1
|
Cerier E, Kurihara C, Kaiho T, Toyoda T, Manerikar A, Kandula V, Thomae B, Yagi Y, Yeldandi A, Kim S, Avella-Patino D, Pandolfino J, Perlman H, Singer B, Scott Budinger GR, Lung K, Alexiev B, Bharat A. Temporal correlation between postreperfusion complement deposition and severe primary graft dysfunction in lung allografts. Am J Transplant 2024; 24:577-590. [PMID: 37977230 PMCID: PMC10982049 DOI: 10.1016/j.ajt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Growing evidence implicates complement in the pathogenesis of primary graft dysfunction (PGD). We hypothesized that early complement activation postreperfusion could predispose to severe PGD grade 3 (PGD-3) at 72 hours, which is associated with worst posttransplant outcomes. Consecutive lung transplant patients (n = 253) from January 2018 through June 2023 underwent timed open allograft biopsies at the end of cold ischemia (internal control) and 30 minutes postreperfusion. PGD-3 at 72 hours occurred in 14% (35/253) of patients; 17% (44/253) revealed positive C4d staining on postreperfusion allograft biopsy, and no biopsy-related complications were encountered. Significantly more patients with PGD-3 at 72 hours had positive C4d staining at 30 minutes postreperfusion compared with those without (51% vs 12%, P < .001). Conversely, patients with positive C4d staining were significantly more likely to develop PGD-3 at 72 hours (41% vs 8%, P < .001) and experienced worse long-term outcomes. In multivariate logistic regression, positive C4d staining remained highly predictive of PGD-3 (odds ratio 7.92, 95% confidence interval 2.97-21.1, P < .001). Hence, early complement deposition in allografts is highly predictive of PGD-3 at 72 hours. Our data support future studies to evaluate the role of complement inhibition in patients with early postreperfusion complement activation to mitigate PGD and improve transplant outcomes.
Collapse
Affiliation(s)
- Emily Cerier
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chitaru Kurihara
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Taisuke Kaiho
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Takahide Toyoda
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adwaiy Manerikar
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Viswajit Kandula
- Department of Cardiothoracic Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Benjamin Thomae
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuriko Yagi
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Samuel Kim
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Diego Avella-Patino
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John Pandolfino
- Department of Gastroenterology and Hepatology Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Harris Perlman
- Department of Rheumatology Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Benjamin Singer
- Department of Pulmonary and Critical Care Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - G R Scott Budinger
- Department of Pulmonary and Critical Care Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Kalvin Lung
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Borislav Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ankit Bharat
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Cerier E, Manerikar A, Kandula V, Toyoda T, Thomae B, Yagi Y, Patino DMA, Lung K, Garza-Castillon R, Bharat A, Kurihara C. Postreperfusion Pulmonary Artery Pressure Indicates Primary Graft Dysfunction After Lung Transplant. Ann Thorac Surg 2024; 117:206-212. [PMID: 36521520 PMCID: PMC10258214 DOI: 10.1016/j.athoracsur.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Primary graft dysfunction is a risk factor of early mortality after lung transplant. Models identifying patients at high risk for primary graft dysfunction are limited. We hypothesize high postreperfusion systolic pulmonary artery pressure is a clinical marker for primary graft dysfunction. METHODS This is a retrospective review of 158 consecutive lung transplants performed at a single academic center from January 2020 through July 2022. Only bilateral lung transplants were included and patients with pretransplant extracorporeal life support were excluded. RESULTS Primary graft dysfunction occurred in 42.3% (n = 30). Patients with primary graft dysfunction had higher postreperfusion systolic pulmonary artery pressure (41 ± 9.1 mm Hg) than those without (31.5 ± 8.8 mm Hg) (P < .001). Logistic regression showed postreperfusion systolic pulmonary artery pressure is a predictor for primary graft dysfunction (odds ratio 1.14, 95% CI 1.06-1.24, P < .001). Postreperfusion systolic pulmonary artery pressure of 37 mm Hg was optimal for predicting primary graft dysfunction by Youden index. The receiver operating characteristic curve of postreperfusion systolic pulmonary artery pressure at 37 mm Hg (sensitivity 0.77, specificity 0.78, area under the curve 0.81), was superior to the prereperfusion pressure curve at 36 mm Hg (sensitivity 0.77, specificity 0.39, area under the curve 0.57) (P < .01). CONCLUSIONS Elevated postreperfusion systolic pulmonary artery pressure after lung transplant is predictive of primary graft dysfunction. Postreperfusion systolic pulmonary artery pressure is more indicative of primary graft dysfunction than prereperfusion systolic pulmonary artery pressure. Using postreperfusion systolic pulmonary artery pressure as a positive signal of primary graft dysfunction allows earlier intervention, which could improve outcomes.
Collapse
Affiliation(s)
- Emily Cerier
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Adwaiy Manerikar
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Viswajit Kandula
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Takahide Toyoda
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Benjamin Thomae
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuriko Yagi
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Diego Mauricio Avella Patino
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kalvin Lung
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rafael Garza-Castillon
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chitaru Kurihara
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
3
|
Qin J, Hu C, Cao X, Gao J, Chen Y, Yan M, Chen J. Development and validation of a nomogram model to predict primary graft dysfunction in patients after lung transplantation based on the clinical factors. Clin Transplant 2023; 37:e15039. [PMID: 37256785 DOI: 10.1111/ctr.15039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Primary graft dysfunction (PGD), a significant complication that can affect patients' prognosis and quality of life, develops within 72 h post lung transplantation (LTx). Early detection and prevention of PGD should be given special consideration. The purpose of this study was to create a clinical prediction model to forecast the occurrence of PGD. METHODS We collected information on 622 LTx patients from Wuxi People's Hospital from 2016 to 2020 and used the data to construct the prediction model. Information on 224 patients from 2021 to June 2022 was used for external validation. We used LASSO regression for variable screening. A nomogram was developed for model presentation. Distinctness, fit, and calibration were used to evaluate the performance of the model. RESULTS Subjects with respiratory failure, who received fresh frozen plasma, donor age, donor gender, donor mechanism of death, donor smoking, donor ventilator use time, and donor PaO 2/FiO 2 ratio were independent predictor variables for the occurrence of PGD. The area under the curve of the nomogram was .779. The Hosmer-Lemeshow test showed a good model fit (P = .158). The calibration curve of the nomogram is fairly close to the ideal diagonal. Moreover, the decision curve analysis revealed a positive net benefit of the model. External validation also confirmed the reliability of the model. CONCLUSIONS The nomogram of PGD based on clinical risk factors in postoperative LTx patients was established with high reliability. It provides clinicians and nurses with a new and effective tool for early prediction of PGD and early intervention.
