1
|
Siegmann MJ, Parry S, Lark ARS, Mir FA, Choi J, Carpenter AH, Crowley EA, White CG, Kang J, Purdon PL, Nehs CJ. A ketogenic diet decreases sevoflurane-induced burst suppression in rats. Brain Res Bull 2025; 223:111274. [PMID: 40010575 PMCID: PMC11913213 DOI: 10.1016/j.brainresbull.2025.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The brain requires a continuous fuel supply to support cognition and can get energy from glucose and ketones. Dysregulated brain metabolism is thought to contribute to perioperative neurocognitive disorders and anesthesia-induced burst suppression. Therefore, we investigated the relationship between brain metabolites and neurophysiology during the behavioral states of sleep and anesthesia under a standard diet (SD) or a ketogenic diet (KD). METHODS We measured prefrontal cortex glucose, lactate, and electroencephalogram in Fischer344 rats during spontaneous sleep/wake followed by 3 % sevoflurane anesthesia. Nine rats were fed a KD and 8 rats a SD. To assess the role of adenosine receptor-mediated ketone activity on burst suppression, 5 additional rats on the KD received an intraperitoneal injection of vehicle or the adenosine A1 receptor antagonist, DPCPX, before 3 % sevoflurane. RESULTS Sevoflurane induced larger fluctuations in glucose (p < 0.001) and lactate (p = 0.015) concentrations compared to sleep as measured by the standard deviation (glucose 0.085 mM and lactate 0.16 mM in sleep/wake and 0.25 mM and 0.41 mM during sevoflurane respectively). Changes in glucose and lactate were closely tied to electrophysiological oscillations. Animals on the KD had reduced burst suppression ratio (mean 10 % in KD vs 30 % in SD) (p = 0.007) as well as increased time to loss of movement (mean 14 min in KD vs 8 min in SD) (p = 0.003) compared to SD. DPCPX in KD rats showed a trend to increased burst suppression, reduced the time to start of burst suppression (45 min in KD+vehicle to 37 min KD+DPCPX) (p = 0.007), and increased duration of burst suppression (49 min in KD+vehicle to 90 min in KD+DPCPX) (p = 0.046) compared to KD+vehicle. CONCLUSIONS It is thought that anesthesia-induced burst suppression reflects an underlying deficiency in brain energy. Accordingly, we found that upregulating ketones, which increase available brain ATP levels, delayed anesthetic induction and decreased burst suppression consistent with the idea that the underlying metabolic state of the brain influences an anesthetic's effect on the brain. These findings suggest that metabolic interventions could be useful therapeutic targets to modulate brain activity during sleep and anesthesia. Future studies will examine whether ketones can reduce the cognitive symptoms associated with postoperative delirium.
Collapse
Affiliation(s)
- Morgan J Siegmann
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Parry
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arianna R S Lark
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Fayaz A Mir
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Hardy Carpenter
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eliza A Crowley
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian G White
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick L Purdon
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Christa J Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
DiMaria S, Mangano N, Bruzzese A, Bartula B, Parikh S, Costa A. Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Curr Issues Mol Biol 2025; 47:202. [PMID: 40136457 PMCID: PMC11941548 DOI: 10.3390/cimb47030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Biomedical sciences have made immense progress and numerous discoveries aimed at improving the quality of life and life expectancy in modern times. Anesthesiology is typically tailored to individual patients as its clinical effects depend on multiple factors, including a patient's physiological and pathological states, age, environmental exposures, and genetic variations. Sex differences are also paramount for a complete understanding of the effects of specific anesthetic medications on men and women. However, women-specific research and the inclusion of women in clinical trials, specifically during child-bearing years, remain disproportionately low compared to the general population at large. This review describes and summarizes genetic variations, including sex differences, that affect responses to common anesthetic medications such as volatile anesthetics, induction agents, neuromuscular blocking drugs, opioids, and local anesthetics. It also discusses the influence of genetic variations on anesthesia outcomes, such as postoperative nausea and vomiting, allergic reactions, pain, depth of anesthesia, awareness under anesthesia and recall, and postoperative delirium.
Collapse
Affiliation(s)
- Stephen DiMaria
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Nicholas Mangano
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Adam Bruzzese
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Benjamin Bartula
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Shruti Parikh
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| |
Collapse
|
3
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
4
|
Naqui Xicota L, Cortès-Saladelafont E, Berrocal Acevedo E, Ros Peña A, Brussosa Ventura B, Porta Ribera R. Metabolopathy with characteristic clinical triad: Sengers syndrome. An Pediatr (Barc) 2024; 101:415-416. [PMID: 39609119 DOI: 10.1016/j.anpede.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/28/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Laura Naqui Xicota
- Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | | | | | - Andrea Ros Peña
- Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | |
Collapse
|
5
|
Scharenbrock AR, Borchardt LA, Olufs ZPG, Wassarman DA, Perouansky M. Links between mutations in functionally separate arms of mitochondrial complex I and responses to volatile anesthetics. Paediatr Anaesth 2024; 34:1240-1249. [PMID: 39329243 DOI: 10.1111/pan.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Individuals with mitochondrial defects, especially those in Complex I of the electron transport chain, exhibit behavioral hypersensitivity and toxicity to volatile anesthetics. In Drosophila melanogaster, mutation of ND23 (NDUFS8 in mammals), which encodes a subunit of the matrix arm of Complex I, sensitizes flies to toxicity from isoflurane but not an equipotent dose of sevoflurane. Also, in ND23 flies, both anesthetics activate expression of stress response genes, but to different extents. Here, we investigated the generality of these findings by examining flies mutant for ND2 (ND2 in mammals), which encodes a subunit of the membrane arm of Complex I. METHODS The serial anesthesia array was used to expose ND2del1 and ND2360114 flies to precise doses of isoflurane, sevoflurane, and oxygen. Behavioral sensitivity was assessed by a climbing assay and toxicity by percent mortality within 24 h of exposure. Changes in expression were determined by qRT-PCR of RNA isolated from heads at 0.5 h after anesthetic exposure. RESULTS Unlike ND2360114, ND2del1 did not affect behavioral sensitivity to isoflurane or sevoflurane. Furthermore, sevoflurane in hyperoxia as well as anoxia caused mortality of ND2del1 but not ND2360114 flies. Finally, the mutations had different effects on induction of stress response gene expression by the anesthetics. CONCLUSION Mutations in different arms of Complex I resulted in different behavioral sensitivities and toxicities to isoflurane and sevoflurane, indicating that (i) the anesthetics have mechanisms of action that involve arms of Complex I to different extents and (ii) the lack of behavioral hypersensitivity does not preclude susceptibility to anesthetic toxicity.
Collapse
Affiliation(s)
- Amanda R Scharenbrock
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luke A Borchardt
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachariah P G Olufs
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David A Wassarman
- Department of Medical Genetics, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Misha Perouansky
- Department of Anesthesiology, SMPH, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, CALS, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Ahmed N. Anaesthetic management of an infant with MEGD(H)EL syndrome undergoing cochlear implant. BMC Anesthesiol 2024; 24:428. [PMID: 39592976 PMCID: PMC11590200 DOI: 10.1186/s12871-024-02812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The syndrome has these features: 3-methylglutaconic aciduria (MEG), deafness(D), encephalopathy (E), Leigh-like syndrome (L). This disorder is caused by biallelic mutations in serine active site-containing protein 1 (SERAC1) gene. When these patients experience hepatopathy (H) in addition to the above manifestations, the syndrome is referred to as MEGD(H)EL. The pathology of this syndrome shares features with diverse types of inborn errors of metabolism. CASE PRESENTATION We discussed the anaesthetic management of an infant 2-year-old suffering from MEGD(H)EL syndrome undergoing cochlear implant. We discuss the pathology, genetics and significant aspects of this sporadic disease which is important for anaesthesiologist. CONCLUSIONS The usage of dexmedetomidine as the main anaesthetic drug might have the benefit of a non-triggering anaesthetic agent in patients with a mitochondrial disease. Mixture of dexmedetomidine and ketamine provide an effective combination for procedural sedation, predominantly in select populations who are at a high risk of perioperative complications due to underlying co-morbid conditions.
Collapse
Affiliation(s)
- Nashwa Ahmed
- Lecturer of Anaesthesia and Surgical Intensive Care, Faculty of Medicine, Port Said University, Port Fuad, Egypt.
| |
Collapse
|
7
|
Manickam A, Fathima K, Bagri VA, Ganesh Prabu AVP, R VP. Balancing Anesthesia in a Child With Mitochondrial Disease: A Case Report. Cureus 2024; 16:e70756. [PMID: 39493163 PMCID: PMC11531197 DOI: 10.7759/cureus.70756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Anesthetic management of patients with mitochondrial disease requires an in-depth knowledge and understanding of its pathophysiology to ensure the safe conduct of anesthesia. Our case report illustrates the importance of careful anesthetic planning and execution for a four-year-old undergoing full mouth rehabilitation. It is essential to avoid factors that increase metabolic stress, such as prolonged fasting, hypoglycemia, postoperative nausea, hypothermia, acidosis, hypovolemia, and ischemic or hypoxic events. Balanced general anesthesia was achieved by using incremental doses of anesthetics, narcotics, and muscle relaxants, all selected to minimize any potential impact on mitochondrial function. The perioperative period was uneventful.
