1
|
Moreno Borrallo A, Jaramillo Ortiz S, Schaeffer-Reiss C, Quintard B, Rey B, Bize P, Viblanc VA, Boulinier T, Chastel O, Gutiérrez JS, Masero JA, Bertile F, Criscuolo F. Variation in albumin glycation rates in birds suggests resistance to relative hyperglycaemia rather than conformity to the pace of life syndrome hypothesis. eLife 2025; 13:RP103205. [PMID: 40387078 DOI: 10.7554/elife.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The pace of life syndrome (POLS) hypothesis suggests that organisms' life history and physiological and behavioural traits should co-evolve. In this framework, how glycaemia (i.e. blood glucose levels) and its reaction with proteins and other compounds (i.e. glycation) covary with life history traits remain relatively under-investigated, despite the well-documented consequences of glucose and glycation on ageing, and therefore potentially on life history evolution. Birds are particularly relevant in this context given that they have the highest blood glucose levels within vertebrates and still higher mass-adjusted longevity compared to organisms with similar physiology as mammals. We thus performed a comparative analysis on glucose and albumin glycation rates of 88 bird species from 22 orders in relation to life history traits (body mass, clutch mass, maximum lifespan, and developmental time) and diet. Glucose levels correlated positively with albumin glycation rates in a non-linear fashion, suggesting resistance to glycation in species with higher glucose levels. Plasma glucose levels decreased with increasing body mass, but, contrary to what is predicted in the POLS hypothesis, glucose levels increased with maximum lifespan before reaching a plateau. Finally, terrestrial carnivores showed higher albumin glycation compared to omnivores despite not showing higher glucose, which we discuss may be related to additional factors as differential antioxidant levels or dietary composition in terms of fibres or polyunsaturated fatty acids. These results increase our knowledge about the diversity of glycaemia and glycation patterns across birds, pointing towards the existence of glycation resistance mechanisms within comparatively high glycaemic birds.
Collapse
Affiliation(s)
- Adrián Moreno Borrallo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Sarahi Jaramillo Ortiz
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
- National Proteomics Infrastructure, ProFi, Strasbourg, France
| | - Christine Schaeffer-Reiss
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
- National Proteomics Infrastructure, ProFi, Strasbourg, France
| | | | - Benjamin Rey
- Lyon University 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Vincent A Viblanc
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | | | - Olivier Chastel
- Center of Biological Studies of Chizé (CEBC), UMR 7372 CNRS - La Rochelle University, Villiers-en-Bois, France
| | - Jorge S Gutiérrez
- Ecology in the Anthropocene, Associated Unit CSIC‑UEX, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - José A Masero
- Ecology in the Anthropocene, Associated Unit CSIC‑UEX, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
- National Proteomics Infrastructure, ProFi, Strasbourg, France
| | - Francois Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| |
Collapse
|
2
|
Li Q, Zhang H, Xiao N, Liang G, Lin Y, Yang X, Yang J, Qian Z, Fu Y, Zhang C, Liu A. Aging and Lifestyle Modifications for Preventing Aging-Related Diseases. FASEB J 2025; 39:e70575. [PMID: 40293686 DOI: 10.1096/fj.202402797rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
The pathogenesis of various chronic diseases is closely associated with aging. Aging of the cardiovascular system promotes the development of severe cardiovascular diseases with high mortality, including atherosclerosis, coronary heart disease, and myocardial infarction. Similarly, aging of the nervous system promotes the development of neurodegenerative diseases, such as Alzheimer's disease, which seriously impairs cognitive function. Aging of the musculoskeletal system is characterized by decreased function and mobility. The molecular basis of organ aging is cellular senescence, which involves multiple cellular and molecular mechanisms, such as impaired autophagy, metabolic imbalance, oxidative stress, and persistent inflammation. Given the ongoing demographic shift toward an aging society, strategies to delay or reduce the effects of aging have gained significance. Lifestyle modifications, such as exercise and calorie restriction, are now recognized for their anti-aging effects, their capacity to reduce modification, their potential to prolong lifespan, and their capacity to lower the risk of cardiovascular disease. This review elucidates the molecular mechanisms and application significance of various anti-aging approaches at the molecular level, based on research progress in aging. It aims to provide a reference for the prevention and treatment of age-related diseases in progressively aging societies.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Babczyńska A, Tarnawska M, Czaja K, Flasz B, Ajay AK, Napora-Rutkowski Ł, Rozpędek K, Świerczek E, Kędziorski A, Augustyniak M. Effects on digestive enzyme activities in the house crickets Acheta domesticus exposed to graphene oxide in food for several generations. Nanotoxicology 2025:1-14. [PMID: 40366864 DOI: 10.1080/17435390.2025.2500430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/16/2025]
Abstract
Increasing usage of nanoparticles or nanomaterials may lead to their release into the environment. The toxicity of these structures, classified as contaminants of emerging concern, is not yet sufficiently understood. However, as in the case of other environmental stressors, the effects of exposure to them should be analyzed on a multigenerational scale to predict the consequences for exposed populations. Therefore, this project aimed to assess the impact of graphene oxide (GO) nanomaterial on digestive enzyme activities in the house cricket Acheta domesticus as a model species, depending on GO concentration (0.2 or 0.02 µg·g-1 dry weight of food), previous selection for longevity and the number of generations (1-5) that have occurred since the beginning of exposure. The last and sixth generations were insects for which GO was withdrawn from the diet (recovery generation). Enzymatic activity was tested using API Zym kit modified for spectrophotometric reads. The tests revealed that GO intervenes with some digestive enzymes. Moreover, the effects of GO depend on the population's previous selection for longevity. The impact of mechanisms mitigating the consequences of aging supports the possible tolerance to GO intoxication. It demonstrated itself in diverse patterns of multigenerational response to GO in wild and long-lived insects. Also, multigenerational exposure revealed the 'third generation' effect. Finally, the impact of GO elimination depended on the concentration of nanomaterial used for the tests. Also, the potential impact of concentration-dependent agglomeration of GO in the context of hormesis has been discussed.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Klaudia Czaja
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Łukasz Napora-Rutkowski
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Chybie, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
4
|
Kang P, Liu P, Hu Y, Kim J, Kumar A, Dorneich-Hayes MK, Murzyn W, Anderson ZJ, Frank LN, Kavlock N, Hoffman E, Martin CC, Miao T, Shimell M, Powell-Coffman JA, O'Connor MB, Perrimon N, Bai H. NF-κB-mediated developmental delay extends lifespan in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2420811122. [PMID: 40339121 DOI: 10.1073/pnas.2420811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
Developmental time (or time to maturity) strongly correlates with an animal's maximum lifespan, with late-maturing individuals often living longer. However, the genetic mechanisms underlying this phenomenon remain largely unknown. This may be because most previously identified longevity genes regulate growth rate rather than developmental time. To address this gap, we genetically manipulated prothoracicotropic hormone (PTTH), the primary regulator of developmental timing in Drosophila, to explore the genetic link between developmental time and longevity. Loss of PTTH delays developmental timing without altering the growth rate. Intriguingly, PTTH mutants exhibit extended lifespan despite their larger body size. This lifespan extension depends on ecdysone signaling, as feeding 20-hydroxyecdysone to PTTH mutants reverses the effect. Mechanistically, loss of PTTH blunts age-dependent chronic inflammation, specifically in fly hepatocytes (oenocytes). Developmental transcriptomics reveal that NF-κB signaling activates during larva-to-adult transition, with PTTH inducing this signaling via ecdysone. Notably, time-restricted and oenocyte-specific silencing of Relish (an NF-κB homolog) at early 3rd instar larval stages significantly prolongs adult lifespan while delaying pupariation. Our study establishes an aging model that uncouples developmental time from growth rate, highlighting NF-κB signaling as a key developmental program in linking developmental time to adult lifespan.
