1
|
Fajardo RG, Uddandam A, Cunningham J, Longo C, Grandi SM. Pediatric infections in the first year of life following maternal biologic exposure for autoimmune disorder treatment: A systematic review. Pharmacol Res 2025:107792. [PMID: 40419122 DOI: 10.1016/j.phrs.2025.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/20/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
Pregnancy induces immunologic and physiologic changes that can alter disease activity for women with autoimmune disorders (AD), and if exacerbated, may necessitate treatment. Biologics are increasingly prescribed due to their targeted effects, but transplacental transfer to the fetus may increase potential risks to the infant. This review examines the risk of infection and respiratory distress in the first year of life among infants born to women with AD using biologics during pregnancy versus infants exposed to standard therapies. We systematically searched five databases from January 2012 to June 2023. Inclusion was restricted to cohort and case-control studies including infants born to women with rheumatoid arthritis, multiple sclerosis, or systemic lupus erythematosus prescribed a biologic or standard therapy during pregnancy. Quality assessment was performed using the ROBINS-I tool for observational studies. Due to between-study heterogeneity in effect estimates and outcomes, studies were not pooled. Of 2975 identified citations, 10 studies were included. In three studies examining the risk of infant infection, findings were inconsistent largely due to lack of precision (OR range: 0.6-1.4, 95% CI range: 0.2-2.8). For respiratory distress, two studies reported an increased risk among infants exposed to biologics (HR 1.30, 95% CI 1.03,1.74 and RR 1.52, 95% CI 1.06, 2.18) while one did not. Most studies (80%) had a moderate risk of bias. The findings suggest conflicting results for the risk of infant infection and possible associations with respiratory distress. Given the limited number of studies, additional studies are needed to inform treatment decisions for AD during pregnancy.
Collapse
Affiliation(s)
| | - Akash Uddandam
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jessie Cunningham
- Health Sciences Library, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cristina Longo
- Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
| | - Sonia M Grandi
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Yu H, Jin S, Zeng M, Yang Z, Wang X. TIGIT antibody with PVR competitive ability enhances cancer immunotherapy and capable of eliciting anti-tumour immune memory. Br J Cancer 2025:10.1038/s41416-025-03046-w. [PMID: 40394151 DOI: 10.1038/s41416-025-03046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 04/01/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin (Ig) and ITIM domains (TIGIT) is a checkpoint receptor thought to be involved in mediating T-cell exhaustion and dysfunction of natural killer (NK) cells in tumours and is emerging as novel promising targets in immunotherapy, however, the ligand binding and the efficacy of its antibody still need to be further explored. METHODS Four different TIGIT antibodies in characteristics of antigen binding, in vitro effects on activated T cells, Fc region functions and tumour inhibition in animal models were compared. The antibody as monotherapy and combined with anti-PD-L1 antibody, effects on PBMC in ex vivo coculture with autologous human CRC organoids as well as PK profile were evaluated. RESULTS Studies demonstrated that TIGIT antibody with PVR-competitive ability as monotherapy resulted in inhibition of tumour growth, sustained anti-tumour immune memory in tumour re-challenge mice, enhanced anti-tumour therapy in combination with anti-PD-L1. Ex vivo coculture assay suggested that TIGIT antibody treatment activated immune cells and promoted infiltration and tumour killing ability of autologous PBMC in human CRC organoids. CONCLUSIONS Our study broadens the knowledge of TIGIT antibody in cancer immunotherapy and may benefit future development of next-generation checkpoint inhibitors with improved clinical outcomes.
Collapse
Affiliation(s)
- Huijuan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Zeng
- Guangdong Annpobio Co., Ltd, Guangzhou, China
| | | | - Xiaofei Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
- Guangdong Annpobio Co., Ltd, Guangzhou, China.
| |
Collapse
|
3
|
Liu YX, Gong LY, Liu JL, Pei Q, Kuang Y, Yang GP. Physiologically-based pharmacokinetic modeling to predict the exposure and provide dosage regimens of adalimumab in patients with juvenile idiopathic arthritis. Expert Rev Clin Pharmacol 2025:1-8. [PMID: 40324884 DOI: 10.1080/17512433.2025.2502366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/15/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Adalimumab has been approved for treating juvenile idiopathic arthritis (JIA). This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model for adalimumab in JIA patients to optimize personalized treatment. METHODS A comprehensive literature search identified 13 clinical studies as the dataset for constructing and validating a PBPK model of adalimumab. Initially, a PBPK model for adalimumab in adults was constructed using PK-Sim and Mobi software. Subsequently, virtual pediatric populations were created by incorporating age-dependent parameters from the PK-Sim database, extending the model to JIA patients. Finally, based on the developed PBPK model for adalimumab in JIA patients, dosing regimens were evaluated for different age groups. RESULTS This study successfully developed and validated a PBPK model for adalimumab in both adult and pediatric populations. The model for adults accurately predicted 92.90% of the concentrations within 0.5-2 times the observed values, while the pediatric model predicted 90.62% of the concentrations within 0.5-2-fold range. For pediatric patients with JIA, age- and weight-based dosing is recommended to achieve trough concentrations comparable to those in adults. CONCLUSION A PBPK model for adalimumab in pediatric patients with JIA was developed, providing a basis for personalized dosing regimens in this population.
Collapse
Affiliation(s)
- Ya-Xin Liu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li-Ying Gong
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of the Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Jin-Long Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yun Kuang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Ping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Carrozzo G, Pinardi F, Lugaresi A. Long-term safety evaluation of natalizumab during pregnancy and lactation in patients with multiple sclerosis. Neurol Sci 2025:10.1007/s10072-025-08188-6. [PMID: 40332701 DOI: 10.1007/s10072-025-08188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Natalizumab (NTZ) is a monoclonal antibody used in treating relapsing forms of multiple sclerosis (MS). However, there is still insufficient information about its long-term safety during pregnancy and lactation. This study aims to provide further insights into the short- and long-term effects of NTZ on mothers with MS and their children exposed to the drug during pregnancy and breastfeeding. MATERIALS AND METHODS We recruited prospectively and retrospectively 14 women with MS, treated with NTZ, and their 15 children. All women continued NTZ treatment throughout pregnancy, and 10 of them also during breastfeeding. The follow-up period ranged from 1 to 5 years post-delivery, in the group exposed to NTZ both during pregnancy and breastfeeding; from 2 to 10 years post-delivery in the group exposed to NTZ exclusively during pregnancy. RESULTS During pregnancy, no relapses were reported, suggesting persistent efficacy of NTZ therapy. However, 1 out of 14 mothers experienced postpartum clinical events, without concomitant MRI activity MRI findings, and 2 other patients presented an isolated increase in lesion load, on MRI performed within 1 month after delivery, without clinical relapses. Neonatal outcomes were favorable, with normal birth parameters and absence of infections or developmental delays, with no differences between those exposed or not to NTZ during breastfeeding. CONCLUSIONS NTZ therapy during pregnancy and breastfeeding is associated with favorable maternal and neonatal outcomes up to 10 years follow-up.
Collapse
Affiliation(s)
- Giannicola Carrozzo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Federica Pinardi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto delle Scienze Neurologiche di Bologna - Ospedale Bellaria, Padiglione Tinozzi, Via Altura 3A, 40139, Bologna, Italy.
| | - Alessandra Lugaresi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Sasaki T, Kimura S, Noda A, Murakami Y, Miyoshi S, Akehi M, Ochiai K, Watanabe M, Higuchi T, Matsuura E. Investigating the fate of Zirconium-89 labelled antibody in cynomolgus macaques. Nucl Med Biol 2025; 144-145:109001. [PMID: 39985867 DOI: 10.1016/j.nucmedbio.2025.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Preclinical pharmacokinetic studies of therapeutic antibodies in non-human primates are desired because of the difficulty in extrapolating ADME data from animal models to humans. We evaluated the pharmacokinetics of 89Zr (Zirconium-89) -labelled anti-KLH human IgG and its metabolites to confirm their non-specific/physiological accumulation in healthy cynomolgus macaques. The anti-KLH antibody was used as a negative control, ensuring that the observed distribution reflected general IgG behavior rather than antigen-specific accumulation. This provides a valuable reference for comparing the biodistribution of targeted antibodies. METHODS Selected IgG was conjugated to desferrioxamine (DFO), labelled with 89Zr, and injected into healthy cynomolgus macaques. PET/CT images at the whole-body level were acquired at different time points, and standard uptake values (SUV) in regions of interest, such as the heart, liver, spleen, kidneys, bone, and muscles, were calculated. The distribution of a shortened antibody variant, 89Zr-labelled Fab, as well as that of [89Zr]Zr-DFO and [89Zr]Zr-oxalate, the expected metabolites of 89Zr- labelled IgG, was also assessed. RESULTS After 89Zr-labelled IgG injection, the SUV in the heart, vertebral body, and muscle decreased, in line with the 89Zr concentration decrease in the circulation, whereas radioactivity increased over time in the kidneys and liver. Autoradiography of the renal sections indicated that most of the 89Zr- labelled IgG radioactivity accumulated in the renal cortex. Relatively high accumulation in the kidneys was also observed in 89Zr- labelled Fab-injected macaques, and renal autoradiographs of these animals showed that the renal cortex was the preferred accumulation site. However, [89Zr]Zr-DFO was rapidly excreted into the urine, whereas [89Zr]Zr-oxalate was highly accumulated in the epiphysis of the long bones and vertebral body. CONCLUSION In the non-human primate cynomolgus macaque, 89Zr- labelled IgG accumulated in the kidneys and the liver. However, [89Zr]Zr-DFO and 89Zr did not accumulate in these organs. This preclinical pharmacokinetic study performed with human IgG in a non-human primate model using PET is of great significance as it sheds light on the basic fate and distribution of 89Zr- labelled IgG.