Collapse
Affiliation(s)
- Akilandeswari Manickam
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Kadhij Fathima
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Vatsala A Bagri
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | - Vishnu Priya R
- Department of Anaesthesiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
8
|
Morgan PG, Sedensky MM. You Don't Always Get What You Want! Anesthesiology 2024; 141:745-749. [PMID: 39254540 DOI: 10.1097/aln.0000000000005143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Mutations in several genes of Caenorhabditis elegans confer altered sensitivities to volatile anesthetics. A mutation in one gene, gas-1(fc21), causes animals to be immobilized at lower concentrations of all volatile anesthetics than in the wild type, and it does not depend on mutations in other genes to control anesthetic sensitivity. gas-1 confers different sensitivities to stereoisomers of isoflurane, and thus may be a direct target for volatile anesthetics. The authors have cloned and characterized the gas gene and the mutant allele fc21. METHODS Genetic techniques for nematodes were as previously described. Polymerase chain reaction, sequencing, and other molecular biology techniques were performed by standard methods. Mutant rescue was done by injecting DNA fragments into the gonad of mutant animals and scoring the offspring for loss of the mutant phenotype. RESULTS The gas-1 gene was cloned and identified. The protein GAS-1 is a homologue of the 49-kd (IP) subunit of the mitochondrial NADH-ubiquinone-oxidoreductase (complex I of the respiratory chain). gas-1(fc21) is a missense mutation replacing a strictly conserved arginine with lysine. CONCLUSIONS The function of the 49-kd (IP) subunit of complex I is unknown. The finding that mutations in complex I increase sensitivity of C. elegans to volatile anesthetics may implicate this physiologic process in the determination of anesthetic sensitivity. The hypersensitivity of animals with a mutation in the gas-1 gene may be caused by a direct anesthetic effect on a mitochondrial protein or secondary effects at other sites caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Seattle Children's Research Institute, Seattle, Washington
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
9
|
Tashima K, Hayashi M, Oyoshi T, Uemura J, Korematsu S, Hirata N. Anesthesia management for percutaneous mitral valve repair in a patient with mitochondrial cardiomyopathy and low cardiac function: a case report. JA Clin Rep 2024; 10:49. [PMID: 39115707 PMCID: PMC11310374 DOI: 10.1186/s40981-024-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Mitochondrial cardiomyopathy occurs when impaired mitochondrial energy production leads to myocardial dysfunction. Anesthetic management in such cases is challenging due to risks of circulatory depression associated with anesthesia and mitochondrial dysfunction induced by anesthetics. Although there are reports of anesthetic management for patients with mitochondrial diseases, there are few reports specifically addressing cardiac anesthesia for patients with mitochondrial cardiomyopathy. We present a case where percutaneous mitral valve repair with MitraClip™ was successfully performed under remimazolam anesthesia in a patient with mitochondrial cardiomyopathy who developed functional mitral valve regurgitation due to low cardiac function and cardiomegaly. CASE PRESENTATION A 57-year-old woman was diagnosed with chronic cardiac failure, with a 10-year history of dilated cardiomyopathy. She was diagnosed with mitochondrial cardiomyopathy 8 years ago. Over the past 2 years, her cardiac failure worsened, and mitral valve regurgitation gradually developed. Surgical intervention was considered but deemed too risky due to her low cardiac function, with an ejection fraction of 26%. Therefore, percutaneous MitraClip™ implantation was selected. After securing radial artery and central venous catheterization under sedation with dexmedetomidine, anesthesia was induced with a low dose of remimazolam 4 mg/kg/h. Anesthesia was maintained with remimazolam 0.35-1.0 mg/kg/h and remifentanil 0.1 μg/kg/min. Noradrenaline and dobutamine were administered intraoperatively, and the procedure was completed successfully without circulatory collapse. The patient recovered smoothly from anesthesia and experienced no complications. She was discharged on the eighth day after surgery. CONCLUSION Anesthesia management with remimazolam appears to be a safe and effective for MitraClip™ implantation in patients with mitochondrial cardiomyopathy.
Collapse
Affiliation(s)
- Koichiro Tashima
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masakiyo Hayashi
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takafumi Oyoshi
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Jo Uemura
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinnosuke Korematsu
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Naoyuki Hirata
- Department of Anesthesiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
10
|
Spencer KA, Howe MN, Mulholland MT, Truong V, Liao RW, Chen Y, Setha M, Snell JC, Hanaford A, James K, Morgan PG, Sedensky MM, Johnson SC. Impact of dietary ketosis on volatile anesthesia toxicity in a model of Leigh syndrome. Paediatr Anaesth 2024; 34:467-476. [PMID: 38358320 DOI: 10.1111/pan.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Miranda N Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Michael T Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Vivian Truong
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Ryan W Liao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Yihan Chen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Monyreak Setha
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - John C Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Olufs ZPG, Wassarman DA, Perouansky M. Stress Pathways Induced by Volatile Anesthetics and Failure of Preconditioning in a Mitochondrial Complex I Mutant. Anesthesiology 2024; 140:463-482. [PMID: 38118175 PMCID: PMC10932926 DOI: 10.1097/aln.0000000000004874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
BACKGROUND Carriers of mutations in the mitochondrial electron transport chain are at increased risk of anesthetic-induced neurotoxicity. To investigate the neurotoxicity mechanism and to test preconditioning as a protective strategy, this study used a Drosophila melanogaster model of Leigh syndrome. Model flies carried a mutation in ND23 (ND2360114) that encodes a mitochondrial electron transport chain complex I subunit. This study investigated why ND2360114 mutants become susceptible to lethal, oxygen-modulated neurotoxicity within 24 h of exposure to isoflurane but not sevoflurane. METHODS This study used transcriptomics and quantitative real-time reverse transcription polymerase chain reaction to identify genes that are differentially expressed in ND2360114 but not wild-type fly heads at 30 min after exposure to high- versus low-toxicity conditions. This study also subjected ND2360114 flies to diverse stressors before isoflurane exposure to test whether isoflurane toxicity could be diminished by preconditioning. RESULTS The ND2360114 mutation had a greater effect on isoflurane- than sevoflurane-mediated changes in gene expression. Isoflurane and sevoflurane did not affect expression of heat shock protein (Hsp) genes (Hsp22, Hsp27, and Hsp68) in wild-type flies, but isoflurane substantially increased expression of these genes in ND2360114 mutant flies. Furthermore, isoflurane and sevoflurane induced expression of oxidative (GstD1 and GstD2) and xenobiotic (Cyp6a8 and Cyp6a14) stress genes to a similar extent in wild-type flies, but the effect of isoflurane was largely reduced in ND2360114 flies. In addition, activating stress response pathways by pre-exposure to anesthetics, heat shock, hyperoxia, hypoxia, or oxidative stress did not suppress isoflurane-induced toxicity in ND2360114 mutant flies. CONCLUSIONS Mutation of a mitochondrial electron transport chain complex I subunit generates differential effects of isoflurane and sevoflurane on gene expression that may underlie their differential effects on neurotoxicity. Additionally, the mutation produces resistance to preconditioning by stresses that protect the brain in other contexts. Therefore, complex I activity modifies molecular and physiologic effects of anesthetics in an anesthetic-specific manner. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Zachariah P G Olufs
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Misha Perouansky
- Department of Anesthesiology, School of Medicine and Public Health and Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
12
|
Kaura V, Hopkins P. Recent advances in skeletal muscle physiology. BJA Educ 2024; 24:84-90. [PMID: 38375493 PMCID: PMC10874741 DOI: 10.1016/j.bjae.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/21/2024] Open
Affiliation(s)
- V. Kaura
- Leeds Institute of Medical Research at St James's, University of Leeds, UK
| | - P.M. Hopkins
- Leeds Institute of Medical Research at St James's, University of Leeds, UK
| |
Collapse
|
13
|
Schimpf J, Münster T. [Rare diseases in anesthesia : Knowledge mining and core points of perioperative anesthesiological care]. DIE ANAESTHESIOLOGIE 2023; 72:907-918. [PMID: 37947803 DOI: 10.1007/s00101-023-01353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Due to refined and new diagnostic possibilities and improved medical care, in the future anesthesiologists will be more frequently confronted with patients suffering from rare diseases. As the physicians providing perioperative care often have little or no experience with the diseases of such patients, the access to high-quality specific literature is essential. In this respect they must be able to assess and classify the quality of the information which is predominantly available online, especially as when evidence-based knowledge is available, it is only available to a very limited extent. Patients with rare diseases mostly present with recurring problem constellations. A systematic assignment to the most important problem areas (airway, circulation, metabolism, etc.) as well as a structured and interdisciplinary approach are decisive for a successful perioperative treatment of these patients. Due to low prevalence, lack of personal experience and lack of evidence-based data, anesthesia in patients with SE is an absolute challenge, especially in time-critical situations.