Collapse
Affiliation(s)
- Jianan Qin
- School of Nursing, Fudan University, Shanghai, China
- Operation Department, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chunxiao Hu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaodong Cao
- Department of Nursing, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Meiqiong Yan
- Department of Nursing, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
4
|
Roesel MJ, Sharma NS, Schroeter A, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Primary Graft Dysfunction: The Role of Aging in Lung Ischemia-Reperfusion Injury. Front Immunol 2022; 13:891564. [PMID: 35686120 PMCID: PMC9170999 DOI: 10.3389/fimmu.2022.891564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Transplant centers around the world have been using extended criteria donors to remedy the ongoing demand for lung transplantation. With a rapidly aging population, older donors are increasingly considered. Donor age, at the same time has been linked to higher rates of lung ischemia reperfusion injury (IRI). This process of acute, sterile inflammation occurring upon reperfusion is a key driver of primary graft dysfunction (PGD) leading to inferior short- and long-term survival. Understanding and improving the condition of older lungs is thus critical to optimize outcomes. Notably, ex vivo lung perfusion (EVLP) seems to have the potential of reconditioning ischemic lungs through ex-vivo perfusing and ventilation. Here, we aim to delineate mechanisms driving lung IRI and review both experimental and clinical data on the effects of aging in augmenting the consequences of IRI and PGD in lung transplantation.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Nirmal S Sharma
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Andreas Schroeter
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Sekulovski M, Simonska B, Peruhova M, Krastev B, Peshevska-Sekulovska M, Spassov L, Velikova T. Factors affecting complications development and mortality after single lung transplant. World J Transplant 2021; 11:320-334. [PMID: 34447669 PMCID: PMC8371496 DOI: 10.5500/wjt.v11.i8.320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/15/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Lung transplantation (LT) is a life-saving therapeutic procedure that prolongs survival in patients with end-stage lung disease. Furthermore, as a therapeutic option for high-risk candidates, single LT (SLT) can be feasible because the immediate morbidity and mortality after transplantation are lower compared to sequential single (double) LT (SSLTx). Still, the long-term overall survival is, in general, better for SSLTx. Despite the great success over the years, the early post-SLT period remains a perilous time for these patients. Patients who undergo SLT are predisposed to evolving early or late postoperative complications. This review emphasizes factors leading to post-SLT complications in the early and late periods including primary graft dysfunction and chronic lung allograft dysfunction, native lung complications, anastomosis complications, infections, cardiovascular, gastrointestinal, renal, and metabolite complications, and their association with morbidity and mortality in these patients. Furthermore, we discuss the incidence of malignancy after SLT and their correlation with immunosuppression therapy.
Collapse
Affiliation(s)
- Metodija Sekulovski
- Department of Anesthesiology and Intensive care, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Bilyana Simonska
- Department of Anesthesiology and Intensive care, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Boris Krastev
- Department of Clinical Oncology, MHAT Hospital for Women Health Nadezhda, Sofia 1330, Bulgaria
| | | | - Lubomir Spassov
- Department of Cardiothoracic Surgery, University Hospital Lozenetz, Sofia 1431, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
6
|
Daoud D, Chacon Alberty L, Wei Q, Hochman Mendez C, Virk MHM, Mase J, Jindra P, Cusick M, Choi H, Debolske N, Sampaio LC, Taylor DA, Loor G. Incidence of primary graft dysfunction is higher according to the new ISHLT 2016 guidelines and correlates with clinical and molecular risk factors. J Thorac Dis 2021; 13:3426-3442. [PMID: 34277039 PMCID: PMC8264697 DOI: 10.21037/jtd-20-3564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Background Primary graft dysfunction (PGD) is the most important determinant of morbidity and mortality after lung transplantation, but its definition has evolved over the past decade. The implications of this refinement in clinical definition have not been evaluated. In this single-center study, we compared PGD incidence, risk factors, and outcomes using the 2005 and the updated-2016 International Society of Heart and Lung Transplantation guidelines for PGD grading in lung transplant patients. Methods In this retrospective study, we extracted data from the medical records of 127 patients who underwent lung transplantation between 1/1/2016–12/31/2018. PGD was defined as PGD3 present at 48 and/or 72 hours post-reperfusion. We used the 2005 and the updated 2016 guidelines to assess clinical risk factors, outcomes, and baseline biomarkers for PGD. Results On the basis of the 2016 and 2005 guidelines, we identified PGD in 37% and 26% of patients, respectively. PGD was significantly associated with extracorporeal life support, large body mass index, and restrictive lung disease using the 2016 but not the 2005 guidelines. Based on the 2016 guidelines, pretransplant levels of several biomarkers were associated with PGD; using the 2005 guidelines, only increased interleukin-2 levels were significantly associated with PGD. No preoperative biomarkers were associated with PGD using either guidelines after adjusting for clinical variables. Postoperative morbidity and 1-year mortality were similar regardless of guidelines used. Conclusions Our findings suggest that refinements in the PGD scoring system have improved the detection of graft injury and associated risk factors without changing its ability to predict postoperative morbidity and mortality.
