immune system activity through particle-mediated delivery of metabolically active agents as either structural components or cargo.
Collapse
Affiliation(s)
- Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Sang Q, Kang C, Liu D, Wang L, Liu X, Li J. Polyphyllin VII ameliorates neuroinflammation and brain injury via modulating Treg/Th17 balance in a mouse model of cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 143:113423. [PMID: 39447415 DOI: 10.1016/j.intimp.2024.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Dysregulation of Th17 and Treg cells contributes to the pathophysiology of cerebral ischemia. Metabolic changes of peripheral CD4+ T cells lead to the imbalance of Treg/Th17 polarization, which represents a promising strategy for post-stroke therapy. Polyphyllin VII (PVII), a steroidal saponin extracted from traditional Chinese herb Rhizoma Paridis, has multiple bioactivities, but the potential function of PVII in cerebral ischemia-reperfusion injury is not elucidated yet. In our study, a mouse transient middle cerebral artery occlusion (MCAO) model was constructed. TTC staining, H&E staining, TUNEL staining, ELISA assay, flow cytometry, western blot, RT-qPCR, Open-field test, Morris water maze test, hanging wire test, rotarod test and foot-fault test were performed to evaluate the potential function of PVII in MCAO mice. We found that PVII showed protective effects on cerebral ischemia-reperfusion injury by reducing infarct volume, ameliorating brain injury and neuroinflammation, and improving long-term functional recovery of MCAO mice. PVII promoted Treg infiltration and suppressed infiltration of Th1/Th17 cells in ischemic brain in vivo. Moreover, PVII impaired peripheral CD4+ T cell activation and modulated Treg/Th17 differentiation in vitro. Mechanistically, PVII suppressed mTORC1 activation to influence glycolytic metabolism and ROS generation of T cells, thus leads to the imbalance of Treg/Th17 polarization towards Treg skewed. Furthermore, reactivation of mTORC1 by MHY1485 abolished the influence of PVII on brain injury and neuroinflammation in MCAO mice. Our data provided a novel role of PVII in cerebral ischemia-reperfusion injury via manipulating Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
35
|
Xue Q, Peng W, Zhang S, Wei X, Ye L, Wang Z, Xiang X, Liu Y, Wang H, Zhou Q. Lactylation-driven TNFR2 expression in regulatory T cells promotes the progression of malignant pleural effusion. J Immunother Cancer 2024; 12:e010040. [PMID: 39721754 PMCID: PMC11683941 DOI: 10.1136/jitc-2024-010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood. METHODS Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2+ Treg cells and TNFR2- Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression. RESULTS Treg cells with high TNFR2 expression exhibited elevated levels of immune checkpoint molecules. Additionally, the high expression of TNFR2 on Treg cells was positively correlated with a poor prognosis in MPE patients. Moreover, we revealed that lactate upregulated TNFR2 expression on Treg cells, thereby enhancing their immunosuppressive function in MPE. Mechanistically, lactate modulated the gene transcription of transcription factor nuclear factor-κB p65 (NF-κB p65) through histone H3K18 lactylation (H3K18la), subsequently upregulating the gene expression of TNFR2 and expediting the progression of MPE. Notably, lactate metabolism blockade combined with immune checkpoint blockade (ICB) therapy effectively enhanced the efficacy of ICB therapy, prolonged the survival time of MPE mice, and improved immunosuppression in the microenvironment of MPE. CONCLUSIONS The study explains the mechanism that regulates TNFR2 expression on Treg cells and its function in MPE progression, providing novel insights into the epigenetic regulation of tumor development and metabolic strategies for MPE treatment by targeting lactate metabolism in Treg cells.