Collapse
Affiliation(s)
- J Schimpf
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland.
| | - T Münster
- Klinik für Anästhesiologie und operative Intensivmedizin, Krankenhaus Barmherzige Brüder Regensburg, Regensburg, Deutschland
| |
Collapse
|
14
|
Maddali MM, Munasinghe TD, Al Aamri I, Al-Abri IA, Al-Adawi S. Propofol and Kearns-Sayre Syndrome: An idiographic approach. Sultan Qaboos Univ Med J 2023; 23:63-67. [PMID: 38161763 PMCID: PMC10754313 DOI: 10.18295/squmj.12.2023.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 01/03/2024] Open
Abstract
With the focus on an idiographic approach whereby the observations incorporated the various dimensions of individual functioning 'top-down' to 'bottom-up', this case report describes the successful management of a 14-year-old girl with Kearns-Sayre syndrome and Dyggve-Melchior-Clausen disease requiring a transvenous permanent pacemaker implantation for complete heart block. The patient presented to a tertiary care centre in Muscat, Oman, in 2023 seeking consultation. The current idiographic approach appears to have a heuristic value for 2 interrelated reasons. Firstly, it is unlikely that even tertiary care units can accrue such rare presentations and scrutinise them under nomothetic approach. Secondly, by employing the idiographic approach that is capable of examining each case in-depth, the aspiration for good health and well-being may come to the forefront. To the best of the authors' knowledge this is the first published idiographic report in anaesthesia care.
Collapse
Affiliation(s)
| | | | | | - Ismail A. Al-Abri
- Pediatric Cardiology, National Heart Center, Royal Hospital, Muscat, Oman
| | - Samir Al-Adawi
- Department of Behavioral Medicine, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
15
|
Spencer KA, Mulholland M, Snell J, Howe M, James K, Hanaford AR, Morgan PG, Sedensky M, Johnson SC. Volatile anaesthetic toxicity in the genetic mitochondrial disease Leigh syndrome. Br J Anaesth 2023; 131:832-846. [PMID: 37770252 PMCID: PMC10636522 DOI: 10.1016/j.bja.2023.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Volatile anaesthetics are widely used in human medicine. Although generally safe, hypersensitivity and toxicity can occur in rare cases, such as in certain genetic disorders. Anaesthesia hypersensitivity is well-documented in a subset of mitochondrial diseases, but whether volatile anaesthetics are toxic in this setting has not been explored. METHODS We exposed Ndufs4(-/-) mice, a model of Leigh syndrome, to isoflurane (0.2-0.6%), oxygen 100%, or air. Cardiorespiratory function, weight, blood metabolites, and survival were assessed. We exposed post-symptom onset and pre-symptom onset animals and animals treated with the macrophage depleting drug PLX3397/pexidartinib to define the role of overt neuroinflammation in volatile anaesthetic toxicities. RESULTS Isoflurane induced hyperlactataemia, weight loss, and mortality in a concentration- and duration-dependent manner from 0.2% to 0.6% compared with carrier gas (O2 100%) or mock (air) exposures (lifespan after 30-min exposures ∗P<0.05 for isoflurane 0.4% vs air or vs O2, ∗∗P<0.005 for isoflurane 0.6% vs air or O2; 60-min exposures ∗∗P<0.005 for isoflurane 0.2% vs air, ∗P<0.05 for isoflurane 0.2% vs O2). Isoflurane toxicity was significantly reduced in Ndufs4(-/-) exposed before CNS disease onset, and the macrophage depleting drug pexidartinib attenuated sequelae of isoflurane toxicity (survival ∗∗∗P=0.0008 isoflurane 0.4% vs pexidartinib plus isoflurane 0.4%). Finally, the laboratory animal standard of care of 100% O2 as a carrier gas contributed significantly to weight loss and reduced survival, but not to metabolic changes, and increased acute mortality. CONCLUSIONS Isoflurane is toxic in the Ndufs4(-/-) model of Leigh syndrome. Toxic effects are dependent on the status of underlying neurologic disease, largely prevented by the CSF1R inhibitor pexidartinib, and influenced by oxygen concentration in the carrier gas.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Michael Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - John Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Miranda Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK; Department of Laboratory Medicine and Pathology, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Macnamara EF, Loydpierson A, Latour YL, D'Souza P, Murphy J, Wolfe L, Estwick T, Johnston JM, Yang J, Acosta MT, Lee PR, Pierson TM, Soldatos A, Toro C, Markello T, Adams DR, Gahl WA, Yousef M, Tifft CJ. Risks and benefits of anesthesia for combined pediatric procedures in the NIH undiagnosed diseases program. Mol Genet Metab 2023; 140:107707. [PMID: 37883914 DOI: 10.1016/j.ymgme.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE The NIH Undiagnosed Diseases Program (UDP) aims to provide diagnoses to patients who have previously received exhaustive evaluations yet remain undiagnosed. Patients undergo procedural anesthesia for deep phenotyping for analysis with genomic testing. METHODS A retrospective chart review was performed to determine the safety and benefit of procedural anesthesia in pediatric patients in the UDP. Adverse perioperative events were classified as anesthesia-related complications or peri-procedural complications. The contribution of procedures performed under anesthesia to arriving at a diagnosis was also determined. RESULTS From 2008 to 2020, 249 pediatric patients in the UDP underwent anesthesia for diagnostic procedures. The majority had a severe systemic disease (American Society for Anesthesiology status III, 79%) and/or a neurologic condition (91%). Perioperative events occurred in 45 patients; six of these were attributed to anesthesia. All patients recovered fully without sequelae. Nearly half of the 249 patients (49%) received a diagnosis, and almost all these diagnoses (88%) took advantage of information gleaned from procedures performed under anesthesia. CONCLUSIONS The benefits of anesthesia involving multiple diagnostic procedures in a well-coordinated, multidisciplinary, research setting, such as in the pediatric UDP, outweigh the risks.
Collapse
Affiliation(s)
- Ellen F Macnamara
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - Amelia Loydpierson
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Yvonne L Latour
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States of America; Department of Pathology, Immunology, and Microbiology, Vanderbilt University, Nashville, TN, United States of America
| | - Precilla D'Souza
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; Hummingbird House Children's Hospice, 60 Curwen Terrace, Chermside, Queensland 4032, Australia
| | - Jennifer Murphy
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; Hummingbird House Children's Hospice, 60 Curwen Terrace, Chermside, Queensland 4032, Australia
| | - Lynne Wolfe
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - Tyra Estwick
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States of America
| | - Jean M Johnston
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - John Yang
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - Maria T Acosta
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - Paul R Lee
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; Division of Neurology 2, Office of Neuroscience, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Tyler Mark Pierson
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; Departments of Pediatrics and Neurology & The Board of Governors, Regenerative Medicine Institute and the Cedars Sinai Center for the Undiagnosed Patient, Cedars Sinai Medical Center, Los Angeles, CA, United States of America
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, United States of America
| | - Camilo Toro
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - Tom Markello
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - David R Adams
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; National Human Genome Research Institute, NIH, Bethesda, MD, United States of America
| | - William A Gahl
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America
| | - Muhammad Yousef
- National Institutes of Health Clinical Center, Department of Perioperative Medicine, Pediatric Anesthesiology, Bethesda, MD, United States of America
| | - Cynthia J Tifft
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, United States of America; National Human Genome Research Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
17
|
Nguyen T, Shabot S, Yngve D, Abouleish A. Anesthetic Management for a Child With a Newly Identified Mitochondrial Disease SLC25A46 Mutation: A Case Report. Cureus 2023; 15:e47076. [PMID: 38021708 PMCID: PMC10645459 DOI: 10.7759/cureus.47076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
SLC25A46 mutation is a newly recognized mitochondrial mutation causing neurological and muscular abnormalities. We describe a first-ever report of the anesthetic management of a seven-year-old boy with an SLC25A46 mutation during a major orthopedic procedure. The patient was nonverbal and presented with cerebral visual impairment, torticollis, and lower extremity contractures. Because of his new diagnosis of mitochondrial disease and history of delayed awakening after anesthesia, we performed general anesthesia with sevoflurane, a low-dose ketamine infusion, and small doses of fentanyl while avoiding propofol and maintaining normoglycemia and normothermia. No postoperative complications were noted during the recovery period.
Collapse
Affiliation(s)
- Thong Nguyen
- Anesthesiology and Perioperative Medicine, Texas Children's Hospital, Houston, USA
| | - Sarah Shabot
- Anesthesiology and Perioperative Medicine, University of Texas Medical Branch, Galveston, USA
| | - David Yngve
- Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, USA
| | - Amr Abouleish
- Anesthesiology and Perioperative Medicine, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
18
|
Hogarth K, Tarazi D, Maynes JT. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front Neurol 2023; 14:1179823. [PMID: 37533472 PMCID: PMC10390784 DOI: 10.3389/fneur.2023.1179823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3 years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.
