1
|
Tsironi A, Lazaros K, Mendrinou E, Papasotiriou M, Siamoglou S, Kydonopoulou K, John A, Gerou A, Gerou S, Ali BR, Vrahatis AG, Patrinos GP. Impact of CYP3A4 and ABCB1 genetic variants on tacrolimus dosing in Greek kidney transplant recipients. Front Pharmacol 2025; 16:1538432. [PMID: 40176889 PMCID: PMC11962430 DOI: 10.3389/fphar.2025.1538432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Background Tacrolimus, an approved first-line calcineurin inhibitor, is widely prescribed in organ transplantation to prevent allograft rejection. Its narrow therapeutic index requires precise management to achieve optimal dosing and to minimize adverse drug events (ADEs) while ensuring its therapeutic efficacy. Among several factors, genetic differences contribute significantly to the inter-individual and inter-ethnic variability in pharmacokinetics (PK) of tacrolimus in kidney transplant recipients. As a result, investigating the role of genetic variation in Greek transplant recipients becomes crucial to optimizing therapeutic strategies and enhancing the efficacy of immunosuppressive treatment. Hypothesis Genetic variants which are known to influence the activity of enzymes or drug-transporters critical to tacrolimus pharmacokinetics, may significantly affect the required kidney post-transplant tacrolimus daily dose. Aim To assess the correlation of ABCB1 genetic variants (rs1128503, rs2229109) and CYP3A4 (rs2242480, rs4986910) with tacrolimus dose-adjusted trough concentration (C0/D), in Greek kidney transplant recipients. Methods Ninety-four unrelated Greek kidney transplant recipients were included in this study from the Department of Nephrology and Kidney Transplantation of the University General Hospital of Patras. Patients' dose-adjusted trough levels were measured at five distinct time points after transplantation and analyzed in relation to the possible influence of CYP3A4 and correlated with the abovementioned ABCB1 genetic variants using standard genotyping analysis and Sanger sequencing. Results The genetic variants rs1128503, rs2229109, rs2242480, rs4986910 did not show any significant association with the daily dosing requirements of tacrolimus for at least 1 year, in Greek patients who have undergone kidney transplant. Conclusion It remains uncertain whether these genetic variants influence the assessment of the appropriate tacrolimus dosing 1 year after transplantation in Greek kidney transplant recipients.
Collapse
Affiliation(s)
- Anna Tsironi
- Laboratory of Pharmacogenomics and Individualized Therapy, Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | - Effrosyni Mendrinou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Marios Papasotiriou
- Department of Nephrology and Kidney Transplantation, University Hospital of Patras, Patras, Greece
| | - Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Spyridon Gerou
- ANALYSI Biomedical Laboratories S.A., Thessaloniki, Greece
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- ASPIRE Abu Dhabi Precision Medicine Research Institute, Al-Ain, United Arab Emirates
| | | | - George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- ASPIRE Abu Dhabi Precision Medicine Research Institute, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Clinical Bioinformatics Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Xu Y, He H, Li H. Identification of tacrolimus-related genes in familial combined hyperlipidemia and development of a diagnostic model using bioinformatics analysis. Heliyon 2025; 11:e41705. [PMID: 39916852 PMCID: PMC11800081 DOI: 10.1016/j.heliyon.2025.e41705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/03/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
Background Clinical observations have revealed that patients undergoing organ transplantation administered tacrolimus often experience abnormal lipid metabolism with serious consequences. Thus, the intricate interplay between tacrolimus and lipid metabolism must be addressed to develop targeted therapeutic interventions. Our ongoing research aims to develop precision medicine approaches that not only alleviate the immediate repercussions for organ transplant patients but also enhance their long-term outcomes. To this end, we investigated the potential genes associated with tacrolimus metabolism in familial combined hyperlipidemia (FCHL) to identify relevant biomarkers of FCHL, develop predictive diagnostic models for hyperlipidemia, and reveal potential therapeutic targets for FCHL. Methods Dataset GSE1010 containing information on patients diagnosed with FCHL was obtained from the Gene Expression Omnibus (GEO), and an ensemble of tacrolimus-related genes (TRGs) was retrieved from the GeneCards, STITCH, and Molecular Signatures Database databases. A thorough weighted gene co-expression network analysis was conducted, including a differential expression analysis of the GSE1010 and TRG datasets, to identify intricate patterns of gene co-expression and provide insights on the underlying molecular dynamics within the datasets. Key genes were screened, diagnostic models were constructed, and all genes associated with logFC values were assessed using gene set variation and enrichment analyses. Upregulated genes were identified by a positive logFC (>0) and P < 0.05, while downregulated genes were characterized by a negative logFC (<0) and P < 0.05. These criteria facilitated a more nuanced categorization of gene expression changes within the analyzed datasets. Given tacrolimus's immunosuppressive impact, the gene expression matrix data obtained from dataset GSE1010 was submitted to CIBERSORT to assess immune cell infiltration outcomes. Finally, we examined the regulatory network of screened key genes that interact with RNA-binding proteins, potential drugs, small-molecule compounds, and transcription factors. Results We screened 14 statistically significant key genes, built a reliable risk model, and grouped the dataset into categories at high and low risk for hyperlipidemia development. FCHL was linked to memory B and immature B immune cells. The gene set variation analysis revealed two pathways associated with cholesterol homeostasis and the complement system that were closely associated with the potential functions of FCHL and tacrolimus-related differentially expressed genes. Conclusions Our research offers a better understanding of FCHL and the TRGs involved in lipid metabolism. Additionally, it provides research directions for identifying potential targets for clinical therapies.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, China
| | | | | |
Collapse
|
3
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Karkhanis AV, Harwood MD, Stader F, Bois FY, Neuhoff S. Applications of the Cholesterol Metabolite, 4β-Hydroxycholesterol, as a Sensitive Endogenous Biomarker for Hepatic CYP3A Activity Evaluated within a PBPK Framework. Pharmaceutics 2024; 16:1284. [PMID: 39458613 PMCID: PMC11510160 DOI: 10.3390/pharmaceutics16101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Plasma levels of 4β-hydroxycholesterol (4β-OHC), a CYP3A-specific metabolite of cholesterol, are elevated after administration of CYP3A inducers like rifampicin and carbamazepine. To simulate such plasma 4β-OHC increase, we developed a physiologically based pharmacokinetic (PBPK) model of cholesterol and 4β-OHC in the Simcyp PBPK Simulator (Version 23, Certara UK Ltd.) using a middle-out approach. Methods: Relevant physicochemical properties and metabolic pathway data for CYP3A and CYP27A1 was incorporated in the model. Results: The PBPK model recovered the observed baseline plasma 4β-OHC levels in Caucasian, Japanese, and Korean populations. The model also captured the higher baseline 4β-OHC levels in females compared to males, indicative of sex-specific differences in CYP3A abundance. More importantly, the model recapitulated the increased 4β-OHC plasma levels after multiple-dose rifampicin treatment in six independent studies, indicative of hepatic CYP3A induction. The verified model also captured the altered 4β-OHC levels in CYP3A4/5 polymorphic populations and with other CYP3A inducers. The model is limited by scant data on relative contributions of CYP3A and CYP27A1 pathways and does not account for regulatory mechanisms that control plasma cholesterol and 4β-OHC levels. Conclusion: This study provides a quantitative fit-for-purpose and framed-for-future modelling framework for an endogenous biomarker to evaluate the DDI risk with hepatic CYP3A induction.
Collapse
Affiliation(s)
- Aneesh V. Karkhanis
- Certara UK Limited, Certara Predictive Technologies, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; (M.D.H.); (F.S.); (F.Y.B.); (S.N.)
| | | | | | | | | |
Collapse
|
5
|
Mohamed ME, Guo B, Wu B, Schladt DP, Muthusamy A, Guan W, Abrahante JE, Onyeaghala G, Saqr A, Pankratz N, Agarwal G, Mannon RB, Matas AJ, Oetting WS, Remmel RP, Israni AK, Jacobson PA, Dorr CR. Extreme phenotype sampling and next generation sequencing to identify genetic variants associated with tacrolimus in African American kidney transplant recipients. THE PHARMACOGENOMICS JOURNAL 2024; 24:29. [PMID: 39179559 DOI: 10.1038/s41397-024-00349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
African American (AA) kidney transplant recipients (KTRs) have poor outcomes, which may in-part be due to tacrolimus (TAC) sub-optimal immunosuppression. We previously determined the common genetic regulators of TAC pharmacokinetics in AAs which were CYP3A5 *3, *6, and *7. To identify low-frequency variants that impact TAC pharmacokinetics, we used extreme phenotype sampling and compared individuals with extreme high (n = 58) and low (n = 60) TAC troughs (N = 515 AA KTRs). Targeted next generation sequencing was conducted in these two groups. Median TAC troughs in the high group were 7.7 ng/ml compared with 6.3 ng/ml in the low group, despite lower daily doses of 5 versus 12 mg, respectively. Of 34,542 identified variants across 99 genes, 1406 variants were suggestively associated with TAC troughs in univariate models (p-value < 0.05), however none were significant after multiple testing correction. We suggest future studies investigate additional sources of TAC pharmacokinetic variability such as drug-drug-gene interactions and pharmacomicrobiome.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Bin Guo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Baolin Wu
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, CA, USA
| | - David P Schladt
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | | | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Juan E Abrahante
- Research Informatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Nephrology Division, Hennepin Healthcare, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Gaurav Agarwal
- Division of Nephrology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roslyn B Mannon
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arthur J Matas
- Division of Transplantation, Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Nephrology Division, Hennepin Healthcare, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA.
- Nephrology Division, Hennepin Healthcare, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Clinical and Translational Sciences Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Hussaini SA, Waziri B, Dickens C, Duarte R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: the African gap. A narrative review. Pharmacogenomics 2024; 25:329-341. [PMID: 39109483 PMCID: PMC11404701 DOI: 10.1080/14622416.2024.2370761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.
Collapse
Affiliation(s)
- Sadiq Aliyu Hussaini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
- Department of Pharmacology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Bala Waziri
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Obayemi JE, Callans L, Nair N, Gao H, Gandla D, Loza BL, Gao S, Mohebnasab M, Trofe-Clark J, Jacobson P, Keating B. Assessing the Utility of a Genotype-Guided Tacrolimus Equation in African American Kidney Transplant Recipients: A Single Institution Retrospective Study. J Clin Pharmacol 2024; 64:944-952. [PMID: 38766706 DOI: 10.1002/jcph.2461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 05/22/2024]
Abstract
Tacrolimus metabolism is heavily influenced by the CYP3A5 genotype, which varies widely among African Americans (AA). We aimed to assess the performance of a published genotype-informed tacrolimus dosing model in an independent set of adult AA kidney transplant (KTx) recipients. CYP3A5 genotypes were obtained for all AA KTx recipients (n = 232) from 2010 to 2019 who met inclusion criteria at a single transplant center in Philadelphia, Pennsylvania, USA. Medical record data were used to calculate predicted tacrolimus clearance using the published AA KTx dosing equation and two modified iterations. Observed and model-predicted trough levels were compared at 3 days, 3 months, and 6 months post-transplant. The mean prediction error at day 3 post-transplant was 3.05 ng/mL, indicating that the model tended to overpredict the tacrolimus trough. This bias improved over time to 1.36 and 0.78 ng/mL at 3 and 6 months post-transplant, respectively. Mean absolute prediction error-a marker of model precision-improved with time to 2.33 ng/mL at 6 months. Limiting genotype data in the model decreased bias and improved precision. The bias and precision of the published model improved over time and were comparable to studies in previous cohorts. The overprediction observed by the published model may represent overfitting to the initial cohort, possibly limiting generalizability.