Collapse
Affiliation(s)
- Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 55455
| | - Jinoh Kim
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | | | - Wren Murzyn
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Zenessa J Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Lexi N Frank
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Nicholas Kavlock
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Elizabeth Hoffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Chad C Martin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 02115
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 02115
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 55455
- HHMI, Boston, MA 02115
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
5
|
Ayala-Berdon J, Medina-Bello KI, Carballo-Morales JD, Saldaña-Vázquez RA, Villalobos F. Thermal energetics of bats of the family Vespertilionidae: An evolutionary approach. ZOOLOGY 2025; 170:126271. [PMID: 40359620 DOI: 10.1016/j.zool.2025.126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Thermal energetics define the way animals spend energy for thermoregulation. In this regard, numerous studies have determined that body mass (Mb) is the most influential morphological trait affecting the thermal traits in different species of birds and mammals. However, most of the studies have been focused on the basal metabolic rate (BMR), while other thermal traits have been less studied. We addressed this gap by examining thermal variables on bats of the family Vespertilionidae. Using open-flow respirometry, we measured BMR, absolute thermal conductance (C'), lower and upper critical temperatures (TLC and TUC), and breadth of the thermoneutral zone (TNZb) of 16 bat species ranging in Mb from ∼ 4.0-21.0 g from central Mexico. We: 1) combined our empirical data with information gathered from the literature and conducted phylogenetic analyses to investigate the relationship between Mb and thermal traits, 2) tested the relationship between mass independent C' and mass independent BMR with TLC and TUC of bats, and the relationship between critical temperatures and TNZb, and 3) mapped the thermal energetic traits along the phylogeny to explore their evolutionary trends. We found a positive relationship between Mb and BMR and absolute C' but not to TLC, TUC and TNZb of bats. Mass independent BMR and mass independent C' were positively related to TLC and TUC. Finally, TLC showed a negative relationship with TNZb while TUC exhibited a positive relationship with this thermal trait. The phylogenetic approach indicates that over the evolutionary history, BMR and C´ have decreased while TLC, TUC and TNZb have increased. Our results suggest that: 1) differences in the limits of the TNZ and C' may have helped bats to avoid the constraints on heat dissipation imposed by ambient temperatures, and 2) adaptive changes in Mb and thermal traits may have influenced the geographical distribution and energy-saving strategies of bats. These findings contribute to an understanding of how small endotherms cope with thermal challenges, shedding light on the physiological and evolutionary mechanisms that shape species' ecological niches and biogeographic patterns across diverse environments.
Collapse
Affiliation(s)
- Jorge Ayala-Berdon
- SECIHTI, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, Tlaxcala C.P. 90062, Mexico.
| | - Kevin I Medina-Bello
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, Tlaxcala C.P. 90062, Mexico.
| | - Jorge D Carballo-Morales
- Laboratorio de Sistemática, Genética y Evolución (LabSGE), Escuela de Ciencias Biológicas, Universidad Nacional. Heredia, Costa Rica; Department of Biological Sciences, Towson University, Towson, MD, 21252, USA.
| | - Romeo A Saldaña-Vázquez
- Instituto de Investigaciones en Medio Ambiente, Xabier Gorostiaga S.J. Universidad Iberoamericana Puebla, Blvrd. del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, Puebla, San Andrés Cholula C.P. 72810, Mexico.
| | - Federico Villalobos
- Laboratorio de Sistemática, Genética y Evolución (LabSGE), Escuela de Ciencias Biológicas, Universidad Nacional. Heredia, Costa Rica.
