1
|
Park SY, Kim KY, Jang WY, Bae YS, Jun DY, Kim YH. 3,6-Anhydro-L-galactose suppresses mouse lymphocyte proliferation by attenuating JAK-STAT growth factor signal transduction and G 1-S cell cycle progression. Int Immunopharmacol 2025; 147:113998. [PMID: 39764992 DOI: 10.1016/j.intimp.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/30/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Abstract
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity. L-AHG (25-200 μg/mL), but not NA2, NA4, or NA6, inhibited the proliferation of immobilized anti-CD3/anti-CD28-activated T cells and immobilized anti-CD40 + soluble anti-IgM + interleukin (IL)-4-activated B cells. This inhibition impacted the G1-S traverse in the cell cycle without influencing CD69 expression and p27Kip1 down-regulation, markers of the exit from G0 into G1 phase in activated lymphocytes. L-AHG impeded cyclin-dependent kinases (CDKs)-driven retinoblastoma phosphorylation, necessary for the G1-S traverse, by reducing the activating phosphorylation of CDKs (CDK4, CDK2, and CDK1) and lowering cyclin D3, cyclin A2 and cyclin B1 levels. Furthermore, L-AHG diminished the production of growth factors, including IL-2 in activated T cells and IL-6 in activated B cells. The antiproliferative effect of L-AHG on T cells was partially restored by exogenous IL-2 but was unaffected by exogenous IL-6 on B cells. L-AHG inhibited the activating phosphorylation of Janus kinase 1 (JAK1), affecting signal transducer and activator of transcription 1 (STAT1) and STAT3 signaling. These results demonstrate that L-AHG may serve as a novel immunosuppressant by impairing JAK-STAT growth factor signaling and G1-S cell cycle progression in T and B lymphocytes.
Collapse
Affiliation(s)
- Shin Young Park
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ki Yun Kim
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Won Young Jang
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young-Seuk Bae
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Do Youn Jun
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Young Ho Kim
- AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Chang JW, Kim S, Lee EY, Leem CH, Kim SH, Park CS. Cell-cell contacts via N-cadherin induce a regulatory renin secretory phenotype in As4.1 cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:479-499. [PMID: 36302623 PMCID: PMC9614399 DOI: 10.4196/kjpp.2022.26.6.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
The lack of a clonal renin-secreting cell line has greatly hindered the investigation of the regulatory mechanisms of renin secretion at the cellular, biochemical, and molecular levels. In the present study, we investigated whether it was possible to induce phenotypic switching of the renin-expressing clonal cell line As4.1 from constitutive inactive renin secretion to regulated active renin secretion. When grown to postconfluence for at least two days in media containing fetal bovine serum or insulin-like growth factor-1, the formation of cell-cell contacts via N-cadherin triggered downstream cellular signaling cascades and activated smooth muscle-specific genes, culminating in phenotypic switching to a regulated active renin secretion phenotype, including responding to the key stimuli of active renin secretion. With the use of phenotype-switched As4.1 cells, we provide the first evidence that active renin secretion via exocytosis is regulated by phosphorylation/dephosphorylation of the 20 kDa myosin light chain. The molecular mechanism of phenotypic switching in As4.1 cells described here could serve as a working model for full phenotypic modulation of other secretory cell lines with incomplete phenotypes.
Collapse
Affiliation(s)
- Jai Won Chang
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.,Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soohyun Kim
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun Young Lee
- Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul 06591, Korea
| | - Chae Hun Leem
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Suhn Hee Kim
- Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Chun Sik Park
- Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
4
|
Semlali A, Papadakos S, Contant C, Zouaoui I, Rouabhia M. Rapamycin inhibits oral cancer cell growth by promoting oxidative stress and suppressing ERK1/2, NF-κB and beta-catenin pathways. Front Oncol 2022; 12:873447. [PMID: 36185289 PMCID: PMC9520465 DOI: 10.3389/fonc.2022.873447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of oral cancer is based exclusively on surgery combined with or without chemotherapy. However, it has several side effects. Targeting a new, more effective therapy has become an urgent matter. The purpose of this study was to evaluate the anti-tumor activity of rapamycin in oral cancer and its mechanism of action. Human gingival carcinoma cells were stimulated with different concentrations of rapamycin to assess proliferation, colony formation, cell migration, as well as apoptosis, and autophagy. The expression of proteins involved in the cell cycle (cyclin D1, p15, p21, p27) and autophagy, as well as that of oncogenes and tumor suppressor genes, were determined by quantitative PCR. The signaling pathways were evaluated by Western blotting. Our results show that rapamycin has a selective effect at a low dose on cancer cell growth/survival. This was confirmed by low colony formation and the inhibition of cell migration, while increasing cell apoptosis by activating caspase-9 and -3. Rapamycin promoted cell autophagy and increased mitochondrial oxidative stress by being involved in DNA damage in the exposed cells. Finally, rapamycin exhibits potent anti-oral cancer properties through inhibition of several cancer-promoting pathways (MAPK, NF-κB, and Wnt/beta-catenin). These results indicate that rapamycin could be a potential agent for the treatment of oral cancer and for a prevention strategy.
Collapse
|
5
|
Ruamsap N, Riyapa D, Janesomboon S, Stevens JM, Pichyangkul S, Pattanapanyasat K, Demons ST, Stevens MP, Korbsrisate S. Lymphostatin, a virulence factor of attaching and effacing Escherichia coli, inhibits proliferation and cytokine responses of human T cells in a manner associated with cell cycle arrest but not apoptosis or necrosis. Front Cell Infect Microbiol 2022; 12:941939. [PMID: 35967844 PMCID: PMC9373022 DOI: 10.3389/fcimb.2022.941939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Donporn Riyapa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sathit Pichyangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Department for Research and Development, Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Samandra T. Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| |
Collapse
|
6
|
Silconi ZB, Rosic V, Benazic S, Radosavljevic G, Mijajlovic M, Pantic J, Ratkovic ZR, Radic G, Arsenijevic A, Milovanovic M, Arsenijevic N, Milovanovic J. The Pt(S-pr-thiosal)2 and BCL1 Leukemia Lymphoma: Antitumor Activity In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23158161. [PMID: 35897737 PMCID: PMC9332548 DOI: 10.3390/ijms23158161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
B cell malignancies are, despite the development of targeted therapy in a certain percentage of the patients still a chronic disease with relapses, requiring multiple lines of therapy. Regimens that include platinum-based drugs provide high response rates in different B cell lymphomas, high-risk chronic lymphocytic leukemia (CLL), and devastating complication of CLL, Richter’s syndrome. The aim of this study was to explore the potential antitumor activity of previously synthetized platinum(IV) complex with alkyl derivatives of thyosalicilc acid, PtCl2(S-pr-thiosal)2, toward murine BCL1 cells and to delineate possible mechanisms of action. The PtCl2(S-pr-thiosal)2 reduced the viability of BCL1 cells in vitro but also reduced the growth of metastases in the leukemia lymphoma model in BALB/c mice. PtCl2(S-pr-thiosal)2 induced apoptosis, inhibited proliferation of BCL1 cells, and induced cell cycle disturbance. Treatment of BCL1 cells with PtCl2(S-pr-thiosal)2 inhibited expression of cyclin D3 and cyclin E and enhanced expression of cyclin-dependent kinase inhibitors p16, p21, and p27 resulting in cell cycle arrest in the G1 phase, reduced the percentage of BCL1 cells in the S phase, and decreased expression of Ki-67. PtCl2(S-pr-thiosal)2 treatment reduced expression of phosphorylated STAT3 and downstream-regulated molecules associated with cancer stemness and proliferation, NANOG, cyclin D3, and c-Myc, and expression of phosphorylated NFκB in vitro and in vivo. In conclusion, PtCl2(S-pr-thiosal)2 reduces STAT3 and NFκB phosphorylation resulting in inhibition of BCL1 cell proliferation and the triggering of apoptotic cell death.
Collapse
Affiliation(s)
| | - Vesna Rosic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sasa Benazic
- Department of Transfusiology, Pula General Hospital, 52100 Pula, Croatia;
| | - Gordana Radosavljevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marina Mijajlovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Jelena Pantic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Zoran R. Ratkovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Gordana Radic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.M.); (G.R.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Marija Milovanovic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
| | - Jelena Milovanovic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Center for Molecular Medicine & Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (G.R.); (J.P.); (A.A.); (M.M.); (N.A.)
