1
|
Gurumurthy G, Gurumurthy J, Gurumurthy S. Machine learning in paediatric haematological malignancies: a systematic review of prognosis, toxicity and treatment response models. Pediatr Res 2025; 97:524-531. [PMID: 39215200 PMCID: PMC12014474 DOI: 10.1038/s41390-024-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Machine Learning (ML) has demonstrated potential in enhancing care in adult oncology. However, its application in paediatric haematological malignancies is still emerging, necessitating a comprehensive review of its capabilities and limitations in this area. METHODS A literature search was conducted through Ovid. Studies included focused on ML models in paediatric patients with haematological malignancies. Studies were categorised into thematic groups for analysis. RESULTS Twenty studies, primarily on leukaemia, were included in this review. Studies were organised into thematic categories such as prognoses, treatment responses and toxicity predictions. Prognostic studies showed AUC scores between 0.685 and 0.929, indicating moderate-high predictive accuracy. Treatment response studies demonstrated AUC scores between 0.840 and 0.875, reflecting moderate accuracy. Toxicity prediction studies reported high accuracy with AUC scores from 0.870 to 0.927. Only five studies (25%) performed external validation. Significant heterogeneity was noted in ML tasks, reporting formats, and effect measures across studies, highlighting a lack of standardised reporting and challenges in data comparability. CONCLUSION The clinical applicability of these ML models remains limited by the lack of external validation and methodological heterogeneity. Addressing these challenges through standardised reporting and rigorous external validation is needed to translate ML from a promising research tool into a reliable clinical practice component. IMPACT Key message: Machine Learning (ML) significantly enhances predictive models in paediatric haematological cancers, offering new avenues for personalised treatment strategies. Future research should focus on developing ML models that can integrate with real-time clinical workflows. Addition to literature: Provides a comprehensive overview of current ML applications and trends. It identifies limitations to its applicability, including the limited diversity in datasets, which may affect the generalisability of ML models across different populations. IMPACT Encourages standardisation and external validation in ML studies, aiming to improve patient outcomes through precision medicine in paediatric haematological oncology.
Collapse
Affiliation(s)
| | - Juditha Gurumurthy
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Samantha Gurumurthy
- Department of Infectious Diseases & Immunology, Imperial College London, London, UK
| |
Collapse
|
2
|
Weerarathna IN, Kamble AR, Luharia A. Artificial Intelligence Applications for Biomedical Cancer Research: A Review. Cureus 2023; 15:e48307. [PMID: 38058345 PMCID: PMC10697339 DOI: 10.7759/cureus.48307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
Artificial intelligence (AI) has rapidly evolved and demonstrated its potential in transforming biomedical cancer research, offering innovative solutions for cancer diagnosis, treatment, and overall patient care. Over the past two decades, AI has played a pivotal role in revolutionizing various facets of cancer clinical research. In this comprehensive review, we delve into the diverse applications of AI across the cancer care continuum, encompassing radiodiagnosis, radiotherapy, chemotherapy, immunotherapy, targeted therapy, surgery, and nanotechnology. AI has revolutionized cancer diagnosis, enabling early detection and precise characterization through advanced image analysis techniques. In radiodiagnosis, AI-driven algorithms enhance the accuracy of medical imaging, making it an invaluable tool for clinicians in the detection and assessment of cancer. AI has also revolutionized radiotherapy, facilitating precise tumor boundary delineation, optimizing treatment planning, and enabling real-time adjustments to improve therapeutic outcomes while minimizing collateral damage to healthy tissues. In chemotherapy, AI models have emerged as powerful tools for predicting patient responses to different treatment regimens, allowing for more personalized and effective strategies. In immunotherapy, AI analyzes genetic and imaging data to select ideal candidates for treatment and predict responses. Targeted therapy has seen great advancements with AI, aiding in the identification of specific molecular targets for tailored treatments. AI plays a vital role in surgery by offering real-time navigation and support, enhancing surgical precision. Moreover, the synergy between AI and nanotechnology promises the development of personalized nanomedicines, offering more efficient and targeted cancer treatments. While challenges related to data quality, interpretability, and ethical considerations persist, the future of AI in cancer research holds tremendous promise for improving patient outcomes through advanced and individualized care.