Collapse
Affiliation(s)
- Kaley Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Doorsa Tarazi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Fedorov A, Lehto A, Klein J. Inhibition of mitochondrial respiration by general anesthetic drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:375-381. [PMID: 36385685 PMCID: PMC9832080 DOI: 10.1007/s00210-022-02338-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
General anesthetic drugs have been associated with various unwanted effects including an interference with mitochondrial function. We had previously observed increases of lactate formation in the mouse brain during anesthesia with volatile anesthetic agents. In the present work, we used mitochondria that were freshly isolated from mouse brain to test mitochondrial respiration and ATP synthesis in the presence of six common anesthetic drugs. The volatile anesthetics isoflurane, halothane, and (to a lesser extent) sevoflurane caused an inhibition of complex I of the electron transport chain in a dose-dependent manner. Significant effects were seen at concentrations that are reached under clinical conditions (< 0.5 mM). Pentobarbital and propofol also inhibited complex I but at concentrations that were two-fold higher than clinical EC50 values. Only propofol caused an inhibition of complex II. Complex IV respiration was not affected by either agent. Ketamine did not affect mitochondrial respiration. Similarly, all anesthetic agents except ketamine suppressed ATP production at high concentrations. Only halothane increased cytochrome c release indicating damage of the mitochondrial membrane. In summary, volatile general anesthetic agents as well as pentobarbital and propofol dose-dependently inhibit mitochondrial respiration. This action may contribute to depressive actions of the drugs in the brain.
Collapse
Affiliation(s)
- Anton Fedorov
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Alina Lehto
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jochen Klein
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
20
|
Mutations in Complex I of the Mitochondrial Electron-Transport Chain Sensitize the Fruit Fly ( Drosophila melanogaster) to Ether and Non-Ether Volatile Anesthetics. Int J Mol Sci 2023; 24:ijms24031843. [PMID: 36768163 PMCID: PMC9915120 DOI: 10.3390/ijms24031843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The mitochondrial electron transport chain (mETC) contains molecular targets of volatile general anesthetics (VGAs), which places carriers of mutations at risk for anesthetic complications. The ND-2360114 and mt:ND2del1 lines of fruit flies (Drosophila melanogaster) that carry mutations in core subunits of Complex I of the mETC replicate numerous characteristics of Leigh syndrome (LS) caused by orthologous mutations in mammals and serve as models of LS. ND-2360114 flies are behaviorally hypersensitive to volatile anesthetic ethers and develop an age- and oxygen-dependent anesthetic-induced neurotoxicity (AiN) phenotype after exposure to isoflurane but not to the related anesthetic sevoflurane. The goal of this paper was to investigate whether the alkane volatile anesthetic halothane and other mutations in Complex I and in Complexes II-V of the mETC cause AiN. We found that (i) ND-2360114 and mt:ND2del1 were susceptible to toxicity from halothane; (ii) in wild-type flies, halothane was toxic under anoxic conditions; (iii) alleles of accessory subunits of Complex I predisposed to AiN; and (iv) mutations in Complexes II-V did not result in an AiN phenotype. We conclude that AiN is neither limited to ether anesthetics nor exclusive to mutations in core subunits of Complex I.
Collapse
|
21
|
Successful Anesthetic Management of Mitochondrial Myopathy and Hypertrophic Obstructive Cardiomyopathy in a Child With Senger Syndrome. Am J Ther 2022; 29:e651-e652. [PMID: 35994379 DOI: 10.1097/mjt.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Fayos T, Casañ M. Phelan-McDermid and general anesthesia with different hypnotics. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2022; 69:587-591. [PMID: 36257878 DOI: 10.1016/j.redare.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/23/2021] [Indexed: 06/16/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disease, caused by an autosomal dominant mutation due to the terminal deletion of 22q13, leading to a defect in the SHANK3 protein. We present the clinical case of a 12-year-old patient with this syndrome, who underwent three interventions that required general anesthesia. In none of them did she present intraoperative or postoperative complications.
Collapse
Affiliation(s)
- T Fayos
- Servicio de Anestesia y Reanimación, Hospital General Universitario de Castellón, Castellón, Spain.
| | - M Casañ
- Servicio de Anestesia y Reanimación, Hospital General Universitario de Castellón, Castellón, Spain
| |
Collapse
|
23
|
Streng LWJM, de Wijs CJ, Raat NJH, Specht PAC, Sneiders D, van der Kaaij M, Endeman H, Mik EG, Harms FA. In Vivo and Ex Vivo Mitochondrial Function in COVID-19 Patients on the Intensive Care Unit. Biomedicines 2022; 10:biomedicines10071746. [PMID: 35885051 PMCID: PMC9313105 DOI: 10.3390/biomedicines10071746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA). The median mitoVO2 of COVID-19 patients on T1 and T2 was similar and tended to be lower than the mitoVO2 in the healthy controls, whilst the mitoVO2 in the general anesthesia group was significantly lower than that of all other groups. Basal platelet (PLT) respiration did not differ substantially between the measurements. PBMC basal respiration was increased by approximately 80% in the T1 group when contrasted to T2 and the healthy controls. Cell-free mtDNA was eight times higher in the COVID-T1 samples when compared to the healthy controls samples. In the COVID-T2 samples, mtDNA was twofold lower when compared to the COVID-T1 samples. mtDNA levels were increased in COVID-19 patients but were not associated with decreased mitochondrial O2 consumption in vivo in the skin, and ex vivo in PLT or PBMC. This suggests the presence of increased metabolism and mitochondrial damage.
Collapse
Affiliation(s)
- Lucia W. J. M. Streng
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
- Correspondence:
| | - Calvin J. de Wijs
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Nicolaas J. H. Raat
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Patricia A. C. Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Dimitri Sneiders
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Mariëlle van der Kaaij
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Egbert G. Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Floor A. Harms
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| |
Collapse
|
24
|
Tanem JM, Scott JP. Common Presentations of Rare Drug Reactions and Atypical Presentations of Common Drug Reactions in the Intensive Care Unit. Crit Care Clin 2022; 38:287-299. [DOI: 10.1016/j.ccc.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
van de Wal MAE, Adjobo-Hermans MJW, Keijer J, Schirris TJJ, Homberg JR, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain 2022. [PMID: 34849584 DOI: 10.1093/brain/awab426%jbrain] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.
Collapse
Affiliation(s)
- Melissa A E van de Wal
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Clara van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Emma Personalized Medicine Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Human Genetics, Emma Personalized Medicine Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Albert Quintana
- Mitochondrial Neuropathology Laboratory, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
26
|
Xue J, Li G, Ji X, Liu ZH, Wang HL, Xiao G. Drosophila ZIP13 overexpression or transferrin1 RNAi influences the muscle degeneration of Pink1 RNAi by elevating iron levels in mitochondria. J Neurochem 2022; 160:540-555. [PMID: 35038358 DOI: 10.1111/jnc.15574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
Disruption of iron homeostasis in the brain of Parkinson's disease (PD) patients has been reported for many years, but the underlying mechanisms remain unclear. To investigate iron metabolism genes related to PTEN-induced kinase 1 (Pink1) and parkin (E3 ubiquitin ligase), two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, we conducted a genetic screen in Drosophila and found that altered expression of genes involved in iron metabolism, such as Drosophila ZIP13 (dZIP13) or transferrin1 (Tsf1), significantly influences the disease progression related to Pink1 but not parkin. Several phenotypes of Pink1 mutant and Pink1 RNAi but not parkin mutant were significantly rescued by overexpression (OE) of dZIP13 (dZIP13 OE) or silencing of Tsf1 (Tsf1 RNAi) in the flight muscles. The rescue effects of dZIP13 OE or Tsf1 RNAi were not exerted through mitochondrial disruption or mitophagy, instead, the iron levels in mitochondira were significantly increased, resulting in enhanced activity of enzymes participating in respiration and increased ATP synthesis. Consistently, the rescue effects of dZIP13 OE or Tsf1 RNAi on Pink1 RNAi can be inhibited by decreasing the iron levels in mitochondria through mitoferrin (dmfrn) RNAi. This study suggests that dZIP13, Tsf1 and dmfrn might act independently of parkin in a parallel pathway downstream of Pink1 by modulating respiration and indicates that manipulation of iron levels in mitochondria may provide a novel therapeutic strategy for PD associated with Pink1.