| |
Collapse
|
6
|
Salehi F, Kavoosi G, Jacobs PJ, Bennett NC, Ahmadian S, Bastani B, Gholami M. The road to a long lifespan in the Persian squirrel, a natural model for extended longevity: resisting free radical stress and healthy phospholipids. GeroScience 2025:10.1007/s11357-025-01668-9. [PMID: 40304955 DOI: 10.1007/s11357-025-01668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Longevity is influenced by various factors, including fatty acid composition and free radical stress, which relate to the membrane pacemaker and rate of living hypotheses. While these aspects are well-documented in some long-lived species, they remain largely unexplored in tree squirrels. This study aimed to compare oxidative stress, antioxidant activity, nitrosative stress, and lipid composition between the long-lived Persian squirrel (Sciurus anomalus) and the short-lived Wistar rat across age cohorts (younger and older). Tissue homogenates from skin, liver, skeletal muscle, spleen, lung, and kidney were analysed for lipid composition (monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), arachidonic to linoleic acid ratio, peroxidation index, and unsaturation index. Oxidative, nitrosative, and antioxidant markers were assessed, including NADPH oxidase, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase (GST), nitric oxide synthase, superoxide, hydrogen peroxide, nitric oxide, malondialdehyde, 4-hydroxynonenal, and total antioxidant capacity (TAC). Squirrels demonstrated higher GST activity, lower free radical stress, lower PUFA, and higher MUFA compared to rats. Antioxidant activities, except for TAC were negatively correlated with longevity. Older squirrels exhibited similar oxidative, nitrosative, and antioxidant profiles to younger squirrels, whereas younger rats displayed highly susceptible fatty acids, similar to older rats. The Persian squirrel's longevity appears closely linked to fatty acid composition and free radical resistance, likely due to increased GST activity. We propose GST's multifunctional role in reducing inflammation, enhancing immune response, providing disease resistance, and antioxidant activity contributes significantly to the longevity of the Persian squirrel.
Collapse
Affiliation(s)
- Fahimeh Salehi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | | | - Paul J Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| | - Babak Bastani
- Bureau of Wildlife Management and Conservation, Deputy of Natural Environment and Biodiversity, Department of Environment, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Kilili H, Padilla-Morales B, Castillo-Morales A, Monzón-Sandoval J, Díaz-Barba K, Cornejo-Paramo P, Vincze O, Giraudeau M, Bush SJ, Li Z, Chen L, Mourkas E, Ancona S, Gonzalez-Voyer A, Cortez D, Gutierrez H, Székely T, Acuña-Alonzo AP, Urrutia AO. Maximum lifespan and brain size in mammals are associated with gene family size expansion related to immune system functions. Sci Rep 2025; 15:15087. [PMID: 40301502 PMCID: PMC12041557 DOI: 10.1038/s41598-025-98786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/15/2025] [Indexed: 05/01/2025] Open
Abstract
Mammals exhibit an unusual variation in their maximum lifespan potential, measured as the longest recorded longevity of any individual in a species. Evidence suggests that lifespan increases follow expansion in brain size relative to body mass. Here, we found significant gene family size expansions associated with maximum lifespan potential and relative brain size but not in gestation time, age of sexual maturity, and body mass in 46 mammalian species. Extended lifespan is associated with expanding gene families enriched in immune system functions. Our results suggest an association between gene duplication in immune-related gene families and the evolution of longer lifespans in mammals. These findings explore the genomic features linked with the evolution of lifespan in mammals and its association with life story and morphological traits.
Collapse
Affiliation(s)
- Huseyin Kilili
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Benjamin Padilla-Morales
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| | | | | | - Karina Díaz-Barba
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, CP62210, Cuernavaca, Mexico
| | - Paola Cornejo-Paramo
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, CP62210, Cuernavaca, Mexico
| | - Orsolya Vincze
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
- Institute of Aquatic Ecology, Centre for Ecological Research, 4026, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006, Cluj-Napoca, Romania
| | - Mathieu Giraudeau
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
| | - Stephen J Bush
- School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhidan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Evangelos Mourkas
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sergio Ancona
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Diego Cortez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, CP62210, Cuernavaca, México
| | - Humberto Gutierrez
- Instituto Nacional de Medicina Genomica, 14610, Ciudad de Mexico, Mexico
| | - Tamás Székely
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Alín P Acuña-Alonzo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
8
|
Rottenberg H. Adaptive evolution of cytochrome b in songbirds. Biol Open 2025; 14:bio061908. [PMID: 40105716 PMCID: PMC12032549 DOI: 10.1242/bio.061908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
The mitochondrial bc1 complex catalyzes the oxidation of ubiquinol by reducing cytochrome c. Cytochrome b, the catalytic core of bc1, generates superoxide during the oxidation of ubiquinol. Excessive superoxide production is known to accelerate aging and neurodegeneration. Songbirds (oscine, Passeri) exhibit lower production of mitochondrial reactive oxygen species (ROS) and greatly accelerated evolution of cytochrome b, relative to all other modern birds, suggesting adaptive selection for lower generation of ROS. Here, we identified songbird-specific substitutions in modern bird's cytochrome b amino-acid sequences and examined the high-resolution structures of the chicken bc1 complex in an effort to predict the effect of these substitutions on the function of bc1. Many of the songbird-specific substitutions cluster around sites that are critical for the function of bc1. One cluster of substitutions interacts with heme BH. A second cluster of substitutions interacts with residues in the ubiquinone reduction site, Qi. Both groups of substitution may affect the rate of reduction of ubiquinone at the Qi site. Another cluster of cytochrome b substitutions interacts with the hinge region of the Rieske protein that transfers electron from cytochrome b to cytochrome c1. These songbird-specific substitutions appear to be selected to modulate the rate of both ubiquinol oxidation at the Qo site and ubiquinone reduction at the Qi site thereby modulating the rate of superoxide production. These findings are compatible with the hypothesis that cytochrome b evolution in songbirds was driven by selection of substitutions that reduce the rate of superoxide production thereby increasing songbird lifespan and cognitive abilities.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W Bridge Street, New Hope, PA 18938, USA
| |
Collapse
|
9
|
Ghione CR, Dean MD. Sexual Size Dimorphism Correlates With the Number of Androgen Response Elements in Mammals, But Only in Small-Bodied Species. Genome Biol Evol 2025; 17:evaf068. [PMID: 40248910 PMCID: PMC12015095 DOI: 10.1093/gbe/evaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
Sexual size dimorphism is common throughout the animal kingdom, but its evolution and development remain difficult to explain given most of the genome is shared between males and females. Sex-biased regulation of genes via sex hormone signaling offers an intuitive mechanism by which males and females could develop different body sizes. One prediction of this hypothesis is that the magnitude of sexual size dimorphism scales with the number of androgen response elements or estrogen response elements, the DNA motifs to which sex hormone receptors bind. Here, we test this hypothesis using 268 mammalian species with full genome assemblies and annotations. We find that in the two smallest-bodied lineages (Chiroptera and Rodentia), sexual size dimorphism increases (male-larger) as the number of androgen response elements in a genome increases. In fact, myomorph rodents-which are especially small-bodied with high sexual size dimorphism-show an explosion of androgen receptor elements in their genomes. In contrast, the three large-bodied lineages (orders Carnivora, Cetartiodactyla, and Primates) do not show this relationship, instead following Rensch's Rule, or the observation that sexual size dimorphism increases with overall body size. One hypothesis to unify these observations is that small-bodied organisms like bats and rodents tend to reach peak reproductive fitness quickly and are more reliant on hormonal signaling to achieve sexual size dimorphism over relatively short time periods. Our study uncovers a previously unappreciated relationship between sexual size dimorphism, body size, and hormone signaling that likely varies in ways related to life history.