- Correspondence: ; Tel.: +381-3430-6800
| |
Collapse
|
7
|
Liu Z, Niu X, Wang J. Naringenin as a natural immunomodulator against T cell-mediated autoimmune diseases: literature review and network-based pharmacology study. Crit Rev Food Sci Nutr 2022; 63:11026-11043. [PMID: 35776085 DOI: 10.1080/10408398.2022.2092054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
T cells, especially CD4+ T helper (Th) cells, play a vital role in the pathogenesis of specific autoimmune diseases. Naringenin, a citrus flavonoid, exhibits anti-inflammatory, anti-oxidant, and antitumor properties, which have been verified in animal autoimmune disease models. However, naringenin's possible effects and molecular mechanisms in T cell-mediated autoimmune diseases are unclear. This review summarizes the findings of previous studies and predicts the target of naringenin in T cell-mediated autoimmune disorders such as multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis through network pharmacology analysis. We performed DAVID enrichment analysis, protein-protein interaction analysis, and molecular docking to predict the positive effect of naringenin on T cell-mediated autoimmune disorders. Sixteen common genes were screened, among which the core genes were PTGS2, ESR1, CAT, CASP3, MAPK1, and AKT1. The possible molecular mechanism relates to HIF-1, estrogen, TNF, and NF-κB signaling pathways. Our findings have significance for future naringenin treatment of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Lawal B, Kuo YC, Wu ATH, Huang HS. BC-N102 suppress breast cancer tumorigenesis by interfering with cell cycle regulatory proteins and hormonal signaling, and induction of time-course arrest of cell cycle at G1/G0 phase. Int J Biol Sci 2021; 17:3224-3238. [PMID: 34421361 PMCID: PMC8375223 DOI: 10.7150/ijbs.62808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanisms of breast cancer progression and invasion, often involve alteration of hormonal signaling, and upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Herein, we describe a rationally designed first-in-class novel small molecule inhibitor for targeting oncogenic and hormonal signaling in ER-positive breast cancer. BC-N102 treatment exhibits dose-dependent cytotoxic effects against ER+ breast cancer cell lines. BC-N102 exhibited time course- and dose-dependent cell cycle arrest via downregulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-Akt, CDK2, and CDK4 while increasing p38 mitogen-activated protein kinase (MAPK), and mineralocorticoid receptor (MR) signaling in breast cancer cell line. In addition, we found that BC-N102 suppressed breast cancer tumorigenesis in vivo and prolonged the survival of animals. Our results suggest that the proper application of BC-N102 may be a beneficial chemotherapeutic strategy for ER+ breast cancer patients.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung40402, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
9
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
10
|
Nowosad A, Jeannot P, Callot C, Creff J, Perchey RT, Joffre C, Codogno P, Manenti S, Besson A. p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol 2020; 22:1076-1090. [PMID: 32807902 DOI: 10.1038/s41556-020-0554-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/06/2020] [Indexed: 01/31/2023]
Abstract
Autophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies reported that the CDK inhibitor p27Kip1 promotes starvation-induced autophagy by an unknown mechanism. Here we find that p27 controls autophagy via an mTORC1-dependent mechanism in amino acid-deprived cells. During prolonged starvation, a fraction of p27 is recruited to lysosomes, where it interacts with LAMTOR1, a component of the Ragulator complex required for mTORC1 activation. Binding of p27 to LAMTOR1 prevents Ragulator assembly and mTORC1 activation, promoting autophagy. Conversely, p27-/- cells exhibit elevated mTORC1 signalling as well as impaired lysosomal activity and autophagy. This is associated with cytoplasmic sequestration of TFEB, preventing induction of the lysosomal genes required for lysosome function. LAMTOR1 silencing or mTOR inhibition restores autophagy and induces apoptosis in p27-/- cells. Together, these results reveal a direct coordinated regulation between the cell cycle and cell growth machineries.
Collapse
Affiliation(s)
- Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.,UCL Cancer Institute, University College London, London, UK
| | - Pauline Jeannot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Thierry Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Joffre
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151, CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Stephane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Interactions of Tofacitinib and Dexamethasone on Lymphocyte Proliferation. Pharm Res 2020; 37:105. [DOI: 10.1007/s11095-020-02827-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
12
|
Hoxha S, Shepard A, Troutman S, Diao H, Doherty JR, Janiszewska M, Witwicki RM, Pipkin ME, Ja WW, Kareta MS, Kissil JL. YAP-Mediated Recruitment of YY1 and EZH2 Represses Transcription of Key Cell-Cycle Regulators. Cancer Res 2020; 80:2512-2522. [PMID: 32409309 DOI: 10.1158/0008-5472.can-19-2415] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/11/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
The Hippo pathway regulates cell proliferation and organ size through control of the transcriptional regulators YAP (yes-associated protein) and TAZ. Upon extracellular stimuli such as cell-cell contact, the pathway negatively regulates YAP through cytoplasmic sequestration. Under conditions of low cell density, YAP is nuclear and associates with enhancer regions and gene promoters. YAP is mainly described as a transcriptional activator of genes involved in cell proliferation and survival. Using a genome-wide approach, we show here that, in addition to its known function as a transcriptional activator, YAP functions as a transcriptional repressor by interacting with the multifunctional transcription factor Yin Yang 1 (YY1) and Polycomb repressive complex member enhancer of zeste homologue 2 (EZH2). YAP colocalized with YY1 and EZH2 on the genome to transcriptionally repress a broad network of genes mediating a host of cellular functions, including repression of the cell-cycle kinase inhibitor p27, whose role is to functionally promote contact inhibition. This work unveils a broad and underappreciated aspect of YAP nuclear function as a transcriptional repressor and highlights how loss of contact inhibition in cancer is mediated in part through YAP repressive function. SIGNIFICANCE: This study provides new insights into YAP as a broad transcriptional repressor of key regulators of the cell cycle, in turn influencing contact inhibition and tumorigenesis.
Collapse
Affiliation(s)
- Sany Hoxha
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | - Alyssa Shepard
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | - Scott Troutman
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Joanne R Doherty
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida
| | | | - Robert M Witwicki
- Genetic Perturbation Screening Core, The Scripps Research Institute, Jupiter, Florida
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Michael S Kareta
- Genetics and Genomics Group, Sanford Research, Sioux Falls, South Dakota
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida.
| |
Collapse
|
13
|
Yue H, Febbraio M, Klenotic PA, Kennedy DJ, Wu Y, Chen S, Gohara AF, Li O, Belcher A, Kuang B, McIntyre TM, Silverstein RL, Li W. CD36 Enhances Vascular Smooth Muscle Cell Proliferation and Development of Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2019; 39:263-275. [PMID: 30567481 DOI: 10.1161/atvbaha.118.312186] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective- Dysregulated proliferation of vascular smooth muscle cells (VSMC) plays an essential role in neointimal hyperplasia. CD36 functions critically in atherogenesis and thrombosis. We hypothesize that CD36 regulates VSMC proliferation and contributes to the development of obstructive vascular diseases. Approach and Results- We found by immunofluorescent staining that CD36 was highly expressed in human vessels with obstructive diseases. Using guidewire-induced carotid artery injury and shear stress-induced intima thickening models, we compared neointimal hyperplasia in Apoe-/-, Cd36-/- /Apoe-/-, and CD36 specifically deleted in VSMC (VSMC cd36-/-) mice. CD36 deficiency, either global or VSMC-specific, dramatically reduced injury-induced neointimal thickening. Correspondingly, carotid artery blood flow was significantly increased in Cd36-/- /Apoe-/- compared with Apoe-/- mice. In cultured VSMCs from thoracic aorta of wild-type and Cd36-/- mice, we found that loss of CD36 significantly decreased serum-stimulated proliferation and increased cell populations in S phase, suggesting that CD36 is necessary for VSMC S/G2-M-phase transition. Treatment of VSMCs with a TSR (thrombospondin type 1 repeat) peptide significantly increased wild-type, but not Cd36-/- VSMC proliferation. TSR or serum treatment significantly increased cyclin A expression in wild-type, but not in Cd36-/- VSMCs. STAT3 (signal transducer and activator of transcription), which reportedly enhances both VSMC differentiation and maturation, was higher in Cd36-/- VSMCs. CD36 deficiency significantly decreased expression of Col1A1 (type 1 collagen A1 chain) and TGF-β1 (transforming growth factor beta 1), and increased expression of contractile proteins, including calponin 1 and smooth muscle α actin, and dramatically increased cell contraction. Conclusions- CD36 promotes VSMC proliferation via upregulation of cyclin A expression that contributes to the development of neointimal hyperplasia, collagen deposition, and obstructive vascular diseases.
Collapse
Affiliation(s)
- Hong Yue
- From the Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV (H.Y., A.B., W.L.)