Collapse
Affiliation(s)
- Jinsong Xue
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guangying Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhi-Hua Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hui-Li Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
27
|
Valent A, Delorme L, Roland E, Lambe C, Sarnacki S, Cattan P, Plaud B. Peri-operative management of an adult with POLG-related mitochondrial disease. Anaesth Rep 2022; 10:e12159. [PMID: 35309182 PMCID: PMC8918921 DOI: 10.1002/anr3.12159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
POLG-related mitochondrial disease is a rare mitochondrial disorder that is potentially associated with anaesthetic complications such as propofol-related infusion syndrome. A 19-year-old man with mitochondrial DNA deletions and POLG-related disorders presented for an elective robotic Heller-Dor myotomy for the treatment of oesophageal pseudo-achalasia associated with severe gastro-oesophageal reflux. The fasting period was minimised to reduce the risk of metabolic stress. The anaesthetic technique included a rapid sequence induction with propofol and rocuronium, a remifentanil and sevoflurane-based general anaesthesia with multimodal monitoring and peri-operative lactate-free intravenous fluids with added dextrose. The patient did not experience propofol-related infusion syndrome but did have delayed tracheal extubation due to residual neuromuscular blockade requiring a second dose of sugammadex. This report demonstrates the safety of single-use, low-dose propofol in this patient group. Patients with POLG-related mitochondrial disease may be at risk of prolonged neuromuscular blockade, and appropriate dosing of neuromuscular blocking agents with monitoring of neuromuscular blockade is strongly encouraged.
Collapse
Affiliation(s)
- A Valent
- Department of Anaesthesiology Saint-Louis Hospital Paris France
| | - L Delorme
- Department of Anaesthesiology Saint-Louis Hospital Paris France
| | - E Roland
- Department of Anaesthesiology Saint-Louis Hospital Paris France
| | - C Lambe
- Paediatric Gastroenterology, Hepatology and Nutrition Necker Enfants-Malades Hospital Paris France
| | - S Sarnacki
- Department of Paediatric Surgery Necker Enfants-Malades Hospital Paris France
| | - P Cattan
- Department of Surgery Saint-Louis Hospital Paris France
| | - B Plaud
- Department of Anaesthesiology Saint-Louis Hospital Paris France
| |
Collapse
|
28
|
van de Wal M, Adjobo-Hermans M, Keijer J, Schirris T, Homberg J, Wieckowski MR, Grefte S, van Schothorst EM, van Karnebeek C, Quintana A, Koopman WJH. Ndufs4 knockout mouse models of Leigh syndrome: pathophysiology and intervention. Brain 2021; 145:45-63. [PMID: 34849584 PMCID: PMC8967107 DOI: 10.1093/brain/awab426] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce ‘mitochondrial complex I deficiency, nuclear type 1’ (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.
Collapse
Affiliation(s)
- Melissa van de Wal
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Merel Adjobo-Hermans
- Department of Biochemistry (286), RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tom Schirris
- Department of Pharmacology and Toxicology, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Clara van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Department of Pediatrics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Quintana
- Mitochondrial Neuropathology Laboratory, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, RIMLS, RCMM, Radboudumc, Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
29
|
van den Bersselaar LR, Riazi S, Snoeck M, Jungbluth H, Voermans NC. 259th ENMC international workshop: Anaesthesia and neuromuscular disorders 11 December, 2020 and 28-29 May, 2021. Neuromuscul Disord 2021; 32:86-97. [PMID: 34916120 DOI: 10.1016/j.nmd.2021.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Affiliation(s)
- L R van den Bersselaar
- Department of Anaesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, Reinier Postlaan 4, P.O. Box 9101, 6500 HB, Nijmegen 6525 GC, the Netherlands
| | - S Riazi
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Mmj Snoeck
- Department of Anaesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - N C Voermans
- Department of Neurology, Radboud University Medical Center, Reinier Postlaan 4, P.O. Box 9101, 6500 HB, Nijmegen 6525 GC, the Netherlands.
| | | |
Collapse
|
30
|
Stokes J, Freed A, Bornstein R, Su KN, Snell J, Pan A, Sun GX, Park KY, Jung S, Worstman H, Johnson BM, Morgan PG, Sedensky MM, Johnson SC. Mechanisms underlying neonate-specific metabolic effects of volatile anesthetics. eLife 2021; 10:65400. [PMID: 34254587 PMCID: PMC8291971 DOI: 10.7554/elife.65400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Volatile anesthetics (VAs) are widely used in medicine, but the mechanisms underlying their effects remain ill-defined. Though routine anesthesia is safe in healthy individuals, instances of sensitivity are well documented, and there has been significant concern regarding the impact of VAs on neonatal brain development. Evidence indicates that VAs have multiple targets, with anesthetic and non-anesthetic effects mediated by neuroreceptors, ion channels, and the mitochondrial electron transport chain. Here, we characterize an unexpected metabolic effect of VAs in neonatal mice. Neonatal blood β-hydroxybutarate (β-HB) is rapidly depleted by VAs at concentrations well below those necessary for anesthesia. β-HB in adults, including animals in dietary ketosis, is unaffected. Depletion of β-HB is mediated by citrate accumulation, malonyl-CoA production by acetyl-CoA carboxylase, and inhibition of fatty acid oxidation. Adults show similar significant changes to citrate and malonyl-CoA, but are insensitive to malonyl-CoA, displaying reduced metabolic flexibility compared to younger animals.
Collapse
Affiliation(s)
- Julia Stokes
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Arielle Freed
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,University of Washington School of Dentistry, Seattle, United States
| | - Rebecca Bornstein
- Department of Pathology, University of Washington, Seattle, United States
| | - Kevin N Su
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
| | - John Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Grace X Sun
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Kyung Yeon Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Sangwook Jung
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Hailey Worstman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Brittany M Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pathology, University of Washington, Seattle, United States.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States.,Department of Neurology, University of Washington, Seattle, United States
| |
Collapse
|
31
|
Shettigar AS, Teckchandani DA, Udupi S. SUCLA 2 deficiency and mitochondrial cytopathy-Do we have a safe anaesthesia plan yet? Indian J Anaesth 2021; 65:415-416. [PMID: 34211204 PMCID: PMC8202801 DOI: 10.4103/ija.ija_1366_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anshu Sl Shettigar
- Department of Anaesthesiology, Kasturba Medical College, Manipal, Karnataka, India
| | | | - Sandesh Udupi
- Department of Anaesthesiology, Kasturba Medical College, Manipal, Karnataka, India
| |
Collapse
|
32
|
Suzuki Y, Doi M, Nakajima Y. General anesthesia with remimazolam in a patient with mitochondrial encephalomyopathy: a case report. JA Clin Rep 2021; 7:51. [PMID: 34164752 PMCID: PMC8222447 DOI: 10.1186/s40981-021-00454-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Systemic anesthetic management of patients with mitochondrial disease requires careful preoperative preparation to administer adequate anesthesia and address potential disease-related complications. The appropriate general anesthetic agents to use in these patients remain controversial. Case presentation A 54-year-old woman (height, 145 cm; weight, 43 kg) diagnosed with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes underwent elective cochlear implantation. Infusions of intravenous remimazolam and remifentanil guided by patient state index monitoring were used for anesthesia induction and maintenance. Neither lactic acidosis nor prolonged muscle relaxation occurred in the perioperative period. At the end of surgery, flumazenil was administered to antagonize sedation, which rapidly resulted in consciousness. Conclusions Remimazolam administration and reversal with flumazenil were successfully used for general anesthesia in a patient with mitochondrial disease.
Collapse
Affiliation(s)
- Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yoshiki Nakajima
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
33
|
Abstract
Neuromuscular diseases (NMD) are a heterogeneous group of motor unit disorders. Common to all is the main clinical symptom of muscle weakness. Depending on entity and phenotype, a broad range of disorders of neuronal, junctional or myocytic structures occurs. In addition to a weakness of the skeletal musculature, NMD can also affect throat musculature, respiratory and heart muscles. The possible consequences are immobility, deformities, tendency to aspiration as well as respiratory and cardiac insufficiency. In the context of surgery and anesthesia, complications that can result from the underlying disease and its interaction with anesthesia must be anticipated and averted. This article describes along the treatment pathway how preoperative evaluation, choice of the anesthetic procedure and postoperative care can be effectively and safely tailored to the needs of patients with NMD. Concise and practical recommendations for carrying out anesthesia for the most important NMDs are presented as well as relevant external sources of practice recommendations.