Collapse
Affiliation(s)
- Caleb R Ghione
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Porter J, Ward LC, Nguo K, Davidson Z, Gibson S, Prentice R, Neuhouser ML, Truby H. Investigating the impact of body composition on the estimation of resting metabolic rate: new equations for adults aged ≥65 years developed using cross-sectional data. Am J Clin Nutr 2025; 121:795-803. [PMID: 40180499 DOI: 10.1016/j.ajcnut.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Due to changes in body composition during aging, the inclusion of body composition measures as a variable within equations to predict resting metabolic rate (RMR) may improve their predictive accuracy. OBJECTIVES This analysis of cross-sectional data aimed to develop and validate new RMR equations for older adults (≥65 y) incorporating variables for body composition, to predict performance and accuracy, and to explore the relative contribution of body composition variables acting directly or potentially via fat-free mass (FFM) to RMR. METHODS Analyses were conducted utilizing a unique international dataset of gold standard measures developed for this purpose. RMR was predicted from potential predictive variables using stepwise multiple regression. Predictive performance of the final model was assessed using double cross-validation. The new prediction equation was compared with published prediction equations for similar populations and with previously published RMR prediction equations that did not include FFM. Direct associations between the determined predictor variables and RMR with indirect effects mediated via FFM were examined using mediation final (or pathway) analysis. RESULTS The dataset contained 1238 participants. The predictive equations {utilizing either FFM (Equation 1) or lean body weight [LBW](Equation 2)} follow. Equation 1: RMR = 8.645 × height + 23.684 × weight - 29.717 × age + 38.213 × FFM + 209.637 × sex + 2693.223; Equation 2: RMR = -30.570 × age + 80.736 × LBW - 186.825 × sex + 3956.822 where RMR (kJ/d); height (cm); weight (kg); age (y); FFM (kg); LBW (kg); sex (M = 1, F = 0). The equation performed similarly to some anthropometric-based prediction equations. Predictors using FFM performed marginally better than those using LBW. All variables had significant (P < 0.001) direct effects upon RMR and significant (P < 0.001) indirect effects for sex, weight, and height. CONCLUSIONS New prediction equations predict RMR at the population level with minimal bias; however, the difference in performance with anthropometry-based equations is minimal. This may be explained by the contribution of FFM to weight, whereby equations that include weight are already accounting for FFM.
Collapse
Affiliation(s)
- Judi Porter
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| | - Leigh C Ward
- Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia
| | - Kay Nguo
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Zoe Davidson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Simone Gibson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Ross Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States; School of Public Health, University of Washington, Seattle, WA, United States
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States; School of Public Health, University of Washington, Seattle, WA, United States
| | - Helen Truby
- School of Human Movement and Nutrition Sciences, the University of Queensland, Brisbane, Australia; School of Primary and Allied Health Care, Monash University, Peninsula Campus, Australia
| |
Collapse
|
11
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
12
|
Asato H, Toda M. Precocious maturation and semi-multivoltine lifecycle in a subtropical grass lizard, Takydromus toyamai. Curr Zool 2025; 71:184-195. [PMID: 40264718 PMCID: PMC12011489 DOI: 10.1093/cz/zoae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 04/24/2025] Open
Abstract
There are many short-lived animals, but those displaying a lifecycle with more than one generation per year (multivoltine lifecycle) are rare among terrestrial vertebrates. The multivoltine lifecycle requires rapid growth and maturation and a long active season. Thus, small lizards in humid tropical or subtropical areas are candidates for multivoltine lifecycles. To test this prediction, we conducted a capture-mark-recapture study of a subtropical grass lizard, Takydromus toyamai, endemic to Miyako Islands, Japan. Juveniles grew very quickly, averaging 0.3 mm/day in the warm season, and attained sexual maturity at 2.5 months post-hatching. The breeding season was very long, and hatchlings emerged from May to November. The prolonged breeding season and rapid growth to maturity allowed some individuals to produce a second generation in their first year. Estimates of hatching date from growth rates indicated that many females that hatched in May-June became gravid 76-120 days after hatching and 122-165 days after oviposition of the eggs from which they hatched. Analyses of juvenile survivorship and month of hatching suggest that nearly half of breeding adults were members of multivoltine generations, although the 2 generations were not discrete. The species is short-lived, with only 16% of individuals surviving beyond 12 months, and few individuals reproduced in a second year. We refer to this condition as a "semi-multivoltine lifecycle." Individuals that hatch late in the season defer reproduction until the following year and become founders of the next season's cohort. This putative advantage of late-hatching individuals may have driven the evolution of this lifecycle.