Collapse
Affiliation(s)
- Daoud Daoud
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| | | | - Qi Wei
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| | - Camila Hochman Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Muhammad Hassan Masood Virk
- Center for Antimicrobial Resistance and Microbial Genomics (CARMiG), Department of Internal Medicine, Division of Infectious Diseases, University of Texas Health Science Centre at Houston, Houston, TX, USA
| | - Jonathan Mase
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Peter Jindra
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Cusick
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| | - Hyewon Choi
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| | - Natalie Debolske
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| | - Luiz C Sampaio
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Gabriel Loor
- Michael E DeBakey Department of Surgery, Division of Cardiopulmonary Transplantation and Mechanical Circulatory Support, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury after transplantation characterized by hypoxemia and the development of alveolar infiltrates on chest radiograph that occurs within 72 hours of reperfusion. PGD is among the most common early complications following lung transplantation and significantly contributes to increased short-term morbidity and mortality. In addition, severe PGD has been associated with higher 90-day and 1-year mortality rates compared with absent or less severe PGD and is a significant risk factor for the subsequent development of chronic lung allograft dysfunction. The International Society for Heart and Lung Transplantation released updated consensus guidelines in 2017, defining grade 3 PGD, the most severe form, by the presence of alveolar infiltrates and a ratio of PaO2:FiO2 less than 200. Multiple donor-related, recipient-related, and perioperative risk factors for PGD have been identified, many of which are potentially modifiable. Consistently identified risk factors include donor tobacco and alcohol use; increased recipient body mass index; recipient history of pulmonary hypertension, sarcoidosis, or pulmonary fibrosis; single lung transplantation; and use of cardiopulmonary bypass, among others. Several cellular pathways have been implicated in the pathogenesis of PGD, thus presenting several possible therapeutic targets for preventing and treating PGD. Notably, use of ex vivo lung perfusion (EVLP) has become more widespread and offers a potential platform to safely investigate novel PGD treatments while expanding the lung donor pool. Even in the presence of significantly prolonged ischemic times, EVLP has not been associated with an increased risk for PGD.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua M Diamond
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Multidisciplinary collaboration: the key to advancing lung transplantation outcomes. Indian J Thorac Cardiovasc Surg 2021; 38:209-210. [DOI: 10.1007/s12055-021-01182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
|
9
|
Jin Z, Suen KC, Wang Z, Ma D. Review 2: Primary graft dysfunction after lung transplant-pathophysiology, clinical considerations and therapeutic targets. J Anesth 2020; 34:729-740. [PMID: 32691226 PMCID: PMC7369472 DOI: 10.1007/s00540-020-02823-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Primary graft dysfunction (PGD) is one of the most common complications in the early postoperative period and is the most common cause of death in the first postoperative month. The underlying pathophysiology is thought to be the ischaemia–reperfusion injury that occurs during the storage and reperfusion of the lung engraftment; this triggers a cascade of pathological changes, which result in pulmonary vascular dysfunction and loss of the normal alveolar architecture. There are a number of surgical and anaesthetic factors which may be related to the development of PGD. To date, although treatment options for PGD are limited, there are several promising experimental therapeutic targets. In this review, we will discuss the pathophysiology, clinical management and potential therapeutic targets of PGD.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Zhiping Wang
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| |
Collapse
|
10
|
Li J, Wei L, Han Z, Chen Z, Zhang Q. Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism. EBioMedicine 2020; 52:102600. [PMID: 31981974 PMCID: PMC6976928 DOI: 10.1016/j.ebiom.2019.102600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Primary graft dysfunction (PGD) is a known acute lung injury (ALI) and a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in ALI through regulation of microRNAs (miRNAs), their effects on PGD remain undefined. The present study aims to explore the underlying mechanism of lncRNA X-inactive specific transcript (XIST) in PGD after lung transplantation. Methods Initially, the expression of miR-21, IL-12A and XIST was determined by RT-qPCR and western blot analysis. The dual luciferase reporter assay, RNA pull-down and RIP assay were performed to identify the targeting relationship between miR-21 and IL-12A and the binding relationship between miR-21 and XIST. Loss- and gain-of-function investigations were conducted in rats treated with prolonged cold ischemia and polymorphonuclear neutrophils (PMNs). Findings miR-21 was decreased, whilst XIST and IL-12A were increased in the bronchoalveolar lavage fluid of PGD patients after lung transplantation. Enhanced miR-21 expression in rats and PMNs resulted in downregulated expression of pro-inflammatory factors and chemokines, and enhanced the apoptosis of PMNs. XIST was found to upregulate IL-12A expression in a miR-21-dependent manner. Additionally, XIST silencing enhanced the apoptosis of PMNs and inhibited the neutrophil extracellular trap (NET) formation through upregulation of miR-21 but downregulation of IL-12A in vivo. Interpretation In summary, lncRNA XIST upregulates IL-12A by binding to miR-21, thereby inducing NET formation and accelerating PGD after lung transplantation. This suggests that inhibition of XIST and NET may be beneficial for the treatment of PGD.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China.
