1
|
Kure S, Toba H, Jin D, Mima A, Takai S. Chymase Inhibition Attenuates Kidney Fibrosis in a Chronic Mouse Model of Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2025; 26:3913. [PMID: 40332817 PMCID: PMC12027773 DOI: 10.3390/ijms26083913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Although various factors contribute to the transition from acute kidney injury (AKI) to chronic kidney disease (CKD), no clinically effective pharmacological treatment has been established. We investigated whether chymase inhibition is effective in preventing renal fibrosis, a key process in the transition from AKI to CKD. Male BALB/c mice were subjected to unilateral ischemia-reperfusion (I/R) injury, and TY-51469, a chymase-specific inhibitor, was administered intraperitoneally at a dose of 10 mg/kg/day for 6 weeks. The 45 min ischemic period followed by 6 weeks of reperfusion resulted in severe renal atrophy. Renal fibrosis was particularly pronounced in the transition region between the cortex and medulla in placebo-treated mice. The expression of mouse mast cell protease 4 (MMCP-4, a mouse chymase) mRNA, the number of chymase-positive mast cells, and fibrosis-related factors, such as transforming growth factor (TGF)-β1 and collagen I, were all significantly increased in I/R-injured kidneys. However, treatment with TY-51469 significantly suppressed fibrosis formation, along with the inhibition of renal chymase and TGF-β1 expression. These findings suggest that chymase inhibition may be a potential therapeutic strategy for preventing the transition from AKI to CKD by reducing fibrosis.
Collapse
Affiliation(s)
- Sakura Kure
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan; (S.K.); (S.T.)
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan;
| | - Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 1 Misasagi Shichono-cho, Yamashina-ku 607-8412, Kyoto, Japan;
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan; (S.K.); (S.T.)
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan
| | - Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan;
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan; (S.K.); (S.T.)
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, Takatsuki-City 569-8686, Osaka, Japan
| |
Collapse
|
2
|
He J, Yao Y, Wang R, Liu Y, Wan X, Wang H, Zhou Y, Wang W, Ma Y, Lv X. Enhanced renal ischemia/reperfusion injury repair potential of exosomes derived from B7-H1 high mesenchymal stem cells. Front Genet 2025; 16:1516626. [PMID: 40242472 PMCID: PMC12000007 DOI: 10.3389/fgene.2025.1516626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Two subgroups with high expression of B7-H1 and low expression of B7-H1 were successfully isolated from primitive human umbilical cord mesenchymal stem cells. And exosomes with high B7-H1 expression and low B7-H1 expression were successfully isolated. In comparison to the sham-operated group, mice in the IRI group demonstrated elevated serum levels of blood urea nitrogen (BUN) and serum creatinine (Scr), accompanied by a more pronounced degree of renal tissue damage. The administration of exosomes via the tail vein markedly accelerated the recovery of renal function in IRI mice, with the therapeutic effect beingmore pronounced in those treated with B7-H1high-Exo. Moreover RNA sequencing of mouse kidney treated with B7-H1high-Exo and B7-H1low-Exo showed that eight genes (C3, IRF7, AREG, CXCL10, Aldh1l2, Fnip2, Vcam1, St6galnac3) were involved in the pathophysiological process of ischemia-reperfusion injury. The in vitro and in vivo experiments showed that the expression level of C3 protein was significantly decreased, which indicated that B7-H1high-Exo played a therapeutic role by down-regulating C3.
Collapse
Affiliation(s)
- Jiahui He
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yawei Yao
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruiyan Wang
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yujia Liu
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xingyu Wan
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Wang
- Department of Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yuqiang Zhou
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wenjing Wang
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yan Ma
- Department of Anaesthesia, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xinghua Lv
- Department of Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Thompson AD, McAlister KW, Scholpa NE, Janda J, Hortareas J, Schnellmann RG. Lasmiditan induces mitochondrial biogenesis in primary mouse renal peritubular endothelial cells and augments wound healing and tubular network formation. Am J Physiol Cell Physiol 2025; 328:C1318-C1332. [PMID: 40080391 PMCID: PMC12096908 DOI: 10.1152/ajpcell.00116.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Kidney disease (KD) is a progressive and life-threatening illness that has manifested into a global health crisis, impacting >10% of the general population. Hallmarks of KD include tubular interstitial fibrosis, renal tubular cell atrophy/necrosis, glomerulosclerosis, persistent inflammation, microvascular endothelial cell (MV-EC) dysfunction/rarefaction, and mitochondrial dysfunction. Following acute kidney injury (AKI), and/or during KD onset/progression, MV-ECs of the renal peritubular endothelial capillaries (RPECs) are highly susceptible to injury, dysfunction, and rarefaction. Pharmacological induction of mitochondrial biogenesis (MB) via 5-hydroxytryptamine receptor 1F (HTR1F) agonism has been shown to enhance mitochondrial function and renal vascular recovery post-AKI in mice; however, little is known about MB in relation to renal MV-ECs and RPEC repair mechanisms. To address this gap in knowledge, the in vitro effects of the potent and selective FDA-approved HTR1F agonist lasmiditan were tested on primary mouse renal peritubular endothelial cells (MRPECs). Lasmiditan increased mitochondrial maximal respiration rates, mRNA and protein expression of MB-related genes, and mitochondrial number in MRPECs. MRPECs were then exposed to pro-inflammatory agents associated with renal MV-EC dysfunction, AKI, and KD (i.e., lipopolysaccharides, transforming growth factor-β1, and tumor necrosis factor-α), in the presence/absence of lasmiditan. Lasmiditan treatment augmented MRPEC wound healing, endothelial tubular network formation (ETNF), enhanced barrier integrity, and blunted inflammatory-induced MV-EC dysfunctions. Together, these data suggest that lasmiditan induces MB and improves wound healing and ETNF of primary MRPECs in the presence/absence of pro-inflammatory agents, highlighting a potential therapeutic role for lasmiditan treatment in renal MV-EC dysfunction, AKI, and/or KD.NEW & NOTEWORTHY Lasmiditan, an FDA-approved HTR1F agonist, induces mitochondrial biogenesis (MB) and enhances recovery following acute kidney injury in mice. Renal microvascular endothelial cells (MV-ECs) are highly susceptible to dysfunction/rarefaction postinjury. The effect of MB on MV-EC repair/recovery is unknown. We show that lasmiditan induces MB in primary mouse renal peritubular endothelial cells and improves wound healing, endothelial tubular network formation, and barrier integrity after inflammatory-induced dysfunction, indicative of its potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Austin D. Thompson
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Kai W. McAlister
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Natalie E. Scholpa
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
| | - John Hortareas
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rick G. Schnellmann
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Yarmohammadi A, Arkan E, Najafi H, Abbaszadeh F, Rashidi K, Piri S, Fakhri S. Protective effects of astaxanthin solid lipid nanoparticle as a promising candidate against acute kidney injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4491-4502. [PMID: 39495263 DOI: 10.1007/s00210-024-03543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Acute kidney injury (AKI) is a sudden onset of renal injury that occurs within a few hours or days. Ischemia-reperfusion (IR) is a major cause of AKI. There are multiple dysregulated mechanisms behind the pathogenesis of AKI and IR which urges the need for finding multi-targeting therapies. Natural products are multi-targeting agents with promising sources of anti-inflammation, antioxidant, and antiapoptosis. Among them, astaxanthin (AST) is a keto-carotenoid with a high antioxidant potential. Using solid lipid nanoparticles (SLNs) as a novel formulation of AST helps to increase its efficacy and reduce side effects against AKI. After SLN preparation and loading of AST, the physicochemical properties were evaluated, using scanning electron microscopy (SEM) and dynamic light scattering (DLS) tests. For the in vivo study, 28 rats were divided into four groups, including sham, ischemia/reperfusion (I/R), and groups receiving protective and daily doses of AST-SLN (5 and 10 mg/kg, i.p.) during all 5 days before ischemia. Exactly 24 h after ischemia, kidneys were isolated for histological studies, and also, serum levels of catalase (CAT), glutathione (GSH), nitrite, blood urea, and creatinine were measured. The results indicated that intraperitoneal administration of SLN-AST reduced oxidative stress by decreasing serum nitrite levels, while increasing CAT and GSH. SLN-AST also improved renal function by decreasing serum urea and creatinine and preventing tissue damage. Therefore, SLN-AST could be a hopeful adjuvant candidate to prevent AKI by modulating renal function, preventing tissue damage, and through antioxidant mechanisms.
Collapse
Affiliation(s)
- Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Zou YX, Kantapan J, Wang HL, Li JC, Su HW, Dai J, Dechsupa N, Wang L. Iron-Quercetin complex enhances mesenchymal stem cell-mediated HGF secretion and c-Met activation to ameliorate acute kidney injury through the prevention of tubular cell apoptosis. Regen Ther 2025; 28:169-182. [PMID: 39802634 PMCID: PMC11720445 DOI: 10.1016/j.reth.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms. Methods A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSCIronQ). Renal function, histology, and tubular cell apoptosis were analyzed three days post-treatment. In vitro, apoptosis was induced in mouse tubular epithelial cells (mTECs) using cisplatin, followed by treatment with MSCs or MSCIronQ conditioned medium (CM). Apoptosis was evaluated using TUNEL assay, RT-PCR, and western blotting. Furthermore, RNA sequencing (RNA-seq) was performed on MSCIronQ to explore the underlying mechanisms. Results Compared to MSC-treated AKI mice, those treated with MSCIronQ showed significantly improved renal function and histological outcomes, with reduced tubular cell apoptosis. A similar effect was observed in cisplatin-treated mTECs exposed to MSCIronQ-CM. Mechanistically, RNA-seq and subsequent validation revealed that IronQ treatment markedly upregulated the expression and secretion of hepatocyte growth factor (HGF) in MSCs. Furthermore, RNA interference or antibody-mediated neutralization of HGF effectively abolished the anti-apoptotic effects of MSCIronQ on mTECs. This mechanistic insight was reinforced by pharmacological inhibition of c-Met, the specific receptor of HGF, in both in vitro and in vivo models. Conclusions IronQ pretreatment enhances MSCs efficacy in AKI by promoting HGF expression and secretion, activating the HGF/c-Met pathway to suppress tubular cell apoptosis. These findings indicate that IronQ improves MSC-based therapies and offers insights into molecular mechanisms, supporting the development of better AKI treatments.
Collapse
Affiliation(s)
- Yuan-Xia Zou
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Children's Diagnosis and Treatment Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hong-Lian Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian-Chun Li
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Hong-Wei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian Dai
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Neurology, The Third People's Hospital, Luzhou, 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Li Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
6
|
Gheitasi I, Akbari G, Savari F. Physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated in underlying of ischemia/reperfusion injury in different organs. Mol Cell Biochem 2025; 480:855-868. [PMID: 39001984 DOI: 10.1007/s11010-024-05052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.