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, Canada (M.F.)
| | - Philip A Klenotic
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH (P.A.K.)
| | | | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China (Y.W., S.C.)
| | - Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China (Y.W., S.C.)
| | - Amira F Gohara
- Department of Pathology (A.F.G.), University of Toledo, OH
| | - Oliver Li
- Marshall University Marshall Institute for Interdisciplinary Research, Huntington, WV (O.L., W.L.)
| | - Adam Belcher
- From the Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV (H.Y., A.B., W.L.)
| | - Bin Kuang
- Department of Plastic and Peripheral Vascular Surgery, Guangdong General Hospital, China (B.K.)
| | - Thomas M McIntyre
- Departments of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, OH (T.M.M.).,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (T.M.M.)
| | - Roy L Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee (R.L.S.)
| | - Wei Li
- From the Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV (H.Y., A.B., W.L.)
| |
Collapse
|
14
|
Shen L, Tian SJ, Song HL, Chen X, Guo H, Wan D, Wang YR, Wang FW, Liu LJ. Cytotoxic Tricycloalternarene Compounds from Endophyte Alternaria sp. W-1 Associated with Laminaria japonica. Mar Drugs 2018; 16:E402. [PMID: 30360544 PMCID: PMC6267107 DOI: 10.3390/md16110402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The chemical investigation of the culture filtrate of endophyte Alternaria sp. W-1 associated with Laminaria japonica provided a new tricycloalternarene compound, 2H-(2E)-tricycloalternarene 12a (1), together with five known analogs: (2E)-tricycloalternarene 12a (2), tricycloalternarene 3a (3), tricycloalternarene F (4), 15-hydroxyl tricycloalternarene 5b (5), and ACTG-Toxin D (6). In vitro cytotoxicity against the human hepatocellular carcinoma cell line SMMC-7721 and the human gastric carcinoma cell line SGC-7901 was evaluated by the MTT method. Compounds 1, 3, and 4 inhibited the growth of SMMC-7721 cells with IC50 values of 49.7 ± 1.1, 45.8 ± 4.6, and 80.3 ± 3.8 μg/mL, respectively, while the IC50 value of the positive control cisplatin was 6.5 ± 0.5 μg/mL. Compounds 3 and 6 also showed moderate anti-proliferation activity against SGC-7901 cells with IC50 values of 53.2 ± 2.9 and 35.1 ± 0.8 μg/mL, respectively, while the IC50 value of cisplatin was 4.5 ± 0.6 μg/mL. Further studies revealed that the in vitro anticancer activity of compound 3 to SMMC-7721 cells was related to G1 phase cell cycle arrest and cell apoptosis, and the induced apoptosis was involved in both the mitochondrial pathway and the death receptor pathway. This is the first report on the anticancer mechanism of tricycloalternarene compounds.
Collapse
Affiliation(s)
- Li Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shu-Juan Tian
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Hui-Liang Song
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Xi Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Hao Guo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Dan Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Yu-Rou Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Feng-Wu Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Li-Jun Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Bahmad HF, Mouhieddine TH, Chalhoub RM, Assi S, Araji T, Chamaa F, Itani MM, Nokkari A, Kobeissy F, Daoud G, Abou-Kheir W. The Akt/mTOR pathway in cancer stem/progenitor cells is a potential therapeutic target for glioblastoma and neuroblastoma. Oncotarget 2018; 9:33549-33561. [PMID: 30323898 PMCID: PMC6173359 DOI: 10.18632/oncotarget.26088] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nervous system tumors represent some of the highly aggressive cancers in both children and adults, particularly neuroblastoma and glioblastoma. Many studies focused on the pathogenic role of the Akt pathway and the mechanistic target of Rapamycin (mTOR) complex in mediating the progression of various types of cancer, which designates the Akt/mTOR signaling pathway as a master regulator for cancer. Current studies are also elucidating the mechanisms of cancer stem cells (CSCs) in replenishing tumors and explicating the strong correlation between the Akt/mTOR pathway and CSC biology. This instigates the development of novel treatments that target CSCs via inhibiting this pathway to prevent recurrence in various cancer subtypes. In accordance, neuroblastoma and glioblastoma tumors are believed to originate from stem/progenitor cells or dedifferentiated mature neural/glial cells transformed into CSCs, which warrants targeting this subpopulation of CSCs in these tumors. In our study, Triciribine and Rapamycin were used to assess the role of inhibiting two different points of the Akt/mTOR pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) human cell lines and their CSCs. We showed that both drugs minimally decrease the survival of U251 and SH-SY5Y cells in a 2D model, while this effect was much more pronounced in a 3D culture model. Triciribine and Rapamycin decreased migratory abilities of both cell lines and decreased their sphere-forming units (SFU) by extinguishing their CSC populations. Together, we concluded that Rapamycin and Triciribine proved to be effective in the in vitro treatment of glioblastoma and neuroblastoma, by targeting their CSC population.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek H. Mouhieddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Current Address: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Reda M. Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Current Address: Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Araji
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Muhieddine M. Itani
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Bagherpour B, Salehi M, Jafari R, Bagheri A, Kiani-Esfahani A, Edalati M, Kardi MT, Shaygannejad V. Promising effect of rapamycin on multiple sclerosis. Mult Scler Relat Disord 2018; 26:40-45. [PMID: 30219744 DOI: 10.1016/j.msard.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 11/19/2022]
Abstract
The routine therapies for relapsing-remitting multiple sclerosis (RRMS) are common disease-modifying medications, yet are not effective in all patients. The aim of the present clinical trial was to evaluate the therapeutic effects of rapamycin on the clinical and radiological aspects, regulatory T cells proliferation and FOXP3 and GARP gene expression in the patients with RRMS. In this study, eight patients with RRMS were chosen and included in the trial. Patients received rapamycin (Rapacan, Biocon, India) for six months. Magnetic resonance imaging (MRI) of the patients' brain was taken before and after the therapy. Patients' expanded disability status scale (EDSS), and FoxP3 and GARP gene expression, and Treg cell proliferation were also been evaluated. All the patients had some degrees of significant reduction in mean plaque area size (P = 0.012, Z = -2.520), and minimum and maximum size of the plaques (P = 0.012, Z = -2.521). EDSS of 50% of patients was decreased after the treatment, yet it was not significant (P = 0.059, Z = -1.89). The expression rate of FOXP3 (P = 0.003) and GARP genes in Tregs increased after the therapy. We found a promising response to rapamycin among our cases with minor side effects and it may be considered as a therapeutic option of this disease.
Collapse
Affiliation(s)
- Bahram Bagherpour
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Gastrointestinal and Hepatobiliary Diseases Research Center, Poursina Hakim Research Institute for Health Care Development, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan, Iran; Departments of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasool Jafari
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akram Bagheri
- Department of Radiation Technology, Paramedical Sciences Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, Isfahan, Iran
| | - Masoud Edalati
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research Centre, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Expression of cyclin D1 correlates with p27KIP1 and regulates the degree of oral dysplasia and squamous cell carcinoma differentiation. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:174-183. [DOI: 10.1016/j.oooo.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 01/30/2023]
|
18
|
Niu X, Wu C, Li M, Zhao Q, Meydani SN, Wang J, Wu D. Naringenin is an inhibitor of T cell effector functions. J Nutr Biochem 2018; 58:71-79. [DOI: 10.1016/j.jnutbio.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022]
|
19
|
Sgambato A, Flamini G, Cittadini A, Weinstein IB. Abnormalities in Cell Cycle Control in Cancer and Their Clinical Implications. TUMORI JOURNAL 2018; 84:421-33. [PMID: 9824993 DOI: 10.1177/030089169808400401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies indicate that the functions of several genes that control the cell cycle are altered during the carcinogenic process and that these changes perturb both cell proliferation and genomic stability, thus promoting cell transformation and enhancing the process of tumor progression. The purpose of this paper is to review current information on the role of cyclins and related genes in the control of the mammalian cell cycle, the types of abnormalities in these genes found in human tumors and the possible clinical implications of these findings.