| | - Zhijun Han
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Zhong Chen
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Quan Zhang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, PR China
| |
Collapse
|
11
|
Pola-dos-Reis F, Samano MN, Abdalla LG, de Carvalho GVS, Fernandes LM, Gomes-Júnior O, Carraro RM, de Camargo PCLB, Teixeira RHOB, Afonso-Júnior JE, Pêgo-Fernandes PM. Extracorporeal Membrane Oxygenation and Lung Transplantation: Initial Experience at a Single Brazilian Center. Clinics (Sao Paulo) 2020; 75:e1698. [PMID: 32556057 PMCID: PMC7196780 DOI: 10.6061/clinics/2020/e1698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/18/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To report initial experience from the use of extracorporeal membrane oxygenation (ECMO) in patients who received lung transplantation. METHODS Retrospective study of a single tertiary center in the Brazilian state of São Paulo, a national reference in lung transplantation, based on the prospective collection of data from electronic medical records. The period analyzed extended from January 2009 (beginning of the program) until December 2018. RESULTS A total of 75 lung transplants were performed, with ECMO used in 8 (10.7%) cases. Of the patients, 4 (50%) were female. The mean age was 46.4±14.3 years. The causes of the end-stage lung disease that led to transplantation were pulmonary arterial hypertension in 3 (37.5%) patients, bronchiectasis in 2 (25%) patients, pulmonary fibrosis in 2 (25%) patients, and pulmonary emphysema in 1 (12.5%) patient. In our series, 7 (87.5%) cases were sequential bilateral transplantations. Prioritization was necessary in 4 (50%) patients, and in 1 patient, ECMO was used as a bridge to transplantation. The ECMO route was central in 4 (50%), peripheral venovenous in 2 (25%) and peripheral venoarterial in 2 (25%) patients. The mean length of the intensive care unit (ICU) stay was 14±7.5 days and of the hospital stay was 34.1±34.2 days. The mean ECMO duration was 9.3±6.6 days with a 50% decannulation rate. Three patients were discharged (37.5%). CONCLUSION Lung transplantation requires complex treatment, and ECMO has allowed extending the indications for transplantation and provided adjuvant support in the clinical management of these patients.
Collapse
Affiliation(s)
- Flávio Pola-dos-Reis
- Programa de Transplante Pulmonar, Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
- Corresponding author. E-mail: /
| | - Marcos Naoyuki Samano
- Programa de Transplante Pulmonar, Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
| | - Luis Gustavo Abdalla
- Programa de Transplante Pulmonar, Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
| | | | - Lucas Matos Fernandes
- Programa de Transplante Pulmonar, Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
| | - Oswaldo Gomes-Júnior
- Programa de Transplante Pulmonar, Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
| | | | | | | | | | | |
Collapse
|
12
|
Wilkey BJ, Abrams BA. Mitigation of Primary Graft Dysfunction in Lung Transplantation: Current Understanding and Hopes for the Future. Semin Cardiothorac Vasc Anesth 2019; 24:54-66. [DOI: 10.1177/1089253219881980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary graft dysfunction (PGD) is a form of acute lung injury that develops within the first 72 hours after lung transplantation. The overall incidence of PGD is estimated to be around 30%, and the 30-day mortality for grade 3 PGD around 36%. PGD is also associated with the development of bronchiolitis obliterans syndrome, a specific form of chronic lung allograft dysfunction. In this article, we will discuss perioperative strategies for PGD prevention as well as possible future avenues for prevention and treatment.
Collapse
|
13
|
Mark E, Goldsman D, Keskinocak P, Sokol J. Using machine learning to estimate survival curves for patients receiving an increased risk for disease transmission heart, liver, or lung versus waiting for a standard organ. Transpl Infect Dis 2019; 21:e13181. [PMID: 31541522 PMCID: PMC9285951 DOI: 10.1111/tid.13181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/13/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Introduction Over 19% of deceased organ donors are labeled increased risk for disease transmission (IRD) for viral blood‐borne disease transmission. Many potential organ recipients need to decide between accepting an IRD organ offer and waiting for a non–IRD organ. Methods Using machine learning and simulation, we built transplant and waitlist survival models and compared the survival for patients accepting IRD organ offers or waiting for non–IRD organs for the heart, liver, and lung. The simulation consisted of generating 20 000 different scenarios of a recipient either receiving an IRD organ or waiting and receiving a non–IRD organ. Results In the simulations, the 5‐year survival probabilities of heart, liver, and lung recipients who accepted IRD organ offers increased on average by 10.2%, 12.7%, and 7.2%, respectively, compared with receiving a non–IRD organ after average wait times (190, 228, and 223 days, respectively). When the estimated waitlist time was at least 5 days for the liver, and 1 day for the heart and lung, 50% or more of the simulations resulted in a higher chance of 5‐year survival when the patient received an IRD organ versus when the patient remained on the waitlist. We also developed a simple equation to estimate the benefits, in terms of 5‐year survival probabilities, of receiving an IRD organ versus waiting for a non–IRD organ, for a particular set of recipient/donor characteristics. Conclusion For all three organs, the majority of patients are predicted to have higher 5‐year survival accepting an IRD organ offer compared with waiting for a non–IRD organ.
Collapse
Affiliation(s)
- Ethan Mark
- H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta GA USA
| | - David Goldsman
- H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta GA USA
| | - Pinar Keskinocak
- H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta GA USA
| | - Joel Sokol
- H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
14
|
Effects of Smoking on Solid Organ Transplantation Outcomes. Am J Med 2019; 132:413-419. [PMID: 30452885 DOI: 10.1016/j.amjmed.2018.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 01/15/2023]
Abstract
Tobacco smoking is the leading preventable cause of death worldwide. Both donor and recipient smoking have been shown to increase graft loss and mortality in solid organ transplant recipients in many studies. Only in lung transplants is smoking a universal contraindication to transplantation. Transplant centers implement different policies regarding smoking recipients and allografts from smoking donors. Due to scarcity of available allografts, the risks of smoking have to be weighed against the risks of a longer transplant waitlist period. Although transplant centers implement different strategies to encourage smoking cessation pre- and post-transplant, not many studies have been published that validate the efficacy of smoking cessation interventions in this vulnerable population. This article summarizes the results of studies investigating prevalence, impact on outcomes, and cessationinterventions for smoking in the transplant population. We report herein a review of the elevated risks of infection, malignancy, graft loss, cardiovascular events, and mortality in solid organ transplant populations.