Collapse
Affiliation(s)
- Izadpanah Gheitasi
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
7
|
Otsuka T, Ueda S, Yamagishi SI, Nagasawa H, Okuma T, Wakabayashi K, Kobayashi T, Murakoshi M, Nakata M, Gohda T, Matsui T, Higashimoto Y, Suzuki Y. Involvement of Mineralocorticoid Receptor Activation by High Mobility Group Box 1 and Receptor for Advanced Glycation End Products in the Development of Acute Kidney Injury. KIDNEY360 2025; 6:208-218. [PMID: 39636697 PMCID: PMC11882257 DOI: 10.34067/kid.0000000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Key Points Our study revealed that high mobility group box 1 activates the mineralocorticoid receptor (MR) through the receptor for advanced glycation end products (RAGE) in AKI. MR antagonists and RAGE aptamers inhibited high mobility group box 1–induced Rac1/MR activation and downstream inflammatory molecules in endothelial cells. MR antagonists and RAGE aptamers may represent promising therapeutic strategies for preventing AKI and CKD progression. Background Although AKI is associated with an increased risk of CKD, the underlying mechanisms remain unclear. High mobility group box 1 (HMGB1), one of the ligands for the receptor for advanced glycation end products (RAGE), is elevated in patients with AKI. We recently demonstrated that the mineralocorticoid receptor (MR) is activated by the RAGE/Rac1 pathway, contributing to chronic renal damage in hypertensive mice. Therefore, this study investigated the role of the HMGB1/RAGE/MR pathway in AKI and progression to CKD. Methods We performed a mouse model of renal ischemia–reperfusion (I/R) with or without MR antagonist (MRA). In vitro experiments were conducted using cultured endothelial cells to examine the interaction between the HMGB1/RAGE and Rac1/MR pathways. Results In renal I/R injury mice, renal MR activation was associated with elevated serum HMGB1, renal RAGE, and activated Rac1, all of which were suppressed by MRA. Renal I/R injury led to renal dysfunction, tubulointerstitial injury, and increased expressions of inflammation and fibrosis mediators, which were ameliorated by MRA. In vitro , RAGE aptamer or MRA inhibited HMGB1-induced Rac1/MR activation and upregulation of monocyte chemoattractant protein 1 and NF-κB expressions. Seven days after I/R injury, renal I/R injury mice developed CKD, whereas MRA prevented renal injury progression and decreased the mortality rate. Furthermore, in case of MRA treatment even after I/R injury, attenuated renal dysfunction compared with untreated mice was also observed. Conclusions Our findings suggest that HMGB1 may play a crucial role in AKI and CKD development by activating the Rac1/MR pathway through interactions with RAGE.
Collapse
Affiliation(s)
- Tomoyuki Otsuka
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Sho-ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hajime Nagasawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Teruyuki Okuma
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Keiichi Wakabayashi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takashi Kobayashi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masami Nakata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Han H, Gao Y, Chen B, Xu H, Shi C, Wang X, Liang Y, Wu Z, Wang Z, Bai Y, Wu C. Nrf2 inhibits M1 macrophage polarization to ameliorate renal ischemia-reperfusion injury through antagonizing NF-κB signaling. Int Immunopharmacol 2024; 143:113310. [PMID: 39383788 DOI: 10.1016/j.intimp.2024.113310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is a condition that arises from a sudden interruption of the blood flow to the kidney for a period of time followed by restoration of the blood supply. This process contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a major risk factor for chronic kidney disease (CKD). Nuclear factor erythroid-derived 2-like 2 (Nrf2) has been shown to exhibit strong anti-oxidative and anti-inflammatory effects, which are reciprocally regulated by the pro-inflammatory actions of nuclear factor-kappa B (NF-κB) signaling. In this study, we established a model of AKI caused by renal IRI in mice lacking the Nrf2 gene (KO-Nrf2) and mice pre-injected with ML385 (Nrf2 inhibitor). In addition, LPS- or IL-4-induced M1- or M2-type polarized macrophages (RAW264.7), respectively, were also treated with Nrf2 activation and inhibition. The results demonstrated a more pronounced activation of the NF-κB signaling pathway in the Nrf2 inhibition model, accompanied by a more severe inflammatory effect. In cultured macrophages and renal IRI mice, Nrf2 inhibition activated M1 macrophage polarization, thereby increasing the release of proinflammatory cell factors (iNOS and TNF-α) and aggravating renal IRI. Notably, the inhibitory effect of Nrf2 on M1 macrophage polarization was related to the downregulation of the NF-κB signaling pathway activity, resulting in partial relief of renal IRI. Consequently, our findings indicated that Nrf2 inhibits M1 macrophage polarization to ameliorate renal IRI through antagonizing NF-κB signaling. Targeted activation of Nrf2 may be one of the important strategies for renal IRI treatment.
Collapse
Affiliation(s)
- Hui Han
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanyuan Gao
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Boxuan Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Hongjie Xu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chenghao Shi
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital, Wenzhou Medical University, Ruian 325200, Zhejiang Province, China
| | - Yihan Liang
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Zhixuan Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Ziqiong Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Cunzao Wu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Chen H, Han Z, Ma Y, Meng Q. Advances in macrophage-derived exosomes as immunomodulators in disease progression and therapy. Int Immunopharmacol 2024; 142:113248. [PMID: 39321698 DOI: 10.1016/j.intimp.2024.113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Most somatic cells secrete vesicles called exosomes, which contain a variety of biomolecules. Recent research indicates that macrophage-derived exosomes are strongly correlated with tumors, infectious diseases, chronic inflammation, and tissue fibrosis. Therefore, the purpose of this review is to delve into the mechanisms of pathological states and how macrophage-derived exosomes react to them. We also discuss the biological effects of exosomes and how they affect disease. In addition, we have examined the possible uses of exosomes in illness treatment, highlighting both the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Huizhu Chen
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China.
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yong Ma
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China.
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
11
|
Ishii Y, Fukui-Miyazaki A, Iwasaki S, Tsuji T, Hotta K, Sasaki H, Nakagawa S, Yoshida T, Murata E, Taniguchi K, Shinohara N, Ishizu A, Kasahara M, Tomaru U. Impaired immunoproteasomal function exacerbates renal ischemia-reperfusion injury. Exp Mol Pathol 2024; 140:104939. [PMID: 39426027 DOI: 10.1016/j.yexmp.2024.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Oxidative stress caused by reactive oxygen species (ROS) is involved in the pathogenesis of renal ischemia-reperfusion injury (I/R injury), a major cause of acute kidney injury and delayed graft function (DGF). DGF is an early transplant complication that worsens graft prognosis and patient survival, but the underlying molecular changes are unclear. The proteasome is a multicatalytic enzyme complex that degrades both normal and damaged proteins, and recent studies have revealed that the immunoproteasome, a specific proteasome isoform whose proteolytic activity enhances the generation of antigenic peptides, plays critical roles in the cellular response against oxidative stress. In this study, we demonstrate the impact of the immunoproteasome in human DGF and in a mouse model of I/R injury. In patients with DGF, the expression of β5i, a specific immunoproteasome subunit, was decreased in vascular endothelial cells. In a mouse model, β5i knockout (KO) exacerbated renal I/R injury. KO mice showed greater inflammation, oxidative stress, and endothelial damage compared with wild-type mice. Impaired immunoproteasomal activity also caused increased cell death, ROS production, and expression of inflammatory factors in mouse renal vascular endothelial cells under conditions of hypoxia and reoxygenation. In conclusion, reduced expression of the immunoproteasomal catalytic subunit β5i exacerbates renal I/R injury in vivo, potentially increasing the risk of DGF. Further research targeting β5i expression in DGF could lead to the development of novel therapeutic strategies and biomarkers.
Collapse
Affiliation(s)
- Yasushi Ishii
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Aya Fukui-Miyazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sari Iwasaki
- Department of Pathology, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hajime Sasaki
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Shimpei Nakagawa
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuma Yoshida
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eri Murata
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Fundamental Nursing, School of Nursing, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo 060-8648, Japan.
| |
Collapse
|
12
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Yun SP, Kim HJ, Kim H, Park SW. Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice. Int J Mol Sci 2024; 25:12563. [PMID: 39684275 DOI: 10.3390/ijms252312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768. After renal IR, P2Y2R KO mice showed greater increases in plasma creatinine, tubular damage and neutrophil infiltration, and significant induction of proinflammatory cytokines and apoptotic markers than wild-type (WT) mice. In contrast, treatment with MRS2768 reduced plasma creatinine levels, tubular damage and inflammation, and renal apoptosis in mice subjected to renal IR. In cultured human proximal tubular HK-2 cells, MRS2768 upregulated P2Y2R mRNA levels and decreased TNF-α/cycloheximide-induced apoptosis and inflammation. Importantly, P2Y2R activation by MRS2768 increased the phosphorylation of protein kinase C (PKC), Src, and phosphatidylinositol 3-kinase (PI3K)/Akt. In addition, the inhibition of PI3K/Akt abolished the protective effects of MRS2768 against TNF-α/cycloheximide-induced apoptosis and inflammation in HK-2 cells. In conclusion, activation of P2Y2R protects against tubular apoptosis and inflammation during renal IR via the PKC/Src/Akt pathway, suggesting P2Y2R is a promising therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea
| |
Collapse
|
13
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Maden M, Ider M, Or ME, Dokuzeylül B, Gülersoy E, Kılıçkaya MC, Bilgiç B, Durgut MK, İzmirli S, Iyigün SS, Telci DZ, Naseri A. The clinical efficacy of cGMP-specific sildenafil on mitochondrial biogenesis induction and renal damage in cats with acute on chronic kidney disease. BMC Vet Res 2024; 20:499. [PMID: 39478527 PMCID: PMC11526613 DOI: 10.1186/s12917-024-04345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Mitochondrial biogenesis (MB) induction has recently emerged as potential therapeutic approaches in kidney pathology and the mitochondria-targeted therapies should be investigated to improve treatment of animals with kidney diseases. This study aimed to investigate the effects of MB induction with sildenafil citrate on the cGMP/NO pathway, glomerular filtration, and reduction of kidney damage and fibrosis (TGF-β/SMAD pathway) in cats with acute on chronic kidney disease (ACKD). Thirty-three cats were divided into the non-azotemic (healthy) group (n:8) and the ACKD group (n:25), comprising different breeds, sexes, and ages. Sildenafil citrate was administered to the non-azotemic and ACKD groups (2.5 mg/kg, PO, q12 hours) for 30 days. Serum and urine NO, MDA, NGAL, KIM-1, TGF-β1, IL-18, FGF 23, PGC-1α and cGMP concentrations were measured. RESULTS Serum cGMP concentrations increased (P < 0.05) in the non-azotemic group during the 2nd (median 475.99 pmol/mL) and 3rd (median 405.01 pmol/mL) weeks of the study, whereas serum cGMP concentrations decreased in the ACKD group during the 4th(median 188.52 pmol/mL) week compared to the non-azotemic group (P < 0.05). No difference was observed in serum biomarker concentrations except NO, which increased in the 4th week (P < 0.05). The urinary concentrations of NO, MDA, PGC-1α, TGF-β1, NGAL, KIM-1, IL-18, and FGF 23 in the ACKD group were found to be higher compared to those in the non-azotemic group from the 1st to the 4th week (P < 0.05). In the ACKD group, the urine PGC-1α concentration in the 2nd (median 6.10 ng/mL) week was lower compared to that in the 0 and 1st (median 7.65 and 7.21 ng/mL, respectively) week, and the NO concentration in the 3rd (median 28.94 µmol/mL) week was lower than that in the 0th (median 37.43 µmol/mL) week (P < 0.05). CONCLUSIONS While sildenafil citrate has been determined to induce a low level of MB and to have a beneficial effect on glomerular filtration, it is observed to be ineffective in mitigating renal damage and fibrosis via the TGF-β/SMAD pathway in cats with ACKD.