Collapse
Affiliation(s)
- Hitomi Asato
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903–0213, Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903–0213, Japan
| |
Collapse
|
13
|
Sheta B, Hassan A, Sallam AED, Habbak L, Hyder A. Phylogenetic and lipid metabolic differences between migratory and Egyptian-domesticated Mallard ducks (Anas platyrhynchos). Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111814. [PMID: 39837383 DOI: 10.1016/j.cbpa.2025.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Although a giant Egyptian domestic non-migratory duck breed is phenotypically identical to the migratory Mallard, yet it is three times larger. The current study sought to determine the genetic and metabolic differences between this duck and Mallard, which arrives in Egypt in September for wintering and departs in March. Mitochondrial DNA control region (D-loop) was extracted, amplified, sequenced, and analyzed in both ducks. Both ducks were given a high-fat diet (HFD) for 6 weeks to assess their metabolic response to this diet. Polymorphism results indicated that the D-loop is highly variable and both populations expansion is balanced. The hierarchical analysis of molecular variants (AMOVA) and interpopulation difference parameters revealed significant genetic differentiation and minimal gene flow between migrant and resident populations. Phylogeny and Network analyses revealed that domestic ducks are a distinct group that separated from mallards. Physiologically, domestic duck blood and adipose tissue had a higher level of triglycerides and adipocyte volume than that of the depleting arriving migratory Mallard ducks, while leaving Mallard parameters were the highest, suggesting a high level of preparatory fat deposition and utilization before starting the trip. In response to HFD, the expression of FA uptake genes cd36, fabp1 was upregulated similarly in livers of domestic and migratory Mallard ducks, while the expression of lipid accumulation genes dgat2 and plin2 was higher in domestic than in migratory Mallards. However, the highest body mass and adipocytes volume gain was observed in the arriving migratory Mallards. In pectoral muscle, the expression of cd36 and fabp3 was higher in domestic than in leaving ducks, while in arriving Mallards, both genes were not upregulated in response to HFD. Dgat2 was upregulated only in domestic muscle, while lipid oxidation genes cpt1, lpl, and the controlling ppara were more upregulated in leaving Mallard. In conclusion, both ducks can be genetically and metabolically differentiated. Migratory mallards are more flexible and efficient in lipid metabolism than domestic ducks.
Collapse
Affiliation(s)
- Basma Sheta
- Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Asmaa Hassan
- Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | | | - Lotfy Habbak
- Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
14
|
Butler G, Baker J, Amend SR, Pienta KJ, Venditti C. No evidence for Peto's paradox in terrestrial vertebrates. Proc Natl Acad Sci U S A 2025; 122:e2422861122. [PMID: 39993196 PMCID: PMC11892590 DOI: 10.1073/pnas.2422861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Larger, longer-lived species are expected to have a higher cancer prevalence compared to smaller, shorter-lived species owing to the greater number of cell divisions that occur during their lifespan. Yet, to date, no evidence has been found to support this expectation, and no association has been found between cancer prevalence and body size across species-a phenomenon known as Peto's paradox. Specifically, while anticancer mechanisms have been identified for individual species, wider phylogenetic evidence has remained elusive. Here, we show that there is no evidence for Peto's paradox across amphibians, birds, mammals, and squamate reptiles: Larger species do in fact have a higher cancer prevalence compared to smaller species. Moreover, we demonstrate that the accumulation of repeated instances of accelerated body size evolution in mammals and birds is associated with a reduction in the prevalence of neoplasia and malignancy, suggesting that increased rates of body size evolution are associated with the evolution of improved cellular growth control. These results represent empirical evidence showing that larger body size is related to higher cancer prevalence, thus rejecting Peto's paradox, and demonstrating the importance of heterogenous routes of body size evolution in shaping anticancer defenses.
Collapse
Affiliation(s)
- George Butler
- University College London Cancer Institute, University College London, LondonWC1E 6DD, United Kingdom
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Joanna Baker
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD21287
| | - Chris Venditti
- School of Biological Sciences, University of Reading, ReadingRG6 6AS, United Kingdom
| |
Collapse
|
15
|
Zala M, Alcazer V, Largeaud L, Sujobert P. What is the origin of the normal ranges of blood cell counts? An evolutionary perspective. EJHAEM 2025; 6:e1073. [PMID: 39866940 PMCID: PMC11756989 DOI: 10.1002/jha2.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Background The normal values of the complete blood count are part of the foundational medical knowledge that is seldom questioned due to their well-established nature. These normal values are critical for optimal physiological function while minimizing the harmful consequences of an excessive number of blood cells. Thus, they represent an evolutionary trade-off likely shaped by natural selection if they significantly influence individual fitness and exhibit heritability. Methods On the basis of the analysis of normal blood count values of 94 mammalian species, we discovered that certain parameters are strongly associated with diet, habitat, and lifespan. Results Carnivorous mammals had higher hemoglobin levels than vegetarians, and aquatic mammals displayed red blood cell parameters probably selected to enhance for the diving capacities. Body weight influenced platelet counts and innate immune cells, with lighter animals having higher platelet counts and larger animals showing elevated monocytes and neutrophils. Conclusions By treating the history of life as an experiment, we have discerned some evolutionary constraints likely contributing to the selection for optimal trade-offs in blood cell count.