Collapse
|
15
|
Schettini-Soares M, Leite PHC, Hajjar LA, Costa AN, Pêgo-Fernandes PM, Samano MN. Lung transplantation with extracorporeal membrane oxygenation as intraoperative support. ACTA ACUST UNITED AC 2019; 44:442-444. [PMID: 30517346 PMCID: PMC6467593 DOI: 10.1590/s1806-37562017000000309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mariana Schettini-Soares
- . Disciplina de Cirurgia Torácica, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Pedro Henrique Cunha Leite
- . Disciplina de Cirurgia Torácica, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Ludhmila Abrahão Hajjar
- . Disciplina de Cardiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - André Nathan Costa
- . Disciplina de Pneumologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Marcos Naoyuki Samano
- . Disciplina de Cirurgia Torácica, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| |
Collapse
|
16
|
Fessler J, Godement M, Pirracchio R, Marandon JY, Thes J, Sage E, Roux A, Parquin F, Cerf C, Fischler M, Le Guen M. Inhaled nitric oxide dependency at the end of double-lung transplantation: a boosted propensity score cohort analysis. Transpl Int 2018; 32:244-256. [DOI: 10.1111/tri.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/02/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Julien Fessler
- Department of Anesthesiology; Hôpital Foch; Suresnes France
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
| | - Mathieu Godement
- Department of Anesthesiology and Intensive Care Medicine; Hôpital Bichat; Paris France
- Université Paris Diderot; Paris France
| | - Romain Pirracchio
- Department of Anesthesiology and Intensive Care Medicine; Hôpital Européen Georges Pompidou; Paris France
- Department of Biostatistics and of Medical Informatics; Inserm U1153; ECSTRA; Hôpital Saint Louis; Université Paris Diderot; Sorbonne Paris Cité; Paris France
| | - Jean-Yves Marandon
- Department of Anesthesiology; Hôpital Foch; Suresnes France
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
| | - Jacques Thes
- Department of Anesthesiology; Hôpital Foch; Suresnes France
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
| | - Edouard Sage
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
- Department of Thoracic Surgery; Hôpital Foch; Suresnes France
| | - Antoine Roux
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
- Department of Pneumology; Hôpital Foch; Suresnes France
| | - François Parquin
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
- Department of Thoracic Surgery; Hôpital Foch; Suresnes France
| | - Charles Cerf
- Department of Intensive Care Medicine; Hôpital Foch; Suresnes France
| | - Marc Fischler
- Department of Anesthesiology; Hôpital Foch; Suresnes France
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
| | - Morgan Le Guen
- Department of Anesthesiology; Hôpital Foch; Suresnes France
- Université Versailles-Saint-Quentin-en-Yvelines; Versailles France
| |
Collapse
|
17
|
Luc JGY, Jackson K, Weinkauf JG, Freed DH, Nagendran J. Feasibility of Lung Transplantation From Donation After Circulatory Death Donors Following Portable Ex Vivo Lung Perfusion: A Pilot Study. Transplant Proc 2018; 49:1885-1892. [PMID: 28923643 DOI: 10.1016/j.transproceed.2017.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/03/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Donation after circulatory death (DCD) has the potential to significantly alleviate the shortage of transplantable lungs. We report our initial experience with the use of portable ex vivo lung perfusion (EVLP) with the Organ Care System Lung device for evaluation of DCD lungs. METHODS We performed a retrospective review of the DCD lung transplantation (LTx) experience at a single institution through the use of a prospective database. RESULTS From 2011 to 2015, 208 LTx were performed at the University of Alberta, of which 11 were DCD LTx with 7 (64%) that underwent portable EVLP. DCD lungs preserved with portable EVLP had a significantly shorter cold ischemic time (161 ± 44 vs 234 ± 60 minutes, P = .045), lower grade of primary graft dysfunction at 72 hours after LTx (0.4 ± 0.5 vs 2.1 ± 0.7, P = .003), similar mechanical ventilation time (55 ± 44 vs 103 ± 97 hours, P = .281), and hospital length of stay (29 ± 11 vs 33 ± 10 days, P = .610). All patients were alive at 1-year follow-up after LTx with improved functional outcomes and acceptable quality of life compared with before LTx, although there were no intergroup differences. CONCLUSIONS In our pilot cohort, portable EVLP was a feasible modality to increase confidence in the use of DCD lungs with validated objective evidence of lung function during EVLP that translates to acceptable clinical outcomes and quality of life after LTx. Further studies are needed to validate these initial findings in a larger cohort.
Collapse
Affiliation(s)
- J G Y Luc
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, Edmonton, Canada
| | - K Jackson
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - J G Weinkauf
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - D H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, Edmonton, Canada; Alberta Transplant Institute, Edmonton, Canada; Canadian National Transplant Research Program, Edmonton, Canada
| | - J Nagendran
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, Edmonton, Canada; Alberta Transplant Institute, Edmonton, Canada; Canadian National Transplant Research Program, Edmonton, Canada.