Collapse
Affiliation(s)
- Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
37
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
38
|
Brescia C, Audia S, Pugliano A, Scaglione F, Iuliano R, Trapasso F, Perrotti N, Chiarella E, Amato R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS 2024; 132:1026-1045. [PMID: 38239016 DOI: 10.1111/apm.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 11/26/2024]
Abstract
The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Alessia Pugliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Federica Scaglione
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| |
Collapse
|
39
|
Wang S, Liu C, Yang C, Jin Y, Cui Q, Wang D, Ge T, He G, Li W, Zhang G, Liu A, Xia Y, Liu Y, Yu J. PI3K/AKT/mTOR and PD‑1/CTLA‑4/CD28 pathways as key targets of cancer immunotherapy (Review). Oncol Lett 2024; 28:567. [PMID: 39390982 PMCID: PMC11465225 DOI: 10.3892/ol.2024.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 10/12/2024] Open
Abstract
T cells play an important role in cancer, and energy metabolism can determine both the proliferation and differentiation of T cells. The inhibition of immune checkpoint molecules programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) are a promising cancer treatment. In recent years, research on CD28 has increased. Although numerous reports involve CD28 and its downstream PI3K/AKT/mTOR signaling mechanisms in T cell metabolism, they have not yet been elucidated. A literature search strategy was used for the databases PubMed, Scopus, Web of Science and Cochrane Library to ensure broad coverage of medical and scientific literature, using a combination of keywords including, but not limited to, 'lung cancer' and 'immunotherapy'. Therefore, the present study reviewed the interaction and clinical application of the PD-1/CTLA-4/CD28 and PI3K/AKT/mTOR pathways in T cells, aiming to provide a theoretical basis for immunotherapy in clinical cancer patients.
Collapse
Affiliation(s)
- Shuangcui Wang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Changyu Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Chenxin Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yutong Jin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qian Cui
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Dong Wang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ting Ge
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Guixin He
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Wentao Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Guan Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Aqing Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Ying Xia
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Yunhe Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Jianchun Yu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| |
Collapse
|
40
|
Sharma A, Sharma G, Gao Z, Li K, Li M, Wu M, Kim CJ, Chen Y, Gautam A, Choi HB, Kim J, Kwak JM, Lam SM, Shui G, Paul S, Feng Y, Kang K, Im SH, Rudra D. Glut3 promotes cellular O-GlcNAcylation as a distinctive tumor-supportive feature in Treg cells. Cell Mol Immunol 2024; 21:1474-1490. [PMID: 39468304 PMCID: PMC11606946 DOI: 10.1038/s41423-024-01229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Regulatory T cells (Tregs) establish dominant immune tolerance but obstruct tumor immune surveillance, warranting context-specific mechanistic insights into the functions of tumor-infiltrating Tregs (TIL-Tregs). We show that enhanced posttranslational O-linked N-acetylglucosamine modification (O-GlcNAcylation) of cellular factors is a molecular feature that promotes a tumor-specific gene expression signature and distinguishes TIL-Tregs from their systemic counterparts. We found that altered glucose utilization through the glucose transporter Glut3 is a major facilitator of this process. Treg-specific deletion of Glut3 abrogates tumor immune tolerance, while steady-state immune homeostasis remains largely unaffected in mice. Furthermore, by employing mouse tumor models and human clinical data, we identified the NF-κB subunit c-Rel as one such factor that, through Glut3-dependent O-GlcNAcylation, functionally orchestrates gene expression in Tregs at tumor sites. Together, these results not only identify immunometabolic alterations and molecular events contributing to fundamental aspects of Treg biology, specifically at tumor sites but also reveal tumor-specific cellular properties that can aid in the development of Treg-targeted cancer immunotherapies.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Innovation Research Center for Biofuture Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Garima Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- ImmmunoBiome Inc, Pohang, 37673, Republic of Korea
| | - Zhen Gao
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke Li
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mutong Li
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Menglin Wu
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yingjia Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, Tübingen, 72076, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | | | - Jin Kim
- Department of Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jung-Myun Kwak
- Department of Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
- Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Sandip Paul
- Center for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- ImmmunoBiome Inc, Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Dipayan Rudra
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
41
|
Wragg KM, Worley MJ, Deng JC, Salmon M, Goldstein DR. Deficiency in the mitophagy mediator Parkin accelerates murine skin allograft rejection. Am J Transplant 2024; 24:2174-2186. [PMID: 39142471 PMCID: PMC11588513 DOI: 10.1016/j.ajt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Alterations in mitochondrial function and associated quality control programs, including mitochondrial-specific autophagy, termed mitophagy, are gaining increasing recognition in the context of disease. However, the role of mitophagy in organ transplant rejection remains poorly understood. Using mice deficient in Parkin, a ubiquitin ligase that tags damaged or dysfunctional mitochondria for autophagic clearance, we assessed the impact of Parkin-dependent mitophagy on skin-graft rejection. We observed accelerated graft loss in Parkin-deficient mice across multiple skin graft models. Immune cell distributions posttransplant were largely unperturbed compared to wild-type; however, the CD8+ T cells of Parkin-deficient mice expressed more T-bet, IFNγ, and Ki67, indicating greater priming toward effector function. This was accompanied by increased circulating levels of IL-12p70 in Parkin-deficient mice. Using a mixed leukocyte reaction, we demonstrated that naïve Parkin-deficient CD4+ and CD8+ T cells exhibit enhanced activation marker expression and proliferative responses to alloantigen, which were attenuated with administration of a pharmacological mitophagy inducer (p62-mediated mitophagy inducer), known to increase mitophagy in the absence of a functional PINK1-Parkin pathway. These findings indicate a role for Parkin-dependent mitophagy in curtailing skin-graft rejection.