Collapse
Affiliation(s)
- Takanori Sasaki
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Sadaaki Kimura
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Akihiro Noda
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Yoshihiro Murakami
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Sosuke Miyoshi
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masaru Akehi
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Neutron Therapy Research Center, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kazuhiko Ochiai
- School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Masami Watanabe
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Takahiro Higuchi
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital of Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Eiji Matsuura
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Bermúdez-Abreut E, Fundora-Barrios T, Hernández Fernández DR, Noa Romero E, Fraga-Quintero A, Casadesús Pazos AV, Fernández-Marrero B, Plasencia Iglesias CA, Clavel Pérez M, Sosa Aguiar K, Sánchez-Ramírez B, Hernández T. Antiviral activity of an ACE2-Fc fusion protein against SARS-CoV-2 and its variants. PLoS One 2025; 20:e0312402. [PMID: 39752453 PMCID: PMC11698409 DOI: 10.1371/journal.pone.0312402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/04/2024] [Indexed: 01/06/2025] Open
Abstract
SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19. This fusion protein was able to block the binding of SARS-CoV-2 RBD to ACE2 receptor as measured by ELISA and flow cytometry inhibition assays. Moreover, we used classical neutralization assays and a progeny neutralization assay to show that the ACE2-hFcLALA fusion protein is capable of neutralizing the authentic virus. Additionally, we found that this fusion protein was more effective in preventing in vitro infection with different variants of interest (alpha, beta, delta, and omicron) compared to the D614G strain. Our results suggest the potential of this molecule to be used in both therapeutic and preventive settings against current and emerging mutants that use ACE2 as a gateway to human cells.
Collapse
Affiliation(s)
| | - Talia Fundora-Barrios
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Enrique Noa Romero
- National Laboratory of Civil Defense (NLCD), Jamaica Highway and National Highway, San José of Lajas, Mayabeque, Cuba
| | - Anitza Fraga-Quintero
- National Laboratory of Civil Defense (NLCD), Jamaica Highway and National Highway, San José of Lajas, Mayabeque, Cuba
| | - Ana V. Casadesús Pazos
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | | | - Marilyn Clavel Pérez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Katya Sosa Aguiar
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Tays Hernández
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| |
Collapse
|
7
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
8
|
De Sutter PJ, Gasthuys E, Vermeulen A. Comparison of monoclonal antibody disposition predictions using different physiologically based pharmacokinetic modelling platforms. J Pharmacokinet Pharmacodyn 2024; 51:639-651. [PMID: 37952005 DOI: 10.1007/s10928-023-09894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models can be used to leverage physiological and in vitro data to predict monoclonal antibody (mAb) concentrations in serum and tissues. However, it is currently not known how consistent predictions of mAb disposition are across PBPK modelling platforms. In this work PBPK simulations of IgG, adalimumab and infliximab were compared between three platforms (Simcyp, PK-Sim, and GastroPlus). Accuracy of predicted serum and tissue concentrations was assessed using observed data collected from the literature. Physiological and mAb related input parameters were also compared and sensitivity analyses were carried out to evaluate model behavior when input values were altered. Differences in serum kinetics of IgG between platforms were minimal for a dose of 1 mg/kg, but became more noticeable at higher dosages (> 100 mg/kg) and when reference (healthy) physiological input values were altered. Predicted serum concentrations of both adalimumab and infliximab were comparable across platforms, but were noticeably higher than observed values. Tissue concentrations differed remarkably between the platforms, both for total- and interstitial fluid (ISF) concentrations. The accuracy of total tissue concentrations was within a three-fold of observed values for all tissues, except for brain tissue concentrations, which were overpredicted. Predictions of tissue ISF concentrations were less accurate and were best captured by GastroPlus. Overall, these simulations show that the different PBPK platforms generally predict similar mAb serum concentrations, but variable tissue concentrations. Caution is therefore warranted when PBPK models are used to simulate effect site tissue concentrations of mAbs without data to verify the predictions.
Collapse
Affiliation(s)
- Pieter-Jan De Sutter
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Elke Gasthuys
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Bellier JP, Román Viera AM, Christiano C, Anzai JAU, Moreno S, Campbell EC, Godwin L, Li A, Chen AY, Alam SM, Saba A, Yoo HB, Yang HS, Chhatwal JP, Selkoe DJ, Liu L. Identification of fibrinogen as a plasma protein binding partner for lecanemab biosimilar IgG. Ann Clin Transl Neurol 2024; 11:3192-3204. [PMID: 39476320 DOI: 10.1002/acn3.52227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE Recombinant monoclonal therapeutic antibodies like lecanemab, which target amyloid beta in Alzheimer's disease, offer a promising approach for modifying the disease progression. Due to its relatively short half-life, lecanemab administered as a bi-monthly infusion (typically 10 mg/kg) has a relatively brief half-life. Interaction with abundant plasma proteins binder in the bloodstream can affect pharmacokinetics of drugs, including their half-life. In this study, we investigated potential plasma protein binding (PPB) interaction to lecanemab using lecanemab biosimilar. METHODS Lecanemab biosimilar used in this study was based on publicly available sequences. ELISA and western blotting were used to assess lecanemab biosimilar immunoreactivity in the fractions of human plasma obtained through size exclusion chromatography. The binding of lecanemab biosimilar to candidate plasma binders was confirmed by western blotting, ELISA, and surface plasmon resonance analysis. RESULTS Using a combination of equilibrium dialysis, ELISA, and western blotting in human plasma, we first describe the presence of likely PPB partners to lecanemab biosimilar and then identify fibrinogen as one of them. Utilizing surface plasmon resonance, we confirmed that lecanemab biosimilar does bind to fibrinogen, although with lower affinity than to monomeric amyloid beta. INTERPRETATION In the context of lecanemab therapy, these results imply that fibrinogen levels could impact the levels of free antibodies in the bloodstream and that fibrinogen might serve as a reservoir for lecanemab. More broadly, these results indicate that PPB may be an important consideration when clinically utilizing therapeutic antibodies in neurodegenerative disease.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea M Román Viera
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlyn Christiano
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana A U Anzai
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Moreno
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily C Campbell
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucas Godwin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Li
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan Y Chen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah M Alam
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriana Saba
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Han Bin Yoo
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis J Selkoe
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Liu
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Bocuzzi V, Bridoux J, Pirotte M, Withofs N, Hustinx R, D'Huyvetter M, Caers J, Marcion G. CD38 as theranostic target in oncology. J Transl Med 2024; 22:998. [PMID: 39501292 PMCID: PMC11539646 DOI: 10.1186/s12967-024-05768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities. Its importance has led to the development of various anti-CD38 monoclonal antibodies (mAbs), including daratumumab and isatuximab, approved for MM treatment. These mAbs exert their anti-tumor effects through Fc-dependent immune mechanisms and immunomodulation, enhancing T-cell and NK-cell-mediated responses. However, resistance mechanisms arise during the treatment with daratumumab, creating the necessity for new therapies. This review explains current knowledge about the role of CD38 as a target in oncology and aims to delineate the use of single domain antibodies (sdAbs) as innovative theranostic tools in nuclear medicine. For diagnostic purposes, PET radionuclides like 68 Ga, 64Cu, and SPECT radionuclides like 99mTc and 111In, are commonly used. Significant progress has been made in anti-CD38 radioligand therapy (RLT), with anti-CD38 antibodies providing insights into tumor biology and treatment efficacy. In terms of therapy, RLT is a promising approach that offers precise targeting of malignant cells while minimizing exposure to healthy tissue. This involves the use of radionuclides emitting α particles, like 225Ac, 212Pb or 211At, and β--particles like 90Y, 131I, or 177Lu, to exert cytotoxic effects. Derived from Camelidae heavy chain antibodies, sdAbs offer advantages over conventional mAbs such as small size, high stability, specificity, and ability to recognize hidden epitopes. CD38-specific sdAbs, such as sdAb 2F8, characterized by our laboratory, showing excellent tumor targeting and their engineered constructs, such as biparatopic antibodies and chimeric antibodies, represent a new generation of theranostic agents for diagnosis and treatment CD38-expressing malignancies.
Collapse
Affiliation(s)
- Valentina Bocuzzi
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Jessica Bridoux
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Nadia Withofs
- Department of Nuclear Medicine and Oncology, CHU de Liège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Matthias D'Huyvetter
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jo Caers
- Department of Hematology, CHU de Liège, Liège, Belgium.