Collapse
|
34
|
Menon J, Vij M, Sachan D, Rammohan A, Shanmugam N, Kaliamoorthy I, Rela M. Pediatric metabolic liver diseases: Evolving role of liver transplantation. World J Transplant 2021; 11:161-179. [PMID: 34164292 PMCID: PMC8218348 DOI: 10.5500/wjt.v11.i6.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic liver diseases (MLD) are the second most common indication for liver transplantation (LT) in children. This is based on the fact that the majority of enzymes involved in various metabolic pathways are present within the liver and LT can cure or at least control the disease manifestation. LT is also performed in metabolic disorders for end-stage liver disease, its sequelae including hepatocellular cancer. It is also performed for preventing metabolic crisis', arresting progression of neurological dysfunction with a potential to reverse symptoms in some cases and for preventing damage to end organs like kidneys as in the case of primary hyperoxalosis and methyl malonic acidemia. Pathological findings in explant liver with patients with metabolic disease include unremarkable liver to steatosis, cholestasis, inflammation, variable amount of fibrosis, and cirrhosis. The outcome of LT in metabolic disorders is excellent except for patients with mitochondrial disorders where significant extrahepatic involvement leads to poor outcomes and hence considered a contraindication for LT. A major advantage of LT is that in the post-operative period most patients can discontinue the special formula which they were having prior to the transplant and this increases their well-being and improves growth parameters. Auxiliary partial orthotopic LT has been described for patients with noncirrhotic MLD where a segmental graft is implanted in an orthotopic position after partial resection of the native liver. The retained native liver can be the potential target for future gene therapy when it becomes a clinical reality.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Deepti Sachan
- Department of Transfusion Medicine, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Naresh Shanmugam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
35
|
Cung S, Ritz ML, Masaracchia MM. Regional anesthesia in pediatric patients with preexisting neurological disease. Paediatr Anaesth 2021; 31:522-530. [PMID: 33590927 DOI: 10.1111/pan.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/01/2022]
Abstract
Preexisting neurological disease in pediatric patients presents unique challenges to the anesthesiologist. In-depth knowledge of the disease processes and awareness of sequalae that uniquely influence the risks and benefits of anesthetics are needed to make informed decisions. Because these vulnerable populations are often susceptible to perioperative airway or cardiopulmonary complications, the use of regional anesthesia can be advantageous. However, these clinical conditions already involve compromised neural tissue and, as such, create additional concern that regional anesthesia may result in new or worsened deficits. The following discussion is not intended to be a full review of each disease process, but rather provides a concise, yet thorough, discussion of the available literature on regional anesthesia in the more common, but still rare, pediatric neurological disorders. We aim to provide a framework for pediatric anesthesiologists to reengage in a healthy discussion about the risks and benefits of utilizing regional anesthesia in this vulnerable population.
Collapse
Affiliation(s)
- Stephanie Cung
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew L Ritz
- Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Melissa M Masaracchia
- University of Colorado School of Medicine, Aurora, CO, USA.,Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| |
Collapse
|
36
|
Kim JY, Jeong K, Han KS, Park JE, Kim MG, Jun MR. Anesthetic considerations of Joubert syndrome in patients with mitochondrial disease - A case report. Anesth Pain Med (Seoul) 2021; 16:158-162. [PMID: 33845552 PMCID: PMC8107256 DOI: 10.17085/apm.20091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Joubert syndrome and mitochondrial disease are rare congenital diseases in
which a wide range of symptoms affects multiple organs. Patients with these
diseases present characteristic symptoms related to the musculoskeletal,
respiratory, and neurological systems, which make it difficult for
anesthesiologists to manage the patient’s airway and choose
appropriate anesthetic drugs. Case A 13-year-old male patient with Joubert syndrome and mitochondrial disease
underwent elective surgery to insert a continuous ambulatory peritoneal
dialysis catheter. Anesthesia was induced and maintained with propofol,
remifentanil, and rocuronium. An I-gel was inserted to secure the airway;
however, the fitting did not work properly, so the patient was intubated.
The operation was completed without any major problems, and the intubated
patient was transferred to the intensive care unit. Conclusions Anesthesiologists should determine the method of anesthesia and prepare for
unintended complications based on a full understanding of these congenital
diseases.
Collapse
Affiliation(s)
- Jeong Yeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Koun Jeong
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ki Seob Han
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji Eun Park
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Mun Gyu Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Mi Roung Jun
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
37
|
Sugur T, Metinyurt HF, Kavakli AS, Kavrut Ozturk N, Ozmen S. Regional anesthesia in two consecutive surgeries in a patient with mitochondrial neurogastrointestinal encephalomyopathy: a case report. Braz J Anesthesiol 2021; 71:84-86. [PMID: 33712258 PMCID: PMC9373567 DOI: 10.1016/j.bjane.2020.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/09/2020] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE) is a rare autosomal-recessive disorder which is due to mutations in TYMP. The case reported here is of an 18-year-old male with MNGIE syndrome who presented for two different operations on two different occasions under regional anesthesia. The patient presented with urinary incontinence and abdominal pain. A cystoscopy under spinal anesthesia was scheduled. At 3 months after discharge, gastric perforation was diagnosed and combined spinal-epidural anesthesia, surgical repair was planned. Surgical and perioperative periods were uneventful. Based on this experience, we believe that regional anesthesia can be considered safe for use in patients with MNGIE disease.
Collapse
Affiliation(s)
- Tayfun Sugur
- University of Health Sciences, Antalya Training and Research Hospital, Department of Anaesthesiology and Reanimation, Antalya, Turkey.
| | - Hayri Fatih Metinyurt
- University of Health Sciences, Antalya Training and Research Hospital, Department of Anaesthesiology and Reanimation, Antalya, Turkey
| | - Ali Sait Kavakli
- University of Health Sciences, Antalya Training and Research Hospital, Department of Anaesthesiology and Reanimation, Antalya, Turkey
| | - Nilgun Kavrut Ozturk
- University of Health Sciences, Antalya Training and Research Hospital, Department of Anaesthesiology and Reanimation, Antalya, Turkey
| | - Sadik Ozmen
- University of Health Sciences, Antalya Training and Research Hospital, Department of Anaesthesiology and Reanimation, Antalya, Turkey
| |
Collapse
|
38
|
Hsieh VC, Niezgoda J, Sedensky MM, Hoppel CL, Morgan PG. Anesthetic Hypersensitivity in a Case-Controlled Series of Patients With Mitochondrial Disease. Anesth Analg 2021; 133:924-932. [PMID: 33591116 DOI: 10.1213/ane.0000000000005430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Children with mitochondrial disease undergo anesthesia for a wide array of surgical procedures. However, multiple medications used for their perioperative care can affect mitochondrial function. Defects in function of the mitochondrial electron transport chain (ETC) can lead to a profound hypersensitivity to sevoflurane in children. We studied the sensitivities to sevoflurane, during mask induction and maintenance of general anesthesia, in children presenting for muscle biopsies for diagnosis of mitochondrial disease. METHODS In this multicenter study, 91 children, aged 6 months to 16 years, presented to the operating room for diagnostic muscle biopsy for presumptive mitochondrial disease. General anesthesia was induced by a slow increase of inhaled sevoflurane concentration. The primary end point, end-tidal (ET) sevoflurane necessary to achieve a bispectral index (BIS) of 60, was recorded. Secondary end points were maximal sevoflurane used to maintain a BIS between 40 and 60 during the case, and maximum and minimum heart rate and blood pressures. After induction, general anesthesia was maintained according to the preferences of the providers directing the cases. Primary data were analyzed comparing data from patients with complex I deficiencies to other groups using nonparametric statistics in SPSS v.27. RESULTS The median sevoflurane concentration to reach BIS of 60 during inductions (ET sevoflurane % [BIS = 60]) was significantly lower for patients with complex I defects (0.98%; 95% confidence interval [CI], 0.5-1.4) compared to complex II (1.95%; 95% CI, 1.2-2.7; P < .001), complex III (2.0%; 95% CI, 0.7-3.5; P < .001), complex IV (2.0%; 95% CI, 1.7-3.2; P < .001), and normal groups (2.2%; 95% CI, 1.8-3.0; P < .001). The sevoflurane sensitivities of complex I patients did not reach significance when compared to patients diagnosed with mitochondrial disease but without an identifiable ETC abnormality (P = .172). Correlation of complex I activity with ET sevoflurane % (BIS = 60) gave a Spearman's coefficient of 0.505 (P < .001). The differences in sensitivities between groups were less during the maintenance of the anesthetic than during induction. CONCLUSIONS The data indicate that patients with complex I dysfunction are hypersensitive to sevoflurane compared to normal patients. Hypersensitivity was less common in patients presenting with other mitochondrial defects or without a mitochondrial diagnosis.
Collapse
Affiliation(s)
- Vincent C Hsieh
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Julie Niezgoda
- Department of Pediatric Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | - Margaret M Sedensky
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Charles L Hoppel
- Department of Pharmacology and Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Philip G Morgan
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
39
|
Tesoro S, De Robertis E, Marturano F, van den Hout HJ, De Graaff JC. Anaesthesiological approach to the floppy child. Minerva Anestesiol 2021; 87:940-949. [PMID: 33432795 DOI: 10.23736/s0375-9393.20.15011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Children with symptoms of hypotonia (reduction of postural tone of lower limbs and trunk with or without changes in phasic tone) are frequently anaesthetized for diagnostic and therapeutic interventions. This review outlines the underlying causes and classifications, and the anaesthesiologic pre- and peri-operative management of hypotonic children. Hypotonia may have a large range of aetiologies that be categorized into central and/or peripheral hypotonia. A multidisciplinary approach towards the (differential) diagnosis of the underlying cause of the symptoms in cooperation with a paediatrician and/or paediatric neurologist is emphasized. Anaesthetic management involves the anticipation of an increased risk in difficult airway management because of macroglossia, reduced mouth opening, obesity and limited neck mobility, which increases with age. There are no specific restrictions towards the use of intravenous or inhalational anaesthetics. Short acting opioids and hypnotics, avoiding neuromuscular blockade, and locoregional techniques are preferred. Most patients are sensitive to the cardiac and depressive effects of anaesthetics and all dystrophic myopathies are considered at risk of malignant hyperthermia. Depolarizing neuromuscular blockers are contraindicated. The use of a peripheral nerve stimulator is recommended to detect the severity of muscle relaxation before extubating. Accurate control and management of IV fluids, electrolytes and temperature is mandatory. Adequate postoperative pain treatment is essential to limit stress and metabolic alteration. Preferably a locoregional technique is used to reduce the increased risk of respiratory depression. A multidisciplinary preoperative approach taking into account the differential diagnosis of the underlying disease of the floppy child is recommended.