Collapse
Affiliation(s)
- Kathleen M Wragg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Worley
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Jane C Deng
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA; Veterans Affairs Ann Arbor, Ann Arbor, Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| | - Daniel R Goldstein
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA; Department of Medicine, Cardiology Division, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
42
|
Yang MQ, Zhang SL, Sun L, Huang LT, Yu J, Zhang JH, Tian Y, Han CB, Ma JT. Targeting mitochondria: restoring the antitumor efficacy of exhausted T cells. Mol Cancer 2024; 23:260. [PMID: 39563438 PMCID: PMC11575104 DOI: 10.1186/s12943-024-02175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Immune checkpoint blockade therapy has revolutionized cancer treatment, but resistance remains prevalent, often due to dysfunctional tumor-infiltrating lymphocytes. A key contributor to this dysfunction is mitochondrial dysfunction, characterized by defective oxidative phosphorylation, impaired adaptation, and depolarization, which promotes T cell exhaustion and severely compromises antitumor efficacy. This review summarizes recent advances in restoring the function of exhausted T cells through mitochondria-targeted strategies, such as metabolic remodeling, enhanced biogenesis, and regulation of antioxidant and reactive oxygen species, with the aim of reversing the state of T cell exhaustion and improving the response to immunotherapy. A deeper understanding of the role of mitochondria in T cell exhaustion lays the foundation for the development of novel mitochondria-targeted therapies and opens a new chapter in cancer immunotherapy.
Collapse
Affiliation(s)
- Mei-Qi Yang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jing Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jie-Hui Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
43
|
Masuyama S, Mizui M, Morita M, Shigeki T, Kato H, Yamamoto T, Sakaguchi Y, Inoue K, Namba-Hamano T, Matsui I, Okuno T, Yamamoto R, Takashima S, Isaka Y. Enhanced fatty acid oxidation by selective activation of PPARα alleviates autoimmunity through metabolic transformation in T-cells. Clin Immunol 2024; 268:110357. [PMID: 39243921 DOI: 10.1016/j.clim.2024.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
While fatty acid oxidation (FAO) in mitochondria is a primary energy source for quiescent lymphocytes, the impact of promoting FAO in activated lymphocytes undergoing metabolic reprogramming remains unclear. Here, we demonstrate that pemafibrate, a selective PPARα modulator used clinically for the treatment of hypertriglyceridemia, transforms metabolic system of T-cells and alleviates several autoimmune diseases. Pemafibrate suppresses Th17 cells but not Th1 cells, through the inhibition of glutaminolysis and glycolysis initiated by enhanced FAO. In contrast, a conventional PPARα agonist fenofibrate significantly inhibits cell growth by restraining overall metabolisms even at a dose insufficient to induce fatty acid oxidation. Clinically, patients receiving pemafibrate showed a significant decrease of Th17/Treg ratio in peripheral blood. Our results suggest that augmented FAO by pemafibrate-mediated selective activation of PPARα restrains metabolic programs of Th17 cells and could be a viable option for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Satoshi Masuyama
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Masashi Morita
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Nephrology, NHO Osaka Minami Medical Center, Japan
| | - Takatomo Shigeki
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryohei Yamamoto
- Department of Health Promotion Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
44
|
Fox AC, Blazeck J. Applying metabolic control strategies to engineered T cell cancer therapies. Metab Eng 2024; 86:250-261. [PMID: 39490640 PMCID: PMC11611646 DOI: 10.1016/j.ymben.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are an engineered immunotherapy that express synthetic receptors to recognize and kill cancer cells. Despite their success in treating hematologic cancers, CAR T cells have limited efficacy against solid tumors, in part due to the altered immunometabolic profile within the tumor environment, which hinders T cell proliferation, infiltration, and anti-tumor activity. For instance, CAR T cells must compete for essential nutrients within tumors, while resisting the impacts of immunosuppressive metabolic byproducts. In this review, we will describe the altered metabolic features within solid tumors that contribute to immunosuppression of CAR T cells. We'll discuss how overexpression of key metabolic enzymes can enhance the ability of CAR T cells to resist corresponding tumoral metabolic changes or even revert the metabolic profile of a tumor to a less inhibitory state. In addition, metabolic remodeling is intrinsically linked to T cell activity, differentiation, and function, such that metabolic engineering strategies can also promote establishment of more or less efficacious CAR T cell phenotypes. Overall, we will show how applying metabolic engineering strategies holds significant promise in improving CAR T cells for the treatment of solid tumors.