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, Zhou J, Ye X, Lu J, Wang W, Yu L, Li Y, Qu L, Wang J, Li F, Chen L, Wu L, Feng L. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15:8932. [PMID: 39414822 PMCID: PMC11484855 DOI: 10.1038/s41467-024-53242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Antibody-dependent enhancement (ADE) is a potential concern for the development of Zika virus (ZIKV) vaccines. Cross-reactive but poorly neutralizing antibodies, usually targeting viral pre-membrane or envelope (E) proteins, can potentially enhance dengue virus (DENV) infection. Although E domain III (EDIII) contains ZIKV-specific epitopes, its immunogenicity is poor. Here, we show that dimeric EDIII, fused to human IgG1 Fc fragment (EDIII-Fc) and encoded by circular RNA (circRNA), induces better germinal center reactions and higher neutralizing antibodies compared to circRNAs encoding monomeric or trimeric EDIII. Two doses of circRNAs encoding EDIII-Fc and ZIKV nonstructural protein NS1, another protective antigen, prevent lethal ZIKV infection in neonates born to immunized C57BL/6 mice and in interferon-α/β receptor knockout adult C57BL/6 mice. Importantly, a single-dose optimized circRNA vaccine with improved antigen expression confers potent and durable protection without inducing obvious DENV ADE in mice, laying the groundwork for developing flavivirus vaccines based on circRNAs encoding EDIII-Fc and NS1.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxia Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Jiang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yufen Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhou
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianmiao Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junnan Lu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 501180, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Linping Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Franz M, Jairam RK, Kuepfer L, Hanke N. PBPK-based translation from preclinical species to humans for the full-size IgG therapeutic efalizumab. Front Pharmacol 2024; 15:1418870. [PMID: 39411068 PMCID: PMC11473394 DOI: 10.3389/fphar.2024.1418870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Animal models play a vital role in pharmaceutical research and development by supporting the planning and design of later clinical studies. To improve confidence and reliability of first in human dose estimates it is essential to assess the comparability of animal studies with the human situation. In the context of large molecules, it is particularly important to evaluate the cross-species-translatability of parameters related to neonatal fragment crystallizable receptor (FcRn) binding and target mediated drug disposition (TMDD), as they greatly influence distribution and disposition of proteins in the body of an organism. Methods Plasma pharmacokinetic data of the therapeutic protein efalizumab were obtained from literature. Physiologically based pharmacokinetic (PBPK) models were built for three different species (rabbit, non-human primate (NHP), human). Target binding was included in the NHP and human models. The assumption of similar target turnover and target-binding in NHP and human was explored, to gain insights into how these parameters might be translated between species. Results Efalizumab PBPK models were successfully developed for three species and concentration-time-profiles could be described appropriately across different intravenously administered doses. The final NHP and human models feature a common set of parameters for target turnover and drug-target-complex internalization, as well as comparable target-binding parameters. Our analyses show that different parameter values for FcRn affinity are crucial to accurately describe the concentration-time profiles. Discussion Based on the available data in rabbits, NHP and humans, parameters for FcRn affinity cannot be translated between species, but parameters related to target mediated drug disposition can be translated from NHP to human. The inclusion of additional pharmacokinetic (PK) data including different efalizumab doses would further support and confirm our findings on identifying TMDD and, thus, binding kinetics of efalizumab in NHPs. Furthermore, we suggest that information on target expression and internalization rates could make it possible to develop comprehensive human PBPK models with minimal animal testing. In this project, we compared the pharmacokinetics of a therapeutic protein in rabbit, NHP and human using an open PBPK modeling platform (Open Systems Pharmacology Suite, http://www.open-systems-pharmacology.org). Our findings could support similar translatory studies for first in human dose predictions in the future.
Collapse
Affiliation(s)
- Maria Franz
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, Ingelheim, Germany
| | - Ravi Kumar Jairam
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Nina Hanke
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, Ingelheim, Germany
| |
Collapse
|
13
|
Ting MYL, Vega-Tapia F, Anguita R, Cuitino L, Valenzuela RA, Salgado F, Valenzuela O, Ibañez S, Marchant R, Urzua CA. Non-Infectious Uveitis and Pregnancy, is There an Optimal Treatment? Uveitis Course and Safety of Uveitis Treatment in Pregnancy. Ocul Immunol Inflamm 2024; 32:1819-1831. [PMID: 38194442 DOI: 10.1080/09273948.2023.2296030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
In pregnancy, a plethora of factors causes changes in maternal immunity. Uveitis flare-ups are more frequent in the first trimester and in undertreated patients. Management of non-infectious uveitis during pregnancy remains understudied. A bibliographic review to consolidate existing evidence was performed by a multidisciplinary group of Ophthalmologists, Gynaecologists and Rheumatologists. Our group recommends initial management with minimum-required doses of corticosteroids, preferably locally, to treat intraocular inflammation whilst ensuring good neonatal outcomes. If ineffective, clinicians should consider addition of Cyclosporine, Azathioprine or Certolizumab pegol, which are seemingly safe in pregnancy. Other therapies (such as Methotrexate, Mycophenolate Mofetil and alkylating agents) are teratogenic or have a detrimental effect on the foetus. Furthermore, careful multidisciplinary preconception discussions and close follow-up are recommended, monitoring for flare-ups and actively tapering medication doses, with a primary endpoint focused on protecting ocular tissues from inflammation, whilst giving minimal risk of poor pregnancy and foetal outcomes.
Collapse
Affiliation(s)
| | - Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Department of Ophthalmology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Anguita
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Laboratory of Ocular and Systemic Autoimmune Diseases, Department of Ophthalmology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Department of Ophthalmology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department of Health Science, Universidad de Aysén, Coyhaique, Chile
- Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Felipe Salgado
- Laboratory of Ocular and Systemic Autoimmune Diseases, Department of Ophthalmology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Omar Valenzuela
- Faculty of Medicine, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Ibañez
- Faculty of Medicine, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ruben Marchant
- Faculty of Medicine, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Department of Ophthalmology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
14
|
Liu S, Li Y, Li Z, Wu S, Harrold JM, Shah DK. Translational two-pore PBPK model to characterize whole-body disposition of different-size endogenous and exogenous proteins. J Pharmacokinet Pharmacodyn 2024; 51:449-476. [PMID: 38691205 DOI: 10.1007/s10928-024-09922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - John M Harrold
- Pharmacometrics & Systems Pharmacology, Pfizer Inc, South San Francisco, CA, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
15
|
Javaid N, Ahmad B, Patra MC, Choi S. Decoy peptides that inhibit TNF signaling by disrupting the TNF homotrimeric oligomer. FEBS J 2024; 291:4372-4391. [PMID: 39003565 DOI: 10.1111/febs.17220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine and its functional homotrimeric form interacts with the TNF receptor (TNFR) to activate downstream apoptotic, necroptotic, and inflammatory signaling pathways. Excessive activation of these pathways leads to various inflammatory diseases, which makes TNF a promising therapeutic target. Here, 12-mer peptides were selected from the interface of TNF-TNFR based upon their relative binding energies and were named 'TNF-inhibiting decoys' (TIDs). These decoy peptides inhibited TNF-mediated secretion of cytokines and cell death, as well as activation of downstream signaling effectors. Effective TIDs inhibited TNF signaling by disrupting the formation of TNF's functional homotrimeric form. Among derivatives of TIDs, TID3c showed slightly better efficacy in cell-based assays by disrupting TNF trimer formation. Moreover, TID3c oligomerized TNF to a high molecular weight configuration. In silico modeling and simulations revealed that TID3c and its parent peptide, TID3, form a stable complex with TNF through hydrogen bonds and electrostatic interactions, which makes them the promising lead to develop peptide-based anti-TNF therapeutics.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| |
Collapse
|
16
|
Petric Z, Gonçalves J, Paixão P. Infliximab in Inflammatory Bowel Disease: Leveraging Physiologically Based Pharmacokinetic Modeling in the Clinical Context. Biomedicines 2024; 12:1974. [PMID: 39335488 PMCID: PMC11429320 DOI: 10.3390/biomedicines12091974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, a physiologically based pharmacokinetic (PBPK) modeling framework was employed to explore infliximab exposure following intravenous (5 mg/kg) and subcutaneous administration (encompassing the approved 120 mg flat-fixed dose as a switching option) in virtual adult and pediatric patients with inflammatory bowel disease (IBD). The PBPK model and corresponding simulations were conducted using the PK-Sim® software platform. The PBPK simulation indicated that a 120 mg subcutaneous flat-fixed dose might not be optimal for heavier adults with IBD, suggesting the need for infliximab dose escalation. For an older virtual pediatric patient (14 years old), subcutaneous administration of a 120 mg flat-fixed dose appears to be a feasible IBD treatment option. In the final exploration scenario, the model was extended to predict hypothetical subcutaneous infliximab doses in a virtual pediatric population (6-18 years old), stratified into three weight bands (20-30 kg, 30-45 kg, and 45-70 kg), that would yield post-switch trough concentrations of infliximab comparable to those seen in adults with the 120 mg flat-fixed subcutaneous dose. The PBPK-model-informed dose suggestions were 40 mg for the 20-30 kg band, 80 mg for the 30-45 kg band, and 120 mg for the 45-70 kg band. As demonstrated in this paper, the PBPK modeling framework can serve as a versatile tool in clinical pharmacology to investigate various clinical scenarios, such as exploring alternative dosing regimens and routes of administration, ultimately advancing IBD treatment across diverse (sub)populations of clinical interest.
Collapse
Affiliation(s)
- Zvonimir Petric
- Department of Pharmacological Sciences, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | - João Gonçalves
- Biopharmaceutical and Molecular Biotechnology Unit, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Paulo Paixão
- Department of Pharmacological Sciences, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
17
|
Nick C. Streamlining biosimilar development based on 20 years' experience. Expert Opin Biol Ther 2024; 24:571-581. [PMID: 38315062 DOI: 10.1080/14712598.2024.2314612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Biosimilar clinical programs could be streamlined by prudent application of improved methodologies and knowledge accumulated over the past 20 years. This review focuses on whether complex comparative efficacy trials are routinely needed and how to achieve a more tailored approach to biosimilar development. AREAS COVERED Key learnings over the past 20 years are summarized. It is noted that a one size fits all approach to biosimilar development is not appropriate: biological medicines fall within a wide spectrum of complexity, with blurring at the interface between biological products and small molecules. The interrelationship between quality, potency, pharmacokinetics, pharmacology, immunogenicity, efficacy, and safety are reviewed. Current regulatory thinking is reviewed with a look into what future challenges lie ahead. EXPERT OPINION To tailor regulatory requirements for marketing approval of biosimilars, it is proposed that a biosimilarity report be introduced. This report would integrate quality, pharmacology, immunogenicity, efficacy and safety findings and address how the clinical program could be tailored based on the totality of evidence.