| |
Collapse
|
18
|
Hoetzenecker K, Schwarz S, Muckenhuber M, Benazzo A, Frommlet F, Schweiger T, Bata O, Jaksch P, Ahmadi N, Muraközy G, Prosch H, Hager H, Roth G, Lang G, Taghavi S, Klepetko W. Intraoperative extracorporeal membrane oxygenation and the possibility of postoperative prolongation improve survival in bilateral lung transplantation. J Thorac Cardiovasc Surg 2017; 155:2193-2206.e3. [PMID: 29653665 DOI: 10.1016/j.jtcvs.2017.10.144] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/15/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The value of intraoperative extracorporeal membrane oxygenation (ECMO) in lung transplantation remains controversial. In our department, ECMO has been used routinely for intraoperatively unstable patients for more than 15 years. Recently, we have extended its indication to a preemptive application in almost all cases. In addition, we prolong ECMO into the early postoperative period whenever graft function does not meet certain quality criteria or in patients with primary pulmonary hypertension. The objective of this study was to review the results of this strategy. METHODS All standard bilateral lung transplantations performed between January 2010 and June 2016 were included in this single-center, retrospective analysis. Patients were divided into 3 groups: group I-no ECMO (n = 116), group II-intraoperative ECMO (n = 343), and group III-intraoperative and prolonged postoperative ECMO (n = 123). The impact of different ECMO strategies on primary graft function, short-term outcomes, and patient survival were analyzed. RESULTS The use of intraoperative ECMO was associated with improved 1-, 3-, and 5-year survival compared with non-ECMO patients (91% vs 82%, 85% vs 76%, and 80% vs 74%; log-rank P = .041). This effect was still evident after propensity score matching of both cohorts. Despite the high number of complex patients in group III, outcome was excellent with higher survival rates than in the non-ECMO group at all time points. CONCLUSIONS Intraoperative ECMO results in superior survival when compared with transplantation without any extracorporeal support. The concept of prophylactic postoperative ECMO prolongation is associated with excellent outcomes in recipients with pulmonary hypertension and in patients with questionable graft function at the end of implantation.
Collapse
Affiliation(s)
- Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Moritz Muckenhuber
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alberto Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Frommlet
- Department of Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Orsolya Bata
- Department of Radiology, National Institute of Oncology, Budapest, Hungary
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Negar Ahmadi
- Department of General Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabriella Muraközy
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmut Hager
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Roth
- Department of Anaesthesiology, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - György Lang
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Thoracic Surgery, Semmelweis University, Budapest, Hungary
| | - Shahrokh Taghavi
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Abstract
Primary graft dysfunction is a form of acute injury after lung transplantation that is associated with significant short- and long-term morbidity and mortality. Multiple mechanisms contribute to the pathogenesis of primary graft dysfunction, including ischemia reperfusion injury, epithelial cell death, endothelial cell dysfunction, innate immune activation, oxidative stress, and release of inflammatory cytokines and chemokines. This article reviews the epidemiology, pathogenesis, risk factors, prevention, and treatment of primary graft dysfunction.
Collapse
Affiliation(s)
- Mary K Porteous
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | - James C Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Diamond JM, Arcasoy S, Kennedy CC, Eberlein M, Singer JP, Patterson GM, Edelman JD, Dhillon G, Pena T, Kawut SM, Lee JC, Girgis R, Dark J, Thabut G. Report of the International Society for Heart and Lung Transplantation Working Group on Primary Lung Graft Dysfunction, part II: Epidemiology, risk factors, and outcomes—A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2017; 36:1104-1113. [DOI: 10.1016/j.healun.2017.07.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/28/2022] Open
|
21
|
Porteous MK, Ky B, Kirkpatrick JN, Shinohara R, Diamond JM, Shah RJ, Lee JC, Christie JD, Kawut SM. Diastolic Dysfunction Increases the Risk of Primary Graft Dysfunction after Lung Transplant. Am J Respir Crit Care Med 2017; 193:1392-400. [PMID: 26745666 DOI: 10.1164/rccm.201508-1522oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Primary graft dysfunction (PGD) is a significant cause of early morbidity and mortality after lung transplant and is characterized by severe hypoxemia and infiltrates in the allograft. The pathogenesis of PGD involves ischemia-reperfusion injury. However, subclinical increases in pulmonary venous pressure due to left ventricular diastolic dysfunction may contribute by exacerbating capillary leak. OBJECTIVES To determine whether a higher ratio of early mitral inflow velocity (E) to early diastolic mitral annular velocity (é), indicative of worse left ventricular diastolic function, is associated with a higher risk of PGD. METHODS We performed a retrospective cohort study of patients in the Lung Transplant Outcomes Group who underwent bilateral lung transplant at our institution between 2004 and 2014 for interstitial lung disease, chronic obstructive pulmonary disease, or pulmonary arterial hypertension. Transthoracic echocardiograms obtained during evaluation for transplant listing were analyzed for E/é and other measures of diastolic function. PGD was defined as PaO2/FiO2 less than or equal to 200 with allograft infiltrates at 48 or 72 hours after reperfusion. The association between E/é and PGD was assessed with multivariable logistic regression. MEASUREMENTS AND MAIN RESULTS After adjustment for recipient age, body mass index, mean pulmonary arterial pressure, and pretransplant diagnosis, higher E/é and E/é greater than 8 were associated with an increased risk of PGD (E/é odds ratio, 1.93; 95% confidence interval, 1.02-3.64; P = 0.04; E/é >8 odds ratio, 5.29; 95% confidence interval, 1.40-20.01; P = 0.01). CONCLUSIONS Differences in left ventricular diastolic function may contribute to the development of PGD. Future trials are needed to determine whether optimization of left ventricular diastolic function reduces the risk of PGD.
Collapse
Affiliation(s)
- Mary K Porteous
- 1 Department of Medicine.,2 Center for Clinical Epidemiology and Biostatistics, and
| | - Bonnie Ky
- 1 Department of Medicine.,2 Center for Clinical Epidemiology and Biostatistics, and.,3 Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James N Kirkpatrick
- 4 Department of Medicine, University of Washington, Seattle, Washington; and
| | | | - Joshua M Diamond
- 1 Department of Medicine.,2 Center for Clinical Epidemiology and Biostatistics, and
| | - Rupal J Shah
- 5 Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Jason D Christie
- 1 Department of Medicine.,2 Center for Clinical Epidemiology and Biostatistics, and
| | - Steven M Kawut
- 1 Department of Medicine.,2 Center for Clinical Epidemiology and Biostatistics, and.,3 Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Abstract
Overall, there is a lack of randomized controlled trials examining the correlation between fluid volume delivery and outcomes in postoperative lung transplant patients. However, using thoracic surgery patients as a guide, the evidence suggests that hypervolemia correlates with pulmonary edema and should be avoided in lung transplant patients. However, it is recognized that patients with hemodynamic instability may require volume for attenuation of this situation, but it can likely be mitigated with the use of inotropic medication to maintain adequate perfusion and avoid the development of edema.