Collapse
Affiliation(s)
- A Sgambato
- Centro di Ricerche Oncologiche Giovanni XXIII, Catholic University, Rome, Italy
| | | | | | | |
Collapse
|
20
|
Beinke C, Port M, Ullmann R, Gilbertz K, Majewski M, Abend M. Analysis of Gene Expression Changes in PHA-M Stimulated Lymphocytes - Unraveling PHA Activity as Prerequisite for Dicentric Chromosome Analysis. Radiat Res 2018; 189:579-596. [PMID: 29613823 DOI: 10.1667/rr14974.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dicentric chromosome analysis (DCA) is the gold standard for individual radiation dose assessment. However, DCA is limited by the time-consuming phytohemagglutinin (PHA)-mediated lymphocyte activation. In this study using human peripheral blood lymphocytes, we investigated PHA-associated whole genome gene expression changes to elucidate this process and sought to identify suitable gene targets as a means of meeting our long-term objective of accelerating cell cycle kinetics to reduce DCA culture time. Human peripheral whole blood from three healthy donors was separately cultured in RPMI/FCS/antibiotics with BrdU and PHA-M. Diluted whole blood samples were transferred into PAXgene tubes at 0, 12, 24 and 36 h culture time. RNA was isolated and aliquots were used for whole genome gene expression screening. Microarray results were validated using qRT-PCR and differentially expressed genes [significantly (FDR corrected) twofold different from the 0 h value reference] were analyzed using several bioinformatic tools. The cell cycle positions and DNA-synthetic activities of lymphocytes were determined by analyzing the correlated total DNA content and incorporated BrdU level with flow cytometry after continued BrdU incubation. From 42,545 transcripts of the whole genome microarray 47.6%, on average, appeared expressed. The number of differentially expressed genes increased linearly from 855 to 2,858 and 4,607 at 12, 24 and 36 h after PHA addition, respectively. Approximately 2-3 times more up- than downregulated genes were observed with several hundred genes differentially expressed at each time point. Earliest enrichment was observed for gene sets related to the nucleus (12 h) followed by genes assigned to intracellular structures such as organelles (24 h) and finally genes related to the membrane and the extracellular matrix were enriched (36 h). Early gene expression changes at 12 h, in particular, were associated with protein classes such as chemokines/cytokines (e.g., CXCL1, CXCL2) and chaperones. Genes coding for biological processes involved in cell cycle control (e.g., MYBL2, RBL1, CCNA, CCNE) and DNA replication (e.g., POLA, POLE, MCM) appeared enriched at 24 h and later, but many more biological processes (42 altogether) showed enrichment as well. Flow cytometry data fit together with gene expression and bioinformatic analyses as cell cycle transition into S phase was observed with interindividual differences from 12 h onward, whereas progression into G2 as well as into the second G1 occurred from 36 h onward after activation. Gene set enrichment analysis over time identifies, in particular, two molecular categories of PHA-responsive gene targets (cytokine and cell cycle control genes). Based on that analysis target genes for cell cycle acceleration in lymphocytes have been identified ( CDKN1A/B/C, RBL-1/RBL-2, E2F2, Deaf-1), and it remains undetermined whether the time expenditure for DCA can be reduced by influencing gene expression involved in the regulatory circuits controlling PHA-associated cell cycle entry and/or progression at a specific early cell cycle phase.
Collapse
Affiliation(s)
- C Beinke
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - R Ullmann
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - K Gilbertz
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Munich, Germany
| |
Collapse
|
21
|
Yang X, Gong Y, He Q, Licht JD, Liaw L, Friesel RE. Loss of Spry1 attenuates vascular smooth muscle proliferation by impairing mitogen-mediated changes in cell cycle regulatory circuits. J Cell Biochem 2018; 119:3267-3279. [PMID: 29105817 PMCID: PMC5826877 DOI: 10.1002/jcb.26486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
Signals from growth factors or mechanical stimuli converge to promote vascular smooth muscle cell (VSMC) migration and proliferation, key events in the pathogenesis of intimal hyperplasia upon vascular injury. Spry1, a regulator of receptor tyrosine kinases (RTK), plays a role in maintaining the contractile phenotype of VSMC. The aim of the current study was to determine the role of Spry1 in VSMC proliferation in vitro and injury induced neointimal hyperplasia in vivo. VSMC proliferation and neointima formation were evaluated in cultured human aortic SMC (hAoSMC) and ligation-induced injury of mouse carotid arteries from Spry1 gene targeted mice, and their corresponding wild type littermates. Human Spry1 or non-targeting control lentiviral shRNAs were used to knock down Spry1 in hAoSMC. Time course cell cycle analysis showed a reduced fraction of S-phase cells at 12 and 24 h after growth medium stimulation in Spry1 shRNA transduced hAoSMC. Consistent with reduced S-phase entry, the induction of cyclinD1 and the levels of pRbS807/S811, pH3Ser10, and pCdc2 were also reduced, while the cell cycle inhibitor p27Kip1 was maintained in Spry1 knockdown hAoSMC. In vivo, loss of Spry1 attenuated carotid artery ligation-induced neointima formation in mice, and this effect was accompanied by a decrease in cell proliferation similar to the in vitro results. Our findings demonstrate that loss of Spry1 attenuates mitogen-induced VSMC proliferation, and thus injury-induced neointimal hyperplasia likely via insufficient activation of Akt signaling causing decreased cyclinD1 and increased p27Kip1 and a subsequent decrease in Rb and cdc2 phosphorylation.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| | - Yan Gong
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Qing He
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jonathan D. Licht
- Division of Hematology and Oncology
- Department of Medicine
- University of Florida Health Cancer Center
- University of Florida College of Medicine, Gainesville, FL
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
- Department of Biological Repositories, Wuhan University Zhongnan Hopital, Wuhan, China
| | - Robert E. Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME
| |
Collapse
|
22
|
Okada T, Okabe G, Tak YS, Mimura S, Takisawa H, Kubota Y. Suppression of targeting of Dbf4-dependent kinase to pre-replicative complex in G0 nuclei. Genes Cells 2018; 23:94-104. [PMID: 29314475 DOI: 10.1111/gtc.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 12/01/2022]
Abstract
Intact G0 nuclei isolated from quiescent cells are not capable of DNA replication in interphase Xenopus egg extracts, which allow efficient replication of permeabilized G0 nuclei. Previous studies have shown multiple control mechanisms for maintaining the quiescent state, but DNA replication inhibition of intact G0 nuclei in the extracts remains poorly understood. Here, we showed that pre-RC is assembled on chromatin, but its activation is inhibited after incubating G0 nuclei isolated from quiescent NIH3T3 cells in the extracts. Concomitant with the inhibition of replication, Mcm4 phosphorylation mediated by Dbf4-dependent kinase (DDK) as well as chromatin binding of DDK is suppressed in G0 nuclei without affecting the nuclear transport of DDK. We further found that the nuclear extracts of G0 but not proliferating cells inhibit the binding of recombinant DDK to pre-RC assembled plasmids. In addition, we observed rapid activation of checkpoint kinases after incubating G0 nuclei in the egg extracts. However, specific inhibitors of ATR/ATM are unable to promote DNA replication in G0 nuclei in the egg extracts. We suggest that a novel inhibitory mechanism is functional to prevent the targeting of DDK to pre-RC in G0 nuclei, thereby suppressing DNA replication in Xenopus egg extracts.
Collapse
Affiliation(s)
- Takuya Okada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
| | - Gaku Okabe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Engineering Integration Department, Air Water Inc., Osaka, Japan
| | - Yon-Soo Tak
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satoru Mimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Haruhiko Takisawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yumiko Kubota
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
23
|
Takahashi K, Nagai T, Chiba S, Nakayama K, Mizuno K. Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J Cell Sci 2018; 131:jcs.208769. [PMID: 29180513 DOI: 10.1242/jcs.208769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023] Open
Abstract
Primary cilia are antenna-like sensory organelles extending from the surface of many cell types that play critical roles in tissue development and homeostasis. Here, we examined the effect of nutrient status on primary cilium formation. Glucose deprivation significantly increased the number of ciliated cells under both serum-fed and -starved conditions. Glucose deprivation-induced ciliogenesis was suppressed by overexpression of Rheb, an activator of the mammalian target of rapamycin complex-1 (mTORC1). Inactivating mTORC1 by rapamycin treatment or Raptor knockdown significantly promoted ciliogenesis. These results indicate that glucose deprivation promotes primary cilium formation through mTORC1 inactivation. Rapamycin treatment did not promote autophagy or degradation of OFD1, a negative regulator of ciliogenesis. In contrast, rapamycin treatment increased the level of the p27KIP1 (also known as CDKN1B) cyclin-dependent kinase inhibitor, and rapamycin-induced ciliogenesis was abrogated in p27KIP1-depleted cells. These results indicate that mTORC1 inactivation induces ciliogenesis through p27KIP1 upregulation, but not through autophagy. By contrast, glucose deprivation or rapamycin treatment shortened the cilium length. Thus, glucose deprivation and subsequent inactivation of mTORC1 play dual roles in ciliogenesis: triggering primary cilium formation and shortening cilium length.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kengo Takahashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shuhei Chiba
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Osaka 545-8585, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
24
|
Yan S, Li A, Liu Y. CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int 2017; 42:216-226. [PMID: 29024247 DOI: 10.1002/cbin.10889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/07/2017] [Indexed: 11/09/2022]
Abstract
Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) has been reported to be up-regulated and plays an important role in promoting cell proliferation in human glioma. However, the effect of CacyBP/SIP on glioma cell motility is still unclear. Here, to our surprise, CacyBP/SIP was found to inhibit the migration and invasion of glioma cells U251 and U87. Silencing of CacyBP/SIP significantly promoted the migration and invasion behaviors of glioma cells. On the contrary, overexpression of CacyBP/SIP obviously suppressed them. Further investigation indicated that silencing of CacyBP/SIP significantly reduced the interaction between Siah1 and cytoplasmic p27, which in turn attenuated the ubiquitination and degradation of cytoplasmic p27. In contrast, overexpression of CacyBP/SIP promoted the interaction between Siah1 and cytoplasmic p27, which in turn increased the ubiquitination and degradation of cytoplasmic p27. Importantly, the degradation of p27 could be blocked by Siah1 knockdown. Finally, we found that CacyBP/SIP was reversely related to cytoplasmic p27 in human normal brain tissues and glioma tissues. Taken together, these results suggest that CacyBP/SIP plays an important role in inhibiting glioma cell migration and invasion through promoting the degradation of cytoplasmic p27.