Collapse
Affiliation(s)
- Mehmet Maden
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye.
| | - Merve Ider
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Mehmet Erman Or
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Banu Dokuzeylül
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Erdem Gülersoy
- Faculty of Veterinary Medicine, Department of Internal Medicine, Harran University, Şanlıurfa, Türkiye
| | - Merve Cansu Kılıçkaya
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Bengü Bilgiç
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Murat Kaan Durgut
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Semih İzmirli
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Suleyman Serhat Iyigün
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| | - Deniz Zeynep Telci
- Faculty of Veterinary Medicine, Internal Medicine Department, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Amir Naseri
- Faculty of Veterinary Medicine, Department of Internal Medicine, Selcuk University, Konya, 42250, Türkiye
| |
Collapse
|
15
|
Kumari N, Parashar S, Giri M, Tripathi M, Kumar V, Kumar S. Correlation of urinary glutathione S-transferase with serum creatinine in sepsis-induced acute kidney injury: A prospective and observational study. Int J Crit Illn Inj Sci 2024; 14:197-202. [PMID: 39811037 PMCID: PMC11729044 DOI: 10.4103/ijciis.ijciis_66_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background Sepsis-induced acute kidney injury (AKI) is difficult to prevent because most patients are diagnosed after they develop it. Standard serum and urine creatinine levels are insensitive and nonspecific for detecting kidney injury in its early stages. Glutathione S-transferase (GST) has received little attention as a biomarker in AKI. Methods This study included 65 adult patients with sepsis who developed oliguria within 72 h of admission. Baseline serum creatinine values were recorded at least 1 month before or after intensive care unit (ICU) admission. The clinical endpoints were defined as the occurrence of advanced AKI stages 2 or 3 according to the KDIGO classification. Serum creatinine and urinary GST levels were measured every 6 h from admission until 72 h postoliguria development. The primary objective was to assess the correlation between urinary GST and serum creatinine levels in patients with sepsis-induced AKI. Results Among the 65 patients, 13 (20%) progressed to AKI Grade I, while 52 (80%) progressed to AKI Grade II or III. Both groups exhibited an increasing trend in serum creatinine and urinary GST levels up to 72 h. Significant mean differences between the two AKI groups were observed at 48 and 72 h for serum creatinine (P = 0.021 and P = 0.007, respectively) and at 18 h for urinary GST levels (P = 0.044). Conclusion Urinary GST levels demonstrated an earlier elevation than serum creatinine levels in critically ill sepsis patients, underscoring their utility as a valuable tool for the early diagnosis and predicting AKI following admission to the ICU.
Collapse
Affiliation(s)
- Nidhi Kumari
- Department of Anaesthesiology, MRA Medical College, Ambedkar Nagar, Uttar Pradesh, India
| | - Samiksha Parashar
- Department of Anaesthesiology and Critical Care Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manoj Giri
- Department of Anaesthesiology and Critical Care Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manoj Tripathi
- Department of Anaesthesiology and Critical Care Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Virendra Kumar
- Department of Anaesthesiology and Critical Care Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Suraj Kumar
- Department of Anaesthesiology and Critical Care Medicine, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Qi Y, Zheng J, Zi Y, Song W, Chen X, Cao S, Zhou Q, Fu H, Hu X. Loureirin C improves mitochondrial function by promoting NRF2 nuclear translocation to attenuate oxidative damage caused by renal ischemia-reperfusion injury. Int Immunopharmacol 2024; 138:112596. [PMID: 38981224 DOI: 10.1016/j.intimp.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome worldwide, with no effective treatment strategy. Renal ischemia-reperfusion (IR) injury is one of the main AKI features, and the excessive reactive oxygen species (ROS) production during reperfusion causes severe oxidative damage to the kidney. Loureirin C (LC), an active ingredient in the traditional Chinese medicine Chinese dragon's blood, possesses excellent antioxidative properties, but its role in renal IR injury is not clear. In this study, we evaluated the protective effects of LC against renal IR injury in vivo and in vitro by establishing a mice renal IR injury model and a human proximal renal tubular epithelial cell (HK-2) hypoxia/reoxygenation (HR) model. We found that LC ameliorated renal function and tissue structure injury and inhibited renal oxidative stress and ferroptosis in vivo. In vitro, LC scavenged ROS and attenuated mitochondrial dysfunction in HK-2 cells, thereby inhibiting oxidative cellular injury. Furthermore, we found that LC effectively promoted nuclear factor erythroid 2-related factor 2 (NRF2) nuclear translocation and activated downstream target genes heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) to enhance cellular antioxidant function. Moreover, NRF2 knockdown and pharmacological inhibition of NRF2 partially eliminated the protective effect of LC. These results confirm that LC can effectively inhibit renal IR injury, and the mechanism may be associated with NRF2 activation by LC.
Collapse
Affiliation(s)
- Yucheng Qi
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China; The Fourth People's Hospital of Hengyang, China
| | - Jinli Zheng
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, China
| | - Yuan Zi
- The Fourth People's Hospital of Hengyang, China
| | - Wenke Song
- Department of Medical Department, Affiliated Nanhua Hospital, University of South China, China
| | - Xuancai Chen
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Shahuang Cao
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Qun Zhou
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China
| | - Hao Fu
- Department of Urology, Affiliated Nanhua Hospital, University of South China, China.
| | - Xinyi Hu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, China.
| |
Collapse
|
17
|
Han S, Guo J, Kong C, Li J, Lin F, Zhu J, Wang T, Chen Q, Liu Y, Hu H, Qiu T, Cheng F, Zhou J. ANKRD1 aggravates renal ischaemia‒reperfusion injury via promoting TRIM25-mediated ubiquitination of ACSL3. Clin Transl Med 2024; 14:e70024. [PMID: 39285846 PMCID: PMC11406046 DOI: 10.1002/ctm2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Renal ischaemia‒reperfusion injury (IRI) is the primary cause of acute kidney injury (AKI). To date, effective therapies for delaying renal IRI and postponing patient survival remain absent. Ankyrin repeat domain 1 (ANKRD1) has been implicated in some pathophysiologic processes, but its role in renal IRI has not been explored. METHODS The mouse model of IRI-AKI and in vitro model were utilised to investigate the role of ANKRD1. Immunoprecipitation-mass spectrometry was performed to identify potential ANKRD1-interacting proteins. Protein‒protein interactions and protein ubiquitination were examined using immunoprecipitation and proximity ligation assay and immunoblotting, respectively. Cell viability, damage and lipid peroxidation were evaluated using biochemical and cellular techniques. RESULTS First, we unveiled that ANKRD1 were significantly elevated in renal IRI models. Global knockdown of ANKRD1 in all cell types of mouse kidney by recombinant adeno-associated virus (rAAV9)-mitigated ischaemia/reperfusion-induced renal damage and failure. Silencing ANKRD1 enhanced cell viability and alleviated cell damage in human renal proximal tubule cells exposed to hypoxia reoxygenation or hydrogen peroxide, while ANKRD1 overexpression had the opposite effect. Second, we discovered that ANKRD1's detrimental function during renal IRI involves promoting lipid peroxidation and ferroptosis by directly binding to and decreasing levels of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3), a key protein in lipid metabolism. Furthermore, attenuating ACSL3 in vivo through pharmaceutical approach and in vitro via RNA interference mitigated the anti-ferroptotic effect of ANKRD1 knockdown. Finally, we showed ANKRD1 facilitated post-translational degradation of ACSL3 by modulating E3 ligase tripartite motif containing 25 (TRIM25) to catalyse K63-linked ubiquitination of ACSL3, thereby amplifying lipid peroxidation and ferroptosis, exacerbating renal injury. CONCLUSIONS Our study revealed a previously unknown function of ANKRD1 in renal IRI. By driving ACSL3 ubiquitination and degradation, ANKRD1 aggravates ferroptosis and ultimately exacerbates IRI-AKI, underlining ANKRD1's potential as a therapeutic target for kidney IRI. KEY POINTS/HIGHLIGHTS Ankyrin repeat domain 1 (ANKRD1) is rapidly activated in renal ischaemia‒reperfusion injury (IRI) models in vivo and in vitro. ANKRD1 knockdown mitigates kidney damage and preserves renal function. Ferroptosis contributes to the deteriorating function of ANKRD1 in renal IRI. ANKRD1 promotes acyl-coenzyme A synthetase long-chain family member 3 (ACSL3) degradation via the ubiquitin‒proteasome pathway. The E3 ligase tripartite motif containing 25 (TRIM25) is responsible for ANKRD1-mediated ubiquitination of ACSL3.
Collapse
Affiliation(s)
- Shangting Han
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiayu Guo
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chenyang Kong
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Department of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Li
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Fangyou Lin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiefu Zhu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Wang
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Chen
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yiting Liu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Haochong Hu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tao Qiu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiangqiao Zhou
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
18
|
Xu Y, Li G, Ge D, Chen Y, Hou B, Hao Z. Mitochondrial dysfunction in kidney stones and relief of kidney stones after reducing mtROS. Urolithiasis 2024; 52:117. [PMID: 39136789 DOI: 10.1007/s00240-024-01614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 12/17/2024]
Abstract
Mitochondria are essential organelles because they generate the energy required for cellular functions. Kidney stones, as one of the most common urological diseases, have garnered significant attention. In this study, we first collected peripheral venous blood from patients with kidney stones and used qRT-PCR to detect mitochondrial DNA (mtDNA) copy number as a means of assessing mitochondrial function in these patients. Subsequently, through Western blotting, qPCR, immunofluorescence, immunohistochemistry, and transmission electron microscopy, we examined whether calcium oxalate crystals could cause mitochondrial dysfunction in the kidney in both in vitro and in vivo. We then examined the intersection of the DEGs obtained by transcriptome sequencing of the mouse kidney stone model with mitochondria-related genes, and performed KEGG and GO analyses on the intersecting genes. Finally, we administered the mitochondrial ROS scavenger Mito-Tempo in vivo and observed its effects. Our findings revealed that patients with kidney stones had a reduced mtDNA copy number in their peripheral venous blood compared to the control group, suggesting mitochondrial dysfunction in this population. This conclusion was further validated through in vitro and in vivo experiments. Enrichment analyses revealed that the intersecting genes were closely related to metabolism. We observed that after mitochondrial function was preserved, the deposition of calcium oxalate crystals decreased, and the kidney damage and inflammation caused by them were also alleviated. Our research indicates that kidney stones can cause mitochondrial dysfunction. After clearing mtROS, the damage and inflammation caused by kidney stones are reversed, providing new insights into the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Yuexian Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Guoxiang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Defeng Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Yan Chen
- Department of General Practice, Wuhu City Second People's Hospital, Wuhu, China.
| | - Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Yamani F, Cianfarini C, Batlle D. Delayed Graft Function and the Renin-angiotensin System. Transplantation 2024; 108:1308-1318. [PMID: 38361243 PMCID: PMC11136607 DOI: 10.1097/tp.0000000000004934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Delayed graft function (DGF) is a form of acute kidney injury (AKI) and a common complication following kidney transplantation. It adversely influences patient outcomes increases the financial burden of transplantation, and currently, no specific treatments are available. In developing this form of AKI, activation of the renin-angiotensin system (RAS) has been proposed to play an important role. In this review, we discuss the role of RAS activation and its contribution to the pathophysiology of DGF following the different stages of the transplantation process, from procurement and ischemia to transplantation into the recipient and including data from experimental animal models. Deceased kidney donors, whether during cardiac or brain death, may experience activation of the RAS. That may be continued or further potentiated during procurement and organ preservation. Additional evidence suggests that during implantation of the kidney graft and reperfusion in the recipient, the RAS is activated and may likely remain activated, extrapolating from other forms of AKI where RAS overactivity is well documented. Of particular interest in this setting is the status of angiotensin-converting enzyme 2, a key RAS enzyme essential for the metabolism of angiotensin II and abundantly present in the apical border of the proximal tubules, which is the site of predominant injury in AKI and DGF. Interventions aimed at safely downregulating the RAS using suitable shorter forms of angiotensin-converting enzyme 2 could be a way to offer protection against DGF.