Collapse
Affiliation(s)
- Cecil Nick
- Parexel International, Uxbridge, Middlesex, England
| |
Collapse
|
18
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Bellier JP, Roman A, Christiano C, Anzai JA, Moreno S, Campbell EC, Godwin L, Li A, Chen A, Alan SM, Saba A, Yoo HB, Yang HS, Chhatwal JP, Selkoe DJ, Liu L. Identification of Fibrinogen as a Plasma Protein Binding Partner for Lecanemab Biosimilar IgG: Implications for Alzheimer's Disease Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591892. [PMID: 38746192 PMCID: PMC11092601 DOI: 10.1101/2024.05.01.591892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Recombinant monoclonal therapeutic antibodies like lecanemab, which target amyloid beta in Alzheimer's disease, offer a promising approach for modifying the disease progression. Due to its relatively short half-life, Lecanemab, administered as a bi-monthly infusion (typically 10mg/kg) has a relatively brief half-life. Interaction with abundant plasma proteins binder in the bloodstream can affect pharmacokinetics of drugs, including their half-life. In this study we investigated potential plasma protein binding interaction to lecanemab using lecanemab biosimilar. METHODS Lecanemab biosimilar used in this study was based on publicly available sequences. ELISA and Western blotting were used to assess lecanemab biosimilar immunoreactivity in the fractions human plasma sample obtained through size exclusion chromatography. The binding of lecanemab biosimilar to candidate binders was confirmed by Western blotting, ELISA, and surface plasmon resonance analysis. RESULTS Using a combination of equilibrium dialysis, ELISA, and Western blotting in human plasma, we first describe the presence of likely plasma protein binding partner to lecanemab biosimilar, and then identify fibrinogen as one of them. Utilizing surface plasmon resonance, we confirmed that lecanemab biosimilar does bind to fibrinogen, although with lower affinity than to monomeric amyloid beta. CONCLUSION In the context of lecanemab therapy, these results imply that fibrinogen levels could impact the levels of free antibodies in the bloodstream and that fibrinogen might serve as a reservoir for lecanemab. More broadly, these results indicate that plasma protein binding may be an important consideration when clinically utilizing therapeutic antibodies in neurodegenerative disease.
Collapse
|
20
|
Feng J, Cao H, Xiang Y, Deng C, Li Y. An integrated methodology for quality assessment of therapeutic antibodies with potential long circulation half-life in harvested cell culture fluid using FcRn immobilized hydrophilic magnetic graphene. Talanta 2024; 272:125781. [PMID: 38359719 DOI: 10.1016/j.talanta.2024.125781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Designing modified therapeutic antibodies with enhanced FcRn-binding affinity holds promise in the extension of circulation half-lives and potential refinement of pharmacokinetics. During the development of these new-generation therapeutic antibodies, FcRn binding affinity of IgGs is emphasized and monitored as a critical quality attribute (CQA), alongside other critical assessments including titer and aggregation level. However, the traditional workflow for assessing the overall quality of expressed IgGs in harvested cell culture fluid (HCCF) is blamed to be cumbersome and time-consuming. This study presents an integrated methodology for the rapid quality assessment of IgGs in HCCF by selectively extracting IgGs with favorable high FcRn affinity for subsequent analysis using size exclusion chromatography (SEC). The approach utilizes innovative adsorbents known as FcRn immobilized hydrophilic magnetic graphene (MG@PDA@PAMAM-FcRn) in a magnetic solid-phase extraction (MSPE) process. To simulate the in vivo binding dynamics, MSPE binding and dissociation was performed at pH 6.0 and 7.4, respectively. The composite have demonstrated enhanced extraction efficiency and impurity removal ability in comparison to commercially available magnetic beads. The SEC monomer peak area value provides the output of this method, the ranking of which enabled the facile identification of superior HCCF samples with high overall quality of IgG. Optimization of MSPE parameters was performed, and the method was validated for specificity, precision, sensitivity, and accuracy. The proposed method exhibited an analytical time of 0.6 h, which is 7-22 times shortened in comparison to the conventional workflow.
Collapse
Affiliation(s)
- Jianan Feng
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Hao Cao
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Yangjiayi Xiang
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy and MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
21
|
Hata T, Uematsu Y, Sugita A, Adachi H, Kato S, Hirate M, Ishikura KI, Kaku A, Ohara H, Kojima N, Takahashi T, Kurokawa T. A Potent Neutralizing Monoclonal Antibody to Human Growth Hormone Suppresses Insulin-Like Growth Factor-1 in Female Rats. Endocrinology 2024; 165:bqae033. [PMID: 38500360 DOI: 10.1210/endocr/bqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Acromegaly and gigantism are disorders caused by hypersecretion of growth hormone (GH), usually from pituitary adenomas. Although somatostatin analogues (SSA), dopamine agonists, and GH receptor antagonists are important therapeutic agents, all of these have issues with their effectiveness, safety, and/or convenience of use. To overcome these, we developed a GH-specific potent neutralizing a mouse monoclonal antibody (mAb) named 13H02. 13H02 selectively bound both to human and monkey GH with high affinity, and strongly inhibited the biological activity of GH in the Nb2 rat lymphoma cell proliferation assay. In hypophysectomized/GH-supplemented rats, a single subcutaneous administration of 13H02 significantly and dose-dependently lowered the serum insulin-like growth factor-1 levels. To pursue the therapeutic potential of this antibody for acromegaly and gigantism, we humanized 13H02 to reduce its immunogenicity and applied a single amino acid mutation in the Fc region to extend its serum half-life. The resulting antibody, Hu-13H02m, also showed GH-specific neutralizing activity, similar to the parental 13H02, and showed improved binding affinity to human FcRn.
Collapse
Affiliation(s)
- Tomoyuki Hata
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Yoshikatsu Uematsu
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Ayumi Sugita
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Hisashi Adachi
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Sayaka Kato
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Maki Hirate
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Kei-Ichiro Ishikura
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Ayaka Kaku
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Hiroki Ohara
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Naoki Kojima
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Teisuke Takahashi
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Tomofumi Kurokawa
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| |
Collapse
|
22
|
Park SA, Lee Y, Hwang H, Lee JH, Kang YJ, Kim Y, Jin C, An HJ, Oh YJ, Hinterdorfer P, Kim E, Choi S, Ko K. Fc engineered anti-virus therapeutic human IgG 1 expressed in plants with altered binding to the neonatal Fc receptor. Biotechnol J 2024; 19:e2300552. [PMID: 38528347 DOI: 10.1002/biot.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024]
Abstract
Production of therapeutic monoclonal antibody (mAb) in transgenic plants has several advantages such as large-scale production and the absence of pathogenic animal contaminants. However, mAb with high mannose (HM) type glycans has shown a faster clearance compared to antibodies produced in animal cells. The neonatal Fc receptor (FcRn) regulates the persistence of immunoglobulin G (IgG) by the FcRn-mediated recycling pathway, which salvages IgG from lysosomal degradation within cells. In this study, Fc-engineering of antirabies virus therapeutic mAb SO57 with the endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) (mAbpK SO57) in plant cell was conducted to enhance its binding activity to human neonatal Fc receptor (hFcRn), consequently improve its serum half-life. Enzyme-linked immunosorbent assay (ELISA) and Surface plasmon resonance assay showed altered binding affinity of the Fc region of three different mAbpK SO57 variants [M252Y/S254T/T256E (MST), M428L/N434S (MN), H433K/N434F (HN)] to hFcRn compared to wild type (WT) of mAbpK SO57. Molecular modeling data visualized the structural alterations in these mAbpK SO57. All of the mAbpK SO57 variants had HM type glycan structures similar to the WT mAbpK SO57. In addition, the neutralizing activity of the three variants against the rabies virus CVS-11 was effective as the WT mAbpK SO57. These results indicate that the binding affinity of mAbpK SO57 variants to hFcRn can be modified without alteration of N-glycan structure and neutralization activity. Taken together, this study suggests that Fc-engineering of antirabies virus mAb can be applied to enhance the efficacy of therapeutic mAbs in plant expression systems.
Collapse
Affiliation(s)
- Sol-Ah Park
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyunjoo Hwang
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jeong Hwan Lee
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yang Joo Kang
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Yerin Kim
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Caiquan Jin
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Yoo Jin Oh
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Eunhye Kim
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kisung Ko
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| |
Collapse
|
23
|
Thumtecho S, Burlet NJ, Ljungars A, Laustsen AH. Towards better antivenoms: navigating the road to new types of snakebite envenoming therapies. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230057. [PMID: 38116472 PMCID: PMC10729942 DOI: 10.1590/1678-9199-jvatitd-2023-0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Moore BD, Ran Y, Goodwin MS, Komatineni K, McFarland KN, Dillon K, Charles C, Ryu D, Liu X, Prokop S, Giasson BI, Golde TE, Levites Y. A C1qTNF3 collagen domain fusion chaperones diverse secreted proteins and anti-Aβ scFvs: Applications for gene therapies. Mol Ther Methods Clin Dev 2023; 31:101146. [PMID: 38027063 PMCID: PMC10679951 DOI: 10.1016/j.omtm.2023.101146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Enhancing production of protein cargoes delivered by gene therapies can improve efficacy by reducing the amount of vector or simply increasing transgene expression levels. We explored the utility of a 126-amino acid collagen domain (CD) derived from the C1qTNF3 protein as a fusion partner to chaperone secreted proteins, extracellular "decoy receptor" domains, and single-chain variable fragments (scFvs). Fusions to the CD domain result in multimerization and enhanced levels of secretion of numerous fusion proteins while maintaining functionality. Efficient creation of bifunctional proteins using the CD domain is also demonstrated. Recombinant adeno-associated viral vector delivery of the CD with a signal peptide resulted in high-level expression with minimal biological impact as assessed by whole-brain transcriptomics. As a proof-of-concept in vivo study, we evaluated three different anti-amyloid Aβ scFvs (anti-Aβ scFvs), alone or expressed as CD fusions, following viral delivery to neonatal CRND8 mice. The CD fusion increased half-life, expression levels, and improved efficacy for amyloid lowering of a weaker binding anti-Aβ scFv. These studies validate the potential utility of this small CD as a fusion partner for secretory cargoes delivered by gene therapy and demonstrate that it is feasible to use this CD fusion to create biotherapeutic molecules with enhanced avidity or bifunctionality.
