1
|
Boga Z, Sándor C, Kovács P. A Multidimensional Particle Swarm Optimization-Based Algorithm for Brain MRI Tumor Segmentation. SENSORS (BASEL, SWITZERLAND) 2025; 25:2800. [PMID: 40363239 PMCID: PMC12074365 DOI: 10.3390/s25092800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Particle Swarm Optimization (PSO) has been extensively applied to optimization tasks in various domains, including image segmentation. In this work, we present a clustering-based segmentation algorithm that employs a multidimensional variant of PSO. Unlike conventional methods that require a predefined number of segments, our approach automatically selects an optimal segmentation granularity based on specified similarity criteria. This strategy effectively isolates brain tumors by incorporating both grayscale intensity and spatial information across multiple MRI modalities, allowing the method to be reliably tuned using a limited amount of training data. We further demonstrate how integrating these initial segmentations with a random forest classifier (RFC) enhances segmentation precision. Using MRI data from the RSNA-ASNR-MICCAI brain tumor segmentation (BraTS) challenge, our method achieves robust results with reduced reliance on extensive labeled datasets, offering a more efficient path toward accurate, clinically relevant tumor segmentation.
Collapse
Affiliation(s)
- Zsombor Boga
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Csanád Sándor
- Faculty of Mathematics and Computer Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Péter Kovács
- Faculty of Informatics, Eötvös Loránd University, 1117 Budapest, Hungary;
| |
Collapse
|
2
|
Dénes-Fazakas L, Kovács L, Eigner G, Szilágyi L. Enhancing Brain Tumor Diagnosis with L-Net: A Novel Deep Learning Approach for MRI Image Segmentation and Classification. Biomedicines 2024; 12:2388. [PMID: 39457700 PMCID: PMC11505252 DOI: 10.3390/biomedicines12102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Brain tumors are highly complex, making their detection and classification a significant challenge in modern medical diagnostics. The accurate segmentation and classification of brain tumors from MRI images are crucial for effective treatment planning. This study aims to develop an advanced neural network architecture that addresses these challenges. Methods: We propose L-net, a novel architecture combining U-net for tumor boundary segmentation and a convolutional neural network (CNN) for tumor classification. These two units are coupled such a way that the CNN classifies the MRI images based on the features extracted by the U-net while segmenting the tumor, instead of relying on the original input images. The model is trained on a dataset of 3064 high-resolution MRI images, encompassing gliomas, meningiomas, and pituitary tumors, ensuring robust performance across different tumor types. Results: L-net achieved a classification accuracy of up to 99.6%, surpassing existing models in both segmentation and classification tasks. The model demonstrated effectiveness even with lower image resolutions, making it suitable for diverse clinical settings. Conclusions: The proposed L-net model provides an accurate and unified approach to brain tumor segmentation and classification. Its enhanced performance contributes to more reliable and precise diagnosis, supporting early detection and treatment in clinical applications.
Collapse
Affiliation(s)
- Lehel Dénes-Fazakas
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary; (L.D.-F.); (L.K.); (G.E.)
- Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
- Doctoral School of Applied Informatics and Applied Mathematics, Obuda University, 1034 Budapest, Hungary
| | - Levente Kovács
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary; (L.D.-F.); (L.K.); (G.E.)
- Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
| | - György Eigner
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary; (L.D.-F.); (L.K.); (G.E.)
- Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
| | - László Szilágyi
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary; (L.D.-F.); (L.K.); (G.E.)
- Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary
- Computational Intelligence Research Group, Sapientia Hungarian University of Transylvania, 547367 Târgu Mureș, Romania
| |
Collapse
|
3
|
Sailunaz K, Alhajj S, Özyer T, Rokne J, Alhajj R. A survey on brain tumor image analysis. Med Biol Eng Comput 2024; 62:1-45. [PMID: 37700082 DOI: 10.1007/s11517-023-02873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/20/2023] [Indexed: 09/14/2023]
Abstract
Medical imaging, also known as radiology, is the field of medicine in which medical professionals recreate various images of parts of the body for diagnostic or treatment purposes. Medical imaging procedures include non-invasive tests that allow doctors to diagnose injuries and diseases without being intrusive TechTarget (n.d.). A number of tools and techniques are used to automate the analysis of medical images acquired with various image processing methods. The brain is one of the largest and most complex organs of the human body and anomaly detection from brain images (i.e., MRI, CT, PET, etc.) is one of the major research areas of medical image analysis. Image processing methods such as filtering and thresholding models, geometry models, graph models, region-based analysis, connected component analysis, machine learning (ML) models, the recent deep learning (DL) models, and various hybrid models are used in brain image analysis. Brain tumors are one of the most common brain diseases with a high mortality rate, and it is difficult to analyze from brain images for the versatility of the shape, location, size, texture, and other characteristics. In this paper, a comprehensive review on brain tumor image analysis is presented with basic ideas of brain tumor, brain imaging, brain image analysis tasks, brain image analysis models, brain tumor image features, performance metrics used for evaluating the models, and some available datasets on brain tumor/medical images. Some challenges of brain tumor analysis are also discussed including suggestions for future research directions. The graphical abstract summarizes the contributions of this paper.
Collapse
Affiliation(s)
- Kashfia Sailunaz
- Department of Computer Science, University of Calgary, Alberta, Canada
| | - Sleiman Alhajj
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tansel Özyer
- Department of Computer Engineering, Ankara Medipol University, Ankara, Turkey
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Alberta, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Alberta, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
- Department of Health Informatics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Khorasani A, Kafieh R, Saboori M, Tavakoli MB. Glioma segmentation with DWI weighted images, conventional anatomical images, and post-contrast enhancement magnetic resonance imaging images by U-Net. Phys Eng Sci Med 2022; 45:925-934. [PMID: 35997927 DOI: 10.1007/s13246-022-01164-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Glioma segmentation is believed to be one of the most important stages of treatment management. Recent developments in magnetic resonance imaging (MRI) protocols have led to a renewed interest in using automatic glioma segmentation with different MRI image weights. U-Net is a major area of interest within the field of automatic glioma segmentation. This paper examines the impact of different input MRI image-weight on the U-Net output performance for glioma segmentation. One hundred forty-nine glioma patients were scanned with a 1.5T MRI scanner. The main MRI image-weights acquired are diffusion-weighted imaging (DWI) weighted images (b50, b500, b1000, Apparent diffusion coefficient (ADC) map, Exponential apparent diffusion coefficient (eADC) map), anatomical image-weights (T2, T1, T2-FLAIR), and post enhancement image-weights (T1Gd). The U-Net and data augmentation are used to segment the glioma tumors. Having the Dice coefficient and accuracy enabled us to compare our results with the previous study. The first set of analyses examined the impact of epoch number on the accuracy of U-Net, and n_epoch = 20 was selected for U-Net training. The mean Dice coefficient for b50, b500, b1000, ADC map, eADC map, T2, T1, T2-FLAIR, and T1Gd image weights for glioma segmentation with U-Net were calculated 0.892, 0.872, 0.752, 0.931, 0.944, 0.762, 0.721, 0.896, 0.694 respectively. This study has found that, DWI image-weights have a higher diagnostic value for glioma segmentation with U-Net in comparison with anatomical image-weights and post enhancement image-weights. The results of this investigation show that ADC and eADC maps have higher performance for glioma segmentation with U-Net.
Collapse
Affiliation(s)
- Amir Khorasani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rahele Kafieh
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Engineering, Durham University, Durham, UK
| | - Masih Saboori
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Bagher Tavakoli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
HGG and LGG Brain Tumor Segmentation in Multi-Modal MRI Using Pretrained Convolutional Neural Networks of Amazon Sagemaker. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Automatic brain tumor segmentation from multimodal MRI plays a significant role in assisting the diagnosis, treatment, and surgery of glioblastoma and lower glade glioma. In this article, we propose applying several deep learning techniques implemented in AWS SageMaker Framework. The different CNN architectures are adapted and fine-tuned for our purpose of brain tumor segmentation.The experiments are evaluated and analyzed in order to obtain the best parameters as possible for the models created. The selected architectures are trained on the publicly available BraTS 2017–2020 dataset. The segmentation distinguishes the background, healthy tissue, whole tumor, edema, enhanced tumor, and necrosis. Further, a random search for parameter optimization is presented to additionally improve the architectures obtained. Lastly, we also compute the detection results of the ensemble model created from the weighted average of the six models described. The goal of the ensemble is to improve the segmentation at the tumor tissue boundaries. Our results are compared to the BraTS 2020 competition and leaderboard and are among the first 25% considering the ranking of Dice scores.