Collapse
Affiliation(s)
- Simonetta Tesoro
- Division of Anaesthesia, Analgesia, and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Division of Anaesthesia, Analgesia, and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy -
| | - Federico Marturano
- Division of Anaesthesia, Analgesia, and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Hannerieke J van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jurgen C De Graaff
- Department of Anesthesia, Erasmus MC, Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Melonio CEC, Vieira CB, Leal PC, Oliveira CMBD, Servín ETN, Gomes LMRDS, Moura ECR. Anesthesia for bariatric surgery in patient with mitochondrial myopathy - case report. Braz J Anesthesiol 2020; 71:87-89. [PMID: 33712259 PMCID: PMC9373627 DOI: 10.1016/j.bjane.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial Myopathy is a rare pathology caused by a defect in the mitochondrial DNA metabolism, leading to defects in the formation of adenosine triphosphate, in the Krebs citric acid cycle, fatty acid oxidation and oxidative phosphorylation. It is manifested by exercise intolerance, muscle fatigue on small efforts, muscle weakness, tachycardia, and difficulty breathing. There are few case reports on the operative management of adult patients suffering from mitochondrial myopathy. With this report, we intend to describe the anesthetic management of a patient with mitochondrial myopathy who underwent laparoscopic gastroplasty and outline some anesthetic considerations about this pathology.
Collapse
Affiliation(s)
| | | | - Plínio C Leal
- Universidade Federal do Maranhão, São Luis, Maranhão, Brazil
| | | | | | | | - Ed Carlos R Moura
- Universidade Federal do Maranhão, São Luis, Maranhão, Brazil; São Domingos Hospital, São Luis, Maranhão, Brazil.
| |
Collapse
|
41
|
Abstract
BACKGROUND General anesthetics influence mitochondrial homeostasis, placing individuals with mitochondrial disorders and possibly carriers of recessive mitochondrial mutations at increased risk of perioperative complications. In Drosophila, mutations in the ND23 subunit of complex I of the mitochondrial electron transport chain-analogous to mammalian NDUFS8-replicate key characteristics of Leigh syndrome, an inherited mitochondrial disorder. The authors used the ND23 mutant for testing the hypothesis that anesthetics have toxic potential in carriers of mitochondrial mutations. METHODS The authors exposed wild-type flies and ND23 mutant flies to behaviorally equivalent doses of isoflurane or sevoflurane in 5%, 21%, or 75% oxygen. The authors used percent mortality (mean ± SD, n ≥ 3) at 24 h after exposure as a readout of toxicity and changes in gene expression to investigate toxicity mechanisms. RESULTS Exposure of 10- to 13-day-old male ND23 flies to isoflurane in 5%, 21%, or 75% oxygen resulted in 16.0 ± 14.9% (n = 10), 48.2 ± 16.1% (n = 9), and 99.2 ± 2.0% (n = 10) mortality, respectively. Comparable mortality was observed in females. In contrast, under the same conditions, mortality was less than 5% for all male and female groups exposed to sevoflurane, except 10- to 13-day-old male ND23 flies with 9.6 ± 8.9% (n = 16) mortality. The mortality of 10- to 13-day-old ND23 flies exposed to isoflurane was rescued by neuron- or glia-specific expression of wild-type ND23. Isoflurane and sevoflurane differentially affected expression of antioxidant genes in 10- to 13-day-old ND23 flies. ND23 flies had elevated mortality from paraquat-induced oxidative stress compared with wild-type flies. The mortality of heterozygous ND23 flies exposed to isoflurane in 75% oxygen increased with age, resulting in 54.0 ± 19.6% (n = 4) mortality at 33 to 39 days old, and the percent mortality varied in different genetic backgrounds. CONCLUSIONS Mutations in the mitochondrial complex I subunit ND23 increase susceptibility to isoflurane-induced toxicity and to oxidative stress in Drosophila. Asymptomatic flies that carry ND23 mutations are sensitized to hyperoxic isoflurane toxicity by age and genetic background. EDITOR’S PERSPECTIVE
Collapse
|
42
|
Systemic Delivery of AAV-Fdxr Mitigates the Phenotypes of Mitochondrial Disorders in Fdxr Mutant Mice. Mol Ther Methods Clin Dev 2020; 18:84-97. [PMID: 32995353 PMCID: PMC7488755 DOI: 10.1016/j.omtm.2020.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022]
Abstract
Gene therapy now provides a novel approach for treating inherited monogenetic disorders, including nuclear gene mutations associated with mitochondrial diseases. In this study, we have utilized a mouse model carrying a p.Arg389Gln mutation of the mitochondrial Ferredoxin Reductase gene (Fdxr) and treated them with neurotropic AAV-PHP.B vector loaded with the mouse Fdxr cDNA sequence. We then used immunofluorescence staining and western blot to test the transduction efficiency of this vector. Toluidine blue staining and electronic microscopy were also utilized to assess the morphology of optic and sciatic nerves, and the mitochondrial respiratory chain activity was determined as well. The AAV vector effectively transduced in the central nervous system and peripheral organs, and AAV-Fdxr treatment reversed almost all the symptoms of the mutants (FdxrR389Q/R389Q). This therapy also improved the electronic conductivity of the sciatic nerves, prevented optic atrophy, improved mobility, and restored mitochondrial complex function. Most notably, the sensory neuropathy, neurodegeneration, and chronic neuroinflammation in the brain were alleviated. Overall, we present the first demonstration of a potential definitive treatment that significantly improves optic and sciatic nerve atrophy, sensory neuropathy, and mitochondrial dysfunction in FDXR-related mitochondriopathy. Our study provides substantial support for the translation of AAV-based Fdxr gene therapy into clinical applications.
Collapse
|
43
|
A Metabolic Mechanism for Anaesthetic Suppression of Cortical Synaptic Function in Mouse Brain Slices-A Pilot Investigation. Int J Mol Sci 2020; 21:ijms21134703. [PMID: 32630300 PMCID: PMC7370287 DOI: 10.3390/ijms21134703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of synaptically located ionotropic receptors is thought to be the main mechanism by which anaesthetics cause unconsciousness. An alternative explanation, which has received much less attention, is that of primary anaesthetic disruption of brain metabolism via suppression of mitochondrial proteins. In this pilot study in mouse cortical slices, we investigated the effect of disrupting cellular metabolism on tissue oxygen handling and cortical population seizure-like event (SLE) activity, using the mitochondrial complex I inhibitor rotenone, and compared this to the effects of the general anaesthetics sevoflurane, propofol and ketamine. Rotenone caused an increase in tissue oxygen (98 mmHg to 157 mmHg (p < 0.01)) before any measurable change in SLE activity. Thereafter, tissue oxygen continued to increase and was accompanied by a significant and prolonged reduction in SLE root mean square (RMS) activity (baseline RMS of 1.7 to 0.7 µV, p < 0.001) and SLE frequency (baseline 4.2 to 0.4 events/min, p = 0.001). This temporal sequence of effects was replicated by all three anaesthetic drugs. In conclusion, anaesthetics with differing synaptic receptor mechanisms all effect changes in tissue oxygen handling and cortical network activity, consistent with a common inhibitory effect on mitochondrial function. The temporal sequence suggests that the observed synaptic depression—as seen in anaesthesia—may be secondary to a reduction in cellular metabolic capacity.
Collapse
|
44
|
Anesthesia outside the Operating Room in a Patient with Mitochondrial Disease. Case Rep Anesthesiol 2020; 2020:7902820. [PMID: 32509352 PMCID: PMC7246418 DOI: 10.1155/2020/7902820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/25/2020] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dysfunction comprehends a wide range of genetic disorders. These patients' precarious metabolic balance makes its management difficult. Furthermore, the same systems affected by mitochondrial disease can be altered by many of the frequently used anesthetic agents. Each patient has to be evaluated individually according to their comorbidities and anesthetic requirements.