Collapse
Affiliation(s)
- Fatmah Yamani
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Cosimo Cianfarini
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel Batlle
- Division of Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
20
|
Sui M, Yan S, Zhang P, Li Y, Chen K, Li Y, Lu H, Li Y, Zhao W, Zeng L. The role of Testis-Specific Protein Y-encoded-Like 2 in kidney injury. iScience 2024; 27:109594. [PMID: 38665207 PMCID: PMC11043847 DOI: 10.1016/j.isci.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Recent findings suggest that Testis-Specific Protein Y-encoded-Like 2 (TSPYL2) plays a fibrogenic role in diabetes-associated renal injury. However, the role of TSPYL2 in IRI-induced kidney damage is not entirely clear. In this study, we found that the expression of TSPYL2 was upregulated in a mouse model of AKI and in the hypoxia/reoxygenation (H/R) cell model. Knockdown of TSPYL2 attenuated kidney injury after IRI. More specifically, the knockdown of TSPYL2 or aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) alleviated renal IRI-induced mitochondrial dysfunction and oxidative stress in vitro and in vivo. Further investigation showed that TSPYL2 regulated SREBP-2 acetylation by inhibiting SIRT1 and promoting p300 activity, thereby promoting the transcriptional activity of ACMSD. In conclusion, TSPYL2 was identified as a pivotal regulator of IRI-induced kidney damage by activating ACMSD, which may lead to NAD+ content and the damaging response in the kidney.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sijia Yan
- Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Zhang
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuhong Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kewen Chen
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanhua Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanlan Lu
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanfeng Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenyu Zhao
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Zeng
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Behem CR, Friedheim T, Holthusen H, Rapp A, Suntrop T, Graessler MF, Pinnschmidt HO, Wipper SH, von Lucadou M, Schwedhelm E, Renné T, Pfister K, Schierling W, Trepte CJC. Goal-directed colloid versus crystalloid therapy and microcirculatory blood flow following ischemia/reperfusion. Microvasc Res 2024; 152:104630. [PMID: 38048876 DOI: 10.1016/j.mvr.2023.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Ischemia/reperfusion can impair microcirculatory blood flow. It remains unknown whether colloids are superior to crystalloids for restoration of microcirculatory blood flow during ischemia/reperfusion injury. We tested the hypothesis that goal-directed colloid - compared to crystalloid - therapy improves small intestinal, renal, and hepatic microcirculatory blood flow in pigs with ischemia/reperfusion injury. METHODS This was a randomized trial in 32 pigs. We induced ischemia/reperfusion by supra-celiac aortic-cross-clamping. Pigs were randomized to receive either goal-directed isooncotic hydroxyethyl-starch colloid or balanced isotonic crystalloid therapy. Microcirculatory blood flow was measured using Laser-Speckle-Contrast-Imaging. The primary outcome was small intestinal, renal, and hepatic microcirculatory blood flow 4.5 h after ischemia/reperfusion. Secondary outcomes included small intestinal, renal, and hepatic histopathological damage, macrohemodynamic and metabolic variables, as well as specific biomarkers of tissue injury, renal, and hepatic function and injury, and endothelial barrier function. RESULTS Small intestinal microcirculatory blood flow was higher in pigs assigned to isooncotic hydroxyethyl-starch colloid therapy than in pigs assigned to balanced isotonic crystalloid therapy (768.7 (677.2-860.1) vs. 595.6 (496.3-694.8) arbitrary units, p = .007). There were no important differences in renal (509.7 (427.2-592.1) vs. 442.1 (361.2-523.0) arbitrary units, p = .286) and hepatic (604.7 (507.7-701.8) vs. 548.7 (444.0-653.3) arbitrary units, p = .376) microcirculatory blood flow between groups. Pigs assigned to colloid - compared to crystalloid - therapy also had less small intestinal, but not renal and hepatic, histopathological damage. CONCLUSIONS Goal-directed isooncotic hydroxyethyl-starch colloid - compared to balanced isotonic crystalloid - therapy improved small intestinal, but not renal and hepatic, microcirculatory blood flow in pigs with ischemia/reperfusion injury. Whether colloid therapy improves small intestinal microcirculatory blood flow in patients with ischemia/reperfusion needs to be investigated in clinical trials.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Holthusen
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adina Rapp
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Suntrop
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine H Wipper
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karin Pfister
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wilma Schierling
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Lindoso RS, Collino F, Kasai-Brunswick TH, Costa MR, Verdoorn KS, Einicker-Lamas M, Vieira-Beiral HJ, Wessely O, Vieyra A. Resident Stem Cells in Kidney Tissue. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:159-203. [DOI: 10.1016/b978-0-443-15289-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Anzai A, Takaki S, Yokoyama N, Kashiwagi S, Yokose M, Goto T. Creatinine Reduction Ratio Is a Prognostic Factor for Acute Kidney Injury following Cardiac Surgery with Cardiopulmonary Bypass: A Single-Center Retrospective Cohort Study. J Clin Med 2023; 13:9. [PMID: 38202016 PMCID: PMC10779757 DOI: 10.3390/jcm13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Acute kidney injury (AKI) after cardiac surgery is a common complication that can lead to death. We previously reported that the creatinine reduction ratio (CRR) serves as a useful prognostic factor for AKI. The primary objective of this study was to determine the predictors of AKI after surgery. The secondary objective was to determine the reliability of the CRR for short- and long-term outcomes. We retrospectively collected information about cardiac surgery patients who underwent cardiopulmonary bypass. Patients were divided into AKI and non-AKI groups based on the AKIN and RIFLE criteria. We analyzed the two groups regarding the preoperative patient data and operative information. The CRR was calculated as follows: (preoperative creatinine-postoperative creatinine)/preoperative creatinine. The prognostic factors of AKI-CS were surgery time, CPB time, aorta clamp time, platelet transfusion, and CRR < 20%. In the multivariate logistical analysis, CRR was an independent predictor of AKI (adjusted odds ratio: 0.90 [0.87-0.93], p < 0.001). However, there were no significant differences in CRR in terms of the rate of new onset chronic kidney disease (CKD). After cardiac surgery with cardiopulmonary bypass, CRR has good diagnostic power for predicting perioperative AKI. However, we cannot use it as a prognostic factor over a long-term period.
Collapse
Affiliation(s)
| | - Shunsuke Takaki
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Hospital, 3-9 Fukuura Kanazawaku, Yokohama 236-0004, Japan; (A.A.)
| | | | | | | | | |
Collapse
|
24
|
Hou Y, Lin S, Xia J, Zhang Y, Yin Y, Huang M, Xu Y, Yang W, Zhu Y. Alleviation of ischemia-reperfusion induced renal injury by chemically modified SOD2 mRNA delivered via lipid nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102067. [PMID: 38028193 PMCID: PMC10652142 DOI: 10.1016/j.omtn.2023.102067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury, which is a serious clinical condition with no effective pharmacological treatment. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) significantly alleviate kidney IRI; however, the underlying mechanisms and key molecules conferring renoprotection remain elusive. In this study, we characterized the protein composition of MSC-EVs using a proteomics approach and found that mitochondrial protein superoxide dismutase 2 (SOD2) was enriched in MSC-EVs. Using lipid nanoparticles (LNP), we successfully delivered chemically modified SOD2 mRNA into kidney cells and mice with kidney IRI. We demonstrated that SOD2 mRNA-LNP treatment decreased cellular reactive oxygen species (ROS) in cultured cells and ameliorated renal damage in IRI mice, as indicated by reduced levels of serum creatinine and restored tissue integrity compared with the control mRNA-LNP-injected group. Thus, the modulation of mitochondrial ROS levels through SOD2 upregulation by SOD2 mRNA-LNP delivery could be a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Sihao Lin
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, P.R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- RNAcure Biopharma, Shanghai, P.R. China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai, P.R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, P.R. China
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, P.R. China
| |
Collapse
|
25
|
Fu H, Wang L, Ying S, Zhao Z, Zhang P. Preventive effect and mechanism of compound Danshen dripping pills on contrast-induced nephropathy after percutaneous coronary interventional. Front Cardiovasc Med 2023; 10:1211982. [PMID: 38124888 PMCID: PMC10731959 DOI: 10.3389/fcvm.2023.1211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023] Open
Abstract
Background Contrast-induced nephropathy (CIN) is one of the most common complications after coronary stent implantation due to the extensive development of coronary catheterization technology. Compound Danshen dripping pills (CDDP) are clinically used as cardiovascular drugs, relieving systemic inflammatory response. Previous studies have observed that CDDP can decrease CIN incidence after coronary stent implantation with uncertain effectiveness. Methods We conducted a prospective, randomized, single-center, single-blind, controlled trial. We enrolled patients 18 years and older with unstable angina pectoris and NSTEMI who underwent PCI at the Tianjin Chest Hospital between November 1, 2021, and November 31, 2022, and followed for 30 days. Patients were randomized to CDDP and hydration therapy (10 capsules three times/day; N = 411) or hydration only (N = 411). The primary outcome was the contrast nephropathy incidence, defined as an elevation in serum creatinine by more than 25% or 44 μmol/L from baseline within 48-72 h of contrast exposure. Secondary outcomes included major adverse cardiovascular events post-surgery and during follow-up. Results After 48 h of operation, the two groups had statistical significance in Scr and BUN values (80.0 ± 12.59 vs. 84.43 ± 13.49, P < 0.05; 6.22 ± 1.01 vs. 6.40 ± 0.93, P < 0.05). The difference in Scr in 72 h between the two groups was statistically significant (76.42 ± 10.92 vs. 79.06 ± 11.58, P < 0.05). The CIN incidence was significantly lower in the CDDP group than in the hydration group. The CIN risk was significantly elevated in patients with LVEF <50%, contrast volume ≥160 ml, and hypertension, after 48 and 72 h of operation. The serum inflammation index levels NGAL, TNF-α, oxidative stress indexes SOD, and MDA significantly differed between the two groups. However, there was no significant difference in serum apoptosis indexes Bax, Bcl-2, and Casepase-9. Conclusions CDDP pre-treatment could prevent contrast-induced nephropathy. Inflammatory response and oxidative stress could be significant in the CDDP mechanism.