Collapse
Affiliation(s)
- Shiwei Yan
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang First People's Hospital, 182 North Tongguan Road, Lianyungang, 222002, China
| | - Yuguang Liu
- School of Medicine, Shandong University, Jinan, 250012, China.,Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| |
Collapse
|
25
|
Cyclic AMP-Responsive Element-Binding Protein (CREB) is Critical in Autoimmunity by Promoting Th17 but Inhibiting Treg Cell Differentiation. EBioMedicine 2017; 25:165-174. [PMID: 29050947 PMCID: PMC5704088 DOI: 10.1016/j.ebiom.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms that govern differential T cell development into pro-inflammatory Th17 vs. regulatory T (Treg) cells remain unclear. Here, we show that selective deletion of CREB in T cells or Th17 cells impaired Th17 cell differentiation in vitro and in vivo, and led to resistance to autoimmune diseases. Mechanistically, CREB, activated by CD3-PKC-ϴ signaling, plays a key role in regulating Th17 cell differentiation, at least in part through directly binding to the Il17-Il17f gene locus. Unexpectedly, although dispensable for FOXP3 expression and for the homeostasis and suppressive function of thymus-derived Treg cells, CREB negatively regulates the survival of TGF-β-induced Treg cells, and deletion of CREB resulted in increased FOXP3 + Treg cells in the intestine and protection in a colitis model. Thus, CREB is critical in autoimmune diseases by promoting Th17 cell and inhibiting de novo Treg cell generation.
CREB is critical for autoimmunity. CREB plays a T cell- and Th17 cell-instrinsic role in controlling IL-17 expression and Th17 cell differentiation. CREB is dispensable for FOXP3 expression and the homeostasis of nTreg cells. CREB negatively regulates the survival of iTreg cells. The balance of Th17 and Treg cells dictates development of numerous autoimmune and inflammatory diseases, and targeting Th17 cell-related pathways has been proved to be effective in treatment of related diseases. Here, we identified CREB as a critical transcription factor in regulating the differentiation of Th17 cells and survival of Treg cells in both in vitro experimental systems and mouse models of autoimmune diseases. The findings in this study might be useful for developing therapeutics against Th17 cell-related immune diseases.
Collapse
|
26
|
Jiang D, Li J, Li J, Wang M, Han C, Wang X, Zhao C, Ye Y. Combination of FGFR4 inhibitor Blu9931 and 5-fluorouracil effects on the biological characteristics of colorectal cancer cells. Int J Oncol 2017; 51:1611-1620. [PMID: 29048661 DOI: 10.3892/ijo.2017.4143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to explore the effects of single agent treatments and combination of Blu9931 and 5-fluorouracil (5-FU) on the biological characteristics of colorectal cancer cells and its mechanism. Blu9931 is the first selective small molecule inhibitor of the fibroblast growth factor receptor 4 (FGFR4) and exquisitely selective for FGFR4 versus other FGFR family members and all other kinases. The colorectal cancer cells HCT116 and SW620 with high expression of FGFR4 were selected for a series of functional tests including cell viability, cell proliferation, apoptosis and cell cycle detection. Western blotting was used to detect the expression of related molecules including signal pathway (STAT3), apoptosis (cleaved caspase‑3), cell cycle (cyclin D1 and P27kip1) and epithelial-mesenchymal transition (E-cadherin and vimentin) in HCT116 and SW620 cells used as single and combination treatments of 5‑FU and Blu9931. The cell viability gradually decreased when the concentration of 5‑FU and Blu9931 increased. Blu9931 can inhibit FGFR4 protein expression while 5‑FU cannot, as assessed by western blot analysis. The single agent treatment and combinations of 5‑FU and Blu9931 arrest cell cycle (P<0.05), increased p27kip1 expression and reduced cyclin D1 expression. The single agent treatment and combinations of 5‑FU and Blu9931 inhibited EMT. Furthermore, the combination of 5‑FU and Blu9931 has a synergistic effect in reducing colorectal cancer cell proliferation and preventing cell cycle. Taken together, this study provides the first evidence that Blu9931 functions as a FGFR4-selective inhibitor in colorectal cancer (CRC) cells, and Blu9931 may be a new targeted drug.
Collapse
Affiliation(s)
- Dongbao Jiang
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Jingjing Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Jie Li
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Min Wang
- Department of Function, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Chao Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Xinru Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Chunlin Zhao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Yanwei Ye
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| |
Collapse
|
27
|
Mohammadian A, Naderali E, Mohammadi SM, Movasaghpour A, Valipour B, Nouri M, Nozad Charoudeh H. Cord Blood Cells Responses to IL2, IL7 and IL15 Cytokines for mTOR Expression. Adv Pharm Bull 2017; 7:81-85. [PMID: 28507940 PMCID: PMC5426737 DOI: 10.15171/apb.2017.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose: Mammalian target of rapamycin (mTOR)is important in hematopoiesis and affect cell growth,differentiation and survival. Although previous studies were identified the effect of cytokines on the mononuclear cells development however the cytokines effect on mTOR in cord blood mononuclear cells was unclear. The aim of this study was to evaluate mTOR expression in cord blood mononuclear and cord blood stem cells (CD34+ cells) in culture conditions for lymphoid cell development. Methods: Isolation of The mononuclear cells (MNCs) from umbilical cord blood were done with use of Ficollpaque density gradient. We evaluated cultured cord blood mononuclear and CD34+ cells in presece of IL2, IL7 and IL15 at distinct time points during 21 days by using flow cytometry. In this study, we presented the role of IL2, IL7 and IL15 on the expression of mTOR in cord blood cells. Results: mTOR expression were increased in peresence of IL2, IL7 and IL15 in day 14 and afterword reduced. However in persence of IL2 and IL15 expression of mTOR significantly reduced. mTOR expression in CD34+ cells decreased significantly from day7 to day 21 in culture. Conclusion: cytokines play important role in mTOR expression during hematopoiesis and development of cord blood mononuclear cells.
Collapse
Affiliation(s)
- Anahita Mohammadian
- Stem Cell Research Center, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Elahe Naderali
- Stem Cell Research Center, Tabriz university of Medical Sciences, Tabriz, Iran
| | | | | | - Behnaz Valipour
- Stem Cell Research Center, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz university of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
28
|
Jaiswal S, Sharma P. Role and regulation of p27 in neuronal apoptosis. J Neurochem 2017; 140:576-588. [PMID: 27926980 DOI: 10.1111/jnc.13918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/25/2016] [Indexed: 11/30/2022]
Abstract
It is necessary for the cell-cycle machinery of neurons to be suppressed to promote differentiation and maintenance of their terminally differentiated state. Reactivation of the cell cycle in response to neurotoxic insults leads to neuronal cell death and some cell-cycle-related proteins contribute to the process. p27 kip1 (p27), an inhibitor of cyclin-dependent kinases, prevents unwarranted cyclin-dependent kinase activation. In this study, we have elucidated a novel mechanism via which p27 promotes apoptosis of neurons stimulated by neurotoxic amyloid peptide Aβ42 (Amyloid β1-42 peptide). Co-immunoprecipitation analysis revealed that p27 promotes interaction between Cyclin-dependent kinase 5 (Cdk5) and cyclin D1, which is induced by Aβ42 in cortical neurons. As a result, Cdk5 is sequestered from its neuronal activator p35 resulting in kinase deactivation. The depletion of p27, which was achieved by specific siRNA, restored Cdk5/p35 interaction by preventing association between Cdk5 and cyclin D1 and also abrogated Aβ42 induced apoptosis of cortical neurons. Furthermore, analysis of cell cycle markers suggested that p27 may play a role in Aβ42 induced aberrant cell cycle progression of neurons, which may result in apoptosis. These findings provide novel insights into how p27, which otherwise performs important neuronal functions, may become deleterious to neurons under neurotoxic conditions.