Collapse
Affiliation(s)
- Andrea C Fox
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 303332, USA.
| |
Collapse
|
45
|
Chowdhury NU, Cephus JY, Henriquez Pilier E, Wolf MM, Madden MZ, Kuehnle SN, McKernan KE, Jennings EQ, Arner EN, Heintzman DR, Chi C, Sugiura A, Stier MT, Voss K, Ye X, Scales K, Krystofiak ES, Gandhi VD, Guzy RD, Cahill KN, Sperling AI, Peebles RS, Rathmell JC, Newcomb DC. Androgen signaling restricts glutaminolysis to drive sex-specific Th17 metabolism in allergic airway inflammation. J Clin Invest 2024; 134:e177242. [PMID: 39404231 PMCID: PMC11601904 DOI: 10.1172/jci177242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Female individuals have an increased prevalence of many Th17 cell-mediated diseases, including asthma. Androgen signaling decreases Th17 cell-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17 cell-mediated airway inflammation. We show that Th17 cells from male humans and mice had decreased glutaminolysis compared with female individuals, and that AR signaling attenuated Th17 cell mitochondrial respiration and glutaminolysis in mice. Using allergen-induced airway inflammation mouse models, we determined that females had a selective reliance upon glutaminolysis for Th17-mediated airway inflammation, and that AR signaling attenuated glutamine uptake in CD4+ T cells by reducing expression of glutamine transporters. In patients with asthma, circulating Th17 cells from men had minimal reliance upon glutamine uptake compared to Th17 cells from women. AR signaling thus attenuates glutaminolysis, demonstrating sex-specific metabolic regulation of Th17 cells with implications for Th17 or glutaminolysis targeted therapeutics.
Collapse
Affiliation(s)
- Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | | | - Emely Henriquez Pilier
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Melissa M. Wolf
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Shelby N. Kuehnle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaitlin E. McKernan
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Erin Q. Jennings
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emily N. Arner
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Darren R. Heintzman
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Matthew T. Stier
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology
| | - Kennedi Scales
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Evan S. Krystofiak
- Department of Cellular and Molecular Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vivek D. Gandhi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert D. Guzy
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Katherine N. Cahill
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne I. Sperling
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - R. Stokes Peebles
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
| | - Dawn C. Newcomb
- Department of Pathology, Microbiology, and Immunology
- Vanderbilt Center for Immunobiology, and
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Ding C, Gong Q, Wan S. Mediation effect of plasma metabolites on the relationship between immune cells and the risk of prostatitis: A study by bidirectional 2-sample and Bayesian-weighted Mendelian randomization. Medicine (Baltimore) 2024; 103:e40024. [PMID: 39465812 PMCID: PMC11479442 DOI: 10.1097/md.0000000000040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
According to the findings of multiple observational studies, immune disorder was a risk factor for prostatitis. However, it remained unknown whether there was a direct causal relationship between immune cells and prostatitis or whether this relationship was mediated by plasma metabolites. Based on the pooled data of a genome-wide association study (GWAS), a genetic variant was used to predict the effects of 731 immunophenotypes on the risk of prostatitis and determine whether the effects were mediated by 1400 metabolites. The bidirectional 2-sample Mendelian randomization (MR) method was adopted to uncover the causal relationship between immunophenotypes and prostatitis. Subsequently, a 2-step MR method was employed to evaluate whether the metabolites mediated this causal relationship and quantify the mediating effects and the corresponding ratios. In addition, the Bayesian-weighted Mendelian randomization (BWMR) method was employed to verify the results. Among the 731 immunophenotypes analyzed, 16 had causal relationships with the risk of prostatitis, including 11 with positive correlations (P < .05, beta > 0) and 5 with negative correlations (P < .05, beta < 0). The MR analysis screened out 9 metabolites related to the risk of prostatitis. The X - 24344 levels mediated the causal relationship between CD3 on CD39+ activated Treg and prostatitis (mediation effect: 0.01; ratio: 9.82%). Both histidine betaine (hercynine) levels and the proline-to-glutamate ratio mediated the causal relationship between CD14-CD16+ monocyte absolute count and prostatitis, with the mediation effects of -0.016 (14.20%) and -0.008 (7.24%), respectively. The glutamine degradant levels mediated the causal relationship between HLA DR+ CD4+ %T cells and prostatitis, with a mediation effect of -0.012, accounting for 8.07% of the total. The present study indicated that the immune cell subsets predicted based on gene expression profiles were potentially beneficial or harmful risk factors of prostatitis, and plasma metabolites may serve as the mediating factors of the relationship. The study thus shed light on deciphering the immunologic mechanism of prostatitis.