Collapse
Affiliation(s)
- Han Fu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Linrui Wang
- Sheng Jing Hospital Affiliated, China Medical University, Shenyang, China
| | - Shuo Ying
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Zhicheng Zhao
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Guo M, Shen D, Su Y, Xu J, Zhao S, Zhang W, Wang Y, Jiang W, Wang J, Geng X, Ding X, Xu X. Syndecan-1 shedding destroys epithelial adherens junctions through STAT3 after renal ischemia/reperfusion injury. iScience 2023; 26:108211. [PMID: 37942007 PMCID: PMC10628745 DOI: 10.1016/j.isci.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Adherens junctions between tubular epithelial cells are disrupted in renal ischemia/reperfusion (I/R) injury. Syndecan-1 (SDC-1) is involved in maintaining cell morphology. We aimed to study the role of SDC-1 shedding induced by renal I/R in the destruction of intracellular adherens junctions. We found that SDC-1 shedding was increased while the expression of E-cadherin was decreased. This observation was accompanied by the activation of STAT3 in the kidneys. Inhibiting the shedding of SDC-1 induced by I/R could alleviate this effect. Mild renal I/R could induce more severe renal injury, lower E-cadherin expression, damaged cell junctions, and activated STAT3 in knockout mice with the tubule-specific deletion of SDC-1 mice. The results in vitro were consistent with those in vivo. Inhibiting the shedding of SDC-1 could alleviate the decreased expression of E-cadherin and damage of cell adherens junctions through inhibiting the activation of STAT3 during ischemic acute kidney injury.
Collapse
Affiliation(s)
- Man Guo
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Daoqi Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yiqi Su
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jiarui Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Shuan Zhao
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Weidong Zhang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Yaqiong Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Wuhua Jiang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Jialin Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xuemei Geng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
27
|
Hamed AB, El-Abhar HS, Abdallah DM, Ahmed KA, Abulfadl YS. Prunetin in a GPR30-dependent manner mitigates renal ischemia/reperfusion injury in rats via interrupting indoxyl sulfate/TLR4/TRIF, RIPK1/RIPK3/MLKL, and RIPK3/PGAM5/DRP-1 crosstalk. Saudi Pharm J 2023; 31:101818. [PMID: 37868646 PMCID: PMC10587762 DOI: 10.1016/j.jsps.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The potential health benefits of phytochemicals in preventing and treating diseases have gained increasing attention. Here, we proved that the methylated isoflavone prunetin possesses a reno-therapeutic effect against renal ischemia/reperfusion (I/R) insult by activating G protein-coupled receptor 30 (GPR30). After choosing the therapeutic dose of prunetin against renal I/R injury in the pilot study, male Sprague Dawley rats were allocated into 5 groups; viz., sham-operated (SO), SO injected with 1 mg/kg prunetin intraperitoneally for three successive days, untreated I/R, I/R treated with prunetin, and I/R treated with G-15, the selective GPR30 blocker, followed by prunetin. Treatment with prunetin reversed the I/R renal injury effect and majorly restored normal renal function and architecture. Mechanistically, prunetin restored the I/R-induced depletion of renal GPR30, an impact that was canceled by the pre-administration of G-15. Additionally, post-administration of prunetin normalized the boosted inflammatory markers indoxyl sulfate, TLR4, and TRIF and abrogated renal cell demise by suppressing necroptotic signaling, verified by the inactivation of p-RIPK1, p-RIPK3, and p-MLKL while normalizing the inhibited caspase-8. Besides, prunetin reversed the I/R-mediated mitochondrial fission by inhibiting the protein expression of PGMA5 and p-DRP-1. All these favorable impacts of prunetin were nullified by G-15. To sum up, prunetin exhibited a significant reno-therapeutic effect evidenced by the enhancement of renal morphology and function, the suppression of the inflammatory cascade indoxyl sulfate/TLR4/TRIF, which turns off the activated/phosphorylated necroptotic trajectory RIPK1/RIPK3/MLKL, while enhancing caspase-8. Additionally, prunetin opposed the mitochondrial fission pathway RIPK3/PGMA5/DRP-1, effects that are mediated via the activation of GPR30.
Collapse
Affiliation(s)
- Ahmed B. Hamed
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasmin S. Abulfadl
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
28
|
Jankowska A, Ngai J. I, Robot: Healthcare Decisions Made With Artificial Intelligence. J Cardiothorac Vasc Anesth 2023; 37:1852-1854. [PMID: 37500370 DOI: 10.1053/j.jvca.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Anna Jankowska
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Health, New York, NY
| | - Jennie Ngai
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Health, New York, NY.
| |
Collapse
|
29
|
Zhang H, Zhang T, Hou L, Zhao J, Fan Q, Wang L, Lu Z, Dong H, Lei C. Association of intraoperative cerebral and somatic tissue oxygen saturation with postoperative acute kidney injury in adult patients undergoing multiple valve surgery. BMC Anesthesiol 2023; 23:319. [PMID: 37726660 PMCID: PMC10507988 DOI: 10.1186/s12871-023-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The association between tissue oxygenation with postoperative acute kidney injury (AKI) in adult patients undergoing multiple valve surgery has not been specifically studied. METHODS In this prospective exploratory cohort study, 99 patients were enrolled. The left forehead, the left forearm, the left upper thigh, and the left renal region tissue oxygen saturation using near-infrared spectroscopy were monitored. The association between each threshold and AKI was assessed. The relative and absolute thresholds were < 70%, < 75%, < 80%, < 85%, < 90%, < 95%, and < 100% baseline, and baseline-standard deviation (SD), -1.5 SD, -2 SD, -2.5 SD, and -3 SD. Multivariate logistic regression analysis was adopted to explore the association. RESULTS AKI occurred in 53 (54%) patients. The absolute value-based SrrO2 thresholds associated with AKI were baseline-3 SD (odds ratio [OR], 4.629; 95% confidence interval [CI], 1.238-17.314; P = 0.023) and baseline-2.5 SD (OR, 2.842; 95% CI, 1.025-7.881; P = 0.045) after adjusting for the potential confounders, those are renal region tissue oxygen saturation of 55% and 60%, but not statistically significant after correcting for multiple testing (corrected P = 0.114 and 0.179, respectively). CONCLUSION The SrrO2 desaturation, defined as < baseline - 2.5 SD or < baseline - 3 SD, may be associated with AKI. The thresholds need to be verified in future large-scale studies. TRIAL REGISTRATIONS The study was registered at ClinicalTrials.gov, first trial registration: 26/10/2017, identifier: NCT03323203.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Taoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Lihong Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Jing Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Qianqian Fan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Lini Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Zhihong Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China
| | - Chong Lei
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi'an, 710032, China.
| |
Collapse
|
30
|
Luo J, Pei J, Yu CJ, Tian XM, Zhang J, Shen LJ, Hua Y, Wei GH. Exploring the role of Hmox1 in ferroptosis and immune infiltration during renal ischemia-reperfusion injury. Ren Fail 2023; 45:2257801. [PMID: 38532724 DOI: 10.1080/0886022x.2023.2257801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/06/2023] [Indexed: 03/28/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is inevitable in kidney transplantations and, as a complex pathophysiological process, it can be greatly impacted by ferroptosis and immune inflammation. Our study aimed to identify the biomarkers of renal IRI (RIRI) and elucidate their relationship with immune infiltration. In this study, the GSE148420 database was used as a training set to analyze differential genes and overlap them with ferroptosis-related genes to identify hub genes using a protein-protein interaction (PPI) network, the least absolute shrinkage and selection operator (LASSO), and random forest algorithm (RFA). We verified the hub gene and ferroptosis-related phenotypes in a verification set and animal experiments involving unilateral IRI with contralateral nephrectomy in rats. Gene set enrichment analysis (GSEA) of single genes was conducted according to the hub gene to predict related endogenous RNAs (ceRNAs) and drugs to establish a network. Finally, we used the Cibersort to analyze immunological infiltration and conducted Spearman's correlation analysis. We identified 5456 differential genes and obtained 26 ferroptosis-related differentially expressed genes. Through PPI, LASSO, and RFA, Hmox1 was identified as the only hub gene and its expression levels were verified using verification sets. In animal experiments, Hmox1 was verified as a key biomarker. GSEA of single genes revealed the seven most related pathways, and the ceRNAs network included 138 mRNAs and miRNAs. We predicted 11 related drugs and their three-dimensional structural maps. Thus, Hmox1 was identified as a key biomarker and regulator of ferroptosis in RIRI and its regulation of ferroptosis was closely related to immune infiltration.
Collapse
Affiliation(s)
- Jin Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jun Pei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Cheng-Jun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Xiao-Mao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jie Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Lian-Ju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Guang-Hui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
31
|
Teo KHB, Lim SH, Hao Y, Lo YKD, Lin Z, Kaushik M, Tan CS, Thajudeen MZ, Wee CPJ. Neutrophil gelatinase-associated lipocalin: a biochemical marker for acute kidney injury and long-term outcomes in patients presenting to the emergency department. Singapore Med J 2023; 64:479-486. [PMID: 35707865 PMCID: PMC10476918 DOI: 10.11622/smedj.2022070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022]
Abstract
Introduction Creatinine has limitations in identifying and predicting acute kidney injury (AKI). Our study examined the utility of neutrophil gelatinase-associated lipocalin (NGAL) in predicting AKI in patients presenting to the emergency department (ED), and in predicting the need for renal replacement therapy (RRT), occurrence of major adverse cardiac events (MACE) and all-cause mortality at three months post visit. Methods This is a single-centre prospective cohort study conducted at Singapore General Hospital (SGH). Patients presenting to SGH ED from July 2011 to August 2012 were recruited. They were aged ≥21 years, with an estimated glomerular filtration rate <60 mL/min/1.73 m2, and had congestive cardiac failure, systemic inflammatory response syndrome or required hospital admission. AKI was diagnosed by researchers blinded to experimental measurements. Serum NGAL was measured as a point-of-care test. Results A total of 784 patients were enrolled, of whom 107 (13.6%) had AKI. Mean serum NGAL levels were raised (P < 0.001) in patients with AKI (670.0 ± 431.9 ng/dL) compared with patients without AKI (490.3 ± 391.6 ng/dL). The sensitivity and specificity of NGAL levels >490 ng/dL for AKI were 59% (95% confidence interval [CI] 49%-68%) and 65% (95% CI 61%-68%), respectively. Need for RRT increased 21% per 100 ng/dL increase in NGAL (P < 0.001), whereas odds of death in three months increased 10% per 100 ng/dL increase in NGAL (P = 0.028). No clear relationship was observed between NGAL levels and MACE. Conclusion Serum NGAL identifies AKI and predicts three-month mortality.