Collapse
Affiliation(s)
- Surbhi Jaiswal
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
29
|
Wu D. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis. J Investig Med 2016; 64:1213-1219. [PMID: 27531904 DOI: 10.1136/jim-2016-000158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigallocatechin-3-gallate (EGCG), have been shown to modulate immune cell functions and improve some autoimmune diseases in animal models. In a series of studies we determined EGCG's effect on T-cell functions and its application in autoimmune diseases. We first observed that EGCG inhibited CD4+ T-cell expansion induced by polyclonal (mitogens or anti-CD3/CD28) or antigen-specific stimulation. We then showed that EGCG suppressed expansion and cell cycle progression of naïve CD4+ T by modulating cell cycle-related proteins. EGCG also inhibited naive CD4+ T-cell differentiation into Th1 and Th17 effector subsets by impacting their respective signaling transducers and transcription factors. These results suggest that EGCG may improve T-cell-mediated autoimmune diseases. Using the experimental autoimmune encephalomyelitis (EAE) mice, an animal model for human multiple sclerosis, we found that dietary supplementation with EGCG attenuated the disease's symptoms and pathology. These EGCG-induced changes are associated with findings in the immune and inflammation profiles in lymphoid tissues and the central nervous system: a reduction in proliferation of autoreactive T cells, production of proinflammatory cytokines, and Th1 and Th17 subpopulations, and an increase in regulatory T-cell populations. These results suggest that green tea or its active components may have a preventive and therapeutic potential in dealing with T-cell-mediated autoimmune diseases. However, the translational value of these findings needs to be validated in future human studies.
Collapse
|
30
|
Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo-Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 2016; 7:12073. [PMID: 27417417 PMCID: PMC4947160 DOI: 10.1038/ncomms12073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 01/16/2023] Open
Abstract
Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27(kip1), and deletion of p27(kip1) in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4(+) T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kun Chen
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizon 85721, USA
| | - Jianing Zhang
- Department of Biochemistry, School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yunping Fan
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
31
|
Trump BF. Mechanisms of Toxicity and Carcinogenesis. Toxicol Pathol 2016. [DOI: 10.1177/019262339502300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Abstract
It is possible, by a variety of means, to isolate, propagate, and characterize engraftable clones of cells from the mammalian CNS that fulfill the operational definition of a "stem cell": self-maintaining, self-renewing, and extremely multipotent in vitro and in vivo. Even as debates flourish over how neural stem cells might best be defined, identified, represented, and manipulated, clonal cells with "stem-like" features have begun to provide valuable models for studying commitment, differentiation, and plasticity in the CNS. Furthermore, by learning in this way the basic biology of neural stem cells, and by then exploiting those inherent properties for therapeutic ends, novel and multifaceted strategies seem poised to emerge for redressing a variety of heretofore untreatable CNS dysfunctions. Stem-like cells have begun to show promise for neural cell re placement and molecular support therapy in various animal models of degenerative, developmental, and acquired CNS insult. NEUROSCIENTIST 4:408-425, 1998
Collapse
Affiliation(s)
- Evan Y. Snyder
- Departments of Neurology (Division of Neuroscience) and Pediatrics (Division of Newborn Medicine) Harvard Medical School Children's Hospital Boston, Massachusetts
| |
Collapse
|
33
|
Choi HH, Phan L, Chou PC, Su CH, Yeung SCJ, Chen JS, Lee MH. COP1 enhances ubiquitin-mediated degradation of p27Kip1 to promote cancer cell growth. Oncotarget 2016; 6:19721-34. [PMID: 26254224 PMCID: PMC4637316 DOI: 10.18632/oncotarget.3821] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/25/2022] Open
Abstract
p27 is a critical CDK inhibitor involved in cell cycle regulation, and its stability is critical for cell proliferation. Constitutive photomorphogenic 1 (COP1) is a RING-containing E3 ubiquitin ligase involved in regulating important target proteins for cell growth, but its biological activity in cell cycle progression is not well characterized. Here, we report that p27Kip1 levels are accumulated in G1 phase, with concurrent reduction of COP1 levels. Mechanistic studies show that COP1 directly interacts with p27 through a VP motif on p27 and functions as an E3 ligase of p27 to accelerate the ubiquitin-mediated degradation of p27. Also, COP1-p27 axis deregulation is involved in tumorigenesis. These findings define a new mechanism for posttranslational regulation of p27 and provide insight into the characteristics of COP1-overexpressing cancers.
Collapse
Affiliation(s)
- Hyun Ho Choi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Liem Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Chun-Hui Su
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai-Ching J Yeung
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA.,Department of Cancer Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiun-Sheng Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
34
|
Ferguson BS, Nam H, Morrison RF. Curcumin Inhibits 3T3-L1 Preadipocyte Proliferation by Mechanisms Involving Post-transcriptional p27 Regulation. Biochem Biophys Rep 2016; 5:16-21. [PMID: 26688832 PMCID: PMC4680981 DOI: 10.1016/j.bbrep.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous reports from our lab have shown that Skp2 is necessary for p27 degradation and cell cycle progression during adipocyte differentiation. Data presented here demonstrate that the anti-inflammatory, anti-obesity phytochemical curcumin blocked Skp2 protein accumulation during early adipocyte hyperplasia. In addition, curcumin dose-dependently induced p27 protein accumulation and G1 arrest of synchronously replicating 3T3-L1 preadipocytes. Of note, p27 protein accumulation occurred in the presence of decreased p27 mRNA suggesting a role for post-transcriptional regulation. In support of this hypothesis, curcumin markedly increased p27 protein half-life as well as attenuated ubiquitin proteasome activity suggesting that inhibition of targeted p27 proteolysis occurred through curcumin-mediated attenuation of Skp2 and 26S proteasome activity. While we observed no cytotoxic effects for curcumin at doses less than 20 µM, it is important to note an increase in apoptotic signaling at concentrations greater than 30 µM. Finally, data presented here demonstrate that the anti-proliferative effect of curcumin was critical for the suppression of adipocyte differentiation and the development of the mature adipocyte. Collectively, our data demonstrate that curcumin-mediated post-transcriptional accumulation of p27 accounts in part for the anti-proliferative effect observed in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Heesun Nam
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Ron F Morrison
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| |
Collapse
|
35
|
Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 2016; 5:1-13. [PMID: 27579292 PMCID: PMC4996257 DOI: 10.2147/ov.s66083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.
Collapse
Affiliation(s)
- Guy R Simpson
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kate Relph
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kevin Harrington
- Targeted Therapy, The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London
| | - Alan Melcher
- Targeted and Biological Therapies, Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| |
Collapse
|
36
|
Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun 2015; 6:8698. [PMID: 26507712 PMCID: PMC4846325 DOI: 10.1038/ncomms9698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Induction of T-cell clonal anergy involves serial activation of transcription factors, including NFAT and Egr2/3. However, downstream effector mechanisms of these transcription factors are not fully understood yet. Here we identify Ndrg1 as an anergy factor induced by Egr2. Ndrg1 is upregulated by anergic signalling and maintained at high levels in resting anergic T cells. Overexpression of Ndrg1 mimics the anergic state and knockout of the gene prevents anergy induction. Interestingly, Ndrg1 is phosphorylated and degraded by CD28 signalling in a proteasome-dependent manner, explaining the costimulation dependence of anergy prevention. Similarly, IL-2 treatment of anergic T cells, under conditions that lead to the reversal of anergy, also induces Ndrg1 phosphorylation and degradation. Finally, older Ndrg1-deficient mice show T-cell hyperresponsiveness and Ndrg1-deficient T cells aggravate inducible autoimmune inflammation. Thus, Ndrg1 contributes to the maintenance of clonal anergy and inhibition of T-cell-mediated inflammation.