Collapse
Affiliation(s)
- Joy E Obayemi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Callans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Nair
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Gao
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Divya Gandla
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Bao-Li Loza
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Gao
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maedeh Mohebnasab
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Trofe-Clark
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pamala Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Brendan Keating
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, New York University, New York, NY, USA
| |
Collapse
|
8
|
Zhang Y, Du Y, Ren S, Li Y, Zhang X, Cao X, Liu F, Zong H, Li Y. CYP3A5 Genotype-Dependent Drug-Drug Interaction Between Tacrolimus and Voriconazole in Chinese Kidney Transplant Patients. Ann Pharmacother 2024; 58:605-613. [PMID: 37702380 DOI: 10.1177/10600280231197399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The effect of drug-drug interaction (DDI) between tacrolimus and voriconazole on the pharmacokinetics of tacrolimus in different CYP3A5 genotypes has not been reported in previous studies. OBJECTIVE The objective of this study was to investigate whether CYP3A5 genotype could influence tacrolimus-voriconazole DDI in Chinese kidney transplant patients. METHODS All kidney transplant patients were divided into combination and non-combination groups based on whether tacrolimus was combined with or without voriconazole. Each group was subdivided into CYP3A5 expresser (CYP3A5*1/*1 or CYP3A5*1/*3) and CYP3A5 nonexpresser (CYP3A5*3/*3). A retrospective analysis compared tacrolimus dose (D)-corrected trough concentrations (C0) (C0/D) between combination and non-combination groups, respectively. Tacrolimus C0/D was also compared between CYP3A5 expresser and nonexpresser in both groups. RESULTS The C0/D values of tacrolimus were significantly different between CYP3A5 expresser and nonexpresser in combination group (378.20 [219.38, 633.48] ng/mL/[mg/kg/d] vs 720.00 [595.35, 1681.50] ng/mL/[mg/kg/d], P = 0.0010). Either in CYP3A5 expresser or nonexpresser, we found a statistically significant difference in tacrolimus C0/D between combination and non-combination group (P < 0.0001). The increase in CYP3A5 nonexpresser was 1.38 times higher than that in CYP3A5 expresser (320.93% vs 232.19%). CONCLUSION AND RELEVANCE The median C0/D values were 90.38% higher in kidney transplant recipients with CYP3A5*3/*3 genotype than in those with CYP3A5*1/*1 or CYP3A5*1/*3 genotype when treated with both tacrolimus and voriconazole. A CYP3A5 genotype-dependent DDI was found between tacrolimus and voriconazole. Therefore, personalized therapy accounting for CYP3A5 genotype detection and therapeutic drug monitoring is necessary for kidney transplant patients when treating with tacrolimus and voriconazole.
Collapse
Affiliation(s)
- Yundi Zhang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Du
- The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shuyu Ren
- Jinan Xinhang Experimental Foreign Language School, Jinan, China
| | - Yue Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoming Zhang
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohong Cao
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huiying Zong
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
9
|
Deininger KM, Anderson HD, Patrinos GP, Mitropoulou C, Aquilante CL. Cost-effectiveness analysis of CYP3A5 genotype-guided tacrolimus dosing in solid organ transplantation using real-world data. THE PHARMACOGENOMICS JOURNAL 2024; 24:14. [PMID: 38750044 DOI: 10.1038/s41397-024-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 06/15/2024]
Abstract
The objective of this study was to estimate the cost-effectiveness of CYP3A5 genotype-guided tacrolimus dosing in kidney, liver, heart, and lung transplant recipients relative to standard of care (SOC) tacrolimus dosing, from a US healthcare payer perspective. We developed decision-tree models to compare economic and clinical outcomes between CYP3A5 genotype-guided and SOC tacrolimus therapy in the first six months post-transplant. We derived inputs for CYP3A5 phenotype frequencies and physician use of genotype test results to inform clinical care from literature; tacrolimus exposure [high vs low tacrolimus time in therapeutic range using the Rosendaal algorithm (TAC TTR-Rosendaal)] and outcomes (incidences of acute tacrolimus nephrotoxicity, acute cellular rejection, and death) from real-world data; and costs from the Medicare Fee Schedule and literature. We calculated cost per avoided event and performed sensitivity analyses to evaluate the robustness of the results to changes in inputs. Incremental costs per avoided event for CYP3A5 genotype-guided vs SOC tacrolimus dosing were $176,667 for kidney recipients, $364,000 for liver recipients, $12,982 for heart recipients, and $93,333 for lung recipients. The likelihood of CYP3A5 genotype-guided tacrolimus dosing leading to cost-savings was 19.8% in kidney, 32.3% in liver, 51.8% in heart, and 54.1% in lung transplant recipients. Physician use of genotype results to guide clinical care and the proportion of patients with a high TAC TTR-Rosendaal were key parameters driving the cost-effectiveness of CYP3A5 genotype-guided tacrolimus therapy. Relative to SOC, CYP3A5 genotype-guided tacrolimus dosing resulted in a slightly greater benefit at a higher cost. Further economic evaluations examining intermediary outcomes (e.g., dose modifications) are needed, particularly in populations with higher frequencies of CYP3A5 expressers.
Collapse
Affiliation(s)
- Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Heather D Anderson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Christina Mitropoulou
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, UAE
- The Golden Helix Foundation, London, UK
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA.
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Zhang Y, Shen B, Li Y, Zong H, Zhang X, Cao X, Liu F, Li Y. Drug-drug interaction between tacrolimus and caspofungin in Chinese kidney transplant patients with different CYP3A5 genotypes. Ther Adv Drug Saf 2024; 15:20420986241243165. [PMID: 38646424 PMCID: PMC11027596 DOI: 10.1177/20420986241243165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
Background The effect of drug-drug interaction between tacrolimus and caspofungin on the pharmacokinetics of tacrolimus in different CYP3A5 genotypes has not been reported in previous studies. Objectives To investigate the effect of caspofungin on the blood concentration and dose of tacrolimus under different CYP3A5 genotypes. Design We conducted a retrospective cohort study in The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital from January 2015 to December 2022. All kidney transplant patients were divided into the combination or non-combination group based on whether tacrolimus was combined with caspofungin or not. Patients were subdivided into CYP3A5 expressers (CYP3A5*1/*1 or CYP3A5*1/*3) and CYP3A5 non-expressers (CYP3A5*3/*3). Methods Data from the combination and the non-combination groups were matched with propensity scores to reduce confounding by SPSS 22.0. A total of 200 kidney transplant patients receiving tacrolimus combined with caspofungin or not were enrolled in this study. Statistical analysis was conducted on the dose-corrected trough concentrations (C0/D) and dose requirements (D) of tacrolimus using independent sample two-sided t-test and nonparametric tests to investigate the impact on patients with different. Results In this study, the C0/D values of tacrolimus were not significantly different between the combination and non-combination groups (p = 0.054). For CYP3A5 expressers, there was no significant difference in tacrolimus C0/D or D values between the combination and non-combination groups (p = 0.359; p = 0.851). In CYP3A5 nonexpressers, the C0/D values of tacrolimus were significantly lower in the combination than in the non-combination groups (p = 0.039), and the required daily dose of tacrolimus was increased by 11.11% in the combination group. Conclusion Co-administration of caspofungin reduced tacrolimus blood levels and elevated the required daily dose of tacrolimus. In CYP3A5 non-expressers, co-administration of caspofungin had a significant effect on tacrolimus C0/D values. An approximate 10% increase in the weight-adjusted daily dose of tacrolimus in CYP3A5 non-expressers is recommended to ensure the safety of tacrolimus administration.
Collapse
Affiliation(s)
- Yundi Zhang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yue Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Huiying Zong
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiaoming Zhang
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohong Cao
- Urinary Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jingshi Road, Jinan City, Shandong Province 250014, China
| |
Collapse
|
11
|
Mohamed M, Guo B, Wu B, Schladt D, Muthusamy A, Guan W, Abrahante J, Onyeaghala G, Saqr A, Pankratz N, Agarwal G, Mannon R, Matas A, Oetting W, Remmel R, Israni A, Jacobson P, Dorr C. Extreme Phenotype Sampling and Next Generation Sequencing to Identify Genetic Variants Associated with Tacrolimus in African American Kidney Transplant Recipients. RESEARCH SQUARE 2024:rs.3.rs-4050136. [PMID: 38558983 PMCID: PMC10980152 DOI: 10.21203/rs.3.rs-4050136/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
African American (AA) kidney transplant recipients (KTRs) have poor outcomes, which may in-part be due to tacrolimus (TAC) sub-optimal immunosuppression. We previously determined the common genetic regulators of TAC pharmacokinetics in AAs which were CYP3A5 *3, *6, and *7. To identify low-frequency variants that impact TAC pharmacokinetics, we used extreme phenotype sampling and compared individuals with extreme high (n=58) and low (n=60) TAC troughs (N=515 AA KTRs). Targeted next generation sequencing was conducted in these two groups. Median TAC troughs in the high group were 7.7 ng/ml compared with 6.3 ng/ml in the low group, despite lower daily doses of 5 versus 12mg, respectively. Of 34,542 identified variants across 99 genes, 1,406 variants were suggestively associated with TAC troughs in univariate models (p-value <0.05), however none were significant after multiple testing correction. We suggest future studies investigate additional sources of TAC pharmacokinetic variability such as drug-drug-gene interactions and pharmacomicrobiome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pamala Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota
| | | |
Collapse
|
12
|
Vidal-Alabró A, Colom H, Fontova P, Cerezo G, Melilli E, Montero N, Coloma A, Manonelles A, Favà A, Cruzado JM, Torras J, Grinyó JM, Lloberas N. Tools for a personalized tacrolimus dose adjustment in the follow-up of renal transplant recipients. Metabolizing phenotype according to CYP3A genetic polymorphisms versus concentration-dose ratio. Nefrologia 2024; 44:204-216. [PMID: 38614890 DOI: 10.1016/j.nefroe.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/10/2022] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND AND JUSTIFICATION The strategy of the concentration-dose (C/D) approach and the different profiles of tacrolimus (Tac) according to the cytochrome P450 polymorphisms (CYPs) focus on the metabolism of Tac and are proposed as tools for the follow-up of transplant patients. The objective of this study is to analyse both strategies to confirm whether the stratification of patients according to the pharmacokinetic behaviour of C/D corresponds to the classification according to their CYP3A4/5 cluster metabolizer profile. MATERIALS AND METHODS 425 kidney transplant patients who received Tac as immunosuppressive treatment have been included. The concentration/dose ratio (C/D) was used to divide patients in terciles and classify them according to their Tac metabolism rate (fast, intermediate, and slow). Based on CYP3A4 and A5 polymorphisms, patients were classified into 3 metabolizer groups: fast (CYP3A5*1 carriers and CYP34A*1/*1), intermediate (CYP3A5*3/3 and CYP3A4*1/*1) and slow (CYP3A5*3/*3 and CYP3A4*22 carriers). RESULTS When comparing patients included in each metabolizer group according to C/D ratio, 47% (65/139) of the fast metabolizers, 85% (125/146) of the intermediate and only 12% (17/140) of the slow also fitted in the homonym genotype group. Statistically lower Tac concentrations were observed in the fast metabolizers group and higher Tac concentrations in the slow metabolizers when compared with the intermediate group both in C/D ratio and polymorphisms criteria. High metabolizers required approximately 60% more Tac doses than intermediates throughout follow-up, while poor metabolizers required approximately 20% fewer doses than intermediates. Fast metabolizers classified by both criteria presented a higher percentage of times with sub-therapeutic blood Tac concentration values. CONCLUSION Determination of the metabolizer phenotype according to CYP polymorphisms or the C/D ratio allows patients to be distinguished according to their exposure to Tac. Probably the combination of both classification criteria would be a good tool for managing Tac dosage for transplant patients.