Collapse
Affiliation(s)
- Manon Zala
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon)Lymphoma ImmunoBiology teamFaculté de Médecine Lyon sudUniversité Claude Bernard Lyon 1LyonFrance
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon)Lymphoma ImmunoBiology teamFaculté de Médecine Lyon sudUniversité Claude Bernard Lyon 1LyonFrance
- Hospices Civils de Lyon, Hôpital Lyon SudService d'hématologie cliniquePierre BéniteFrance
| | - Laetitia Largeaud
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon)Lymphoma ImmunoBiology teamFaculté de Médecine Lyon sudUniversité Claude Bernard Lyon 1LyonFrance
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon)Lymphoma ImmunoBiology teamFaculté de Médecine Lyon sudUniversité Claude Bernard Lyon 1LyonFrance
- Hospices Civils de LyonHôpital Lyon SudService d'hématologie biologiquePierre BéniteFrance
| |
Collapse
|
16
|
Olorunfemi MAO, Binhambali A, Sinkalu VO, Babashani M, Samuel FU, Ayo JO. Effects of age and circadian rhythm on vital parameters and erythrocyte osmotic fragility of donkeys during seasonal changes. PLoS One 2025; 20:e0313780. [PMID: 39888947 PMCID: PMC11785283 DOI: 10.1371/journal.pone.0313780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/30/2024] [Indexed: 02/02/2025] Open
Abstract
This study investigates the effects of seasonal variations on the erythrocyte osmotic fragility and vital parameters of donkeys Equus africanus asinus at the National Animal Production Research Institute (NAPRI) in Shika, Kaduna State, Nigeria. The research focused on two key periods: the hot-dry season (April) and the rainy season (July). Twelve donkeys were classified into three age groups: young (1-3 years), adult (4-6 years), and old (7-9 years). Blood samples were collected at six-hour intervals over a 24-hour period, while dry-bulb and wet-bulb temperatures were measured to compute the temperature-humidity index (THI). Vital parameters including rectal temperature, respiratory rate, and heart rate were also recorded. Results showed higher dry-bulb temperatures (DBT) during the hot-dry season, with the lowest DBT of 12°C at 00:00 h and the highest of 25.5°C at 18:00 h. Young donkeys exhibited the highest erythrocyte osmotic fragility during the hot-dry season, while old donkeys showed elevated fragility during the rainy season. Results also demonstrated that erythrocyte osmotic fragility varied significantly with age and season, with young donkeys exhibiting the highest fragility during the hot-dry season at a 0.3% NaCl concentration. However, old donkeys showed increased fragility during the rainy season, which shows the influence of both age and environmental conditions on erythrocyte stability. Also, rectal temperatures were higher in young donkeys during the hot-dry season compared to adults, while heart rates showed significant elevation across all age groups during the rainy season. Overall, this study elucidates the physiological adaptations of donkeys to seasonal thermal stress, providing critical insights into their health management and welfare in varying climatic conditions. Understanding these dynamics is essential for optimizing donkey husbandry practices, especially in regions facing climate variability. These findings contribute valuable knowledge to the field of veterinary physiology and highlight the necessity of tailored management strategies to mitigate the impact of seasonal stressors on animal health.
Collapse
Affiliation(s)
| | - Abdulhakeem Binhambali
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Translation Research in Pain, College of Veterinary Medicine, NCSU, Raleigh, NC, United States of America
| | - Victor Olusegun Sinkalu
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - Felix Uchenna Samuel
- National Animal Production Research Institute, Ahmad Bello University, Zaria, Nigeria
| | - Joseph Olusegun Ayo
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
17
|
Shang Y, Kasada M, Kondoh M. Rescue or murder? The effect of prey adaptation to the predator subjected to fisheries. Ecol Evol 2024; 14:e70336. [PMID: 39633784 PMCID: PMC11615651 DOI: 10.1002/ece3.70336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
The concept of "indirect evolutionary rescue" refers to the evolutionary adaptation of an interacting species that can save a focal species from extinction in an unfavorable environment. Although theories suggest that indirect evolutionary rescue may have essential impacts on catchments in the context of fisheries where artificial selection pressure from fishing can drive evolution, its generality and conditions remain uncertain. In this study, by investigating how prey adaptation affects the persistence of a predator subjected to selective harvest with an eco-evolutionary predator-prey model, we find that prey adaptation tends to deteriorate (facilitate) predator persistence when predator's evolvability is high (low). In the system where the predator possesses high evolvability, selection by fisheries inhibits a predator's adaptation to prey, allowing the prey to escape predation by adaptation. Prey adaptation will affect predator persistence negatively, leading to evolutionary murder. Conversely, in the system where the predator's evolvability is low, the removal of predator individuals by fisheries relaxes predation pressure on prey, making the prey less defensive. Vulnerable prey affects predator persistence positively, resulting in indirect evolutionary rescue. The context-dependent response of natural resources to fisheries identified in this study suggests that the eco-evolutionary interplay should be considered for better natural resource management.
Collapse
Affiliation(s)
- Yangke Shang
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Minoru Kasada
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Michio Kondoh
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
18
|
Huang Z, Wang Z, Liu Y, Ke C, Feng J, He B, Jiang T. The links between dietary diversity and RNA virus diversity harbored by the great evening bat (Ia io). MICROBIOME 2024; 12:246. [PMID: 39578858 PMCID: PMC11585108 DOI: 10.1186/s40168-024-01950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Predator‒prey interactions and their dynamic changes provide frequent opportunities for viruses to spread among organisms and thus affect their virus diversity. However, the connections between dietary diversity and virus diversity in predators have seldom been studied. The avivorous bats, Ia io, show a seasonal pattern of dietary diversity. Although most of them primarily prey on insects in summer, they mainly prey on nocturnally migrating birds in spring and autumn. RESULTS In this study, we characterized the RNA virome of three populations of I. io in Southwest China during summer and autumn using viral metatranscriptomic sequencing. We also investigated the relationships between dietary diversity and RNA virus diversity by integrating DNA metabarcoding and viral metatranscriptomic sequencing techniques at the population level of I. io. We found 55 known genera belonging to 35 known families of RNA viruses. Besides detecting mammal-related viruses, which are the usual concern, we also found a high abundance of insect-related viruses and some bird-related viruses. We found that insect-related viruses were more abundant in summer, while the bird-related viruses were predominantly detected in autumn, which might be caused by the seasonal differences in prey selection by I. io. Additionally, a significant positive correlation was identified between prey diversity and total virus diversity. The more similar the prey composition, the more similar the total virus composition and the higher the count of potential new viruses. We also found that the relative abundance of Picornaviridae increased with increasing prey diversity and body mass. CONCLUSIONS In this study, significant links were found between RNA virus diversity and dietary diversity of I. io. The results implied that dynamic changes in predator-prey interactions may facilitate frequent opportunities for viruses to spread among organisms. Video Abstract.