Collapse
Affiliation(s)
- Brenda D. Moore
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Marshall S. Goodwin
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kavitha Komatineni
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Karen N. McFarland
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kristy Dillon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Caleb Charles
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Danny Ryu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Xuefei Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Benoit I. Giasson
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yona Levites
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, GA, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
25
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
26
|
Todoroki K, Hamada D, Yamada T, Saito T, Shimizu Y, Sugiyama E, Mizuno H, Hayashi H, Tsukakoshi K, Ikebukuro K. Development of a liquid chromatography-based versatile bioanalysis for bevacizumab based on pretreatment combining aptamer affinity purification and centrifugal ultrafiltration concentration. ANAL SCI 2023; 39:1805-1811. [PMID: 37660341 DOI: 10.1007/s44211-023-00417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
We report on the development of a versatile and accurate bioanalytical method for bevacizumab using a pretreatment method combining affinity purification with anti-idiotypic DNA aptamers and centrifugal ultrafiltration concentration, followed by liquid chromatography (LC)-fluorescence analysis. An affinity purification method using Sepharose beads as an affinity support removed immunoglobulin G and a large amount of coexisting substances in the serum sample. Purified bevacizumab was separated as a single peak by conventional LC and detected fluorometrically, showing good linearity (R2 = 0.999) in the range of 5-200 μg/mL, sufficient to analyze bevacizumab concentrations in the blood of bevacizumab-treated patients. By combining this purification method with a concentration method using a centrifugal filtration device that inhibits non-specific adsorption of bevacizumab, the quantitative range was reduced by a factor of 10 while showing good linearity (R2 = 0.999) in the 0.5-20 μg/mL range. The developed analytical method is expected to be used not only for general bioanalysis of therapeutic mAbs in clinical settings, but also for next-generation antibody drugs that show drug efficacy at low concentrations and for analysis of trace samples.
Collapse
Affiliation(s)
- Kenichiro Todoroki
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| | - Daichi Hamada
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Tomohiro Yamada
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Taro Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| | - Yutaka Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| | - Eiji Sugiyama
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Hajime Mizuno
- Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Hideki Hayashi
- Laboratory of Community Pharmaceutical Practice and Science, Gifu Pharmaceutical University, Daigaku-Nishi 1-25-4, Gifu, 501-1196, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| |
Collapse
|
27
|
Takeuchi T. Structural, nonclinical, and clinical features of ozoralizumab: A novel tumour necrosis factor inhibitor. Mod Rheumatol 2023; 33:1059-1067. [PMID: 37185766 DOI: 10.1093/mr/road038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Tumour necrosis factor (TNF) inhibitors are currently the most widely used biological agents to treat rheumatoid arthritis. Ozoralizumab (OZR), a novel TNF inhibitor, is an antibody using variable heavy-chain domains of heavy-chain antibody (VHHs) and became the first VHH drug approved for the treatment of rheumatoid arthritis in September 2022. VHHs isolated from camelid heavy-chain antibodies can bind antigens with a single molecule. OZR is a trivalent VHH that consists of two anti-human TNFα VHHs and one anti-human serum albumin (anti-HSA) VHH. This review summarizes OZR's unique structural characteristics and nonclinical and clinical data. The clinical data outline the pharmacokinetics, efficacy, relationship between efficacy and pharmacokinetics, and safety of OZR, focusing on a Phase II/III confirmatory study (OHZORA trial).
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Saitama Medical University, Saitama, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
29
|
Wessel RE, Dolatshahi S. Quantitative mechanistic model reveals key determinants of placental IgG transfer and informs prenatal immunization strategies. PLoS Comput Biol 2023; 19:e1011109. [PMID: 37934786 PMCID: PMC10656024 DOI: 10.1371/journal.pcbi.1011109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Transplacental antibody transfer is crucially important in shaping neonatal immunity. Recently, prenatal maternal immunization has been employed to boost pathogen-specific immunoglobulin G (IgG) transfer to the fetus. Multiple factors have been implicated in antibody transfer, but how these key regulators work together to elicit selective transfer is pertinent to engineering vaccines for mothers to optimally immunize their newborns. Here, we present the first quantitative mechanistic model to uncover the determinants of placental antibody transfer and inform personalized immunization approaches. We identified placental FcγRIIb expressed by endothelial cells as a limiting factor in receptor-mediated transfer, which plays a key role in promoting preferential transport of subclasses IgG1, IgG3, and IgG4, but not IgG2. Integrated computational modeling and in vitro experiments reveal that IgG subclass abundance, Fc receptor (FcR) binding affinity, and FcR abundance in syncytiotrophoblasts and endothelial cells contribute to inter-subclass competition and potentially inter- and intra-patient antibody transfer heterogeneity. We developed an in silico prenatal vaccine testbed by combining a computational model of maternal vaccination with this placental transfer model using the tetanus, diphtheria, and acellular pertussis (Tdap) vaccine as a case study. Model simulations unveiled precision prenatal immunization opportunities that account for a patient's anticipated gestational length, placental size, and FcR expression by modulating vaccine timing, dosage, and adjuvant. This computational approach provides new perspectives on the dynamics of maternal-fetal antibody transfer in humans and potential avenues to optimize prenatal vaccinations that promote neonatal immunity.
Collapse
Affiliation(s)
- Remziye E. Wessel
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
30
|
Jeong HJ. Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering (Basel) 2023; 10:1262. [PMID: 38002387 PMCID: PMC10669387 DOI: 10.3390/bioengineering10111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Quenchbody (Q-body) is a unique, reagentless, fluorescent antibody whose fluorescent intensity increases in an antigen-concentration-dependent manner. Q-body-based homogeneous immunoassay is superior to conventional immunoassays as it does not require multiple immobilization, reaction, and washing steps. In fact, simply mixing the Q-body and the sample containing the antigen enables the detection of the target antigen. To date, various Q-bodies have been developed to detect biomarkers of interest, including haptens, peptides, proteins, and cells. This review sought to describe the principle of Q-body-based immunoassay and the use of Q-body for various immunoassays. In particular, the Q-bodies were classified from a structural perspective to provide useful information for designing Q-bodies with an appropriate objective.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| |
Collapse
|
31
|
Richel E, Wagner JT, Klessing S, Di Vincenzo R, Temchura V, Überla K. Antigen-dependent modulation of immune responses to antigen-Fc fusion proteins by Fc-effector functions. Front Immunol 2023; 14:1275193. [PMID: 37868961 PMCID: PMC10585040 DOI: 10.3389/fimmu.2023.1275193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Fc-fusion proteins have been successfully developed for therapeutic purposes, but are also a promising platform for the fast generation and purification of immunogens capable of inducing strong humoral immune responses in preclinical immunization studies. As the Fc-portion of immunoglobulins fused to an antigen confers functional properties of the parental antibody, such as dimerization, binding to Fc-receptors and complement activation, several studies reported that Fc-fusion proteins elicit stronger antigen-specific antibody responses than the unfused antigen. However, dimerization or half-life extension of an antigen have also been described to enhance immunogenicity. Methods To explore the role of Fc-effector functions for the immunogenicity of fusions proteins of viral glycoproteins and Fc fragments, the HIV-1 gp120 and the RBD of SARS-CoV-2 were fused to the wild type muIgG2a Fc fragment or mutants with impaired (LALA-PG) or improved (GASDIE) Fc-effector functions. Results Immunization of BALB/c mice with DNA vaccines encoding gp120 - Fc LALA-PG induced significantly higher antigen-specific antibody responses than gp120 - Fc WT and GASDIE. In contrast, immunization with DNA vaccines encoding the RBD fused to the same Fc mutants, resulted in comparable anti-RBD antibody levels and similar neutralization activity against several SARS-CoV-2 variants. Conclusion Depending on the antigen, Fc-effector functions either do not modulate or suppress the immunogenicity of DNA vaccines encoding Fc-antigen fusion proteins.
Collapse
Affiliation(s)
- Elie Richel
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Reig-Lopez J, Tang W, Fernandez-Teruel C, Merino-Sanjuan M, Mangas-Sanjuan V, Boulton DW, Sharma P. Application of population physiologically based pharmacokinetic modelling to optimize target expression and clearance mechanisms of therapeutic monoclonal antibodies. Br J Clin Pharmacol 2023; 89:2691-2702. [PMID: 37055941 DOI: 10.1111/bcp.15745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/12/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
AIMS To use population physiologically based pharmacokinetic (PopPBPK) modelling to optimize target expression, kinetics and clearance of HER1/2 directed therapeutic monoclonal antibodies (mAbs). Thus, to propose a general workflow of PopPBPK modelling and its application in clinical pharmacology. METHODS Full PBPK model of pertuzumab (PTZ) was developed in patient population using Simcyp V21R1 incorporating mechanistic targeted-mediated drug disposition process by fitting known clinical PK and sparse receptor proteomics data to optimize target expression and kinetics of HER2 receptor. Trastuzumab (TTZ) PBPK modelling was used to validate the optimized HER2 target. Additionally, the simulator was also used to develop a full PBPK model for the HER1-directed mAb cetuximab (CTX) to assess the underlying targeted-mediated drug disposition-independent elimination mechanisms. RESULTS HER2 final parameterisation coming from the PBPK modelling of PTZ was successfully cross validated through PBPK modelling of TTZ with average fold error (AFE), absolute AFE and percent prediction error values for area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax ) of 1.13, 1.16 and 16, and 1.01, 1.07 and 7, respectively. CTX PBPK model performance was validated after the incorporation of an additional systemic clearance of 0.033 L/h as AFE and absolute AFE showed an acceptable predictive power of AUC and Cmax with percent prediction error of 13% for AUC and 10% for Cmax . CONCLUSIONS Optimisation of both system and drug related parameters were performed through PBPK modelling to improve model performance of therapeutic mAbs (PTZ, TTZ and CTX). General workflow was proposed to develop and apply PopPBPK to support clinical development of mAbs targeting same receptor.