Collapse
Affiliation(s)
- Anna Vidal-Alabró
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Helena Colom
- Departamento de Farmacia y Tecnología Farmacéutica, y Físico-química, Unidad de Biofarmacia y Farmacocinética, Facultad de Farmacia y Ciencias de la Alimentación, Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Gema Cerezo
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Edoardo Melilli
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Nuria Montero
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Ana Coloma
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Anna Manonelles
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Alex Favà
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Josep M Cruzado
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Joan Torras
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Josep M Grinyó
- Departamento de Ciencias Clínicas, Unidad de Medicina, Universitat de Barcelona, Spain
| | - Nuria Lloberas
- Servicio de Nefrología, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.
| |
Collapse
|
13
|
Claw KG, Dorr CR, Woodahl EL. Implementing community-engaged pharmacogenomics in Indigenous communities. Nat Commun 2024; 15:920. [PMID: 38296967 PMCID: PMC10831049 DOI: 10.1038/s41467-024-45032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Katrina G Claw
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Casey R Dorr
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Nephrology Division, Department of Medicine, Hennepin Healthcare, University of Minnesota, Minneapolis, MN, USA
- Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Clinical and Translational Sciences Institute, University of Minnesota, Minneapolis, MN, USA
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- L.S. Skaggs Institute for Health Innovation, University of Montana, Missoula, MT, USA
| |
Collapse
|
14
|
Wanas H, Kamel MH, William EA, Fayad T, Abdelfattah ME, Elbadawy HM, Mikhael ES. The impact of CYP3A4 and CYP3A5 genetic variations on tacrolimus treatment of living-donor Egyptian kidney transplanted patients. J Clin Lab Anal 2023; 37:e24969. [PMID: 37789683 PMCID: PMC10681408 DOI: 10.1002/jcla.24969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Tacrolimus (TAC) is the mainstay of immunosuppressive regimen for kidney transplantations. Its clinical use is complex due to high inter-individual variations which can be partially attributed to genetic variations at the metabolizing enzymes CYP3A4 and CYP3A5. Two single nucleotide polymorphisms (SNPs), CYP3A4*22 and CYP3A5*3, have been reported as important causes of differences in pharmacokinetics that can affect efficacy and/or toxicity of TAC. OBJECTIVE Investigating the effect of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration in Egyptian renal recipients. METHODS Overall, 72 Egyptian kidney transplant recipients were genotyped for CYP3A4*22 G>A and CYP3A5*3 T>C. According to the functional defect associated with CYP3A variants, patients were clustered into: poor (PM) and non-poor metabolizers (Non-PM). The impact on dose adjusted through TAC concentrations (C0) and daily doses at different time points after transplantation was evaluated. RESULTS Cyp3A4*1/*22 and PM groups require significantly lower dose of TAC (mg/kg) at different time points with significantly higher concentration/dose (C0/D) ratio at day 10 in comparison to Cyp3A4*1/*1 and Non-PM groups respectively. However, CyP3A5*3 heterozygous individuals did not show any significant difference in comparison to CyP3A5*1/*3 individuals. By comparing between PM and Non-PM, the PM group had a significantly lower rate of recipients not reaching target C0 at day 14. CONCLUSION This is the first study on Egyptian population to investigate the impact of CYP3A4*22 and CYP3A5*3 SNPs individually and in combination on the TAC concentration. This study and future multicenter studies can contribute to the individualization of TAC dosing in Egyptian patients.
Collapse
Affiliation(s)
- Hanaa Wanas
- Medical Pharmacology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
- Pharmacology and Toxicology Department, Faculty of PharmacyTaibah UniversityMadinahSaudi Arabia
| | - Mai Hamed Kamel
- Clinical and Chemical Pathology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| | - Emad Adel William
- National Research Centre, Medical Research and Clinical Studies InstituteCairoEgypt
| | - Tarek Fayad
- Internal Medicine DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| | | | | | - Emily Samir Mikhael
- Clinical and Chemical Pathology DepartmentFaculty of Medicine Cairo UniversityCairoEgypt
| |
Collapse
|
15
|
Henkel L, Jehn U, Thölking G, Reuter S. Tacrolimus-why pharmacokinetics matter in the clinic. FRONTIERS IN TRANSPLANTATION 2023; 2:1160752. [PMID: 38993881 PMCID: PMC11235362 DOI: 10.3389/frtra.2023.1160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/07/2023] [Indexed: 07/13/2024]
Abstract
The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed immunosuppressant drug after solid organ transplantation. After renal transplantation (RTx) approximately 95% of recipients are discharged with a Tac-based immunosuppressive regime. Despite the high immunosuppressive efficacy, its adverse effects, narrow therapeutic window and high intra- and interpatient variability (IPV) in pharmacokinetics require therapeutic drug monitoring (TDM), which makes treatment with Tac a major challenge for physicians. The C/D ratio (full blood trough level normalized by daily dose) is able to classify patients receiving Tac into two major metabolism groups, which were significantly associated with the clinical outcomes of patients after renal or liver transplantation. Therefore, the C/D ratio is a simple but effective tool to identify patients at risk of an unfavorable outcome. This review highlights the challenges of Tac-based immunosuppressive therapy faced by transplant physicians in their daily routine, the underlying causes and pharmacokinetics (including genetics, interactions, and differences between available Tac formulations), and the latest data on potential solutions to optimize treatment of high-risk patients.
Collapse
Affiliation(s)
- Lino Henkel
- Department of Medicine D, University of Münster, Münster, Germany
| | - Ulrich Jehn
- Department of Medicine D, University of Münster, Münster, Germany
| | - Gerold Thölking
- Department of Medicine D, University of Münster, Münster, Germany
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, Steinfurt, Germany
| | - Stefan Reuter
- Department of Medicine D, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Reininger KA, Onyeaghala G, Anderson-Haag T, Schladt DS, Wu B, Guan W, Dorr CR, Remmel RP, Mannon R, Matas AJ, Oetting WS, Stahler P, Israni AK, Jacobson PA. Higher number of tacrolimus dose adjustments in kidney transplant recipients who are extensive and intermediate CYP3A5 metabolizers. Clin Transplant 2023; 37:e14893. [PMID: 36571802 PMCID: PMC10089949 DOI: 10.1111/ctr.14893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Kidney transplant recipients carrying the CYP3A5*1 allele have lower tacrolimus troughs, and higher dose requirements compared to those with the CYP3A5*3/*3 genotype. However, data on the effect of CYP3A5 alleles on post-transplant tacrolimus management are lacking. The effect of CYP3A5 metabolism phenotypes on the number of tacrolimus dose adjustments and troughs in the first 6 months post-transplant was evaluated in 78 recipients (64% Caucasians). Time to first therapeutic concentration, percentage of time in therapeutic range (TTR), and estimated glomerular filtration rate (eGFR) were also evaluated. Fifty-five kidney transplant recipients were CYP3A5 poor metabolizers (PM), 17 were intermediate metabolizers (IM), and 6 were extensive metabolizers (EM). Compared to PMs, EMs/IMs had significantly more dose adjustments (6.1 vs. 8.1, p = .015). Overall, 33.82% of trough measurements resulted in a dose change. There was no difference in the number of tacrolimus trough measurements between PMs and EM/IMs. The total daily tacrolimus dose requirements were higher in EMs and IMs compared to PMs (<.001). TTR was ∼50% in the PMs and EMs/IMs groups. CYP3A5 EM/IM metabolizers have more tacrolimus dose changes and higher dose requirements which increases clinical management complexity. Larger studies are needed to assess the cost and benefits of including genotyping data to improve clinical management.
Collapse
Affiliation(s)
- Kevin A Reininger
- Department of Pharmacy, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, Minnesota, USA
| | - Teresa Anderson-Haag
- Department of Pharmacy, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - David S Schladt
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Baolin Wu
- Department of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Casey R Dorr
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roslyn Mannon
- Division of Nephrology, University of Nebraska, Omaha, Nebraska, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul Stahler
- Division of Surgery, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Ajay K Israni
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Galvez C, Boza P, González M, Hormazabal C, Encina M, Azócar M, Castañeda LE, Rojo A, Ceballos ML, Krall P. Evaluation of limited-sampling strategies to calculate AUC(0–24) and the role of CYP3A5 in Chilean pediatric kidney recipients using extended-release tacrolimus. Front Pharmacol 2023; 14:1044050. [PMID: 36998611 PMCID: PMC10043346 DOI: 10.3389/fphar.2023.1044050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Kidney transplantation (KTx) requires immunosuppressive drugs such as Tacrolimus (TAC) which is mainly metabolized by CYP3A5. TAC is routinely monitored by trough levels (C0) although it has not shown to be a reliable marker. The area-under-curve (AUC) is a more realistic measure of drug exposure, but sampling is challenging in pediatric patients. Limited-sampling strategies (LSS) have been developed to estimate AUC. Herein, we aimed to determine AUC(0–24) and CYP3A5 genotype in Chilean pediatric kidney recipients using extended-release TAC, to evaluate different LSS-AUC(0–24) formulas and dose requirements.Patients and methods: We analyzed pediatric kidney recipients using different extended-release TAC brands to determine their trapezoidal AUC(0–24) and CYP3A5 genotypes (SNP rs776746). Daily TAC dose (TAC-D mg/kg) and AUC(0–24) normalized by dose were compared between CYP3A5 expressors (*1/*1 and *1/*3) and non-expressors (*3/*3). We evaluated the single and combined time-points to identify the best LSS-AUC(0–24) model. We compared the performance of this model with two pediatric LSS-AUC(0–24) equations for clinical validation.Results: Fifty-one pharmacokinetic profiles were obtained from kidney recipients (age 13.1 ± 2.9 years). When normalizing AUC(0–24) by TAC-D significant differences were found between CYP3A5 expressors and non-expressors (1701.9 vs. 2718.1 ng*h/mL/mg/kg, p < 0.05). C0 had a poor fit with AUC(0–24) (r2 = 0.5011). The model which included C0, C1 and C4, showed the best performance to predict LSS-AUC(0–24) (r2 = 0.8765) and yielded the lowest precision error (7.1% ± 6.4%) with the lowest fraction (9.8%) of deviated AUC(0–24), in comparison to other LSS equations.Conclusion: Estimation of LSS-AUC(0–24) with 3 time-points is an advisable and clinically useful option for pediatric kidney recipients using extended-release TAC to provide better guidance of decisions if toxicity or drug inefficacy is suspected. The different CYP3A5 genotypes associated with variable dose requirements reinforce considering genotyping before KTx. Further multi-centric studies with admixed cohorts are needed to determine the short- and long-term clinical benefits.