Collapse
Affiliation(s)
- Induni N Weerarathna
- Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aahash R Kamble
- Artificial Intelligence and Data Science, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anurag Luharia
- Radiotherapy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Tozzi AE, Croci I, Voicu P, Dotta F, Colafati GS, Carai A, Fabozzi F, Lacanna G, Premuselli R, Mastronuzzi A. A systematic review of data sources for artificial intelligence applications in pediatric brain tumors in Europe: implications for bias and generalizability. Front Oncol 2023; 13:1285775. [PMID: 38016063 PMCID: PMC10646175 DOI: 10.3389/fonc.2023.1285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Introduction Europe works to improve cancer management through the use of artificialintelligence (AI), and there is a need to accelerate the development of AI applications for childhood cancer. However, the current strategies used for algorithm development in childhood cancer may have bias and limited generalizability. This study reviewed existing publications on AI tools for pediatric brain tumors, Europe's most common type of childhood solid tumor, to examine the data sources for developing AI tools. Methods We performed a bibliometric analysis of the publications on AI tools for pediatric brain tumors, and we examined the type of data used, data sources, and geographic location of cohorts to evaluate the generalizability of the algorithms. Results We screened 10503 publications, and we selected 45. A total of 34/45 publications developing AI tools focused on glial tumors, while 35/45 used MRI as a source of information to predict the classification and prognosis. The median number of patients for algorithm development was 89 for single-center studies and 120 for multicenter studies. A total of 17/45 publications used pediatric datasets from the UK. Discussion Since the development of AI tools for pediatric brain tumors is still in its infancy, there is a need to support data exchange and collaboration between centers to increase the number of patients used for algorithm training and improve their generalizability. To this end, there is a need for increased data exchange and collaboration between centers and to explore the applicability of decentralized privacy-preserving technologies consistent with the General Data Protection Regulation (GDPR). This is particularly important in light of using the European Health Data Space and international collaborations.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Predictive and Preventive Medicine Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ileana Croci
- Predictive and Preventive Medicine Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paul Voicu
- Department of Neuroscience and Imaging, “SS Annunziata” Hospital, “G. D’Annunzio” University, Chieti, Italy
| | - Francesco Dotta
- Imaging Department, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Carai
- Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giuseppe Lacanna
- Predictive and Preventive Medicine Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Roberto Premuselli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Pacheco Aispuro G, Rojas Jácome IB, Martínez Zamora CA, Gil-Ortiz Mejía C, Mader C, Castillo Rangel C, Monroy Sosa A, Flores-Vázquez M, Arroyo Zavala OJ, Ramos-Zúñiga R, González Garibay G, Ángel Alavez G, Lee Á. Bibliometric Analysis: Six Decades of Scientific Production from a Nationwide Institution: Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) from Mexico. Healthcare (Basel) 2023; 11:1725. [PMID: 37372844 DOI: 10.3390/healthcare11121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND This study employed bibliometric analysis to ascertain the research focus areas among a group of Mexican physicians affiliated with the Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE). ISSSTE, a healthcare institution catering to a diverse range of diseases, offers a distinctive perspective on the investigated specialties within the realm of health. The primary objective was to identify knowledge gaps in medical care disciplines through a comprehensive examination of scholarly publications. METHODS We retrieved Scopus papers affiliated with "ISSSTE" and saved them as .CSV files. Subsequently, we employed VOSviewer, biblioshiny, and bibliometrix for bibliometric analysis. This enabled us to identify prominent institutions, prolific authors, highly cited researchers, and their respective affiliations. RESULTS Our analysis identified 2063 publications; the specialty internal medicine accounted for the greatest proportion with 831 publications. Original papers accounted for 82% of the total, with 52% of them being written in Spanish. The majority of scientific output, 92%, originated from Mexico City. The annual production has steadily increased since 2010, peaking in 2021 with over 200 publications. However, papers on prevalent conditions, such as metabolic syndrome, received limited citations, and the L0 index (percentage of uncited items) for all papers is close to 60%. Scopus mislabeled one affiliation, and some cases show a low paper-to-author ratio of 0.5 Discussion: Additional concerns, such as honorary authorship due to excessive authors per paper, and the underlying causes of low citation rates in Mexican publications, warrant further examination. Moreover, our research emphasizes the urgency of bolstering research and development funding, which was consistently below 0.5% of GDP for the past four decades, falling short of legal mandates and international benchmarks. We endorse the establishment of robust research collectives in Latin America to address these challenges, foster regional scientific output, and transition from knowledge consumers to knowledge producers, thereby reducing dependence on foreign technology.