Collapse
Affiliation(s)
| | - Swee Han Lim
- Department of Emergency Medicine, Singapore General Hospital, Singapore
| | - Ying Hao
- SingHealth Health Services Research Centre, Singapore
| | | | - Ziwei Lin
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore
| | - Manish Kaushik
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | - Chieh Suai Tan
- Department of Renal Medicine, Singapore General Hospital, Singapore
| | | | | |
Collapse
|
32
|
Liu C, Wang Q, Niu L. Sufentanil inhibits Pin1 to attenuate renal tubular epithelial cell ischemia-reperfusion injury by activating the PI3K/AKT/FOXO1 pathway. Int Urol Nephrol 2023:10.1007/s11255-023-03651-9. [PMID: 37300758 DOI: 10.1007/s11255-023-03651-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) has become a great concern in clinical practice with high morbidity and mortality rates. Sufentanil has protective effects on IRI-induced organ injury. Herein, the effects of sufentanil on RIRI were investigated. METHODS RIRI cell model was established by hypoxia/reperfusion (H/R) stimulation. The mRNA and protein expressions were assessed using qRT-PCR and western blot. TMCK-1 cell viability and apoptosis were assessed using MTT assay and flow cytometry, respectively. The mitochondrial membrane potential and ROS level were detected by JC-1 mitochondrial membrane potential fluorescent probe and DCFH-DA fluorescent probe, respectively. LDH, SOD, CAT, GSH and MDA levels were determined by the kits. The interaction between FOXO1 and Pin1 promoter was analyzed using dual luciferase reporter gene and ChIP assays. RESULTS Our results revealed that sufentanil treatment attenuated H/R-induced cell apoptosis, mitochondrial membrane potential (MMP) dysfunction, oxidative stress, inflammation and activated PI3K/AKT/FOXO1 associated proteins, while these effects were reversed by PI3K inhibitor, suggesting that sufentanil attenuated RIRI via activating the PI3K/AKT/FOXO1 signaling pathway. We subsequently found that FOXO1 transcriptionally activated Pin1 in TCMK-1 cells. Pin1 inhibition ameliorated H/R-induced TCMK-1 cell apoptosis, oxidative stress and inflammation. In addition, as expected, the biological effects of sufentanil on H/R-treated TMCK-1 cells were abrogated by Pin1 overexpression. CONCLUSION Sufentanil reduced Pin1 expression through activation of the PI3K/AKT/FOXO1 signaling to suppress cell apoptosis, oxidative stress and inflammation in renal tubular epithelial cells during RIRI development.
Collapse
Affiliation(s)
- Chunhui Liu
- Jiamusi University, Harbin, 154000, Heilongjiang, China
| | - Qingdong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Harbin, 154002, Heilongjiang, China
| | - Li Niu
- Department of Anesthesiology, Heilongjiang Sengong General Hospital, No.32 Hexing Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
33
|
Yang D, Fan Y, Xiong M, Chen Y, Zhou Y, Liu X, Yuan Y, Wang Q, Zhang Y, Petersen RB, Su H, Yue J, Zhang C, Chen H, Huang K, Zheng L. Loss of renal tubular G9a benefits acute kidney injury by lowering focal lipid accumulation via CES1. EMBO Rep 2023; 24:e56128. [PMID: 37042626 PMCID: PMC10240209 DOI: 10.15252/embr.202256128] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Surgery-induced renal ischemia and reperfusion (I/R) injury and nephrotoxic drugs like cisplatin can cause acute kidney injury (AKI), for which there is no effective therapy. Lipid accumulation is evident following AKI in renal tubules although the mechanisms and pathological effects are unclear. Here, we report that Ehmt2-encoded histone methyltransferase G9a is upregulated in patients and mouse kidneys after AKI. Renal tubular specific knockout of G9a (Ehmt2Ksp ) or pharmacological inhibition of G9a alleviates lipid accumulation associated with AKI. Mechanistically, G9a suppresses transcription of the lipolytic enzyme Ces1; moreover, G9a and farnesoid X receptor (FXR) competitively bind to the same promoter regions of Ces1. Ces1 is consistently observed to be downregulated in the kidney of AKI patients. Pharmacological inhibition of Ces1 increases lipid accumulation, exacerbates renal I/R-injury and eliminates the beneficial effects on AKI observed in Ehmt2Ksp mice. Furthermore, lipid-lowering atorvastatin and an FXR agonist alleviate AKI by activating Ces1 and reducing renal lipid accumulation. Together, our results reveal a G9a/FXR-Ces1 axis that affects the AKI outcome via regulating renal lipid accumulation.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Qing Wang
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu Zhang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Robert B Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMIUSA
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junqiu Yue
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Huang
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
34
|
Kim YS, Aum J, Kim BH, Jang MJ, Suh J, Suh N, You D. Therapeutic Effect of Three-Dimensional Cultured Adipose-Derived Stem Cell-Conditioned Medium in Renal Ischemia-Reperfusion Injury. Int J Stem Cells 2023; 16:168-179. [PMID: 36310026 PMCID: PMC10226861 DOI: 10.15283/ijsc22137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We evaluated the effect of adipose-derived stem cell-derived conditioned medium (ADSC-CM) on the renal function of rats with renal ischemia-reperfusion injury (IRI)-induced acute kidney injury. METHODS AND RESULTS Forty male Sprague-Dawley rats were randomly divided into four groups: sham, nephrectomy control, IRI control, ADSC-CM. The ADSC-CM was prepared using the three-dimensional spheroid culture system and injected into renal parenchyme. The renal function of the rats was evaluated 28 days before and 1, 2, 3, 4, 7, and 14 days after surgical procedures. The rats were sacrificed 14 days after surgical procedures, and kidney tissues were collected for histological examination. The renal parenchymal injection of ADSC-CM significantly reduced the serum blood urea nitrogen and creatinine levels compared with the IRI control group on days 1, 2, 3, and 4 after IRI. The renal parenchymal injection of ADSC-CM significantly increased the level of creatinine clearance compared with the IRI control group 1 day after IRI. Collagen content was significantly lower in the ADSC-CM group than in the IRI control group in the cortex and medulla. Apoptosis was significantly decreased, and proliferation was significantly increased in the ADSC-CM group compared to the IRI control group in the cortex and medulla. The expressions of anti-oxidative makers were higher in the ADSC-CM group than in the IRI control group in the cortex and medulla. CONCLUSIONS The renal function was effectively rescued through the renal parenchymal injection of ADSC-CM prepared using a three-dimensional spheroid culture system.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joomin Aum
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Hyun Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myoung Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Jungyo Suh
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences and Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Afolabi JM, Kanthakumar P, Williams JD, Kumar R, Soni H, Adebiyi A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. FUNCTION 2023; 4:zqad022. [PMID: 37342410 PMCID: PMC10278989 DOI: 10.1093/function/zqad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jada D Williams
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
36
|
Nesovic Ostojic J, Zivotic M, Kovacevic S, Ivanov M, Brkic P, Mihailovic-Stanojevic N, Karanovic D, Vajic UJ, Miloradovic Z, Jovovic D, Radojevic Skodric S. Immunohistochemical Pattern of Histone H2A Variant Expression in an Experimental Model of Ischemia-Reperfusion-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24098085. [PMID: 37175793 PMCID: PMC10179385 DOI: 10.3390/ijms24098085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a frequent cause of AKI, resulting in vasoconstriction, cellular dysfunction, inflammation and the induction of oxidative stress. DNA damage, including physical DNA strand breaks, is also a potential consequence of renal IRI. The histone H2A variants, primary H2AX and H2AZ participate in DNA damage response pathways to promote genome stability. The aim of this study was to evaluate the immunohistochemical pattern of histone H2A variants' (H2AX, γH2AX(S139), H2AXY142ph and H2AZ) expression in an experimental model of ischemia-reperfusion-induced acute kidney injury in spontaneously hypertensive rats. Comparing the immunohistochemical nuclear expression of γH2AX(S139) and H2AXY142ph in AKI, we observed that there is an inverse ratio of these two histone H2AX variants. If we follow different regions from the subcapsular structures to the medulla, there is an increasing extent gradient in the nuclear expression of H2AXY142ph, accompanied by a decreasing nuclear expression of γH2AX. In addition, we observed that different structures dominated when γH2AX and H2AXY142ph expression levels were compared. γH2AX was expressed only in the proximal tubule, with the exception of when they were dilated. In the medulla, H2AXY142ph is predominantly expressed in the loop of Henle and the collecting ducts. Our results show moderate sporadic nuclear H2AZ expression mainly in the cells of the distal tubules and the collecting ducts that were surrounded by dilated tubules with PAS (periodic acid-Schiff stain)-positive casts. These findings may indicate the degree of DNA damage, followed by postischemic AKI, with potential clinical and prognostic implications regarding this condition.
Collapse
Affiliation(s)
- Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Predrag Brkic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Una Jovana Vajic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Miloradovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Djurdjica Jovovic
- Institute for Medical Research, Department of Cardiovascular Physiology, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | |
Collapse
|
37
|
Kang HB, Lim CK, Kim J, Han SJ. Oxypurinol protects renal ischemia/reperfusion injury via heme oxygenase-1 induction. Front Med (Lausanne) 2023; 10:1030577. [PMID: 36968831 PMCID: PMC10033620 DOI: 10.3389/fmed.2023.1030577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) by increasing oxidative stress, inflammatory responses, and tubular cell death. Oxypurinol, an active metabolite of allopurinol, is a potent anti-inflammatory and antioxidant agent. To investigate the therapeutic potential and underlying mechanism of oxypurinol in ischemic AKI, C57BL/6 male mice were intraperitoneally injected with oxypurinol and subjected to renal I/R or sham surgery. We found that oxypurinol-treated mice had lower plasma creatinine and blood urea nitrogen levels and tubular damage (hematoxylin-and-eosin staining) compared to vehicle-treated mice after renal I/R injury. Furthermore, oxypurinol treatment reduced kidney inflammation (i.e., neutrophil infiltration and MIP-2 mRNA induction), oxidative stress (i.e., 4-HNE, heme oxygenase-1 [HO-1], 8-OHdG expression, and Catalase mRNA induction), and apoptosis (i.e., TUNEL or cleaved caspase-3-positive renal tubular cells), compared to vehicle-treated mice. Mechanistically, oxypurinol induced protein expressions of HO-1, which is a critical cytoprotective enzyme during ischemic AKI, and oxypurinol-mediated protection against ischemic AKI was completely eliminated by pretreatment with tin protoporphyrin IX, an HO-1 inhibitor. In conclusion, oxypurinol protects against renal I/R injury by reducing oxidative stress, inflammation, and apoptosis via HO-1 induction, suggesting its preventive potential in ischemic AKI.
Collapse
Affiliation(s)
- Hye Bin Kang
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Chae Kyu Lim
- Department of St. Mary Pathology and Laboratory Medicine, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Medical Laboratory Science, Dong-eui Institute of Technology, Busan, Republic of Korea
| | - Sang Jun Han
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- *Correspondence: Sang Jun Han
| |
Collapse
|
38
|
Intraoperative mean arterial pressure and acute kidney injury after robot-assisted laparoscopic prostatectomy: a retrospective study. Sci Rep 2023; 13:3318. [PMID: 36849611 PMCID: PMC9971240 DOI: 10.1038/s41598-023-30506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Intraoperative hemodynamics can affect postoperative kidney function. We aimed to investigate the effect of intraoperative mean arterial pressure (MAP) as well as other risk factors on the occurrence of acute kidney injury (AKI) after robot-assisted laparoscopic prostatectomy (RALP). We retrospectively evaluated the medical records of 750 patients who underwent RALP. The average real variability (ARV)-MAP, standard deviation (SD)-MAP, time-weighted average (TWA)-MAP, area under threshold (AUT)-65 mmHg, and area above threshold (AAT)-120 mmHg were calculated using MAPs collected within a 10-s interval. Eighteen (2.4%) patients developed postoperative AKI. There were some univariable associations between TWA-MAP, AUT-65 mmHg, and AKI occurrence; however, multivariable analysis found no association. Alternatively, American Society of Anesthesiologists physical status ≥ III and the low intraoperative urine output were independently associated with AKI occurrence. Moreover, none of the five MAP parameters could predict postoperative AKI, with the area under the receiver operating characteristic curve values for ARV-MAP, SD-MAP, TWA-MAP, AUT-65 mmHg, and AAT-120 mmHg being 0.561 (95% confidence interval [CI], 0.424-0.697), 0.561 (95% CI, 0.417-0.704), 0.584 (95% CI, 0.458-0.709), 0.590 (95% CI, 0.462-0.718), and 0.626 (95% CI, 0.499-0.753), respectively. Therefore, intraoperative MAP changes may not be a determining factor for AKI after RALP.