Collapse
Affiliation(s)
- Carla Galvez
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Pía Boza
- Laboratorio Clínico, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Mariluz González
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Catalina Hormazabal
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Marlene Encina
- Laboratorio Clínico, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Manuel Azócar
- Servicio de Farmacia Clínica, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Luis E. Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Angélica Rojo
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - María Luisa Ceballos
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- *Correspondence: María Luisa Ceballos, ; Paola Krall,
| | - Paola Krall
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: María Luisa Ceballos, ; Paola Krall,
| |
Collapse
|
18
|
Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. Int J Mol Sci 2023; 24:ijms24054543. [PMID: 36901973 PMCID: PMC10002520 DOI: 10.3390/ijms24054543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Hepatic drug metabolizing enzymes (DMEs), whose activity may be affected by liver diseases, are major determinants of drug pharmacokinetics. Hepatitis C liver samples in different functional states, i.e., the Child-Pugh class A (n = 30), B (n = 21) and C (n = 7) were analyzed for protein abundances (LC-MS/MS) and mRNA levels (qRT-PCR) of 9 CYPs and 4 UGTs enzymes. The protein levels of CYP1A1, CYP2B6, CYP2C8, CYP2C9, and CYP2D6 were not affected by the disease. In the Child-Pugh class A livers, a significant up-regulation of UGT1A1 (to 163% of the controls) was observed. The Child-Pugh class B was associated with down-regulation of the protein abundance of CYP2C19 (to 38% of the controls), CYP2E1 (to 54%), CYP3A4 (to 33%), UGT1A3 (to 69%), and UGT2B7 (to 56%). In the Child-Pugh class C livers, CYP1A2 was found to be reduced (to 52%). A significant trend in down-regulation of the protein abundance was documented for CYP1A2, CYP2C9, CYP3A4, CYP2E1, UGT2B7, and UGT2B15. The results of the study demonstrate that DMEs protein abundances in the liver are affected by hepatitis C virus infection and depend on the severity of the disease.
Collapse
|
19
|
Shi B, Liu Y, Liu D, Yuan L, Guo W, Wen P, Su Z, Wang J, Xu S, Xia J, An W, Wang R, Wen P, Xing T, Zhang J, Gu H, Wang Z, Zhong L, Fan J, Li H, Zhang W, Peng Z. Genotype-guided model significantly improves accuracy of tacrolimus initial dosing after liver transplantation. EClinicalMedicine 2023; 55:101752. [PMID: 36444212 PMCID: PMC9700266 DOI: 10.1016/j.eclinm.2022.101752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The initial dose of tacrolimus after liver transplantation (LT) is critical for rapidly achieving the steady state of the drug concentration, minimizing the potential adverse reactions and warranting long-term patient prognosis. We aimed to develop and validate a genotype-guided model for determining personalized initial dose of tacrolimus. METHODS By combining pharmacokinetic modeling, pharmacogenomic analysis and multiple statistical methods, we developed a genotype-guided model to predict individualized tacrolimus initial dose after LT in the discovery (n = 150) and validation cohorts (n = 97) respectively. This model was further validated in a prospective, randomized and single-blind clinical trial from August, 2021 to February, 2022 (n = 40, ChiCTR2100050288). FINDINGS Our model included donor's and recipient's genotypes, recipient's weight and total bilirubin, which achieved an area under the curve of receiver operating characteristic curve (AUC of ROC) of 0.88 and 0.79 in the discovery and validation cohorts, respectively. We found that patients who were given tacrolimus within the recommended concentration range (RCR) (4-10 ng/mL), the new-onset metabolic syndromes are lower, especially for new-onset diabetes (p = 0.043). In the clinical trial, compared to those in experience-based (EB) group, patients in the model-based (MB) group were more likely to achieving the RCR (75% vs 40%, p = 0.025) with a more variable individualized dose (0.023-0.096 mg/kg/day vs 0.045-0.057 mg/kg/day). Moreover, significantly fewer medication adjustments were required for the MB group than the EB group (2.75 ± 2.01 vs 6.05 ± 3.35, p = 0.001). INTERPRETATION Our genotype-based model significantly improved the initial dosing accuracy of tacrolimus and reduced the number of medication adjustments, which are critical for improving the prognosis of LT patients. FUNDING National Natural Science Foundation of China, Shanghai three-year action plan, National Science and Technology Major Project of China.
Collapse
Affiliation(s)
- Baojie Shi
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Dehua Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Liyun Yuan
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wenzhi Guo
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peihao Wen
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhaojie Su
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jie Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Shiquan Xu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Wenbin An
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Rui Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Peizhen Wen
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Tonghai Xing
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
- Corresponding author.
| | - Hao Li
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Corresponding author.
| | - Weituo Zhang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 200050, Shanghai, China
- Corresponding author.
| | - Zhihai Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Corresponding author.
| |
Collapse
|
20
|
Tambur AR, Bestard O, Campbell P, Chong AS, Barrio MC, Ford ML, Gebel HM, Heidt S, Hickey M, Jackson A, Kosmoliaptsis V, Lefaucheur C, Louis K, Mannon RB, Mengel M, Morris A, Pinelli DF, Reed EF, Schinstock C, Taupin JL, Valenzuela N, Wiebe C, Nickerson P. Sensitization in transplantation: Assessment of Risk 2022 Working Group Meeting Report. Am J Transplant 2023; 23:133-149. [PMID: 36695615 DOI: 10.1016/j.ajt.2022.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 01/13/2023]
Abstract
The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.
Collapse
Affiliation(s)
- Anat R Tambur
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA.
| | - Oriol Bestard
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Patricia Campbell
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Martha Crespo Barrio
- Department of Nephrology, Hospital del Mar & Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | - Howard M Gebel
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Netherlands
| | - Michelle Hickey
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Annette Jackson
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Kevin Louis
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Mengel
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anna Morris
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Pinelli
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Jean-Luc Taupin
- Department of Immunology, Saint Louis Hospital and University Paris-Cité, Paris, France
| | - Nicole Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
The Effect of Voriconazole on Tacrolimus in Kidney Transplantation Recipients: A Real-World Study. Pharmaceutics 2022; 14:pharmaceutics14122739. [PMID: 36559231 PMCID: PMC9785881 DOI: 10.3390/pharmaceutics14122739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Tacrolimus is an immunosuppressant with a narrow therapeutic window. Tacrolimus exposure increased significantly during voriconazole co-therapy. The magnitude of this interaction is highly variable, but it is hard to predict quantitatively. We conducted a study on 91 kidney transplantation recipients with voriconazole co-therapy. Furthermore, 1701 tacrolimus concentration data were collected. Standard concentration adjusted by tacrolimus daily dose (C/D) and weight-adjusted standard concentration (CDW) increased to 6 times higher during voriconazole co-therapy. C/D and CDW increased with voriconazole concentration. Patients with the genotype of CYP3A5 *3/*3 and CYP2C19 *2/*2 or *2/*3 were more variable at the same voriconazole concentration level. The final prediction model could explain 54.27% of the variation in C/D and 51.11% of the variation in CDW. In conclusion, voriconazole was the main factor causing C/D and CDW variation, and the effect intensity should be quantitative by its concentration. Kidney transplant recipients with CYP3A5 genotype of *3/*3 and CYP2C19 genotype of *2/*2 and *2/*3 should be given more attention during voriconazole co-therapy. The prediction model established in this study may help to reduce the occurrence of rejection.
Collapse
|
22
|
Cheng X, Chen Y, Zhang L, Chen B, Yang D, Chen W, Zhu P, Fang Z, Chen Z. Influence of CYP3A5, IL-10 polymorphisms and metabolism rate on tacrolimus exposure in renal post-transplant recipients. Pharmacogenomics 2022; 23:961-972. [PMID: 36408735 DOI: 10.2217/pgs-2022-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim: To investigate the influence of CYP3A5 and IL-10 polymorphisms on tarcolimus metabolism and renal function for renal transplantation recipients at a stable period. Methods: CYP3A5 and IL-10 polymorphisms, together with other clinical factors, were collected for 149 renal transplantation patients at postoperative stable period. Statistics analysis was performed to explore key factors affecting tarcolimus metabolism. Results: CYP3A5 6986A >G and IL-10 -819C >T significantly impacted tacrolimus metabolism (p < 0.001). CYP3A5 6986A >G G allele and IL-10 -819C >T T allele were associated with poorer tacrolimus metabolic capability. Patients with various tacrolimus metabolism rates presented little difference in renal functions at stable period. Conclusion: Genotyping of CYP3A5 and IL-10 might benefit the precision dosage of tacrolimus for renal transplantation recipients.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| | - Yuhao Chen
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| | - Biwen Chen
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Dake Yang
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Weihuang Chen
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Pengli Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| | - Zhuo Fang
- Department of Data & Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai,200131, People's Republic of China
| | - Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui, 230001, P.R. China
| |
Collapse
|
23
|
Yang S, Jiang H, Li C, Lu H, Li C, Ye D, Qi H, Xu W, Bao X, Maseko N, Zhang S, Shao R, Li L. Genomewide association study identifies a novel variant associated with tacrolimus trough concentration in Chinese renal transplant recipients. Clin Transl Sci 2022; 15:2640-2651. [PMID: 35977080 PMCID: PMC9652447 DOI: 10.1111/cts.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tacrolimus (TAC) is an immunosuppressant widely used in kidney transplantation. TAC displays considerable interindividual variability in pharmacokinetics (PKs). Genetic and clinical factors play important roles in TAC PKs. We enrolled a total of 251 Chinese renal transplant recipients and conducted a genomewide association study (GWAS), linkage disequilibrium (LD), and one-way analysis of variance (ANOVA) to find genetic variants affecting log-transformed TAC trough blood concentration/dose ratio (log[C0 /D]). In addition, we performed dual luciferase reporter gene assays and multivariate regression models to evaluate the effect of the genetic variants. The GWAS results showed that all 23 genomewide significant single-nucleotide polymorphisms (p < 5 × 10-8 ) were located on chromosome 7, including CYP3A5*3. LD, conditional association analysis, and one-way ANOVA showed that rs75125371 T > C independently influenced TAC log(C0 /D). Dual luciferase reporter gene assays indicated that rs75125371 minor allele (C) was significantly associated with increased normalized luciferase activity than the major allele (T) in the Huh7 cells (p = 1.2 × 10-5 ) and HepaRG cells (p = 0.0097). A model inclusive of age, sex, hematocrit, CYP3A5*3, and rs75125371 explained 37.34% variance in TAC C0 . These results suggest that rs75125371 T > C is a functional and population-specific variant affecting TAC C0 in Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Siyao Yang
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haixia Jiang
- Department of Laboratory Medicine, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Huijie Lu
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Demei Ye
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Huana Qi
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenbin Xu
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaojie Bao
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Nicola Maseko
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siqi Zhang
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ruifan Shao
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Experimental Education and Administration Center, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
24
|
Impact of CYP3A5 Status on the Clinical and Financial Outcomes Among African American Kidney Transplant Recipients. Transplant Direct 2022; 8:e1379. [PMID: 36204191 PMCID: PMC9529042 DOI: 10.1097/txd.0000000000001379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
Pharmacogenetic profiling of transplant recipients demonstrates that the marked variation in the metabolism of immunosuppressive medications, particularly tacrolimus, is related to genetic variants. Patients of African ancestry are less likely to carry loss-of-function (LoF) variants in the CYP3A5 gene and therefore retain a rapid metabolism phenotype and higher clearance of tacrolimus. Patients with this rapid metabolism typically require higher dosing to achieve therapeutic trough concentrations. This study aims to further characterize the impact of CYP3A5 genotype on clinical outcomes and financial expenditure.