Collapse
Affiliation(s)
- Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Can Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 5268 Renmin Avenue, Changchun, 130024, China.
| |
Collapse
|
19
|
McCoy BM, Mariner BL, Cheng CF, Slikas E, Adjangba C, Greenier A, Brassington L, Marye A, Harrison BR, Partida-Aguilar M, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. Aging at scale: Younger dogs and larger breeds from the Dog Aging Project show accelerated epigenetic aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616519. [PMID: 39553930 PMCID: PMC11565713 DOI: 10.1101/2024.10.03.616519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Dogs exhibit striking within-species variability in lifespan, with smaller breeds often living more than twice as long as larger breeds. This longevity discrepancy also extends to health and aging-larger dogs show higher rates of age-related diseases. Despite this well-established phenomenon, we still know little about the biomarkers and molecular mechanisms that might underlie breed differences in aging and survival. To address this gap, we generated an epigenetic clock using DNA methylation from over 3 million CpG sites in a deeply phenotyped cohort of 864 companion dogs from the Dog Aging Project, including some dogs sampled annually for 2-3 years. We found that the largest breed size tends to have epigenomes that are, on average, 0.37 years older per chronological year compared to the smallest breed size. We also found that higher residual epigenetic age was significantly associated with increased mortality risk, with dogs experiencing a 34% higher risk of death for each year increase in residual epigenetic age. These findings not only broaden our understanding of how aging manifests within a diverse species but also highlight the significant role that demographic factors play in modulating the biological mechanisms underlying aging. Additionally, they highlight the utility of DNA methylation as both a biomarker for healthspan-extending interventions, a mortality predictor, and a mechanism for understanding inter-individual variation in aging in dogs.
Collapse
|
20
|
Li Z, Gao W, Shi H, Xu S, Zeng Z, Wang F, Lai C, Zhang S. Evaluating the Net Energy Requirements for Maintenance Based on Indirect Calorimetry and Heart Rate Monitoring in Gestating Sows. Animals (Basel) 2024; 14:2907. [PMID: 39409856 PMCID: PMC11475035 DOI: 10.3390/ani14192907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of this study were (1) to determine the net energy requirements for the maintenance of gestating sows based on indirect calorimetry, and (2) to explore the feasibility of predicting the net energy requirements for the maintenance of gestating sows based on daily heart rate monitoring. In Exp. 1, six Landrace × Yorkshire crossbred reproductive sows with an initial body weight of 229.5 ± 14.9 kg at d 56 of gestation were randomly assigned to six diverse energy feeding levels using a 6 × 6 Latin square design. The experimental diet was formulated using corn, soybean meal, and wheat bran as major ingredients, and the six feeding levels were set as 1.2, 1.4, 1.6, 1.8, 2.0, and 2.2 times metabolizable energy for maintenance (100 kcal ME/kg BW0.75·d-1), respectively. The animal trial lasted for six periods with 9 days per period, encompassing 5 days of adaptation, 3 days of calorimetry in fed state, and 1 day of calorimetry in fasting state. In Exp. 2, six Landrace × Yorkshire crossbred pregnant sows with an initial body weight of 232.5 ± 12.5 kg at d 64 were fed a corn-soybean meal diet. All sows were tested in a respiratory calorimetry chamber for a 4 day calorimetry test. The heat production of the gestation sows was measured every 5 min using indirect calorimetry, and the heart rate of the gestating sows was recorded every minute using a belt-shape monitor. The results showed that the net energy requirements for the maintenance of gestating sows significant increased as the gestational stage progressed (p < 0.05), and a linear regression model revealed the average net energy requirement for the maintenance of gestating sows was 410 kJ/BW0.75 d-1 during late gestation (days 70-110). Moreover, the average heart rate of the gestating sows was 84 bpm, and the mathematical model developed to predict the net energy requirements for the maintenance of gestating sows was NEm(kcal/h)=19901+exp[136-HR(bpm)43]. In conclusion, the average net energy requirement for the maintenance of sows during late gestation was 410 kJ/BW0.75 d-1, and the utilization of the heart rate monitoring method was found to provide a relevant, accurate prediction for the net energy requirements of sows.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Wenjun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Huangwei Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Song Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Zhengcheng Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Changhua Lai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.L.); (W.G.); (H.S.); (S.X.); (Z.Z.); (F.W.)
- National Center of Technology Innovation for Pigs (North China Branch), Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Clemente CJ, De Groote F, Dick TJM. Predictive musculoskeletal simulations reveal the mechanistic link between speed, posture and energetics among extant mammals. Nat Commun 2024; 15:8594. [PMID: 39366939 PMCID: PMC11452696 DOI: 10.1038/s41467-024-52924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
An unusual pattern among the scaling laws in nature is that the fastest animals are neither the largest, nor the smallest, but rather intermediately sized. Because of the enormous diversity in animal shape, the mechanisms underlying this have long been difficult to determine. To address this, we challenge predictive human musculoskeletal simulations, scaled in mass from the size of a mouse (0.1 kg) to the size of an elephant (2000 kg), to move as fast as possible. Our models replicate patterns observed across extant animals including: (i) an intermediate optimal body mass for speed; (ii) a reduction in the cost of transport with increasing size; and (iii) crouched postures at smaller body masses and upright postures at larger body masses. Finally, we use our models to determine the mechanical limitations of speed with size, showing larger animals may be limited by their ability to produce muscular force while smaller animals are likely limited by their ability to produce larger ground reaction forces. Despite their bipedal gait, our models replicate patterns observed across quadrupedal animals, suggesting these biological phenomena likely represent general rules and are not the result of phylogenetic or other ecological factors that typically hinder comparative studies.
Collapse
Affiliation(s)
- Christofer J Clemente
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
- School of Science Engineering and Technology, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | | | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
22
|
Kervella M, Cansell C, Criscuolo F, Bouillaud F. Utilization of a Clark electrode device as a respirometer for small insects: A convincing test on ants allowing to detect discontinuous gas exchange. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104698. [PMID: 39159873 DOI: 10.1016/j.jinsphys.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Respirometry provides a direct measure of an organism's O2 consumption rate (VO2), which is a significant component of its metabolic rate (energy expenditure). Amongst ants, variations in lifespan between different social castes (such as workers and queens) can be substantial, varying depending on the species. As metabolic rate is higher in short-living species, we aimed to determine how VO2 and longevity may have coevolved within ant casts. Measuring VO2 in such tiny animal models can be challenging, and as a first methodological step, we validate the use of a Clark electrode, initially designed for measuring mitochondrial respiration control pathways, for assessing VO2 in ants within a sealed chamber. This was done by comparing it with stop-flow VO2 and CO2 production, using a traditional indirect calorimetry device. The global aim is to provide a reliable protocol to conduct accurate comparisons of metabolic rates within and among ant species. As expected, using the Clark electrode entails high time resolution and revealed that queens and workers exhibited discontinuous gas exchange, with episodes of apnea lasting up to 20 min.