Collapse
|
37
|
Hepatocyte growth factor (HGF) promotes cardiac stem cell differentiation after myocardial infarction by increasing mTOR activation in p27kip haploinsufficient mice. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0320-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Hibino N, Cismowski MJ, Lilly B, McConnell PI, Shinoka T, Cheatham JP, Lucchesi PA, Galantowicz ME, Trask AJ. Potential Molecular Mechanism of Retrograde Aortic Arch Stenosis in the Hybrid Approach to Hypoplastic Left Heart Syndrome. Ann Thorac Surg 2015; 100:1013-9; discussion 1019-20. [PMID: 26163359 DOI: 10.1016/j.athoracsur.2015.04.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND The hybrid palliation for hypoplastic left heart syndrome has emerged as an alternative approach to the Norwood procedure. The development of patent ductus arteriosus (PDA) in-stent stenosis can cause retrograde aortic arch stenosis (RAAS), leading to significant morbidity. This study aimed to identify potential mechanisms of PDA in-stent stenosis contributing to RAAS. METHODS Tissues from stented PDAs were collected from 17 patients undergoing comprehensive stage II repair between 2009 and 2014. Patients requiring RAAS intervention based on cardiology-surgery consensus were defined as RAAS(+) (n = 10), whereas patients without any RAAS intervention were defined as RAAS(-) (n = 7). Tissues were examined by quantitative polymerase chain reaction analysis for vascular smooth muscle cell (VSMC) differentiation and proliferation markers. RESULTS Patient characteristics were hypoplastic left heart syndrome with aortic atresia in 6 and with aortic stenosis in 3; unbalanced atrioventricular canal in 3; double-inlet left ventricle/transposition of the great arteries in 3; and double-outlet right ventricle in 2. VSMC differentiation markers (β-actin, SM22, and calponin) and signaling pathways for VSMC modulation (transforming growth factor-β1, Notch, and platelet derived growth factor-BB) were significantly higher in the RAAS(+) than in RAAS(-) patients. The proliferation marker Ki67 was increased in RAAS(+) patients. Cell cycle markers were comparable in both groups. CONCLUSIONS Increased VSMC differentiation and proliferation markers suggest a mechanism for inward neointima formation of the PDA in RAAS. The apparent lack of change in cell cycle markers is contrary to coronary artery in-stent stenosis, suggesting further targets should be examined. Combined primary in vitro PDA cell culture and proteomics can be strong tools to elucidate targets to reduce PDA in-stent stenosis for RAAS in the future.
Collapse
Affiliation(s)
- Narutoshi Hibino
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary J Cismowski
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Brenda Lilly
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Patrick I McConnell
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Toshiharu Shinoka
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - John P Cheatham
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Pamela A Lucchesi
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mark E Galantowicz
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Cardiothoracic Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Aaron J Trask
- The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
39
|
Shi H, Gong H, Cao K, Zou S, Zhu B, Bao H, Wu Y, Gao Y, Tang Y, Yu R. Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27(Kip1). J Neurooncol 2015; 124:357-64. [PMID: 26088461 DOI: 10.1007/s11060-015-1851-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/12/2015] [Indexed: 01/22/2023]
Abstract
We previously reported that loss of Nrdp1 contributes to human glioma progression by reducing apoptosis. However, the role of Nrdp1 in glioma migration and invasion has not been investigated. Here, we report that ErbB3, a substrate of Nrdp1, is undetectable in normal brain tissues and grade II/III glioma tissues, but is abundant in a certain percentage of grade IV glioma tissues and is associated with the loss of Nrdp1. This suggests that Nrdp1 may be involved in glioma migration and invasion by regulating ErbB3. Thus, the role of Nrdp1/ErbB3 signaling in glioma cell migration and invasion was investigated using Nrdp1 loss- and gain-of-function. The results show that down-regulation of Nrdp1 by use of short hairpin RNA promoted glioma cell migration and invasion. In contrast, overexpression of Nrdp1 significantly inhibited glioma cell migration and invasion. Further investigation on molecular targets revealed that Nrdp1 decreased the level of ErbB3, which resulted in decreasing p-AKT thereby reducing cytoplasmic p27(Kip1). Taken together, these findings suggest that Nrdp1-mediated ErbB3 degradation suppresses glioma migration and invasion and that loss of Nrdp1 may amplify ErbB3 signaling to contribute to glioma migration and invasion. These findings suggest that Nrdp1 may be a target for glioma therapy.
Collapse
Affiliation(s)
- Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hui Gong
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
- Neurosurgery Department of Jiangsu Haimen People's Hospital, Nantong, People's Republic of China
| | - Kuan Cao
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Shenshan Zou
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Bingxin Zhu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Hanmo Bao
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Yuxuan Wu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Gao
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
- Neurosurgery Department of Jiangsu Xinyi People's Hospital, Xuzhou, People's Republic of China
| | - Yuan Tang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, People's Republic of China.
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
Choi HH, Guma S, Fang L, Phan L, Ivan C, Baggerly K, Sood A, Lee MH. Regulating the stability and localization of CDK inhibitor p27(Kip1) via CSN6-COP1 axis. Cell Cycle 2015; 14:2265-73. [PMID: 25945542 DOI: 10.1080/15384101.2015.1046655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27(Kip1) stability, and that COP1 is a negative regulator of p27(Kip1). Ectopic expression of CSN6 can decrease the expression of p27(Kip1), while CSN6 knockdown leads to p27(Kip1) stabilization. Mechanistic studies show that CSN6 interacts with p27(Kip1) and facilitates ubiquitin-mediated degradation of p27(Kip1). CSN6-mediated p27 degradation depends on the nuclear export of p27(Kip1), which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.
Collapse
Affiliation(s)
- Hyun Ho Choi
- a Department of Molecular and Cellular Oncology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
mTORC1 maintains the tumorigenicity of SSEA-4(+) high-grade osteosarcoma. Sci Rep 2015; 5:9604. [PMID: 25853231 PMCID: PMC4389812 DOI: 10.1038/srep09604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Inactivation of p53 and/or Rb pathways restrains osteoblasts from cell-cycle exit and terminal differentiation, which underpins osteosarcoma formation coupled with dedifferentiation. Recently, the level of p-S6K was shown to independently predict the prognosis for osteosarcomas, while the reason behind this is not understood. Here we show that in certain high-grade osteosarcomas, immature SSEA-4+ tumor cells represent a subset of tumor-initiating cells (TICs) whose pool size is maintained by mTORC1 activity. mTORC1 supports not only SSEA-4+ cell self-renewal through S6K but also the regeneration of SSEA-4+ TICs by SSEA-4− osteosarcoma cell dedifferentiation. Mechanistically, active mTORC1 is required to prevent a likely upregulation of the cell-cycle inhibitor p27 independently of p53 or Rb activation, which otherwise effectively drives the terminal differentiation of SSEA-4− osteosarcoma cells at the expense of dedifferentiation. Thus, mTORC1 is shown to critically regulate the retention of tumorigenicity versus differentiation in discrete differentiation phases in SSEA-4+ TICs and their progeny.
Collapse
|
42
|
Ding XF, Yin DQ, Chen Q, Zhang HY, Zhou J, Chen G. Validation of p27KIP1 expression levels as a candidate predictive biomarker of response to rapalogs in patient-derived breast tumor xenografts. Tumour Biol 2015; 36:1463-9. [PMID: 25744729 DOI: 10.1007/s13277-014-2580-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/29/2014] [Indexed: 11/28/2022] Open
Abstract
Blockade of mammalian target of rapamycin (mTOR) is a promising area in breast cancer therapy. However, in clinical trials, objective response rate with mTOR inhibitor monotherapy in breast cancer was modest. Biomarker studies designed to identify the responders of rapalogs are of increasing interest. We validated p27KIP1 expression levels as a candidate predictive biomarker of response to rapalogs. We also analyzed the correlation between rapamycin activity and p27KIP1 expression in the primary breast cancer cells and the patient-derived breast tumor xenograft models. The cells isolated from the breast tumor tissues expressing high levels of p27KIP1 were sensitive to rapamycin, whereas the cells from the tissues expressing low levels of p27KIP1 exhibited resistance to rapamycin. The correlation between p27KIP1 expression and rapamycin antitumor activity was also observed in the patient-derived breast tumor xenograft models. Moreover, we also found rapamycin significantly decreased phosphorylated p70S6K1 and phosphorylated 4EBP1 in both samples. It seemed that the different sensitivity of tumor cells to rapamycin did not owe to its different potency against mTOR activity. We further propose p27KIP1 expression level may be also a candidate predictive biomarker of rapalogs for breast cancer therapy, which requires additional clinical validation.
Collapse
Affiliation(s)
- Xiao-Fei Ding
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | | | | | | | | | | |
Collapse
|
43
|
Trojanowsky M, Vidovic D, Simanski S, Penas C, Schurer S, Ayad NG. Screening of cell cycle fusion proteins to identify kinase signaling networks. Cell Cycle 2015; 14:1274-81. [PMID: 25606665 DOI: 10.1080/15384101.2015.1006987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27(Kip1). We generated a p27(Kip1)-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27(Kip1)-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27(Kip1) turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.