Collapse
|
25
|
Xuan NT, Hop VQ, Kien TQ, Toan PQ, Thang LV, Binh HT, Van Tran P, Minh HT, Man PT, Cuong HX, Ben NH, Phuong NM, Linh NT, Linh NT, Dung VD, Quyen LTB, Hang DTT, Su HX. Frequencies and Association of CYP3A5 Polymorphism With Tacrolimus Concentration Among Renal Transplant Recipients in Vietnam. Transplant Proc 2022; 54:2140-2146. [PMID: 36085176 DOI: 10.1016/j.transproceed.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND This study aims to investigate the frequencies and association of CYP3A5 polymorphism with tacrolimus concentration among renal transplant recipients in Vietnam. METHODS Sixty-eight kidney transplant recipients were included in this study from the department of nephrology and dialysis, Military Hospital 103. Blood samples were collected for monitoring of tacrolimus levels and determination of CYP3A5 genetic polymorphism. RESULTS A total of 68 patients studied. The CYP3A5*3*3, CYP3A5*1*3, and CYP3A5*1*1 genotypes were detected in 48 (70.6%), 16 (23.5%), and 4 (5.9%), respectively. Tacrolimus concentrations were much lower in CYP3A5 expressors than in CYP3A5 nonexpressors on the first day, month 1, 3, 6, and 12 (5.98 ± 1.05 vs 6.57 ± 1.03, P = .03; 5.79 ± 1.13 vs 6.82 ± 1.05, P < .001; 4.76 ± 1.48 vs 6.73 ± 1.09, P < .001; 4.29 ± 1.64 vs 6.46 ± 1.23, P < .001; 4.20 ± 1.36 vs 6.04 ± 1.26, P < .001), respectively. Notably, the concentration/dose ratio in the CYP3A5 expressors was lower than in CYP3A5 nonexpressors at time points of follow up (P < .001). However, there were no significant differences in the age, sex, HLA mismatch, type of donors, acute rejection, and creatinine levels at time points between group of CYP3A5 expressors and those of CYP3A5 nonexpressors. CONCLUSION In conclusion, this research indicated the significant association of CYP3A5 genetic polymorphism with daily dose and tacrolimus concentrations in renal transplant recipients. This study provided a closer step to individualize the dose of tacrolimus in renal transplant patients in Vietnam.
Collapse
Affiliation(s)
- Nguyen Thanh Xuan
- Department of Internal Medicine, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Vu Quang Hop
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Quy Kien
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Quoc Toan
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Viet Thang
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ha Thanh Binh
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Tran
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Thi Minh
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Thi Man
- Department of Pharmacy, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Hoang Xuan Cuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huu Ben
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Minh Phuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Tung Linh
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Thuy Linh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Faculty of Biology, National University of Hanoi, Hanoi, Vietnam
| | - Vu Dinh Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Thi Bao Quyen
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Thi Thu Hang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Xuan Su
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.
| |
Collapse
|
26
|
Brunet M, Pastor-Anglada M. Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022; 14:1755. [PMID: 36145503 PMCID: PMC9503558 DOI: 10.3390/pharmaceutics14091755] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The influence of pharmacogenetics in tacrolimus pharmacokinetics and pharmacodynamics needs further investigation, considering its potential in assisting clinicians to predict the optimal starting dosage and the need for a personalized adjustment of the dose, as well as to identify patients at a high risk of rejection, drug-related adverse effects, or poor outcomes. In the past decade, new pharmacokinetic strategies have been developed to improve personalized tacrolimus treatment. Several studies have shown that patients with tacrolimus doses C0/D < 1 ng/mL/mg may demonstrate a greater incidence of drug-related adverse events and infections. In addition, C0 tacrolimus intrapatient variability (IPV) has been identified as a potential biomarker to predict poor outcomes related to drug over- and under-exposure. With regard to tacrolimus pharmacodynamics, inconsistent genotype-phenotype relationships have been identified. The aim of this review is to provide a concise summary of currently available data regarding the influence of pharmacogenetics on the clinical outcome of patients with high intrapatient variability and/or a fast metabolizer phenotype. Moreover, the role of membrane transporters in the interindividual variability of responses to tacrolimus is critically discussed from a transporter scientist’s perspective. Indeed, the relationship between transporter polymorphisms and intracellular tacrolimus concentrations will help to elucidate the interplay between the biological mechanisms underlying genetic variations impacting drug concentrations and clinical effects.
Collapse
Affiliation(s)
- Mercè Brunet
- Farmacologia i Toxicologia, Servei de Bioquímica i Genètica Molecular, Centre de Diagnòstic Biomèdic. Hospital Clínic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Marçal Pastor-Anglada
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Molecular Pharmacology and Experimental Therapeutics (MPET), Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
27
|
Zhang SF, Tang BH, An-Hua W, Du Y, Guan ZW, Li Y. Effect of drug combination on tacrolimus target dose in renal transplant patients with different CYP3A5 genotypes. Xenobiotica 2022; 52:312-321. [PMID: 35395919 DOI: 10.1080/00498254.2022.2064252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Various factors, including genetic polymorphisms, drug-drug interactions, and patient characteristics influence the blood concentrations of tacrolimus in renal transplant patients. In the present study, we established a population pharmacokinetic model to explore the effect of combined use of Wuzhi capsules/echinocandins and the patients' biochemical parameters such as hematocrit on blood concentrations and target doses of tacrolimus in renal transplant patients with different CYP3A5 genotypes. The aim of the study was to propose an individualized tacrolimus administration regimen for early renal transplant recipients.In this retrospective cohort study, we included 240 renal transplant recipients within 21 days of surgery (174 males and 66 females, mean age 39.4 years), who received tacrolimus alone (n = 54), in combination with Wuzhi capsules (99) or caspofungin (57) or micafungin (30). We collected demographic characteristics, clinical indicators, CYP3A5 genotypes, and 1950 steady-state trough concentrations of tacrolimus and included them in population pharmacokinetic model. An additional 110 renal transplant recipients and 625 steady-state trough concentrations of tacrolimus were included for external validation of the model. The population pharmacokinetic model was established and Monte Carlo was used to simulate probabilities for achieving the target concentration for individual tacrolimus administration.A two-compartment model of first-order absorption and elimination was developed to describe the population pharmacokinetics of tacrolimus. CYP3A5 genotypes and co-administration of Wuzhi capsules, as well as time after renal transplantation and hematocrit, were important factors affecting the clearance of tacrolimus. We found no obvious change in trend in the scatter plot of tacrolimus clearance rate vs. hematocrit. The Monte Carlo simulation indicated the following recommended doses of tacrolimus alone: 0.14 mg·kg-1·d-1 for genotype CYP3A5*1*1, 0.12 mg·kg-1·d-1 for CYP3A5*1*3, and 0.10 mg·kg-1·d-1 for CYP3A5*3*3. For patients receiving the combination with Wuzhi capsules, the recommended doses of tacrolimus were 0.10 mg·kg-1·d-1 for CYP3A5*1*1, 0.08 mg·kg-1·d-1 for CYP3A5*1*3, and 0.06 mg·kg-1·d-1 for CYP3A5*3*3 genotypes. Caspofungin or micafungin had no effect on the clearance of tacrolimus in renal transplant recipients.The population pharmacokinetics of tacrolimus in renal transplant patients was evaluated and the individual administration regimen of tacrolimus was simulated. For early kidney transplant recipients receiving tacrolimus treatment, not only body weight, but also CYP3A5 genotypes and drugs used in combination should be considered when determining the target dose of tacrolimus.
Collapse
Affiliation(s)
- Shu-Fang Zhang
- School of Pharmacy, Shandong First Medical University, Tai'an, China.,Department of Pharmacy, Tai'an City Central Hospital, Tai'an, China
| | - Bo-Hao Tang
- School of Pharmaceutical Science, Shandong University, Ji'nan, China
| | - Wei An-Hua
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Du
- School of Pharmacy, Shandong First Medical University, Tai'an, China
| | - Zi-Wan Guan
- School of Pharmaceutical Science, Shandong University, Ji'nan, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, China
| |
Collapse
|
28
|
Dong Y, Xu Q, Li R, Tao Y, Zhang Q, Li J, Ma Z, Shen C, Zhong M, Wang Z, Qiu X. CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in recipients rather than donors influence tacrolimus concentrations in the early stages after liver transplantation. Gene 2022; 809:146007. [PMID: 34688813 DOI: 10.1016/j.gene.2021.146007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023]
Abstract
AIM The purpose of this study was to investigate the effect of CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in liver transplant recipients and donors on tacrolimus concentrations in the early stages after liver transplantation. METHODS One hundred and thirty-eight liver transplant recipients and matched donors were genotyped for CYP3A7 (rs10211 and rs2257401), CYP3A4 (rs4646437 and rs2242480), and CYP3A5*3 (rs776746) polymorphisms. The relationships between dose-adjusted trough concentrations (C0/D) of tacrolimus and corresponding genotypes were investigated. RESULTS Recipient CYP3A polymorphisms were associated with tacrolimus concentrations. The CYP3A7 rs10211 AA carriers (186.2 vs 90.5, p < 0.001), CYP3A4 rs4646437 CC carriers (184.0 vs 88.8, p < 0.001), CYP3A4*1G rs2242480 CC carriers (189.8 vs 99.7, p < 0.001), and CYP3A5*3 rs776746 GG carriers (197.3 vs 86.0, p < 0.001) had an almost twofold increase in the tacrolimus C0/D compared to that of the non-carriers. We further investigated the effect of the combination of recipient (intestinal) and donor (hepatic) genotypes on tacrolimus concentrations. Regardless of the genotype of the matched donor, CYP3A7 rs10211, CYP3A4*1G (rs2242480), and CYP3A5*3 (rs776746) polymorphisms of recipients could affect tacrolimus concentrations. For the CYP3A4 rs4646437 polymorphisms, when the donor carried CYP3A4 rs4646437 CC, the recipient CYP3A4 rs4646437 polymorphism was associated with the C0/D of tacrolimus, and when the donor carried CYP3A4 rs4646437 CT/TT genotype, the recipient CYP3A4 rs4646437 polymorphism also affected on tacrolimus C0/D, although the effect was not significant. CONCLUSION The large inter-individual variation in tacrolimus concentrations in the early stages after liver transplantation is influenced by genetic polymorphisms of CYP3A7, CYP3A4, and CYP3A5. Recipient (intestinal) CYP3A7, CYP3A4, and CYP3A5 polymorphisms seem to contribute more to such variation than donors. Therefore, the detection of CYP3A polymorphisms in recipients could help to predict the tacrolimus starting dose in the early stages after liver transplantation.
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ruidong Li
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yifeng Tao
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Quanbao Zhang
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Jianhua Li
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Zhenyu Ma
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Conghuan Shen
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Zhengxin Wang
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
29
|
Olafuyi O, Parekh N, Wright J, Koenig J. Inter-ethnic differences in pharmacokinetics-is there more that unites than divides? Pharmacol Res Perspect 2021; 9:e00890. [PMID: 34725944 PMCID: PMC8561230 DOI: 10.1002/prp2.890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Inter-ethnic variability in pharmacokinetics (PK) has been attributed to several factors ranging from genetic to environmental. It is not clear how current teaching in higher education (HE) reflects what published literature suggests on this subject. This study aims to gain insights into current knowledge about inter-ethnic differences in PK based on reports from published literature and current teaching practices in HE. A systematic literature search was conducted on PubMed and Scopus to identify suitable literature to be reviewed. Insights into inter-ethnic differences in PK teaching among educators in HE and industry were determined using a questionnaire. Thirty-one percent of the studies reviewed reported inter-ethnic differences in PK, of these, 37% of authors suggested genetic polymorphism as possible explanation for the inter-ethnic differences observed. Other factors authors proposed included diet and weight differences between ethnicities. Most respondents (80%) who taught inter-ethnic difference in PK attributed inter-ethnic differences to genetic polymorphism. While genetic polymorphism is one source of variability in PK, the teaching of genetic polymorphism is better associated with interindividual variabilities rather than inter-ethnic differences in PK as there are no genes with PK implications specific to any one ethnic group. Nongenetic factors such as diet, weight, and environmental factors, should be highlighted as potential sources of interindividual variation in the PK of drugs.