Collapse
Affiliation(s)
- Javier Reig-Lopez
- Pharmacy and Pharmaceutical Technology and Parasitology Department, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Carlos Fernandez-Teruel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Matilde Merino-Sanjuan
- Pharmacy and Pharmaceutical Technology and Parasitology Department, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia-University of Valencia, Valencia, Spain
| | - Victor Mangas-Sanjuan
- Pharmacy and Pharmaceutical Technology and Parasitology Department, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia-University of Valencia, Valencia, Spain
| | - David W Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Pradeep Sharma
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
33
|
Song W, Wei W, Lan X, Cai W. Albumin binding improves nanobody pharmacokinetics for dual-modality PET/NIRF imaging of CEACAM5 in colorectal cancer models. Eur J Nucl Med Mol Imaging 2023; 50:2591-2594. [PMID: 37191678 PMCID: PMC10330897 DOI: 10.1007/s00259-023-06266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
34
|
Takeuchi T, Chino Y, Kawanishi M, Nakanishi M, Watase H, Mano Y, Sato Y, Uchida S, Tanaka Y. Efficacy and pharmacokinetics of ozoralizumab, an anti-TNFα NANOBODY ® compound, in patients with rheumatoid arthritis: 52-week results from the OHZORA and NATSUZORA trials. Arthritis Res Ther 2023; 25:60. [PMID: 37055803 PMCID: PMC10099673 DOI: 10.1186/s13075-023-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
INTRODUCTION Ozoralizumab (OZR), a tumor necrosis factor alpha (TNFα) inhibitor, is a NANOBODY® compound that binds to TNFα and human serum albumin. The main objective of this study was to analyze the pharmacokinetics (PK) of the drug and its correlation with clinical efficacy in patients with rheumatoid arthritis (RA). METHODS Efficacy data were analyzed from the OHZORA trial, in which OZR 30 or 80 mg was administered to Japanese patients with RA at 4-week intervals for 52 weeks in combination with methotrexate (MTX; n = 381), and the NATSUZORA trial, in which OZR 30 or 80 mg was administered without concomitant MTX (n = 140). Effects of patient baseline characteristics and anti-drug antibodies (ADAs) on the PK and efficacy of OZR were investigated, and a post hoc analysis of PK effects on drug efficacy was performed. RESULTS The maximum plasma concentration (Cmax) was reached in 6 days in both the 30 and 80 mg groups, with an elimination half-life of 18 days. The Cmax and area under the plasma concentration-time curve increased in a dose-dependent manner, and the trough concentration reached steady state by week 16. The exposure of OZR correlated negatively with patient body weight and was not affected by other patient baseline characteristics. Effects of ADAs on the exposure and efficacy of OZR were limited in both trials. However, antibodies that neutralize the binding to TNFα had some effect on the exposure and efficacy of OZR in the NATSUZORA trial. The receiver operating characteristic analysis of the effect of trough concentration on the American College of Rheumatology 20% and 50% improvement rates was retrospectively performed, and a cutoff trough concentration of approximately 1 μg/mL at week 16 was obtained in both trials. The efficacy indicators in the subgroup with trough concentration ≥ 1 μg/mL were higher than those in the < 1 μg/mL subgroup at week 16, while no clear cutoff was obtained at week 52 in both trials. CONCLUSIONS OZR showed a long half-life and favorable PK properties. A post hoc analysis suggested sustained efficacy independent of trough concentration by subcutaneous administration of OZR 30 mg at 4-week intervals for 52 weeks. TRIAL REGISTRATION JapicCTI, OHZORA trial: JapicCTI-184029, registration date July 9, 2018; NATSUZORA trial: JapicCTI-184031, registration date July 9, 2018.
Collapse
Affiliation(s)
- Tsutomu Takeuchi
- Keio University School of Medicine, Tokyo, Japan.
- Saitama Medical University, Saitama, Japan.
| | | | | | | | | | - Yoko Mano
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yuri Sato
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Yoshiya Tanaka
- University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
35
|
Moreno J, Zoghebi K, Salehi D, Kim L, Shoushtari SK, Tiwari RK, Parang K. Amphiphilic Cell-Penetrating Peptides Containing Arginine and Hydrophobic Residues as Protein Delivery Agents. Pharmaceuticals (Basel) 2023; 16:469. [PMID: 36986567 PMCID: PMC10053436 DOI: 10.3390/ph16030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The entry of proteins through the cell membrane is challenging, thus limiting their use as potential therapeutics. Seven cell-penetrating peptides, designed in our laboratory, were evaluated for the delivery of proteins. Fmoc solid-phase peptide synthesis was utilized for the synthesis of seven cyclic or hybrid cyclic-linear amphiphilic peptides composed of hydrophobic (tryptophan (W) or 3,3-diphenylalanine (Dip) and positively-charged arginine (R) residues, such as [WR]4, [WR]9, [WWRR]4, [WWRR]5, [(RW)5K](RW)5, [R5K]W7, and [DipR]5. Confocal microscopy was used to screen the peptides as a protein delivery system of model cargo proteins, green and red fluorescein proteins (GFP and RFP). Based on the confocal microscopy results, [WR]9 and [DipR]5 were found to be more efficient among all the peptides and were selected for further studies. [WR]9 (1-10 µM) + protein (GFP and RFP) physical mixture did not show high cytotoxicity (>90% viability) in triple-negative breast cancer cells (MDA-MB-231) after 24 h, while [DipR]5 (1-10 µM) physical mixture with GFP exhibited more than 81% cell viability. Confocal microscopy images revealed internalization of GFP and RFP in MDA-MB-231 cells using [WR]9 (2-10 μM) and [DipR]5 (1-10 µM). Fluorescence-activated cell sorting (FACS) analysis indicated that the cellular uptake of GFP was concentration-dependent in the presence of [WR]9 in MDA-MB-231 cells after 3 h of incubation at 37 °C. The concentration-dependent uptake of GFP and RFP was also observed in the presence of [DipR5] in SK-OV-3 and MDA-MB-231 cells after 3 h of incubation at 37 °C. FACS analysis indicated that the cellular uptake of GFP in the presence of [WR]9 was partially decreased by methyl-β-cyclodextrin and nystatin as endocytosis inhibitors after 3 h of incubation in MDA-MB-231 cells, whereas nystatin and chlorpromazine as endocytosis inhibitors slightly reduced the uptake of GFP in the presence of [DipR]5 after 3 h of incubation in MDA-MB-231. [WR]9 was able to deliver therapeutically relevant proteins (Histone H2A) at different concentrations. These results provide insight into the use of amphiphilic cyclic peptides in the delivery of protein-related therapeutics.
Collapse
Affiliation(s)
- Jonathan Moreno
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - David Salehi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Lois Kim
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sorour Khayyatnejad Shoushtari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
36
|
Hu Z, Feng J, Deng J, Zhang Y, He X, Hu J, Wang X, Hu S, Liu X, Liu X. Delivery of Fc-fusion Protein by a Recombinant Newcastle Disease Virus Vector. Appl Biochem Biotechnol 2023; 195:2077-2092. [PMID: 36417109 DOI: 10.1007/s12010-022-04237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
Fc-fusion proteins (FCPs), a new generation biological medicine, have revolutionized the practice of medicines that treat diseases. However, complex manufacturing techniques are required for FCP production, casting the affordability and accessibility issues in low- and middle-income economies (LMIEs). Virus-vectored system may serve as a simple and cost-effective platform for FCP delivery. As a proof-of-concept study, Newcastle disease virus (NDV), a widely-used vector for vaccine generation, was used as a vector to express and deliver a model FCP composed of the hemagglutinin (HA) and IgG Fc. A recombinant NDV expressing the HA-Fc fusion protein was generated using reverse genetics, which had comparable replication and virulence to the parental virus. High levels of expression of soluble HA-Fc were detected in cell culture and embryonated chicken eggs inoculated with the recombinant NDV. In addition, the recombinant NDV replicated in the lung of mouse, delivering the HA-Fc protein to this organ. The HA-Fc expressed by NDV specifically bound to murine FcγRI, which was dependent on the presence of the Fc tag. The recombinant NDV induced high vector-specific antibody response, whereas it failed to elicit H7N9-specific antibody immunity in mice. The absence of HA-specific antibodies may be attributed to deficient incorporation of the HA-Fc protein into NDV virion particles. Our results indicated that NDV may be potentially used as a vector for FCP expression and delivery. This strategy may help to enhance the affordability and equal accessibility of FCP biological medicines, especially in LIMEs.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianing Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanyan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaozheng He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
37
|
Monoclonal antibodies in breast cancer: A critical appraisal. Crit Rev Oncol Hematol 2023; 183:103915. [PMID: 36702424 DOI: 10.1016/j.critrevonc.2023.103915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In breast cancer, mAbs can play multifunctional roles like targeting cancer cells, sometimes directly attacking them, helping in locating and delivering therapeutic drugs to targets, inhibiting cell growth and blocking immune system inhibitors, etc. Monoclonal antibodies are also one of the important successful treatment strategies especially against HER2 but they have not been explored much for other types of breast cancers especially in triple negative breast cancers. Monoclonal antibodies impact the feasibility of antigen specificity, bispecific and trispecific mAbs have opened new doors for more targeted specific efficacy. Monoclonal antibodies can be used diversly and with efficacy as compared to other methods of treatment thus maining it a suitable candidate for breast cancer treatment. However, mAbs treatment also causes various side effects such as fever, trembling, fatigue, headache and muscle pain, nausea/vomiting, difficulty in breathing, rashes and bleeding. Understanding the pros and cons of this strategy, we have explored in this review, the current and future potential capabilities of monoclonal antibodies with respect to diagnosis and treatment of breast cancer. DATA AVAILABILITY: Not applicable.