Collapse
Affiliation(s)
| | - Ileana Belén Rojas Jácome
- Department of Neurology, Hospital Ángeles del Pedregal, Mexico City 10700, Mexico
- Mexican Faculty of Medicine, Universidad La Salle, Mexico City 06140, Mexico
| | | | | | - Christopher Mader
- Department of Neurosurgery, ISSSTE Hospital Regional Lic. Adolfo López Mateos, Mexico City 01030, Mexico
| | - Carlos Castillo Rangel
- Department of Neurosurgery, ISSSTE Hospital Regional 1° de Octubre, Mexico City 07760, Mexico
| | | | - Mario Flores-Vázquez
- Department of Neurosurgery, Hospital Regional Dr. Valentín Gómez Farías-ISSSTE, Zapopan 45100, Mexico
| | | | | | | | | | - Ángel Lee
- Hospital Ángeles del Pedregal, Mexico City 10700, Mexico
| |
Collapse
|
5
|
Feng C, Zhou X, Wang H, He Y, Li Z, Tu C. Research hotspots and emerging trends of deep learning applications in orthopedics: A bibliometric and visualized study. Front Public Health 2022; 10:949366. [PMID: 35928480 PMCID: PMC9343683 DOI: 10.3389/fpubh.2022.949366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background As a research hotspot, deep learning has been continuously combined with various research fields in medicine. Recently, there is a growing amount of deep learning-based researches in orthopedics. This bibliometric analysis aimed to identify the hotspots of deep learning applications in orthopedics in recent years and infer future research trends. Methods We screened global publication on deep learning applications in orthopedics by accessing the Web of Science Core Collection. The articles and reviews were collected without language and time restrictions. Citespace was applied to conduct the bibliometric analysis of the publications. Results A total of 822 articles and reviews were finally retrieved. The analysis showed that the application of deep learning in orthopedics has great prospects for development based on the annual publications. The most prolific country is the USA, followed by China. University of California San Francisco, and Skeletal Radiology are the most prolific institution and journal, respectively. LeCun Y is the most frequently cited author, and Nature has the highest impact factor in the cited journals. The current hot keywords are convolutional neural network, classification, segmentation, diagnosis, image, fracture, and osteoarthritis. The burst keywords are risk factor, identification, localization, and surgery. The timeline viewer showed two recent research directions for bone tumors and osteoporosis. Conclusion Publications on deep learning applications in orthopedics have increased in recent years, with the USA being the most prolific. The current research mainly focused on classifying, diagnosing and risk predicting in osteoarthritis and fractures from medical images. Future research directions may put emphasis on reducing intraoperative risk, predicting the occurrence of postoperative complications, screening for osteoporosis, and identification and classification of bone tumors from conventional imaging.
Collapse
Affiliation(s)
- Chengyao Feng
- The Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaowen Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hua Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu He
- The Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhihong Li
- The Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Tu
- The Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Chao Tu
| |
Collapse
|