Collapse
Affiliation(s)
- Olusola Olafuyi
- Division of Physiology, Pharmacology and NeurosciencesSchool of Life SciencesUniversity of NottinghamNottinghamUK
| | - Nikita Parekh
- Department of Pharmacology and TherapeuticsKing’s College LondonLondonUK
| | - Jacob Wright
- Centre for Bioscience EducationKing’s College LondonLondonUK
| | - Jennifer Koenig
- Division of Medical Sciences & Graduate Entry MedicineSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
30
|
Al-Kofahi M, Oetting WS, Schladt DP, Remmel RP, Guan W, Wu B, Dorr CR, Mannon RB, Matas AJ, Israni AK, Jacobson PA. Precision Dosing for Tacrolimus Using Genotypes and Clinical Factors in Kidney Transplant Recipients of European Ancestry. J Clin Pharmacol 2021; 61:1035-1044. [PMID: 33512723 PMCID: PMC11240873 DOI: 10.1002/jcph.1823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
Genetic variation in the CYP3A4 and CYP3A5 (CYP3A4/5) genes, which encode the key enzymes in tacrolimus metabolism, is associated with tacrolimus clearance and dose requirements. Tacrolimus has a narrow therapeutic index with high intra- and intersubject variability, in part because of genetic variation. High tacrolimus clearance and low trough concentration are associated with a greater risk for rejection, whereas high troughs are associated with calcineurin-induced toxicity. The objective of this study was to develop a model of tacrolimus clearance with a dosing equation accounting for genotypes and clinical factors in adult kidney transplant recipients of European ancestry that could preemptively guide dosing. Recipients receiving immediate-release tacrolimus for maintenance immunosuppression from 2 multicenter studies were included. Participants in the GEN03 study were used for tacrolimus model development (n = 608 recipients) and was validated by prediction performance in the DeKAF Genomics study (n = 1361 recipients). Nonlinear mixed-effects modeling was used to develop the apparent oral tacrolimus clearance (CL/F) model. CYP3A4/5 genotypes and clinical covariates were tested for their influence on CL/F. The predictive performance of the model was determined by assessing the bias (median prediction error [ME] and median percentage error [MPE]) and the precision (root median squared error [RMSE]) of the model. CYP3A5*3, CYP3A4*22, corticosteroids, calcium channel blocker and antiviral drug use, age, and diabetes significantly contributed to the interindividual variability of oral tacrolimus apparent clearance. The bias (ME, MPE) and precision (RMSE) of the final model was good, 0.49 ng/mL, 6.5%, and 3.09 ng/mL, respectively. Prospective testing of this equation is warranted.
Collapse
Affiliation(s)
- Mahmoud Al-Kofahi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - David P Schladt
- Hennepin Health Research Institute, Minneapolis, Minnesota, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Baolin Wu
- Department of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Casey R Dorr
- Hennepin Health Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, Hennepin Healthcare, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roslyn B Mannon
- Division of Nephrology, University of Nebraska, Omaha, Nebraska, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ajay K Israni
- Hennepin Health Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, Hennepin Healthcare, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
31
|
Bishop JR, Huang RS, Brown JT, Mroz P, Johnson SG, Allen JD, Bielinski SJ, England J, Farley JF, Gregornik D, Giri J, Kroger C, Long SE, Luczak T, McGonagle EJ, Ma S, Matey ET, Mandic PK, Moyer AM, Nicholson WT, Petry N, Pawloski PA, Schlichte A, Schondelmeyer SW, Seifert RD, Speedie MK, Stenehjem D, Straka RJ, Wachtl J, Waring SC, Ness BV, Zierhut HA, Aliferis C, Wolf SM, McCarty CA, Jacobson PA. Pharmacogenomics education, research and clinical implementation in the state of Minnesota. Pharmacogenomics 2021; 22:681-691. [PMID: 34137665 DOI: 10.2217/pgs-2021-0058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several healthcare organizations across Minnesota have developed formal pharmacogenomic (PGx) clinical programs to increase drug safety and effectiveness. Healthcare professional and student education is strong and there are multiple opportunities in the state for learners to gain workforce skills and develop advanced competency in PGx. Implementation planning is occurring at several organizations and others have incorporated structured utilization of PGx into routine workflows. Laboratory-based and translational PGx research in Minnesota has driven important discoveries in several therapeutic areas. This article reviews the state of PGx activities in Minnesota including educational programs, research, national consortia involvement, technology, clinical implementation and utilization and reimbursement, and outlines the challenges and opportunities in equitable implementation of these advances.
Collapse
Affiliation(s)
- Jeffrey R Bishop
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.,Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - R Stephanie Huang
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Jacob T Brown
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, MN 55812, USA
| | - Pawel Mroz
- Department of Laboratory Medicine & Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Steven G Johnson
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Josiah D Allen
- University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.,Medigenics Consulting LLC, Minneapolis, MN 55407, USA
| | - Suzette J Bielinski
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Joel F Farley
- Department of Pharmaceutical Care & Health Systems, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - David Gregornik
- Pharmacogenomics Program, Children's Minnesota, Minneapolis, MN 55407, USA
| | - Jyothsna Giri
- Mayo Clinic Center for Individualized Medicine, Mayo Clinic College of Medicine & Science, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Susie E Long
- MHealth Fairview. Acute Care Pharmacy Services, Minneapolis, MN 55455, USA
| | - Tiana Luczak
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, MN 55812, USA.,Essentia Health, Duluth, MN 55805, USA
| | - Erin J McGonagle
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric T Matey
- Department of Pharmacy, Mayo Clinic College of Medicine & Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Pinar K Mandic
- Department of Finance, University of Minnesota Carlson School of Management, Minneapolis, MN 55455, USA
| | - Ann M Moyer
- Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine & Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Wayne T Nicholson
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic College of Medicine & Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Natasha Petry
- Sanford Health Imagenetics, Sioux Falls, SD 57105, USA.,Department of Pharmacy Practice, North Dakota State University College of Health Professions, Fargo, ND 58108, USA
| | | | | | - Stephen W Schondelmeyer
- Department of Pharmaceutical Care & Health Systems, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Randall D Seifert
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, MN 55812, USA
| | - Marilyn K Speedie
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - David Stenehjem
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, MN 55812, USA
| | - Robert J Straka
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Jason Wachtl
- Geritom Medical, Inc, Bloomington, MN 55438, USA
| | | | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Heather A Zierhut
- Department of Genetics, Cell Biology & Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan M Wolf
- Law School, Medical School, Consortium on Law & Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Catherine A McCarty
- Department of Family Medicine & Biobehavioral Health, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Pamala A Jacobson
- Department of Experimental & Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Chen Z, Cheng X, Zhang L, Tang L, Fang Y, Chen H, Zhang L, Shen A. The impact of IL-10 and CYP3A5 gene polymorphisms on dose-adjusted trough blood tacrolimus concentrations in early post-renal transplant recipients. Pharmacol Rep 2021; 73:1418-1426. [PMID: 34089513 DOI: 10.1007/s43440-021-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The strong inter-individual pharmacokinetic variability and the narrow therapeutic window of tacrolimus (TAC) have hampered the clinical application. Gene polymorphisms play an important role in TAC pharmacokinetics. Here, we investigate the influence of genotypes of IL-10, CYP3A5, CYP2C8, and ABCB1 on dose-adjusted trough blood concentrations (the C0/D ratio) of TAC to reveal unclear genetic factors that may affect TAC dose requirements for renal transplant recipients. METHODS Genetic polymorphisms of IL-10, CYP3A5, CYP2C8, and ABCB1 in 188 renal transplant recipients were determined using Kompetitive Allele Specific PCR (KASP). Statistical analysis was applied to examine the effect of genetic variation on the TAC C0/D at 5, 10, 15, and 30 days after transplantation. RESULTS Recipients carrying the IL-10 -819C > T TT genotype showed a significantly higher TAC C0/D than those with the TC/CC genotype (p < 0.05). Additionally, the TAC C0/D values of recipients with the capacity for low IL-10 activity (-819 TT) engrafted with CYP3A5 non-expressers were higher compared to the intermediate/high activity of IL-10 -819C > T TC or CC carrying CYP3A5 expressers, and the difference was statistically significant at different time points (p < 0.05). CONCLUSIONS Genetic polymorphisms of IL-10 -819C > T and CYP3A5 6986A > G influence the TAC C0/D, which may contribute to variation in TAC dose requirements during the early post-transplantation period. Detecting IL-10 -819C > T and CYP3A5 6986A > G polymorphisms may allow determination of individualized tacrolimus dosage regimens for renal transplant recipients during the early post-transplantation period.
Collapse
Affiliation(s)
- Zhaolin Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Xi Cheng
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Liwen Zhang
- Department of Data & Analytics, WuXi Diagnostics Limited Corporation, Shanghai, 200131, People's Republic of China
| | - Liqin Tang
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Yan Fang
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Hongxiao Chen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Lei Zhang
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| | - Aizong Shen
- Division of Life Sciences and Medicine, Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
33
|
Chen D, Lu H, Sui W, Li L, Xu J, Yang T, Yang S, Zheng P, Chen Y, Chen J, Xue W, Li Q, Zheng Q, Ye D, Sadee W, Wang D, Qian W, Lai L, Li C, Li L. Functional CYP3A variants affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. THE PHARMACOGENOMICS JOURNAL 2021; 21:376-389. [PMID: 33649515 DOI: 10.1038/s41397-021-00216-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
The aim of this study was to identify novel genetic variants affecting tacrolimus trough blood concentrations. We analyzed the association between 58 single nucleotide polymorphisms (SNPs) across the CYP3A gene cluster and the log-transformed tacrolimus concentration/dose ratio (log (C0/D)) in 819 renal transplant recipients (Discovery cohort). Multivariate linear regression was used to test for associations between tacrolimus log (C0/D) and clinical factors. Luciferase reporter gene assays were used to evaluate the functions of select SNPs. Associations of putative functional SNPs with log (C0/D) were further tested in 631 renal transplant recipients (Replication cohort). Nine SNPs were significantly associated with tacrolimus log (C0/D) after adjustment for CYP3A5*3 and clinical factors. Dual luciferase reporter assays indicated that the rs4646450 G allele and rs3823812 T allele were significantly associated with increased normalized luciferase activity ratios (p < 0.01). Moreover, CYP3A7*2 was associated with higher TAC log(C0/D) in the group of CYP3A5 expressers. Age, serum creatinine and hematocrit were significantly associated with tacrolimus log (C0/D). CYP3A7*2, rs4646450, and rs3823812 are proposed as functional SNPs affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. Clinical factors also significantly affect tacrolimus metabolism.