Collapse
Affiliation(s)
- Michelle Trojanowsky
- a From the Center for Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences ; University of Miami ; Miami , FL USA
| | | | | | | | | | | |
Collapse
|
44
|
Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal 2014; 26:2071-85. [DOI: 10.1016/j.cellsig.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
|
45
|
Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, Jha SS, McGragor D, Banerjee SK. CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation. Oncogene 2014; 34:3152-63. [PMID: 25132260 DOI: 10.1038/onc.2014.250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/18/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27(Kip1) tumor suppressor protein is upregulated and relocalized to the nucleus from cytoplasm by CCN5 in these cells and that these two events (upregulation and relocalization of p27(Kip1)) are critical for CCN5-induced growth inhibition of TNBC cells. In the absence of CCN5, p27(Kip1) resides mostly in the cytoplasm, which is associated with the aggressive nature of cancer cells. Mechanistically, CCN5 inhibits Skp2 expression, which seems to stabilize the p27(Kip1) protein in these cells. On the other hand, CCN5 also recruits FOXO3a to mediate the transcriptional regulation of p27(Kip1). The recruitment of FOXO3a is achieved by the induction of its expression and activity through shifting from cytoplasm to the nucleus. Our data indicate that CCN5 blocks PI3K/AKT signaling to dephosphorylate at S318, S253 and Thr32 in FOXO3a for nuclear relocalization and activation of FOXO3a. Moreover, inhibition of α6β1 receptors diminishes CCN5 action on p27(Kip1) in TNBC cells. Collectively, these data suggest that CCN5 effectively inhibits TNBC growth through the accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation, and thus, activation of CCN5 may have the therapeutic potential to kill TNBC.
Collapse
Affiliation(s)
- I Haque
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - A De
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - G Maity
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - S Sarkar
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| | - M Majumdar
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S S Jha
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - D McGragor
- Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA
| | - S K Banerjee
- 1] Cancer Research Unit, V.A. Medical Center, Kansas City, MO, USA [2] Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA [3] Department of Anatomy and Cell Biology and Department of Pathology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
46
|
Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry. PLoS One 2014; 9:e93787. [PMID: 24695788 PMCID: PMC3973624 DOI: 10.1371/journal.pone.0093787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
It is proposed that the ageing process is linked to signaling from the germline such that the rate of ageing can be adjusted to the state of the reproductive system, allowing these two processes to co-evolve. Mechanistic insight into this link has been primarily derived from iteroparous reproductive models, the nematode C. elegans, and the arthropod Drosophila. Here, we examined to what extent these mechanisms are evolutionarily conserved in a semelparous chordate, Oikopleura dioica, where we identify a developmental growth arrest (GA) in response to crowded, diet-restricted conditions, which can extend its lifespan at least three-fold. Under nutritional stress, the iteroparative models sacrifice germ cells that have entered meiosis, while maintaining a reduced pool of active germline stem cells (GSCs). In contrast, O. dioica only entered GA prior to meiotic entry. Stress conditions encountered after this point led to maturation in a normal time frame but with reduced reproductive output. During GA, TOR signaling was inhibited, whereas MAPK, ERK1/2 and p38 pathways were activated, and under such conditions, activation of these pathways was shown to be critical for survival. Direct inhibition of TOR signaling alone was sufficient to prevent meiotic entry and germline differentiation. This inhibition activated the p38 pathway, but did not activate the ERK1/2 pathway. Thus, the link between reproductive status and lifespan extension in response to nutrient-limited conditions is interpreted in a significantly different manner in these iteroparative versus semelparous models. In the latter case, meiotic entry is a definitive signal that lifespan extension can no longer occur, whereas in the former, meiotic entry is not a unique chronological event, and can be largely erased during lifespan extension in response to nutrient stress, and reactivated from a pool of maintained GSCs when conditions improve.
Collapse
|
47
|
Mourtada-Maarabouni M, Williams GT. Role of GAS5 noncoding RNA in mediating the effects of rapamycin and its analogues on mantle cell lymphoma cells. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:468-73. [PMID: 24703244 DOI: 10.1016/j.clml.2014.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Inhibition of the mammalian target of rapamycin (mTOR) pathway is a promising strategy for the treatment of mantle cell lymphoma (MCL). ncRNA growth arrest-specific 5 (GAS5), a 5' terminal oligopyrimidine (5'TOP) RNA regulated by the mTOR pathway, is necessary and sufficient for normal growth arrest in leukemic and untransformed human lymphocytes. METHODS We downregulated endogenous GAS5 in mantle cell lymphoma cell lines using RNA interference before treatment with several rapalogues. The effect of GAS5 downregulation was monitored by 3 independent analyses of cell viability, DNA synthesis, and colony-forming ability. RESULTS Downregulation of GAS5 substantially reduced the effects of each rapalogue on cell viability, DNA synthesis, and colony-forming ability. CONCLUSION Stimulation of expression of candidate tumor suppressor GAS5 is responsible for much of the cytotoxic and cytostatic effects of rapalogues in MCL, suggesting that improved targeting of this pathway may allow improvements in the therapy of this intractable lymphoma.
Collapse
Affiliation(s)
- Mirna Mourtada-Maarabouni
- Institute for Science and Technology in Medicine, Huxley Building, Keele University, Keele, United Kingdom
| | - Gwyn T Williams
- Institute for Science and Technology in Medicine, Huxley Building, Keele University, Keele, United Kingdom.
| |
Collapse
|
48
|
Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 2014; 111:3805-10. [PMID: 24567410 DOI: 10.1073/pnas.1320265111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
mTOR is an evolutionarily conserved kinase that plays a critical role in sensing and responding to environmental determinants. Recent studies have shown that fine-tuning of the activity of mTOR complexes contributes to organogenesis and tumorigenesis. Although rapamycin, an allosteric mTOR inhibitor, is an effective immunosuppressant, the precise roles of mTOR complexes in early T-cell development remain unclear. Here we show that mTORC1 plays a critical role in the development of both early T-cell progenitors and leukemia. Deletion of Raptor, an essential component of mTORC1, produced defects in the earliest development of T-cell progenitors in vivo and in vitro. Deficiency of Raptor resulted in cell cycle abnormalities in early T-cell progenitors that were associated with instability of the Cyclin D2/D3-CDK6 complexes; deficiency of Rictor, an mTORC2 component, did not have the same effect, indicating that mTORC1 and -2 control T-cell development in different ways. In a model of myeloproliferative neoplasm and T-cell acute lymphoblastic leukemia (T-ALL) evoked by Kras activation, Raptor deficiency dramatically inhibited the cell cycle in oncogenic Kras-expressing T-cell progenitors, but not myeloid progenitors, and specifically prevented the development of T-ALL. Although rapamycin treatment significantly prolonged the survival of recipient mice bearing T-ALL cells, rapamycin-insensitive leukemia cells continued to propagate in vivo. In contrast, Raptor deficiency in the T-ALL model resulted in cell cycle arrest and efficient eradication of leukemia. Thus, understanding the cell-context-dependent role of mTORC1 illustrates the potential importance of mTOR signals as therapeutic targets.
Collapse
|
49
|
Kotoshiba S, Gopinathan L, Pfeiffenberger E, Rahim A, Vardy LA, Nakayama K, Nakayama KI, Kaldis P. p27 is regulated independently of Skp2 in the absence of Cdk2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:436-45. [PMID: 24269842 DOI: 10.1016/j.bbamcr.2013.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27(Kip1), which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Skp2(-/-) mouse embryonic fibroblasts, encouraging us to generate Cdk2(-/-)Skp2(-/-) double knockout mice. Cdk2(-/-)Skp2(-/-) double knockout mice are viable and display similar phenotypes as Cdk2(-/-) and Skp2(-/-) mice. Unexpectedly, fibroblasts generated from Cdk2(-/-)Skp2(-/-) double knockout mice proliferated at normal rates. The increased stability of p27 observed in Skp2(-/-) MEFs was not observed in Cdk2(-/-)Skp2(-/-) double knockout fibroblasts indicating that in the absence of Cdk2, p27 is regulated by Skp2-independent mechanisms. Ablation of other ubiquitin ligases for p27 such as KPC1, DDB1, and Pirh2 did not restore stability of p27 in Cdk2(-/-)Skp2(-/-) MEFs. Our findings point towards novel and alternate pathways for p27 regulation.
Collapse
Affiliation(s)
- Shuhei Kotoshiba
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore; Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Bldg. 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Lakshmi Gopinathan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore
| | - Elisabeth Pfeiffenberger
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore
| | - Anisa Rahim
- Institute of Medical Biology (IMB), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Leah A Vardy
- Institute of Medical Biology (IMB), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Keiko Nakayama
- Tohoku University, Department of Developmental Genetics, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Keiichi I Nakayama
- Kyushu University, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore 117597, Republic of Singapore; Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Bldg. 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA.
| |
Collapse
|
50
|
Abstract
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| | - Fernando Macian
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| |
Collapse
|