Collapse
|
38
|
Ravaei A, Pulsatelli L, Assirelli E, Ciaffi J, Meliconi R, Salvarani C, Govoni M, Rubini M. MTHFR c.665C>T and c.1298A>C Polymorphisms in Tailoring Personalized Anti-TNF-α Therapy for Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24044110. [PMID: 36835522 PMCID: PMC9962934 DOI: 10.3390/ijms24044110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease with a prevalence of 1%. Currently, RA treatment aims to achieve low disease activity or remission. Failure to achieve this goal causes disease progression with a poor prognosis. When treatment with first-line drugs fails, treatment with tumor necrosis factor-α (TNF-α) inhibitors may be prescribed to which many patients do not respond adequately, making the identification of response markers urgent. This study investigated the association of two RA-related genetic polymorphisms, c.665C>T (historically referred to as C677T) and c.1298A>C, in the MTHFR gene as response markers to an anti-TNF-α therapy. A total of 81 patients were enrolled, 60% of whom responded to the therapy. Analyses showed that both polymorphisms were associated with a response to therapy in an allele dose-dependent manner. The association for c.665C>T was significant for a rare genotype (p = 0.01). However, the observed opposite trend of association for c.1298A>C was not significant. An analysis revealed that c.1298A>C, unlike c.665C>T, was also significantly associated with the drug type (p = 0.032). Our preliminary results showed that the genetic polymorphisms in the MTHFR gene were associated with a response to anti-TNF-α therapy, with a potential significance for the anti-TNF-α drug type. This evidence suggests a role for one-carbon metabolism in anti-TNF-α drug efficacy and contributes to further personalized RA interventions.
Collapse
Affiliation(s)
- Amin Ravaei
- Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisa Assirelli
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Riccardo Meliconi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Carlo Salvarani
- Division of Rheumatology, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- University-Hospital of Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marcello Govoni
- Section of Hematology and Rheumatology, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Rheumatology Unit, Sant’Anna University Hospital, 44124 Ferrara, Italy
| | - Michele Rubini
- Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-974473
| |
Collapse
|
39
|
Hamdan F, Cerullo V. Cancer immunotherapies: A hope for the uncurable? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140977. [PMID: 39086690 PMCID: PMC11285639 DOI: 10.3389/fmmed.2023.1140977] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 08/02/2024]
Abstract
The use of cancer immunotherapies is not novel but has been used over the decades in the clinic. Only recently have we found the true potential of stimulating an anti-tumor response after the breakthrough of checkpoint inhibitors. Cancer immunotherapies have become the first line treatment for many malignancies at various stages. Nevertheless, the clinical results in terms of overall survival and progression free survival were not as anticipated. Majority of cancer patients do not respond to immunotherapies and the reasons differ. Hence, further improvements for cancer immunotherapies are crucially needed. In the review, we will discuss various forms of cancer immunotherapies that are being tested or already in the clinic. Moreover, we also highlight future directions to improve such therapies.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
40
|
Wan W, Qin Q, Xie L, Zhang H, Wu F, Stevens RC, Liu Y. GLP-1R Signaling and Functional Molecules in Incretin Therapy. Molecules 2023; 28:751. [PMID: 36677809 PMCID: PMC9866634 DOI: 10.3390/molecules28020751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). The GLP-1R cellular signaling mechanism relevant to insulin secretion and blood glucose regulation has been extensively studied. Numerous drugs targeting GLP-1R have entered clinical treatment. However, novel functional molecules with reduced side effects and enhanced therapeutic efficacy are still in high demand. In this review, we summarize the basis of GLP-1R cellular signaling, and how it is involved in the treatment of T2DM. We review the functional molecules of incretin therapy in various stages of clinical trials. We also outline the current strategies and emerging techniques that are furthering the development of novel therapeutic drugs for T2DM and other metabolic diseases.
Collapse
Affiliation(s)
- Wenwei Wan
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanqing Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fan Wu
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
41
|
Guillen E, Ekman N, Barry S, Weise M, Wolff-Holz E. A Data Driven Approach to Support Tailored Clinical Programs for Biosimilar Monoclonal Antibodies. Clin Pharmacol Ther 2023; 113:108-123. [PMID: 36546547 DOI: 10.1002/cpt.2785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022]
Abstract
Biosimilar monoclonal antibodies (mAbs) have been approved in the European Union since 2013 and have been demonstrated to reduce healthcare costs and to expand patient access. Biosimilarity is mainly established on the basis of demonstrated similarity of relevant quality attributes (QAs), determined by comprehensive physiochemical and functional analyses, and demonstration of bioequivalence. In addition, comparative efficacy/safety studies have been requested for all approved biosimilar mAbs so far, although the European Medicines Agency (EMA) Guidelines state that such confirmatory clinical trials may not be necessary in specific circumstances. In order to evaluate the degree of analytical similarity, how residual uncertainty regarding biosimilarity was resolved, and the value of clinical data, we analyzed the quality and clinical data packages for authorized adalimumab (7 products) and bevacizumab (5 products) biosimilars. The percentage of biosimilar batches meeting the similarity range for QAs, as defined by the biosimilar manufacturer based on a comprehensive characterization of the EU reference product (RP), was determined and clinical data were reviewed. Our analyses show that QAs of approved adalimumab and bevacizumab biosimilars have varying concordance with the EU-RP similarity range. In this study, we found that clinical efficacy data played a limited role in addressing quality concerns. Therefore, we encourage a regulatory review of the standards for clinical data requirements for mAb and fusion protein biosimilars. This study outlines a quality data driven approach for facilitating tailored clinical programs for biosimilars.
Collapse
Affiliation(s)
- Elena Guillen
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Clinical Pharmacology Service, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Niklas Ekman
- Finnish Medicines Agency Fimea, Helsinki, Finland
| | - Sean Barry
- Health Products Regulatory Authority, Dublin, Ireland
| | - Martina Weise
- Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM), Bonn, Germany
| | | |
Collapse
|
42
|
The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement. Nat Commun 2022; 13:6073. [PMID: 36241613 PMCID: PMC9568614 DOI: 10.1038/s41467-022-33764-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting.
Collapse
|
43
|
Salerno SN, Deng R, Kakkar T. Physiologically-based pharmacokinetic modeling of immunoglobulin and antibody coadministration in patients with primary human immunodeficiency. CPT Pharmacometrics Syst Pharmacol 2022; 11:1316-1327. [PMID: 35860862 PMCID: PMC9574734 DOI: 10.1002/psp4.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) (2000 mg/kg) increased the clearance of the mouse monoclonal antibody 7E3, directed against platelet integrin IIb/IIIa (alpha IIb beta 3, CD41/CD61) in rodents. We wanted to investigate the effect of IVIG on clearance of monoclonal antibodies in humans as there is extremely limited data regarding this interaction in the literature. Using the tyrosine protein kinase KIT anti-cluster of differentiation 117 (c-Kit) humanized monoclonal antibody (JSP191) as a case study, we used physiologically-based pharmacokinetic (PBPK) modeling to evaluate the pharmacokinetic interaction between monoclonal antibodies and IVIG at doses (300-600 mg/kg) administered to patients with primary human immunodeficiency (PI). We first characterized the interaction between monoclonal antibodies and IVIG in PK-Sim®/MoBi® using published literature data, including the following: IVIG plus 7E3 in mice and rats and IVIG plus the human anti-C5 monoclonal antibody tesidolumab in adults with end-stage renal disease. We next developed a PBPK model using digitized data for JSPI91 alone in older adults with myelodysplastic syndrome and acute myeloid leukemia and in pediatric patients with severe combined immunodeficiency (SCID). Finally, we simulated the impact of IVIG (300-2000 mg/kg) coadministration with JSP191 on the area under the curve of JSP191 in patients with SCID. Model predictions were within 1.5-fold of observed values for 7E3 plus IVIG and tesidolumab plus IVIG as well as for JSP191 administered alone. Based on our simulations, IVIG doses ≥500 mg exceeded the 80%-125% no-effect boundaries. IVIG treatment with monoclonal antibodies in patients with PI may result in a clinically significant interaction depending on the IVIG dose administered and the exposure-response relationship for the specific monoclonal antibody.
Collapse
Affiliation(s)
| | - Rong Deng
- Gilead Sciences, Inc.Foster CityCaliforniaUSA,R&D Q‐Pharm Consulting LLCPleasantonCaliforniaUSA
| | | |
Collapse
|
44
|
Huang W, Stader F, Chan P, Shemesh CS, Chen Y, Gill KL, Jones HM, Li L, Rossato G, Wu B, Jin JY, Chanu P. Development of a pediatric physiologically-based pharmacokinetic model to support recommended dosing of atezolizumab in children with solid tumors. Front Pharmacol 2022; 13:974423. [PMID: 36225583 PMCID: PMC9548535 DOI: 10.3389/fphar.2022.974423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Atezolizumab has been studied in multiple indications for both pediatric and adult patient populations. Generally, clinical studies enrolling pediatric patients may not collect sufficient pharmacokinetic data to characterize the drug exposure and disposition because of operational, ethical, and logistical challenges including burden to children and blood sample volume limitations. Therefore, mechanistic modeling and simulation may serve as a tool to predict and understand the drug exposure in pediatric patients. Objective: To use mechanistic physiologically-based pharmacokinetic (PBPK) modeling to predict atezolizumab exposure at a dose of 15 mg/kg (max 1,200 mg) in pediatric patients to support dose rationalization and label recommendations. Methods: A minimal mechanistic PBPK model was used which incorporated age-dependent changes in physiology and biochemistry that are related to atezolizumab disposition such as endogenous IgG concentration and lymph flow. The PBPK model was developed using both in vitro data and clinically observed data in adults and was verified across dose levels obtained from a phase I and multiple phase III studies in both pediatric patients and adults. The verified model was then used to generate PK predictions for pediatric and adult subjects ranging from 2- to 29-year-old. Results: Individualized verification in children and in adults showed that the simulated concentrations of atezolizumab were comparable (76% within two-fold and 90% within three-fold, respectively) to the observed data with no bias for either over- or under-prediction. Applying the verified model, the predicted exposure metrics including Cmin, Cmax, and AUCtau were consistent between pediatric and adult patients with a geometric mean of pediatric exposure metrics between 0.8- to 1.25-fold of the values in adults. Conclusion: The results show that a 15 mg/kg (max 1,200 mg) atezolizumab dose administered intravenously in pediatric patients provides comparable atezolizumab exposure to a dose of 1,200 mg in adults. This suggests that a dose of 15 mg/kg will provide adequate and effective atezolizumab exposure in pediatric patients from 2- to 18-year-old.