Collapse
Affiliation(s)
- Dina Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huijie Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiguo Sui
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Liqing Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Xu
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tengfei Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zheng
- Department of Pharmacy, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Pharmacy, Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiejing Chen
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Wen Xue
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Qingping Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Que Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Demei Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Wanying Qian
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liusheng Lai
- Guangxi Key laboratory of Metabolic Diseases Research, Nephrology Department of Guilin NO. 924 Hospital, Guilin, Guangxi, China
| | - Chuanjiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Significance of Ethnic Factors in Immunosuppressive Therapy Management After Organ Transplantation. Ther Drug Monit 2021; 42:369-380. [PMID: 32091469 DOI: 10.1097/ftd.0000000000000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcomes after organ transplantation have greatly improved in the past 2 decades with the discovery and development of immunosuppressive drugs such as calcineurin inhibitors, antiproliferative agents, and mammalian target of rapamycin inhibitors. However, individualized dosage regimens have not yet been fully established for these drugs except for therapeutic drug monitoring-based dosage modification because of extensive interindividual variations in immunosuppressive drug pharmacokinetics. The variations in immunosuppressive drug pharmacokinetics are attributed to interindividual variations in the functional activity of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and ATP-binding cassette subfamily B member 1 (known as P-glycoprotein or multidrug resistance 1) in the liver and small intestine. Some genetic variations have been found to be involved to at least some degree in pharmacokinetic variations in post-transplant immunosuppressive therapy. It is well known that the frequencies and effect size of minor alleles vary greatly between different races. Thus, ethnic considerations might provide useful information for optimizing individualized immunosuppressive therapy after organ transplantation. Here, we review ethnic factors affecting the pharmacokinetics of immunosuppressive drugs requiring therapeutic drug monitoring, including tacrolimus, cyclosporine, mycophenolate mofetil, sirolimus, and everolimus.
Collapse
|
35
|
Faravardeh A, Akkina S, Villicana R, Guerra G, Moten MA, Meier-Kriesche U, Stevens DR, Patel SJ, Bunnapradist S. Efficacy and Safety of Once-Daily LCP-Tacrolimus Versus Twice-Daily Immediate-Release Tacrolimus in Adult Hispanic Stable Kidney Transplant Recipients: Sub-Group Analysis from a Phase 3 Trial. Ann Transplant 2021; 26:e929535. [PMID: 33859155 PMCID: PMC8056872 DOI: 10.12659/aot.929535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The pharmacokinetics and metabolism of tacrolimus, an immunosuppressant commonly used to prevent transplant rejection, can differ in specific subpopulations. This analysis examined treatment outcomes and safety of immediate-release tacrolimus (IR-Tac) and LCP-tacrolimus (LCPT) in stable Hispanic kidney transplant recipients. MATERIAL AND METHODS This was a post hoc analysis of clinical trial data from Hispanic adult stable kidney transplant recipients randomized to remain on IR-Tac or convert from IR-Tac to a reduced dose of LCPT (NCT00817206). Composite treatment failure was evaluated at 12 months. Estimated glomerular filtration rate and tacrolimus trough concentrations were evaluated over 12 months. RESULTS Fifty-five stable (LCPT n=26, IR-Tac n=29) kidney transplant recipients who self-identified as Hispanic or Latino were included in this analysis. Composite treatment failure occurred in 1 patient (4%) who converted to LCPT and 1 (3%) who remained on IR-Tac. The estimated glomerular filtration rate was stable over time and similar in the 2 treatment groups (P=0.08). Tacrolimus trough levels for both groups were similar over time in the 2 treatment groups (P=0.98). Treatment-emergent adverse events were similar in patients who converted to LCPT and in those who remained on IR-Tac. CONCLUSIONS Efficacy and safety were similar in Hispanic kidney transplant recipients who converted from IR-Tac to LCPT and in those remaining on IR-Tac.
Collapse
Affiliation(s)
| | - Sanjeev Akkina
- Loyola Outpatient Center, Loyola University Medical Center, Maywood, IL, USA
| | - Rafael Villicana
- Loma Linda University Transplant Institute, Loma Linda University Health, Loma Linda, CA, USA
| | - Giselle Guerra
- Miami Transplant Institute, University of Miami Health System, Miami, FL, USA
| | - Misbah A Moten
- Department of Medical Affairs, Veloxis Pharmaceuticals, Cary, NC, USA
| | | | - Daniel R Stevens
- Department of Medical Affairs, Veloxis Pharmaceuticals, Cary, NC, USA
| | - Samir J Patel
- Department of Medical Affairs, Veloxis Pharmaceuticals, Cary, NC, USA
| | | |
Collapse
|
36
|
Martial LC, Biewenga M, Ruijter BN, Keizer R, Swen JJ, van Hoek B, Moes DJAR. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br J Clin Pharmacol 2021; 87:4262-4272. [PMID: 33786892 PMCID: PMC8596620 DOI: 10.1111/bcp.14842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS Meltdose tacrolimus (Envarsus) is marketed as a formulation with a more consistent exposure. Due to the narrow therapeutic window, therapeutic drug monitoring is essential to maintain adequate exposure. The primary objective of this study was to develop a population pharmacokinetic (PK) model of Envarsus among liver transplant patients and select a limited sampling strategy (LSS) for AUC estimation. The secondary objective was to investigate potential covariates including CYP3A/IL genotype suitable for initial dose optimization when converting to Envarsus. METHODS Adult liver transplant patients were converted from prolonged release tacrolimus (Advagraf) to Envarsus and blood samples were obtained using whole blood and dried blood spot sampling. Subsequently the population PK parameters were estimated using nonlinear-mixed effect modelling. Demographic factors, and recipient and donor CYP3A4, CYP3A5, IL-6, -10 and -18 genotype were tested as potential covariates to explain interindividual variability. RESULTS Fifty-five patients were included. A 2-compartment model with delayed absorption was the most suitable to describe population PK parameters. The population PK parameters were as follows: clearance, 3.27 L/h; intercompartmental clearance, 9.6 L/h; volume of distribution of compartments 1 and 2, 95 and 500 L, respectively. No covariates were found to significantly decrease interindividual variability. The best 3-point LSS was t = 0,4,8 with a median bias of 1.8% (-12.5-12.5). CONCLUSIONS The LSS can be used to adequately predict the AUC. No clinically relevant covariates known to influence the PK of Envarsus, including CYP3A status, were identified and therefore do not seem useful for initial dose optimization.
Collapse
Affiliation(s)
- Lisa C Martial
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, Netherlands
| | - Maaike Biewenga
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bastian N Ruijter
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
37
|
Maldonado AQ, West-Thielke P, Joyal K, Rogers C. Advances in personalized medicine and noninvasive diagnostics in solid organ transplantation. Pharmacotherapy 2021; 41:132-143. [PMID: 33156560 DOI: 10.1002/phar.2484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Personalized medicine has been a mainstay and in practice in transplant pharmacotherapy since the advent of the field. Decisions pertaining to the diagnosis, selection, and monitoring of transplant pharmacotherapy are aimed toward the individual, the allograft, and the overall immunologic needs of the patient. Recent advances in pharmacogenomics, noninvasive biomarkers, and artificial intelligence (AI) technologies have the promise of transforming the way we individualize treatment and monitor allograft function. Pharmacogenomic testing can provide clinicians with additional data that can minimize toxicity and maximize therapeutic dosing in high-risk patients, leading to more informed decisions that may decrease the risk of rejection and adverse outcomes related to immunosuppressive therapies. Development of noninvasive strategies to monitor allograft function may offer safer and more convenient methods to detect allograft injury. Cell free DNA and gene expression profiling offer the potential to serve as "liquid biopsies" minimizing the risk to patients and providing clinicians with useful molecular data that may help individualize immunosuppression and rejection treatment. Use of big data in transplant and novel AI platforms, such as the iBox, hold tremendous promise in providing clinicians a "glimpse into the future" thereby allowing for a more individualized approach to immunosuppressive therapy that may minimize future adverse outcomes. Advances in diagnostics, laboratory science, and AI have made the application of personalized medicine even more tailored for solid organ transplant recipients. In this perspective, we summarize the current and emerging tools available, literature supporting use, and the horizon for future personalization of transplantation.
Collapse
Affiliation(s)
| | | | - Kayla Joyal
- Lahey Hospital and Medical Center, Burlington, Massachusetts, USA
| | | |
Collapse
|
38
|
Seipp R, Zhang N, Nair SS, Khamash H, Sharma A, Leischow S, Heilman R, Keddis MT. Patient and allograft outcomes after kidney transplant for the Indigenous patients in the United States. PLoS One 2021; 16:e0244492. [PMID: 33534846 PMCID: PMC7857629 DOI: 10.1371/journal.pone.0244492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Background The objective is to assess cardiovascular (CV), malignancy, infectious, graft outcomes and tacrolimus levels for the Indigenous patients compared to Whites after kidney transplant (KTx). Methods 165 Indigenous and 165 White patients matched for the KTx year at Mayo Clinic Arizona from 2007–2015 were studied over a median follow-up of 3 years. Propensity score was calculated to account for baseline differences. Results Compared to Whites, Indigenous patients had the following characteristics: younger age, more obesity, diabetes, hypertension, and required dialysis prior to KTx (p<0.01). Indigenous patients had longer hospital stay for KTx, shorter follow-up and lived further from the transplant center (p<0.05). 210 (63.6%) received deceased donor KTx and more Whites received a living donor KTx compared to Indigenous patients (55.2% vs 17.6%, p<0.0001). Post-KTx, there was no difference in the CV event rates. The cumulative incidence of infectious complications was higher among the Indigenous patients (HR 1.81, p = 0.0005, 48.5% vs 38.2%, p = 0.013), with urinary causes as the most common. Malignancy rates were increased among Whites (13.3% vs 3.0%, p = 0.001) with skin cancer being the most common. There was a significant increase in the dose normalized tacrolimus level for the Indigenous patients compared to Whites at 1 months, 3 months, and 1 year post-KTx. After adjustment for the propensity score, there was no statistical difference in infectious or graft outcomes between the two groups but the mean number of emergency room visits and hospitalizations after KTx was significantly higher for Whites compared to Indigenous patients. Conclusions Compared to Whites, Indigenous patients have similar CV events, graft outcomes and infectious complications after accounting for baseline differences.
Collapse
Affiliation(s)
- Regan Seipp
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Nan Zhang
- Department of Health Science Research, Section of Biostatistics, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Sumi Sukumaran Nair
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Hasan Khamash
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Amit Sharma
- Division of Dermatology, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Scott Leischow
- Office of Health Care Disparity, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Raymond Heilman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Mira T. Keddis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
39
|
Nobakht E, Jagadeesan M, Paul R, Bromberg J, Dadgar S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transplant Direct 2021; 7:e650. [PMID: 33437865 PMCID: PMC7793397 DOI: 10.1097/txd.0000000000001102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desirable outcomes including rejection- and infection-free kidney transplantation are not guaranteed despite current strategies for immunosuppression and using prophylactic antimicrobial medications. Graft survival depends on factors beyond human leukocyte antigen matching such as the level of immunosuppression, infections, and management of other comorbidities. Risk stratification of transplant patients based on predisposing genetic modifiers and applying precision pharmacotherapy may help improving the transplant outcomes. Unlike certain fields such as oncology in which consistent attempts are being carried out to move away from the "error and trial approach," transplant medicine is lagging behind in implementing personalized immunosuppressive therapy. The need for maintaining a precarious balance between underimmunosuppression and overimmunosuppression coupled with adverse effects of medications calls for a gene-based guidance for precision pharmacotherapy in transplantation. Technologic advances in molecular genetics have led to increased accessibility of genetic tests at a reduced cost and have set the stage for widespread use of gene-based therapies in clinical care. Evidence-based guidelines available for precision pharmacotherapy have been proposed, including guidelines from Clinical Pharmacogenetics Implementation Consortium, the Pharmacogenomics Knowledge Base National Institute of General Medical Sciences of the National Institutes of Health, and the US Food and Drug Administration. In this review, we discuss the implications of pharmacogenetics and potential role for genetic variants-based risk stratification in kidney transplantation. A single score that provides overall genetic risk, a polygenic risk score, can be achieved by combining of allograft rejection/loss-associated variants carried by an individual and integrated into practice after clinical validation.