Collapse
|
39
|
Awad AS, Abdel-Rahman EM. Clinical Advances in Kidney Failure: AKI. J Clin Med 2023; 12:jcm12051873. [PMID: 36902660 PMCID: PMC10003997 DOI: 10.3390/jcm12051873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Kidney failure poses an enormous burden on patients, caregivers, healthcare providers, and society as a whole [...].
Collapse
Affiliation(s)
- Alaa S. Awad
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA
- Correspondence:
| | | |
Collapse
|
40
|
Thompson AD, Janda J, Schnellmann RG. A refined protocol for the isolation and monoculture of primary mouse renal peritubular endothelial cells. Front Cardiovasc Med 2023; 10:1114726. [PMID: 36844728 PMCID: PMC9948610 DOI: 10.3389/fcvm.2023.1114726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
During an episode of acute kidney injury (AKI), a sudden and rapid decline in renal function is often accompanied by a persistent reduction in mitochondrial function, microvasculature dysfunction/rarefaction, and tubular epithelial injury/necrosis. Additionally, patients who have experienced an AKI are at an elevated risk of developing other progressive renal, cardiovascular, and cardiorenal related diseases. While restoration of the microvasculature is imperative for oxygen and nutrient delivery/transport during proper renal repair processes, the mechanism(s) by which neovascularization and/or inhibition of microvascular dysfunction improves renal recovery remain understudied. Interestingly, pharmacological stimulation of mitochondrial biogenesis (MB) post-AKI has been shown to restore mitochondrial and renal function in mice. Thus, targeting MB pathways in microvasculature endothelial cell (MV-EC) may provide a novel strategy to improve renal vascular function and repair processes post-AKI. However, limitations to studying such mechanisms include a lack of commercially available primary renal peritubular MV-ECs, the variability in both purity and outgrowth of primary renal MV-EC in monoculture, the tendency of primary renal MV-ECs to undergo phenotypic loss in primary monoculture, and a limited quantity of published protocols to obtain primary renal peritubular MV-ECs. Thus, we focused on refining the isolation and phenotypic retention of mouse renal peritubular endothelial cells (MRPEC) for future physiological and pharmacological based studies. Here, we present a refined isolation method that augments the purity, outgrowth, and phenotypic retention of primary MRPEC monocultures by utilizing a collagenase type I enzymatic digestion, CD326+ (EPCAM) magnetic microbead epithelial cell depletion, and two CD146+ (MCAM) magnetic microbead purification cycles to achieve a monoculture MRPEC purity of ≅ 91-99% by all markers evaluated.
Collapse
Affiliation(s)
- Austin D. Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, Bio5 Institute, The University of Arizona, Tucson, AZ, United States
- Southwest Environmental Health Sciences Center, Tucson, AZ, United States
- Southern Arizona Veterans Affairs (VA) Health Care System, Tucson, AZ, United States
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, Bio5 Institute, The University of Arizona, Tucson, AZ, United States
| | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, Bio5 Institute, The University of Arizona, Tucson, AZ, United States
- Southwest Environmental Health Sciences Center, Tucson, AZ, United States
- Southern Arizona Veterans Affairs (VA) Health Care System, Tucson, AZ, United States
| |
Collapse
|
41
|
Kuang BC, Wang ZH, Hou SH, Zhang J, Wang MQ, Zhang JS, Sun KL, Ni HQ, Gong NQ. Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis. Acta Pharmacol Sin 2023; 44:367-380. [PMID: 35794373 PMCID: PMC9889399 DOI: 10.1038/s41401-022-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Disrupted redox homeostasis contributes to renal ischemia-reperfusion (IR) injury. Abundant natural products can activate nuclear factor erythroid-2-related factor 2 (Nrf2), thereby providing therapeutic benefits. Methyl eugenol (ME), an analog of the phenolic compound eugenol, has the ability to induce Nrf2 activity. In this study, we investigated the protective effects of ME against renal oxidative damage in vivo and in vitro. An IR-induced acute kidney injury (AKI) model was established in mice. ME (20 mg·kg-1·d-1, i.p.) was administered to mice on 5 consecutive days before IR surgery. We showed that ME administration significantly attenuated renal destruction, improved the survival rate, reduced excessive oxidative stress and inhibited mitochondrial lesions in AKI mice. We further demonstrated that ME administration significantly enhanced Nrf2 activity and increased the expression of downstream antioxidative molecules. Similar results were observed in vitro in hypoxia/reoxygenation (HR)-exposed proximal tubule epithelial cells following pretreatment with ME (40 μmol·L-1). In both renal oxidative damage models, ME induced Nrf2 nuclear retention in tubular cells. Using specific inhibitors (CC and DIF-3) and molecular docking, we demonstrated that ME bound to the binding pocket of AMPK with high affinity and activated the AMPK/GSK3β axis, which in turn blocked the Nrf2 nuclear export signal. In addition, ME alleviated the development of renal fibrosis induced by nonfatal IR, which is frequently encountered in the clinic. In conclusion, we demonstrate that ME modulates the AMPK/GSK3β axis to regulate the cytoplasmic-nuclear translocation of Nrf2, resulting in Nrf2 nuclear retention and thereby enhancing antioxidant target gene transcription that protects the kidney from oxidative damage.
Collapse
Affiliation(s)
- Bai-Cheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Zhi-Heng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Shuai-Heng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Meng-Qin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Jia-Si Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Kai-Lun Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Hai-Qiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Nian-Qiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
42
|
Donate-Correa J, Martín-Carro B, Cannata-Andía JB, Mora-Fernández C, Navarro-González JF. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel) 2023; 12:239. [PMID: 36829798 PMCID: PMC9952437 DOI: 10.3390/antiox12020239] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Reducing oxidative stress stands at the center of a prevention and control strategy for mitigating cellular senescence and aging. Kidney disease is characterized by a premature aging syndrome, and to find a modulator targeting against oxidative stress, mitochondrial dysfunction, and cellular senescence in kidney cells could be of great significance to prevent and control the progression of this disease. This review focuses on the pathogenic mechanisms related to the appearance of oxidative stress damage and mitochondrial dysfunction in kidney disease. In this scenario, the anti-aging Klotho protein plays a crucial role by modulating signaling pathways involving the manganese-containing superoxide dismutase (Mn-SOD) and the transcription factors FoxO and Nrf2, known antioxidant systems, and other known mitochondrial function regulators, such as mitochondrial uncoupling protein 1 (UCP1), B-cell lymphoma-2 (BCL-2), Wnt/β-catenin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha), transcription factor EB, (TFEB), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Therefore, Klotho is postulated as a very promising new target for future therapeutic strategies against oxidative stress, mitochondria abnormalities, and cellular senescence in kidney disease patients.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Martín-Carro
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge B. Cannata-Andía
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
43
|
PIM1 attenuates renal ischemia-reperfusion injury by inhibiting ASK1-JNK/P38. Int Immunopharmacol 2023; 114:109563. [PMID: 36513021 DOI: 10.1016/j.intimp.2022.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), yet therapeutic approaches to alleviate IRI remain limited. PIM1 (provirus integration site for Moloney murine leukemia virus 1) is a constitutive serine threonine kinase that phosphorylates various substrates to regulate cell death and survival. However, the role of PIM1 in renal IRI remains unclear. This study aims to investigate the effect of PIM1 on renal IRI and explore its downstream regulatory mechanism. In this study, we inhibited or overexpressed PIM1 in mice and cultured proximal tubular cells, and then induced renal IRI model in vivo and hypoxia reoxygenation (HR) model in vitro. Renal function, renal structure injuries and cellular death were assessed to reflect the extent of IRI. The expression of PIM1 and the levels of ASK1, MAPK and their phosphorylated forms were detected by immunoblot. RNA sequencing of kidney cortex was performed to analyze downstream pathway of PIM1 in renal IRI. The results showed that PIM1 expression was significantly upregulated in renal IRI mouse model and in renal tubular cell HR model. AZD1208 (a PIM1 inhibitor) aggravated renal IRI, while PIM1 overexpression ameliorated renal IRI. This was involved in the regulation of the ASK1-MAPK pathway. Moreover, results demonstrated that ASK1 was a downstream target of PIM1 by administering Selonsertib (an inhibitor of ASK1 activity), and inhibiting ASK1 alleviated cell death after HR in PIM1 knockdown cells by reducing JNK/P38 activation. In conclusion, this study elucidated the protective effect of PIM1 on renal IRI, and the underlying mechanism may be related to ASK1-JNK/P38 signaling pathway. Taken together, PIM1 may be a potential therapeutic target for renal IRI.
Collapse
|
44
|
Hurtado KA, Janda J, Schnellmann RG. Lasmiditan promotes recovery from acute kidney injury through induction of mitochondrial biogenesis. Am J Physiol Renal Physiol 2023; 324:F56-F63. [PMID: 36326468 PMCID: PMC9762961 DOI: 10.1152/ajprenal.00249.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Acute kidney injury (AKI) involves rapid loss of renal function and occurs in 8-16% of hospitalized patients. AKI can be induced by drugs, sepsis, and ischemia-reperfusion (I/R). Hallmarks of AKI include mitochondrial and microvasculature dysfunction as well as renal tubular injury. There is currently no available therapeutic for AKI. Previously, our group identified that serotonin (5-HT)1F receptor agonism with lasmiditan accelerated endothelial cell recovery and induced mitochondrial biogenesis (MB) in vitro. We hypothesized that lasmiditan, a Federal Drug Administration-approved drug, would induce MB and improve microvascular and renal function in a mouse model of AKI. Male mice were subjected to renal I/R and treated with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury and then daily until euthanasia at 6 or 12 days. Serum creatinine was measured to estimate glomerular filtration rate. The renal cortex was assessed for mitochondrial density, vascular permeability and integrity, tubular damage, and interstitial fibrosis. Lasmiditan increased mitochondrial number (1.4-fold) in renal cortices. At 6 days, serum creatinine decreased 41% in the I/R group and 72% with lasmiditan. At 6 or 12 days, kidney injury molecule-1 increased in the I/R group and decreased 50% with lasmiditan. At 12 days, interstitial fibrosis decreased with lasmiditan by 50% and collagen type 1 by 38%. Evan's blue dye leakage increased 2.5-fold in the I/R group and was restored with lasmiditan. The tight junction proteins zonula occludens-1, claudin-2, and claudin-5 decreased in the I/R group and recovered with lasmiditan. At 6 or 12 days, peroxisome proliferator-activated receptor-γ coactivator-1α and electron transport chain complexes increased only with lasmiditan. In conclusion, lasmiditan treatment beginning AKI induces MB, attenuated vascular and tubular injury, decreased interstitial fibrosis, and lowered serum creatinine. Given that lasmiditan is a Federal Drug Administration-approved drug, these preclinical data support repurposing lasmiditan as a therapeutic for AKI.NEW & NOTEWORTHY AKI pathology involves a rapid decline in kidney function and occurs in 8-16% of hospitalized patients. There is currently no therapeutic for AKI. AKI results in mitochondria dysfunction, microvasculature injury, and loss of renal tubular function. In an I/R-induced AKI mouse model, treatment with the FDA-approved 5-HT1F receptor-selective agonist lasmiditan induced mitochondrial biogenesis, improved vascular integrity, reduced fibrosis, and reduced proximal tubule damage. These data support repurposing lasmiditan for the treatment of AKI.