Collapse
|
23
|
Wallinder A, Riise GC, Ricksten SE, Silverborn M, Dellgren G. Transplantation after ex vivo lung perfusion: A midterm follow-up. J Heart Lung Transplant 2016; 35:1303-1310. [DOI: 10.1016/j.healun.2016.05.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/08/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022] Open
|
24
|
Soresi S, Zeriouh M, Sabashnikov A, Sarang Z, Mohite PN, Patil NP, Mansur A, Weymann A, Wippermann J, Wahlers T, Reed A, Carby M, Simon AR, Popov AF. Extended Recipient Criteria in Lung Transplantation: Impact of Pleural Abnormalities on Primary Graft Dysfunction. Ann Thorac Surg 2016; 101:2112-9. [DOI: 10.1016/j.athoracsur.2015.11.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/13/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
|
25
|
Camargo PCLBD, Teixeira RHDOB, Carraro RM, Campos SV, Afonso Junior JE, Costa AN, Fernandes LM, Abdalla LG, Samano MN, Pêgo-Fernandes PM. Lung transplantation: overall approach regarding its major aspects. J Bras Pneumol 2016; 41:547-53. [PMID: 26785965 PMCID: PMC4723007 DOI: 10.1590/s1806-37562015000000100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Lung transplantation is a well-established treatment for patients with advanced lung disease. The evaluation of a candidate for transplantation is a complex task and involves a multidisciplinary team that follows the patient beyond the postoperative period. Currently, the mean time on the waiting list for lung transplantation in the state of São Paulo, Brazil, is approximately 18 months. For Brazil as a whole, data from the Brazilian Organ Transplant Association show that, in 2014, there were 67 lung transplants and 204 patients on the waiting list for lung transplantation. Lung transplantation is most often indicated in cases of COPD, cystic fibrosis, interstitial lung disease, non-cystic fibrosis bronchiectasis, and pulmonary hypertension. This comprehensive review aimed to address the major aspects of lung transplantation: indications, contraindications, evaluation of transplant candidates, evaluation of donor candidates, management of transplant recipients, and major complications. To that end, we based our research on the International Society for Heart and Lung Transplantation guidelines and on the protocols used by our Lung Transplant Group in the city of São Paulo, Brazil.
Collapse
Affiliation(s)
| | | | - Rafael Medeiros Carraro
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Vidal Campos
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - André Nathan Costa
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lucas Matos Fernandes
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis Gustavo Abdalla
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcos Naoyuki Samano
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
26
|
Porteous MK, Diamond JM, Christie JD. Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant 2015; 20:506-14. [PMID: 26262465 PMCID: PMC4624097 DOI: 10.1097/mot.0000000000000232] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In 2005, the International Society for Heart and Lung Transplantation published a standardized definition of primary graft dysfunction (PGD), facilitating new knowledge on this form of acute lung injury that occurs within 72 h of lung transplantation. PGD continues to be associated with significant morbidity and mortality. This article will summarize the current literature on the epidemiology of PGD, pathogenesis, risk factors, and preventive and treatment strategies. RECENT FINDINGS Since 2011, several manuscripts have been published that provide insight into the clinical risk factors and pathogenesis of PGD. In addition, several transplant centers have explored preventive and treatment strategies for PGD, including the use of extracorporeal strategies. More recently, results from several trials assessing the role of extracorporeal lung perfusion may allow for much-needed expansion of the donor pool, without raising PGD rates. SUMMARY This article will highlight the current state of the science regarding PGD, focusing on recent advances, and set a framework for future preventive and treatment strategies.
Collapse
Affiliation(s)
- Mary K Porteous
- aDepartment of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA bCenter for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
27
|
Ius F, Sommer W, Tudorache I, Kühn C, Avsar M, Siemeni T, Salman J, Hallensleben M, Kieneke D, Greer M, Gottlieb J, Haverich A, Warnecke G. Early donor-specific antibodies in lung transplantation: risk factors and impact on survival. J Heart Lung Transplant 2014; 33:1255-63. [PMID: 25070908 DOI: 10.1016/j.healun.2014.06.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The impact of early donor-specific anti-HLA antibodies (DSA) on patient and graft survival after lung transplantation remains controversial. In this study we analyzed risk factors for DSA that developed before initial hospital discharge after lung transplantation (early DSA) and compared mid-term outcomes in patients with or without DSA. METHODS Between January 2009 and August 2013, 546 patients underwent lung transplantation at our institution. One hundred (18%) patients developed early DSA (Group A) and 446 (82%) patients (Group B) did not. Patient records were retrospectively reviewed. RESULTS Retransplantation (odds ratio [OR] = 2.7, 95% confidence interval [CI] 1.1 to 6.5, p = 0.03), pre-operative HLA antibodies (OR = 2.1, 95% CI 1.2 to 3.4, p = 0.003) and primary graft dysfunction (PGD) score Grade 2 or 3 at 48 hours (OR = 2.6, 95% CI 1.5 to 4.6, p = 0.001) were associated with early DSA development. Overall, 1- and 3-year survival in Group A and B patients was 79 ± 4% vs 88 ± 2% and 57 ± 8% vs 74 ± 3%, respectively (p = 0.019). Eleven Group A (11%) and 32 Group B (7%) patients died before hospital discharge (p = 0.34). Among patients surviving beyond discharge, 1- and 3-year survival in Group A and B patients was 89 ± 4% vs 95 ± 1% and 65 ± 8% vs 80 ± 3% in Group A and B patients, respectively (p = 0.04). Multivariate analysis identified early anti-HLA Class II DSA (OR = 1.9, 95% CI 1.0 to 3.4, p = 0.04) as an independent risk factor for post-discharge mortality but not for in-hospital mortality. CONCLUSIONS Pre-operative HLA antibodies, retransplantation or post-operative PGD increase the risk of developing early DSA, which were independently associated with an increased risk for mortality.