Collapse
Affiliation(s)
- Ehsan Nobakht
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Muralidharan Jagadeesan
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Rohan Paul
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Sherry Dadgar
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
- Personalized Medicine Care Diagnostics Laboratory (PMCDx), Inc., Germantown, MD
| |
Collapse
|
40
|
Kılınç GM, Kashuba N, Koptekin D, Bergfeldt N, Dönertaş HM, Rodríguez-Varela R, Shergin D, Ivanov G, Kichigin D, Pestereva K, Volkov D, Mandryka P, Kharinskii A, Tishkin A, Ineshin E, Kovychev E, Stepanov A, Dalén L, Günther T, Kırdök E, Jakobsson M, Somel M, Krzewińska M, Storå J, Götherström A. Human population dynamics and Yersinia pestis in ancient northeast Asia. SCIENCE ADVANCES 2021; 7:eabc4587. [PMID: 33523963 PMCID: PMC7787494 DOI: 10.1126/sciadv.abc4587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
We present genome-wide data from 40 individuals dating to c.16,900 to 550 years ago in northeast Asia. We describe hitherto unknown gene flow and admixture events in the region, revealing a complex population history. While populations east of Lake Baikal remained relatively stable from the Mesolithic to the Bronze Age, those from Yakutia and west of Lake Baikal witnessed major population transformations, from the Late Upper Paleolithic to the Neolithic, and during the Bronze Age, respectively. We further locate the Asian ancestors of Paleo-Inuits, using direct genetic evidence. Last, we report the most northeastern ancient occurrence of the plague-related bacterium, Yersinia pestis Our findings indicate the highly connected and dynamic nature of northeast Asia populations throughout the Holocene.
Collapse
Affiliation(s)
- Gülşah Merve Kılınç
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Natalija Kashuba
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
- Department of Archaeology and Ancient History, Uppsala University, 75126 Uppsala, Sweden
| | - Dilek Koptekin
- Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey
| | - Nora Bergfeldt
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, 10691 Stockholm, Sweden
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Ricardo Rodríguez-Varela
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, 10691 Stockholm, Sweden
| | - Dmitrij Shergin
- Laboratory of Archaeology and Ethnography, Faculty of History and Methods, Department of Humanitarian and Aesthetic Education, Pedagogical Institute, Irkutsk State University, Irkutsk, 664011 Irkutsk Oblast, Russia
| | - Grigorij Ivanov
- Irkutsk Museum of Regional Studies, Irkutsk, 664003 Irkutsk Oblast, Russia
| | - Dmitrii Kichigin
- Irkutsk National Research Technical University, Laboratory of Archaeology, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, Irkutsk State Technical University, Irkutsk, 664074 Irkutsk Oblast, Russia
| | - Kjunnej Pestereva
- Faculty of History, Federal State Autonomous Educational Institution of Higher Education "M. K. Ammosov North-Eastern Federal University," Yakutsk, 677000 Sakha Republic, Russia
| | - Denis Volkov
- The Center for Preservation of Historical and Cultural Heritage of the Amur Region, Blagoveshchensk, 675000 Amur Oblast, Russia
| | - Pavel Mandryka
- Siberian Federal University, Krasnoyarsk, 660041 Krasnoyarskiy Kray, Russia
| | - Artur Kharinskii
- Irkutsk National Research Technical University, Laboratory of Archaeology, Paleoecology and the Subsistence Strategies of the Peoples of Northern Asia, Irkutsk State Technical University, Irkutsk, 664074 Irkutsk Oblast, Russia
| | - Alexey Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Altaiskiy Kray, Russia
| | - Evgenij Ineshin
- Laboratory of Archaeology and Ethnography, Faculty of History and Methods, Department of Humanitarian and Aesthetic Education, Pedagogical Institute, Irkutsk State University, Irkutsk, 664011 Irkutsk Oblast, Russia
| | - Evgeniy Kovychev
- Faculty of History, Transbaikal State University, Chita, 672039 Zabaykalsky Kray, Russia
| | - Aleksandr Stepanov
- Museum of Archaeology and Ethnography, Federal State Autonomous Educational Institution of Higher Education "M. K. Ammosov North-Eastern Federal University," Yakutsk, 677000 Sakha Republic, Russia
| | - Love Dalén
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, 10691 Stockholm, Sweden
| | - Torsten Günther
- Department of Organismal Biology and SciLife Lab, Uppsala University, Norbyvägen 18 A, SE-752 36 Uppsala, Sweden
| | - Emrah Kırdök
- Centre for Palaeogenetics, 10691 Stockholm, Sweden
- Department of Biotechnology, Mersin University, 33343 Mersin, Turkey
| | - Mattias Jakobsson
- Department of Organismal Biology and SciLife Lab, Uppsala University, Norbyvägen 18 A, SE-752 36 Uppsala, Sweden
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Maja Krzewińska
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
- Centre for Palaeogenetics, 10691 Stockholm, Sweden
| | - Jan Storå
- Osteoarchaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| | - Anders Götherström
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
- Centre for Palaeogenetics, 10691 Stockholm, Sweden
| |
Collapse
|
41
|
Salvadori M, Tsalouchos A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J Transplant 2020; 10:90-103. [PMID: 32864355 PMCID: PMC7428791 DOI: 10.5500/wjt.v10.i5.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, pharmacogenetics has emerged as an important tool for choosing the right immunosuppressant drug and its appropriate dose. Indeed, pharmacogenetics may exert its action on immunosuppressant drugs at three levels. Pharmacogenetics identifies and studies the genes involved in encoding the proteins involved in drug pharmacokinetics and in encoding the enzymes involved in drug degradation. Pharmacogenetics is also relevant in encoding the enzymes and proteins involved in codifying the transmembrane proteins involved in transmembrane passage favoring the absorption and intracellular action of several immunosuppressants. Pharmacogenetics concern the variability of genes encoding the proteins involved as immunosuppressant triggers in the pharmacodynamic pathways. Of course, not all genes have been discovered and studied, but some of them have been clearly examined and their relevance together with other factors such as age and race has been defined. Other genes on the basis of relevant studies have been proposed as good candidates for future studies. Unfortunately, to date, clear conclusions may be drawn only for those drugs that are metabolized by CYP3A5 and its genotyping before kidney, heart and lung transplantation is recommended. The conclusions of the studies on the recommended candidate genes, together with the development of omics techniques could in the future allow us to choose the right dose of the right immunosuppressant for the right patient.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Nephrology and Dialysis Unit, Saints Cosmas and Damian Hospital, Pescia 51017, Italy
| |
Collapse
|
42
|
Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, Egashira N, Mori M, Masuda S. Influence of POR*28 Polymorphisms on CYP3A5*3-Associated Variations in Tacrolimus Blood Levels at an Early Stage after Liver Transplantation. Int J Mol Sci 2020; 21:ijms21072287. [PMID: 32225074 PMCID: PMC7178010 DOI: 10.3390/ijms21072287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well known that the CYP3A5*3 polymorphism is an important marker that correlates with the tacrolimus dose requirement after organ transplantation. Recently, it has been revealed that the POR*28 polymorphism affects the pharmacokinetics of tacrolimus in renal transplant patients. In this study, we examined whether POR*28 as well as CYP3A5*3 polymorphism in Japanese recipients and donors would be another biomarker for the variation of tacrolimus blood levels in the recipients during the first month after living-donor liver transplantation. We enrolled 65 patients treated with tacrolimus, who underwent liver transplantation between July 2016 and January 2019. Genomic DNA was extracted from whole-blood samples, and genotyping was performed to examine the presence of CYP3A5*3 and POR*28 polymorphisms in the recipients and donors. The CYP3A5*3/*3 genotype (defective CYP3A5) of the recipient (standard partial regression coefficient [median C/D ratio of CYP3A5 expressor vs. CYP3A5 non-expressor, p value]: Pod 1–7, β= −0.389 [1.76 vs. 2.73, p < 0.001]; Pod 8–14, β = −0.345 [2.03 vs. 2.83, p < 0.001]; Pod 15–21, β= −0.417 [1.75 vs. 2.94, p < 0.001]; Pod 22–28, β = −0.627 [1.55 vs. 2.90, p < 0.001]) rather than donor (Pod 1–7, β = n/a [1.88 vs. 2.76]; Pod 8–14, β = n/a [1.99 vs. 2.93]; Pod 15–21, β = −0.175 [1.91 vs. 2.94, p = 0.004]; Pod 22–28, β = n/a [1.61 vs. 2.67]) significantly contributed to the increase in the concentration/dose (C/D) ratio of tacrolimus for at least one month after surgery. We found that the tacrolimus C/D ratio significantly decreased from the third week after transplantation when the recipient carried both CYP3A5*1 (functional CYP3A5) and POR*28 (n = 19 [29.2%], median C/D ratio [inter quartile range] = 1.58 [1.39–2.17]), compared with that in the recipients carrying CYP3A5*1 and POR*1/*1 (n = 8 [12.3%], median C/D ratio [inter quartile range] = 2.23 [2.05–3.06]) (p < 0.001). In conclusion, to our knowledge, this is the first report suggesting that the POR*28 polymorphism is another biomarker for the tacrolimus oral dosage after liver transplantation in patients carrying CYP3A5*1 rather than CYP3A5*3/*3.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Mio Fukuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Correspondence: ; Tel.: +81-476-28-1401
| |
Collapse
|
43
|
Bongiovanni T, Rawlings JE, Trompeta JA, Nunez-Smith M. Cultural influences on willingness to donate organs among urban native Americans. Clin Transplant 2020; 34:e13804. [PMID: 31999875 DOI: 10.1111/ctr.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The need for organ donation is substantial among Native Americans, driven by the disproportionate burden of ESRD. Due to the dearth of knowledge about willingness to donate (WTD) among urban Native Americans, a group that represents over half of the US Native population, we aimed to examine factors affecting donation. METHODS We conducted a cross-sectional survey of a convenience sample, using a questionnaire developed specifically for this study using community-based participatory research. The questionnaire was designed to be culturally relevant to the Native community, based on questions from three previously validated instruments and developed through one-on-one interviews. We performed logistic regression to associate survey answers with WTD. RESULTS Seventy percent of our 183 respondents stated that they would be willing to have their organs donated after death; however, only 41% were already registered as an organ donor on their driver's license. Logistic regression analysis found specific items in domains of trust of the medical community and spirituality most closely associated with WTD. Sixty-two percent of Native Americans surveyed reported they would not donate organs because they distrust the medical community. DISCUSSION Our findings suggest multiple areas of focus for increasing organ donation within this subset of the diverse Native community. Efforts to promote donation should be aimed at building trust in the medical community.
Collapse
Affiliation(s)
- Tasce Bongiovanni
- Department of Surgery, University of California San Francisco School of Medicine, San Francisco, California.,Robert Wood Johnson Foundation Clinical Scholars Program, Yale University School of Medicine, New Haven, Connecticut.,U.S. Department of Veterans Affairs, Connecticut Healthcare System, West Haven, Connecticut
| | | | - Joyce A Trompeta
- Department of Surgery, University of California San Francisco School of Medicine, San Francisco, California
| | - Marcella Nunez-Smith
- Department of Internal Medicine, Equity Research and Innovation Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|