Collapse
Affiliation(s)
- Weize Huang
- Genentech Inc, South San Francisco, CA, United States
- *Correspondence: Weize Huang,
| | | | - Phyllis Chan
- Genentech Inc, South San Francisco, CA, United States
| | | | - Yuan Chen
- Genentech Inc, South San Francisco, CA, United States
| | | | | | - Linzhong Li
- Certara UK Limited, Sheffield, United Kingdom
| | | | - Benjamin Wu
- Genentech Inc, South San Francisco, CA, United States
| | - Jin Y. Jin
- Genentech Inc, South San Francisco, CA, United States
| | - Pascal Chanu
- Genentech Inc, South San Francisco, CA, United States
| |
Collapse
|
45
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
46
|
In vivo therapeutic effects of small molecule-drug conjugates enhanced by Fc grafting. Biomaterials 2022; 290:121820. [DOI: 10.1016/j.biomaterials.2022.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
|
47
|
Tran VL, Bouleau A, Nozach H, Richard M, Chevaleyre C, Dubois S, Kereselidze D, Kuhnast B, Evans MJ, Specklin S, Truillet C. Impact of Radiolabeling Strategies on the Pharmacokinetics and Distribution of an Anti-PD-L1 PET Ligand. Mol Pharm 2022; 19:3673-3680. [PMID: 35998011 DOI: 10.1021/acs.molpharmaceut.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular imaging with PET offers an alternative method to quantify programmed-death-ligand 1 (PD-L1) to accurately select patients for immunotherapies. More and more clinical and preclinical trials involve radiolabeling of antibody fragments for their desirably fast clearance and high tumor penetration. As the radiolabeling strategy can significantly impact pharmacokinetics and biodistribution, we explored in this work a site-specific radiofluorination strategy on an anti-PD-L1 fragment antigen-binding (Fab) and compared the pharmacokinetic and biodistribution properties with the same Fab labeled using stochastic radiolabeling chemistry. We applied an enzymatic bioconjugation mediated by a variant of the lipoic acid ligase (LplA) that promotes the formation of an amide bond between a short peptide cloned onto the C terminus of the Fab. A synthetic analogue of the enzyme natural substrate, lipoic acid, was radiolabeled with fluorine-18 for site-specific conjugation by LplA. We compared the biodistribution of the site-specifically labeled Fab with a stochastically labeled Fab on lysine side chains in tumor-bearing mice. The two methods of fluorination demonstrate a comparable whole-body biodistribution. The 89Zr-labeled Fab had different biodistribution compared to either 18F-labeled Fab. We attribute the difference to [89Zr] metabolism. Fab-LAP-[18F]FPyOctA therefore reflects better the true pharmacokinetic profile of the Fab.
Collapse
Affiliation(s)
- Vu Long Tran
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Alizée Bouleau
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Hervé Nozach
- Université Paris-Saclay, CEA, DMTS, SIMoS, CEA-Saclay, Gif-sur-Yvette CEDEX 91191, France
| | - Mylène Richard
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Céline Chevaleyre
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Steven Dubois
- Université Paris-Saclay, CEA, DMTS, SIMoS, CEA-Saclay, Gif-sur-Yvette CEDEX 91191, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Bertrand Kuhnast
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California 94107, United States
| | - Simon Specklin
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91400, France
| |
Collapse
|
48
|
Biophysical differences in IgG1 Fc-based therapeutics relate to their cellular handling, interaction with FcRn and plasma half-life. Commun Biol 2022; 5:832. [PMID: 35982144 PMCID: PMC9388496 DOI: 10.1038/s42003-022-03787-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Antibody-based therapeutics (ABTs) are used to treat a range of diseases. Most ABTs are either full-length IgG1 antibodies or fusions between for instance antigen (Ag)-binding receptor domains and the IgG1 Fc fragment. Interestingly, their plasma half-life varies considerably, which may relate to how they engage the neonatal Fc receptor (FcRn). As such, there is a need for an in-depth understanding of how different features of ABTs affect FcRn-binding and transport behavior. Here, we report on how FcRn-engagement of the IgG1 Fc fragment compare to clinically relevant IgGs and receptor domain Fc fusions, binding to VEGF or TNF-α. The results reveal FcRn-dependent intracellular accumulation of the Fc, which is in line with shorter plasma half-life than that of full-length IgG1 in human FcRn-expressing mice. Receptor domain fusion to the Fc increases its half-life, but not to the extent of IgG1. This is mirrored by a reduced cellular recycling capacity of the Fc-fusions. In addition, binding of cognate Ag to ABTs show that complexes of similar size undergo cellular transport at different rates, which could be explained by the biophysical properties of each ABT. Thus, the study provides knowledge that should guide tailoring of ABTs regarding optimal cellular sorting and plasma half-life. Analysis of clinically approved antibody-based therapeutics reveals different structural designs, such as full-length IgG1 or Fc-fusions, entail distinct biophysical properties that affect FcRn binding, intracellular transport and plasma half-life.
Collapse
|
49
|
Dannheim FM, Walsh SJ, Orozco CT, Hansen AH, Bargh JD, Jackson SE, Bond NJ, Parker JS, Carroll JS, Spring DR. All-in-one disulfide bridging enables the generation of antibody conjugates with modular cargo loading. Chem Sci 2022; 13:8781-8790. [PMID: 35975158 PMCID: PMC9350601 DOI: 10.1039/d2sc02198f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/10/2022] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are valuable therapeutic entities which leverage the specificity of antibodies to selectively deliver cytotoxins to antigen-expressing targets such as cancer cells. However, current methods for their construction still suffer from a number of shortcomings. For instance, using a single modification technology to modulate the drug-to-antibody ratio (DAR) in integer increments while maintaining homogeneity and stability remains exceptionally challenging. Herein, we report a novel method for the generation of antibody conjugates with modular cargo loading from native antibodies. Our approach relies on a new class of disulfide rebridging linkers, which can react with eight cysteine residues, thereby effecting all-in-one bridging of all four interchain disulfides in an IgG1 antibody with a single linker molecule. Modification of the antibody with the linker in a 1 : 1 ratio enabled the modulation of cargo loading in a quick and selective manner through derivatization of the linker with varying numbers of payload attachment handles to allow for attachment of either 1, 2, 3 or 4 payloads (fluorescent dyes or cytotoxins). Assessment of the biological activity of these conjugates demonstrated their exceptional stability in human plasma and utility for cell-selective cytotoxin delivery or imaging/diagnostic applications.
Collapse
Affiliation(s)
| | - Stephen J Walsh
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Cancer Research UK Cambridge Institute, University of Cambridge Cambridge CB2 0RE UK
| | - Carolina T Orozco
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Anders Højgaard Hansen
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Chemistry, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Jonathan D Bargh
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca Granta Park Cambridge CB21 6GH UK
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Development, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge Cambridge CB2 0RE UK
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
50
|
Mittelheisser V, Coliat P, Moeglin E, Goepp L, Goetz JG, Charbonnière LJ, Pivot X, Detappe A. Optimal Physicochemical Properties of Antibody-Nanoparticle Conjugates for Improved Tumor Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110305. [PMID: 35289003 DOI: 10.1002/adma.202110305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tumor-targeted antibody (mAb)/fragment-conjugated nanoparticles (NPs) represent an innovative strategy for improving the local delivery of small molecules. However, the physicochemical properties of full mAb-NPs and fragment-NPs-that is, NP material, size, charge, as well as the targeting antibody moiety, and the linker conjugation strategies-remain to be optimized to achieve an efficient tumor targeting. A meta-analysis of 161 peer-reviewed studies is presented, which describes the use of tumor-targeted mAb-NPs and fragment-NPs from 2009 to 2021. The use of these targeted NPs is confirmed to result in significantly greater tumor uptake of NPs than that of naked NPs (7.9 ± 1.9% ID g-1 versus 3.2 ± 0.6% ID g-1 , respectively). The study further demonstrates that for lipidic NPs, fragment-NPs provide a significantly higher tumor uptake than full mAb-NPs. In parallel, for both polymeric and organic/inorganic NPs, full mAb-NPs yield a significant higher tumor uptake than fragment-NPs. In addition, for both lipidic and polymeric NPs, the tumor uptake is improved with the smallest sizes of the conjugates. Finally, the pharmacokinetics of the conjugates are demonstrated to be driven by the NPs and not by the antibody moieties, independently of using full mAb-NPs or fragment-NPs, confirming the importance of optimizing the NP design to improve the tumor uptake.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
- INSERM UMR_S1109, Strasbourg, 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Pierre Coliat
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Eric Moeglin
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Lilian Goepp
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Jacky G Goetz
- INSERM UMR_S1109, Strasbourg, 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Loic J Charbonnière
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR-7178, Strasbourg, 67200, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR-7178, Strasbourg, 67200, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| |
Collapse
|