Collapse
Affiliation(s)
- Chao Ding
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Quanhua Gong
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Shui Wan
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| |
Collapse
|
47
|
Khamis AA, Sharshar AH, Mohamed TM, Abdelrasoul EA, Salem MM. Visnagin alleviates rheumatoid arthritis via its potential inhibitory impact on malate dehydrogenase enzyme: in silico, in vitro, and in vivo studies. GENES & NUTRITION 2024; 19:20. [PMID: 39390383 PMCID: PMC11465529 DOI: 10.1186/s12263-024-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder. The present study aimed to evaluate the in silico, in vitro, and in vivo inhibitory effect of visnagin on malate dehydrogenase activity and elucidate its inflammatory efficacy when combined with methotrexate in the RA rat model. The molecular docking, ADMET simulations, MDH activity, expression, and X-ray imaging were detected. Moreover, CRP, RF, (anti-CCP) antibody, (TNF-α), (IL-6), (IL-17), and (IL-10) were evaluated. The expression levels of MMP3 and FOXP3 genes and CD4, CD25, and CD127 protein levels were assessed. Histological assessment of ankle joints was evaluated. The results revealed that visnagin showed reversible competitive inhibition on MDH with inhibitory constant (Ki) equal to 141 mM with theoretical IC50 equal to 1202.7 mM, LD50 equal to 155.39 mg/kg, and LD25 equal to 77.69 mg/kg. In vivo studies indicated that visnagin exhibited anti-inflammatory effects through decreasing MDH1 activity and expression and induced proliferation of anti-inflammatory CD4+CD25+FOXP3 regulatory T cells with increasing the anti-inflammatory cytokine IL-10 levels. Moreover, visnagin reduced the levels of inflammatory cytokines and the immuno-markers. Our findings elucidate that visnagin exhibits an anti-inflammatory impact against RA through its ability to inhibit the MDH1 enzyme, improve methotrexate efficacy, and reduce oxidative stress.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Amira H Sharshar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Elsayed A Abdelrasoul
- Head Researcher of Special Food and Nutrition Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
48
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Wang Z, Li Z, Wang H, Wu Q, Geng Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis in Mice by Regulating Th17/Treg. Foods 2024; 13:3183. [PMID: 39410218 PMCID: PMC11475350 DOI: 10.3390/foods13193183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study was to investigate the effects of the polysaccharides (PPM60-III) and sulfated polysaccharides (SPPM60-III) of pine pollen on the Th17/Treg balance, inflammatory cytokines, intestinal microbiota, and metabolite distribution in 3% DSS drinking water-induced UC mice. First of all, the physiological results showed that PPM60-III and SPPM60-III could alleviate UC, which was shown by the reduction in liver Treg cells, the rebalance of Th17/Treg, and the modulation of inflammatory cytokines. In addition, the 16S rRNA results showed that PPM60-III and SPPM60-III could decrease Beijerinck and Bifidobacterium, and increase Akkermansia, Escherichia coli, and Fidobacteria. Finally, the metabonomics results showed that PPM60-III and SPPM60-III also restored purine and glycerolipid metabolism, up-regulated nicotinate and nicotinamide metabolism and caffeine metabolism to inhibit inflammation. In conclusion, PPM60-III and SPPM60-III could inhibit UC by regulating gut bacteria composition and metabolite distribution; SPPM60-III showed better anti-colitis activity.
Collapse
Affiliation(s)
| | | | | | | | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, College of Life Science, Shandong Normal University, Jinan 250358, China; (Z.W.); (Z.L.); (H.W.); (Q.W.)
| |
Collapse
|
50
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|