Collapse
|
45
|
Huang H, Qing X, Li H. Isoflurane Preconditioning Protects the Myocardium Against Ischemia and Reperfusion Injury by Upregulating GRM1 Expression. Curr Neurovasc Res 2020; 17:171-176. [PMID: 32048972 DOI: 10.2174/1567202617666200212104453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reduction in myocardial I/R injury has become the key to the therapy of ischemic cardiovascular disease. Isoflurane (ISO) preconditioning can mimic the major potent protective mechanisms and attenuate ischemia injury. Nevertheless, the mechanisms involved in the cardioprotective effects afforded by isoflurane preconditioning have never been evaluated systematically. METHODS Mice were randomly divided into an ISO preconditioning group and control group. The size of the infarcted region was measured, and comparisons between ISO preconditioning and control animals were made. The metabotropic glutamate receptor type 1(GRM1) expression levels in all groups were determined by quantitative PCR. GRM1 protein expression and DNA damage relative protein γ-H2AX were measured by western blot analysis. The oxidative stress was detected by immunofluorescence after staining with the Dihydroethidium (DHE). RESULTS ISO preconditioning significantly reduced the IR induced infarct volumes and reversed the GRM1 protein expression level in I/R induced myocardial injury. Moreover, ISO preconditioning has a protective effect in reducing the I/R induced DNA damage and oxidative stress. CONCLUSION The results of the present study have demonstrated that the expression of GRM1 provides a protective role in ISO preconditioning against I/R-induced myocardial infarction by reducing the oxidative stress and DNA damage.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, Sichuan Province, 610041, China
| | - Xiaoyan Qing
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu City, Sichuan Province, 610041, China
| | - Handan Li
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, Sichuan Province, 610041, China
| |
Collapse
|
46
|
Pepper MB, Njathi-Ori C, Kinney MO. Don't stress: a case report of regional anesthesia as the primary anesthetic for gynecologic surgery in a patient with mitochondrial myopathy and possible malignant hyperthermia susceptibility. BMC Anesthesiol 2019; 19:226. [PMID: 31837701 PMCID: PMC6911283 DOI: 10.1186/s12871-019-0909-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/09/2019] [Indexed: 12/05/2022] Open
Abstract
Background We aim to describe the evaluation and management of a patient with the uncommon combination of both mitochondrial myopathy and possible malignant hyperthermia susceptibility as an important source of information and as a valuable example of the role of regional anesthesia for patients with these diagnoses. Case presentation A 24 year old woman with a history of possible mitochondrial myopathy and possible malignant hyperthermia susceptibility presented for gynecologic surgery. Surgery was well tolerated with combined spinal epidural anesthesia as well as sedation with midazolam, ketamine, and fentanyl. Conclusions Anesthetic management of patients with mitochondrial myopathy is challenging, made even more so with concurrent malignant hyperthermia susceptibility. This case adds an example to the literature of employing regional anesthesia as a safe approach to this complex care.
Collapse
Affiliation(s)
- Marci B Pepper
- Mayo Clinic Department of Anesthesiology and Perioperative Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Catherine Njathi-Ori
- Mayo Clinic Department of Anesthesiology and Perioperative Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michelle Ochs Kinney
- Mayo Clinic Department of Anesthesiology and Perioperative Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
47
|
Kim SH, Park SY, Jung KT. Dexmedetomidine as a non-triggering anesthetic agent in a patient with MELAS syndrome and systemic sepsis - A case report. Anesth Pain Med (Seoul) 2019; 14:416-422. [PMID: 33329771 PMCID: PMC7713802 DOI: 10.17085/apm.2019.14.4.416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background The selection of anesthetic agents is important in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome patient because serious and unexpected complications can occur after anesthetic exposure. Case A 30-year-old man with MELAS syndrome and sepsis underwent colectomy. Propofol was administered by step-wise until target effect-site concentration (Ce) 1.0 μg/ml and stopped for the loss of consciousness and to avoid hemodynamic instability. After the loss of consciousness, total intravenous anesthesia (TIVA) using dexmedetomidine (1.0 μg/ml/h) and remifentanil (1–4 ng/ml of Ce) was performed for the maintenance of anesthesia to avoid malignant hyperthermia and mitochondrial dysfunction. During the surgery, the bispectral index score stayed between 26 and 44, and increased to 97 after the end of anesthesia. Conclusions TIVA with dexmedetomidine and remifentanil as non-triggering anesthetic agents in patients with MELAS syndrome and systemic sepsis may have advantages to decrease damages associated with mitochondrial stress and metabolic burden.
Collapse
Affiliation(s)
- Sang Hun Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea
| | - Su Yeong Park
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea
| | - Ki Tae Jung
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea
| |
Collapse
|
48
|
Abstract
Kearns-Sayre syndrome (KSS) is a rare mitochondrial DNA (mtDNA) deletion syndrome that typically presents before 20 years of age and is characterized by chronic progressive external ophthalmoplegia, pigmentary retinopathy, and a combination of cardiac conduction defects, cerebellar ataxia, and elevated cerebrospinal fluid protein levels. The mtDNA defects interfere with oxidative phosphorylation and can affect a number of cellular energy processes in various organs. We report the case of a 15-year-old girl with KSS that was uniquely associated with bilateral, symmetrical exophthalmos.
Collapse
|
49
|
Murakami Y, Ueki R, Tachikawa T, Hirose M. The Basic Study of the Mechanism of Propofol-Related Infusion Syndrome Using a Murine Skeletal Muscle Injury Model. Anesth Pain Med 2019; 9:e89417. [PMID: 31497518 PMCID: PMC6712282 DOI: 10.5812/aapm.89417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background The pathophysiological mechanism of propofol-related infusion syndrome (PRIS) is believed to be due to the injury to the mitochondrial electron transport chain and the resultant metabolic disorders that are caused by both propofol agents and the lipid solvent. However, the mechanisms and causative factors of PRIS have not been fully elucidated. Objectives The aim of this study was to evaluate the possibility of a research model using the culture of differentiated C2C12 cells for fundamental research of PRIS. Methods First, differentiated C2C12 cells were cultured accompanied by several concentrations of chemical reagents of 2,6-diisopropylphenol (2,6 DIP) or dimethyl sulfoxide (DMSO) for 60 hours and the cell death rate was examined by trypan blue staining. Second, The cells were incubated with a commercially available propofol reagent or lipid reagent for 48 hours. The supernatant fluid of the cell culture medium was gathered and the numbers of floating cells were measured by cell counter. To investigate the mitochondrial disorder by the propofol preparation, JC-1, an experiment using fluorescent reagent, was performed for the 48 hours with 100 µg/mL propofol incubation. Results The rate of cell death was increased with elevating concentrations both of chemical reagents of 2,6 DIP group and dimethyl sulfoxide group. The rates of cell death were significantly higher in the 2,6 DIP group than DMSO group. The numbers of floating cells were increased with elevating concentrations both commercially available propofol reagent and lipid reagent groups. The decreased red/green fluorescence ratio by JC-1 staining in the propofol 100µg/mL group proved an attenuated mitochondrial membrane potential. Conclusions The dose-dependent cell damage induced by the propofol reagents and a lipid solvent may provide a proposed model as a basic experimental model for further investigations into PRIS.
Collapse
Affiliation(s)
- Yuryo Murakami
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ryusuke Ueki
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Corresponding Author: MD, Ph.D. Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo 663-8501, Japan. Tel: 81-798456392, Fax: 81-798456393,
| | - Taihei Tachikawa
- Department of Anesthesiology, Meiwa Hospital, Nishinomiya, Japan
| | - Munetaka Hirose
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
50
|
To LK, Shah PR, Scanga HL, Franks AL, Cladis FP, Nischal KK. Personalized pediatric ophthalmology: a case report. J AAPOS 2019; 23:234-236. [PMID: 31129100 DOI: 10.1016/j.jaapos.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
Abstract
The availability of genetic sequencing has given physicians a new tool for diagnosis and treatment of disease, and "personalized medicine" has become an increasingly common term in general but not in pediatric ophthalmology. We present a case of a toddler who developed ataxia, opsoclonus, myoclonus, and developmental regression following anesthesia for a common otolaryngology procedure. The child was found to have a variant in the MT-ND6 gene (m.14484T>C), most commonly associated with Leber hereditary optic neuropathy, despite a phenotype more closely resembling Leigh syndrome. The incongruence of phenotype and genotype prompted whole exome sequencing, which identified an unexpected intronic missense mutation in RB1 (1960+5G>A), with a 90% penetrance for retinoblastoma. Limited evaluation of the posterior pole in clinic did not identify any lesions, and the risks and benefits of examination under anesthesia were discussed among neurology, ophthalmology, and anesthesiology. We report the outcome of these discussions. The value and risks of personalized medicine are discussed.
Collapse
Affiliation(s)
- Lillian K To
- UPMC Eye Center, UPMC Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Parth R Shah
- UPMC Eye Center, UPMC Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hannah L Scanga
- UPMC Eye Center, UPMC Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alexis L Franks
- Department of Pediatrics, Division of Child Neurology, UPMC Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Franklyn P Cladis
- Department of Anesthesiology, UPMC Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ken K Nischal
- UPMC Eye Center, UPMC Children's Hospital of Pittsburgh, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|