Collapse
Affiliation(s)
- Fabio Ius
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover
| | - Wiebke Sommer
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover; German Centre for Lung Research, Hannover
| | - Igor Tudorache
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover
| | - Christian Kühn
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover
| | - Murat Avsar
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover
| | - Thierry Siemeni
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover
| | - Jawad Salman
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover
| | | | - Daniela Kieneke
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Mark Greer
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Gottlieb
- German Centre for Lung Research, Hannover; Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover; German Centre for Lung Research, Hannover
| | - Gregor Warnecke
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover; German Centre for Lung Research, Hannover.
| |
Collapse
|
28
|
Liu Y, Liu Y, Su L, Jiang SJ. Recipient-related clinical risk factors for primary graft dysfunction after lung transplantation: a systematic review and meta-analysis. PLoS One 2014; 9:e92773. [PMID: 24658073 PMCID: PMC3962459 DOI: 10.1371/journal.pone.0092773] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/25/2014] [Indexed: 01/08/2023] Open
Abstract
Background Primary graft dysfunction (PGD) is the main cause of early morbidity and mortality after lung transplantation. Previous studies have yielded conflicting results for PGD risk factors. Herein, we carried out a systematic review and meta-analysis of published literature to identify recipient-related clinical risk factors associated with PGD development. Method A systematic search of electronic databases (PubMed, Embase, Web of Science, Cochrane CENTRAL, and Scopus) for studies published from 1970 to 2013 was performed. Cohort, case-control, or cross-sectional studies that examined recipient-related risk factors of PGD were included. The odds ratios (ORs) or mean differences (MDs) were calculated using random-effects models Result Thirteen studies involving 10042 recipients met final inclusion criteria. From the pooled analyses, female gender (OR 1.38, 95% CI 1.09 to 1.75), African American (OR 1.82, 95%CI 1.36 to 2.45), idiopathic pulmonary fibrosis (IPF) (OR 1.78, 95% CI 1.49 to 2.13), sarcoidosis (OR 4.25, 95% CI 1.09 to 16.52), primary pulmonary hypertension (PPH) (OR 3.73, 95%CI 2.16 to 6.46), elevated BMI (BMI≥25 kg/m2) (OR 1.83, 95% CI 1.26 to 2.64), and use of cardiopulmonary bypass (CPB) (OR 2.29, 95%CI 1.43 to 3.65) were significantly associated with increased risk of PGD. Age, cystic fibrosis, secondary pulmonary hypertension (SPH), intra-operative inhaled nitric oxide (NO), or lung transplant type (single or bilateral) were not significantly associated with PGD development (all P>0.05). Moreover, a nearly 4 fold increased risk of short-term mortality was observed in patients with PGD (OR 3.95, 95% CI 2.80 to 5.57). Conclusions Our analysis identified several recipient related risk factors for development of PGD. The identification of higher-risk recipients and further research into the underlying mechanisms may lead to selective therapies aimed at reducing this reperfusion injury.
Collapse
Affiliation(s)
- Yao Liu
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yi Liu
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lili Su
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shu-juan Jiang
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
29
|
Wallinder A, Ricksten SE, Silverborn M, Hansson C, Riise GC, Liden H, Jeppsson A, Dellgren G. Early results in transplantation of initially rejected donor lungs after ex vivo lung perfusion: a case-control study. Eur J Cardiothorac Surg 2013; 45:40-4; discussion 44-5. [PMID: 23666375 DOI: 10.1093/ejcts/ezt250] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES An increasing number of studies have shown that ex vivo lung perfusion (EVLP) is safe and that rejected donor lungs can be resuscitated and used for lung transplantation (LTx). Early clinical outcomes in patients transplanted with reconditioned lungs at our centre were reviewed and compared with those of contemporary non-EVLP controls. METHODS During 18 months starting January 2011, 11 pairs of donor lungs initially deemed unsuitable for transplantation underwent EVLP. Haemodynamic (pulmonary flow, vascular resistance and artery pressure) and respiratory (peak airway pressure and compliance) parameters were analysed during evaluation. Lungs that improved (n = 11) to meet International Society of Heart and Lung Transplantation criteria were transplanted and compared with patients transplanted with non-EVLP lungs (n = 47) during the same time period. RESULTS Donor lungs were initially rejected due to either inferior PaO2/FiO2 ratio (n = 9), bilateral infiltrate on chest X-ray (n = 1) or ongoing extra corporeal membrane oxygenation (n = 1). The donor lungs improved from a mean PaO2/FiO2 ratio of 27.9 kPa in the donor to a mean of 59.6 kPa at the end of the EVLP (median improvement 28.4 kPa, range 21.0-50.7 kPa). Two single lungs were deemed unsuitable and not used for LTx. Eleven recipients from the regular waiting list underwent either single (n = 3) LTx or double (n = 8) LTx with EVLP-treated lungs. The median time to extubation (12 (range, 3-912) vs 6 (range, 2-1296) h) and median intensive care unit (ICU) stay (152 (range, 40-625) vs 48 (range, 22-1632) h) were longer in the EVLP group (P = 0.05 and P = 0.01, respectively). There were no differences in length of hospital stay (median 28 (range 25-93) vs 28 (18-209), P = 0.21). Two patients in the EVLP group and 6 in the control group had primary graft dysfunction >Grade 1 at 72 h postoperatively. Three patients in the control group died before discharge. All recipients of EVLP lungs were discharged alive from hospital. CONCLUSIONS The use of EVLP seems safe and indicates that lungs otherwise refused for LTx can be recovered and subsequently used for transplantation, although time to extubation and ICU stay were longer for the EVLP group.
Collapse
Affiliation(s)
- Andreas Wallinder
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|