Collapse
|
6
|
Automated Detection of Brain Tumor through Magnetic Resonance Images Using Convolutional Neural Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3365043. [PMID: 34912889 PMCID: PMC8668304 DOI: 10.1155/2021/3365043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Brain tumor is a fatal disease, caused by the growth of abnormal cells in the brain tissues. Therefore, early and accurate detection of this disease can save patient's life. This paper proposes a novel framework for the detection of brain tumor using magnetic resonance (MR) images. The framework is based on the fully convolutional neural network (FCNN) and transfer learning techniques. The proposed framework has five stages which are preprocessing, skull stripping, CNN-based tumor segmentation, postprocessing, and transfer learning-based brain tumor binary classification. In preprocessing, the MR images are filtered to eliminate the noise and are improve the contrast. For segmentation of brain tumor images, the proposed CNN architecture is used, and for postprocessing, the global threshold technique is utilized to eliminate small nontumor regions that enhanced segmentation results. In classification, GoogleNet model is employed on three publicly available datasets. The experimental results depict that the proposed method is achieved average accuracies of 96.50%, 97.50%, and 98% for segmentation and 96.49%, 97.31%, and 98.79% for classification of brain tumor on BRATS2018, BRATS2019, and BRATS2020 datasets, respectively. The outcomes demonstrate that the proposed framework is effective and efficient that attained high performance on BRATS2020 dataset than the other two datasets. According to the experimentation results, the proposed framework outperforms other recent studies in the literature. In addition, this research will uphold doctors and clinicians for automatic diagnosis of brain tumor disease.
Collapse
|
7
|
Comparison of Heat Demand Prediction Using Wavelet Analysis and Neural Network for a District Heating Network. ENERGIES 2021. [DOI: 10.3390/en14061545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Short-Term Load Prediction (STLP) is an important part of energy planning. STLP is based on the analysis of historical data such as outdoor temperature, heat load, heat consumer configuration, and the seasons. This research aims to forecast heat consumption during the winter heating season. By preprocessing and analyzing the data, we can determine the patterns in the data. The results of the data analysis make it possible to form learning algorithms for an artificial neural network (ANN). The biggest disadvantage of an ANN is the lack of precise guidelines for architectural design. Another disadvantage is the presence of false information in the analyzed training data. False information is the result of errors in measuring, collecting, and transferring data. Usually, trial error techniques are used to determine the number of hidden nodes. To compare prediction accuracy, several models have been proposed, including a conventional ANN and a wavelet ANN. In this research, the influence of different learning algorithms was also examined. The main differences were the training time and number of epochs. To improve the quality of the raw data and remove false information, the research uses the technology of normalizing raw data. The basis of normalization was the technology of the Z-score of the data and determination of the energy‒entropy ratio. The purpose of this research was to compare the accuracy of various data processing and neural network training algorithms suitable for use in data-driven (black box) modeling. For this research, we used a software application created in the MATLAB environment. The app uses wavelet transforms to compare different heat demand prediction methods. The use of several wavelet transforms for various wavelet functions in the research allowed us to determine the best algorithm and method for predicting heat production. The results of the research show the need to normalize the raw data using wavelet transforms. The sequence of steps involves following milestones: normalization of initial data, wavelet analysis employing quantitative criteria (energy, entropy, and energy‒entropy ratio), optimization of ANN training with information energy–entropy ratio, ANN training with different training algorithms, and evaluation of obtained outputs using statistical methods. The developed application can serve as a control tool for dispatchers during planning.
Collapse
|