Collapse
Affiliation(s)
- Kevin A Hurtado
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
- Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
45
|
Lazzarin T, Tonon CR, Martins D, Fávero EL, Baumgratz TD, Pereira FWL, Pinheiro VR, Ballarin RS, Queiroz DAR, Azevedo PS, Polegato BF, Okoshi MP, Zornoff L, Rupp de Paiva SA, Minicucci MF. Post-Cardiac Arrest: Mechanisms, Management, and Future Perspectives. J Clin Med 2022; 12:259. [PMID: 36615059 PMCID: PMC9820907 DOI: 10.3390/jcm12010259] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiac arrest is an important public health issue, with a survival rate of approximately 15 to 22%. A great proportion of these deaths occur after resuscitation due to post-cardiac arrest syndrome, which is characterized by the ischemia-reperfusion injury that affects the role body. Understanding physiopathology is mandatory to discover new treatment strategies and obtain better results. Besides improvements in cardiopulmonary resuscitation maneuvers, the great increase in survival rates observed in recent decades is due to new approaches to post-cardiac arrest care. In this review, we will discuss physiopathology, etiologies, and post-resuscitation care, emphasizing targeted temperature management, early coronary angiography, and rehabilitation.
Collapse
Affiliation(s)
- Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu 18607-741, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mo Z, Hu P, Xie Z, Wu Y, Li Z, Fu L, Chen Y, Liang X, Liang H, Dong W. The value of the ACEF II score in Chinese patients with elective and non-elective cardiac surgery. BMC Cardiovasc Disord 2022; 22:513. [PMID: 36457097 PMCID: PMC9716978 DOI: 10.1186/s12872-022-02946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To evaluate the value of the ACEF II score in predicting postoperative hospital death and acute kidney injury requiring dialysis (AKI-D) in Chinese patients. METHODS This retrospective study included adult patients who underwent cardiopulmonary bypass open heart surgery between January 2010 and December 2015 at Guangdong Provincial People's Hospital. ACEF II was evaluated to predict in-hospital death and AKI-D using the Hosmer-Lemeshow goodness of fit test for calibration and area under the receiver operating characteristic (ROC) curve for discrimination in non-elective and elective cardiac surgery. RESULTS A total of 9748 patients were included. Among them, 1080 underwent non-elective surgery, and 8615 underwent elective surgery. Mortality was 1.8% (177/9748). In elective surgery, the area under the ROC (AUC) of the ACEF II score was 0.704 (95% CI: 0.648-0.759), similar to the ACEF score of 0.709 (95% CI: 0.654-0.763). In non-elective surgery, the AUC of the ACEF II score was 0.725 (95% CI: 0.663-0.787), higher than the ACEF score (AUC = 0.625, 95% CI: 0.553-0.697). The incidence of AKI-D was 3.5% (345/9748). The AUC of the ACEF II score was 0.718 (95% CI: 0.687-0.749), higher than the ACEF score (AUC = 0.626, 95% CI: 0.594-0.658). CONCLUSION ACEF and ACEF II have poor discrimination ability in predicting AKI-D in non-elective surgery. The ACEF II and ACEF scores have the same ability to predict in-hospital death in elective cardiac surgery, and the ACEF II score is better in non-elective surgery. The ACEF II score can be used to assess the risk of AKI-D in elective surgery in Chinese adults.
Collapse
Affiliation(s)
- Zhiming Mo
- grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China ,grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Penghua Hu
- Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Zhiyong Xie
- grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanhua Wu
- grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhilian Li
- grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Fu
- grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanhan Chen
- grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China ,grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China ,grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huaban Liang
- grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Dong
- grid.413405.70000 0004 1808 0686Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
47
|
Liao Y, Peng X, Li X, Wu D, Qiu S, Tang X, Zhang D. CircRNA_45478 promotes ischemic AKI by targeting the miR-190a-5p/PHLPP1 axis. FASEB J 2022; 36:e22633. [PMID: 36315192 DOI: 10.1096/fj.202201070r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
A few studies suggested that circular RNAs were involved in the development of ischemic acute kidney injury (AKI). However, the function and regulation mechanism of circRNA_45478 in ischemic AKI remains unknown. In the present study, ischemic injury induced the expressions of circRNA_45478 in mouse proximal tubule-derived cell lines (BUMPT cells) and kidneys of C57BL/6 mice. Functionally, circRNA_45478 mediated I/R-induced apoptosis in BUMPT cells. Mechanistically, circRNA_45478 upregulated the expression of Pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase 1 (PHLPP1) via sponging of microRNA (miR)-190a-5p. Finally, inhibition of circRNA_45478 significantly alleviated the progression of ischemic AKI through regulation of the miR-190a-5p/PHLPP1 pathway. Taken together, our data showed that circRNA_45478/miR-190a-5p/PHLPP1 axis mediated the progression of ischemic AKI.
Collapse
Affiliation(s)
- Yingjun Liao
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiongjun Peng
- Department of Medical Equipment, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dengke Wu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
48
|
Vallorz EL, Janda J, Mansour HM, Schnellmann RG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int 2022; 102:1073-1089. [PMID: 35779607 DOI: 10.1016/j.kint.2022.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
The β2 adrenergic receptor agonist, formoterol, is an inducer of mitochondrial biogenesis and restorer of mitochondrial and kidney function in acute and chronic models of kidney injury. Unfortunately, systemic administration of formoterol has the potential for adverse cardiovascular effects, increased heart rate, and decreased blood pressure. To minimize these effects, we developed biodegradable and biocompatible polymeric nanoparticles containing formoterol that target the kidney, thereby decreasing the effective dose, and lessen cardiovascular effects while restoring kidney function after injury. Male C57Bl/6 mice, treated with these nanoparticles daily, had reduced ischemia-reperfusion-induced serum creatinine and kidney cortex kidney injury molecule-1 levels by 78% and 73% respectively, compared to control mice six days after injury. With nanoparticle therapy, kidney cortical mitochondrial number and proteins reduced by ischemic injury, recovered to levels of sham-operated mice. Tubular necrosis was reduced 69% with nanoparticles treatment. Nanoparticles improved kidney recovery even when the dosing frequency was reduced from daily to two days per week. Finally, compared to treatment with formoterol-free drug alone, these nanoparticles did not increase heart rate nor decrease blood pressure. Thus, targeted kidney delivery of formoterol-containing nanoparticles is an improvement in standard formoterol therapy for ischemia-reperfusion-induced acute kidney injuries by decreasing the dose, dosing frequency, and cardiac side effects.
Collapse
Affiliation(s)
- Ernest L Vallorz
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | - Heidi M Mansour
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA; The University of Arizona College of Medicine, Tucson, Arizona, USA; The University of Arizona, BIO5 Institute, Tucson, Arizona, USA; Southern Arizona VA Health Care System, USA.
| |
Collapse
|
49
|
Wang M, Yan P, Zhang NY, Deng YH, Luo XQ, Wang XF, Duan SB. Prediction of Mortality Risk After Ischemic Acute Kidney Injury With a Novel Prognostic Model: A Multivariable Prediction Model Development and Validation Study. Front Med (Lausanne) 2022; 9:892473. [PMID: 36045922 PMCID: PMC9420861 DOI: 10.3389/fmed.2022.892473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Acute kidney injury (AKI) that results from ischemia is a common clinical syndrome and correlates with high morbidity and mortality among hospitalized patients. However, a clinical tool to predict mortality risk of ischemic AKI is not available. In this study, we aimed to develop and validate models to predict the 30-day and 1-year mortality risk of hospitalized patients with ischemic AKI. Methods A total of 1,836 admissions with ischemic AKI were recruited from 277,898 inpatients admitted to three affiliated tertiary general hospitals of Central South University in China between January 2015 and December 2015. Patients in the final analysis were followed up for 1 year. Study patients were randomly divided in a 7:3 ratio to form the training cohort and validation cohort. Multivariable regression analyses were used for developing mortality prediction models. Results Hepatorenal syndrome, shock, central nervous system failure, Charlson comorbidity index (≥2 points), mechanical ventilation, renal function at discharge were independent risk factors for 30-day mortality after ischemic AKI, while malignancy, sepsis, heart failure, liver failure, Charlson comorbidity index (≥2 points), mechanical ventilation, and renal function at discharge were predictors for 1-year mortality. The area under the receiver operating characteristic curves (AUROCs) of 30-day prediction model were 0.878 (95% confidence interval (CI): 0.849-0.908) in the training cohort and 0.867 (95% CI: 0.820–0.913) in the validation cohort. The AUROCs of the 1-year mortality prediction in the training and validation cohort were 0.803 (95% CI: 0.772–0.834) and 0.788 (95% CI: 0.741–0.835), respectively. Conclusion Our easily applied prediction models can effectively identify individuals at high mortality risk within 30 days or 1 year in hospitalized patients with ischemic AKI. It can guide the optimal clinical management to minimize mortality after an episode of ischemic AKI.
Collapse
Affiliation(s)
- Mei Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ning-Ya Zhang
- Information Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying-Hao Deng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Qin Luo
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiu-Fen Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shao-Bin Duan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Shao-Bin Duan
| |
Collapse
|
50
|
Qin S, Wu B, Gong T, Zhang ZR, Fu Y. Targeted delivery via albumin corona nanocomplex to renal tubules to alleviate acute kidney injury. J Control Release 2022; 349:401-412. [PMID: 35835398 DOI: 10.1016/j.jconrel.2022.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Renal tubular epithelial cell (RTEC) is a critical target cell for the treatment of acute kidney injury (AKI). Despite various RTEC targeting strategies using ligand modified nanoparticles (NPs) following systemic administration, the nonspecific interaction between NPs and plasma proteins greatly weakens the targeting efficiency as well as the stability of NPs. Herein, celastrol (CLT) was entrapped in D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) forming a CLT-loaded nanocomplex core (CT) with a high loading capacity of ~50%. Bovine serum albumin (BSA) was then adsorbed onto the CT surface to afford a complete albumin corona without obvious denaturation (CTB). CTB showed uniform particle size distribution and sufficient stability in vitro and in vivo. Besides clathrin-mediated and macropinocytosis pathways, CTB was actively internalized through megalin receptor-mediated endocytosis in HK-2 cells. Per biodistribution studies, CTB demonstrates enhanced renal tubule-specific distribution and targetability in mice compared to CT without albumin corona. Furthermore, pharmacodynamic studies in vivo further support that CTB effectively alleviated ischemia-reperfusion induced injuries without obvious systemic side effects in AKI mice models.
Collapse
Affiliation(s)
- Shuo Qin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Beibei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|