Collapse
Affiliation(s)
- Maïly Kervella
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037 Strasbourg Cedex 2, F-67000 Strasbourg, France; Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité-Paris 5, Paris, France.
| | - Céline Cansell
- Université Paris-Saclay, AgroParisTech, CNRS UMR 0914, INRAE, PNCA, Paris, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037 Strasbourg Cedex 2, F-67000 Strasbourg, France
| | - Frederic Bouillaud
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité-Paris 5, Paris, France
| |
Collapse
|
23
|
Harper JM, Hicks M, Jiménez AG. The resistance of domestic canine skin-derived fibroblasts to oxidative and non-oxidative chemical injury: implications of breed and body size. GeroScience 2024:10.1007/s11357-024-01358-y. [PMID: 39316259 DOI: 10.1007/s11357-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Small-breed dogs live significantly longer lives than large-breed dogs, while having higher mass-specific metabolic rates and faster growth rates. Underlying this observed physiological difference across domestic dogs, there must also be differences at other levels of organization that could lead to elucidating what accounts for the disparity in aging rates and life span within this species. At the cellular level, a clear mechanism underlying whole animal traits has not been fully elucidated. Here, we cultured dermal fibroblasts from large and small breed dogs from both young and old age categories and examined the degree of resistance to multiple sources of cytotoxic stress. This included heat (42 °C), paraquat, cadmium, and hydrogen peroxide for increasing amounts of time (heat) or increasing concentrations (chemical stressors). We hypothesized that small breed dogs, with longer lifespans, would have greater cellular resistance to stress compared with large breed dogs. Final sample sizes include small puppies (N = 18), large puppy (N = 32), small old (N = 11), and large old (N = 23) dogs. Using a 2 (donor size) by 2 (donor age) between-subjects multivariate analysis of variance, we found that the values for the dose that killed 50% of the cells (LD50) were not significantly different based on donor size (p = 0.45) or donor age (p = 0.20). The interaction was also not significant (p = 0.47). Interestingly, we did find that the degree of resistance to cadmium toxicity was significantly correlated with the degree of resistance to both heat and hydrogen peroxide, but not paraquat (p < 0.01 for both). These data suggest that cellular stress resistance does not differ among domestic dogs as a function of size or age, pointing to other cellular pathways as the mechanistic basis for the observed differences in lifespan.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA.
| | - Megan Hicks
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA
| | | |
Collapse
|
24
|
Simmen B, Quintard B, Lefaux B, Tarnaud L, Correa-Pimpao G, Ibanez R, Blanc S, Zahariev A. Thermal and morphometric correlates of the extremely low rate of energy use in a wild frugivorous primate, the Mayotte lemur. Sci Rep 2024; 14:21700. [PMID: 39289438 PMCID: PMC11408505 DOI: 10.1038/s41598-024-72189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Primates spend on average half as much energy as other placental mammals while expressing a wide range of lifestyles. However, little is known about how primates adapt their rate of energy use in the context of natural environmental variations. Using doubly labelled water, behavioral and accelerometric methods, we measured the total energy expenditure (TEE) and body composition of a population of Eulemur fulvus (N = 12) living in an agroforest in Mayotte. We show that the TEE of this medium-sized cathemeral primate is one of the lowest recorded to date in eutherians. Regression models show that individual variation in the rate of energy use is predicted by fat-free mass, body size, thigh thickness and maximum temperature. TEE is positively correlated with increasing temperature, suggesting that thermoregulation is an important component of the energy budget of this frugivorous species. Mass-specific TEE is only 10% lower than that of a closely related species previously studied in a gallery forest, consistent with the assertion that TEE varies within narrow physiological limits. As lemur communities include many species with unique thermoregulatory adaptations, circadian and/or seasonal temperature variations may have constituted a major selective pressure on the evolution of lemur metabolic strategies.
Collapse
Affiliation(s)
- B Simmen
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France.
| | - B Quintard
- Parc Zoologique et Botanique de Mulhouse, 68100, Mulhouse, France
| | - B Lefaux
- Parc Zoologique et Botanique de Mulhouse, 68100, Mulhouse, France
| | - L Tarnaud
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France
| | - G Correa-Pimpao
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France
| | - R Ibanez
- UMR 7206, Eco-Anthropologie, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Université de Paris, Brunoy, France
| | - S Blanc
- UMR 7178, Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | - A Zahariev
- UMR 7178, Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
25
|
Ayala-Berdon J, Medina-Bello KI. Torpor energetics are related to the interaction between body mass and climate in bats of the family Vespertilionidae. J Exp Biol 2024; 227:jeb246824. [PMID: 39206564 DOI: 10.1242/jeb.246824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Torpor is an adaptive strategy allowing heterothermic animals to cope with energy limitations. In birds and mammals, intrinsic and extrinsic factors, such as body mass and ambient temperature, are the main variables influencing torpor use. A theoretical model of the relationship between metabolic rate during torpor and ambient temperature has been proposed. Nevertheless, no empirical attempts have been made to assess the model predictions under different climates. Using open-flow respirometry, we evaluated the ambient temperature at which bats entered torpor and when torpid metabolic rate reached its minimum, the reduction in metabolic rate below basal values, and minimum torpid metabolic rate in 11 bat species of the family Vespertilionidae with different body mass from warm and cold climates. We included data on the minimum torpid metabolic rate of five species we retrieved from the literature. We tested the effects using mixed-effect phylogenetic models. All models showed a significant interaction between body mass and climate. Smaller bats went into torpor and reached minimum torpid metabolic rates at warmer temperatures, showed a higher reduction in the metabolic rate below basal values, and presented lower torpid metabolic rates than larger ones. The slopes of the models were different for bats from different climates. These results are likely explained by differences in body mass and the metabolic rate of bats, which may favor larger bats expressing torpor in colder sites and smaller bats in the warmer ones. Further studies to assess torpor use in bats from different climates are proposed.
Collapse
Affiliation(s)
- Jorge Ayala-Berdon
- CONAHCYT, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, C.P. 90062, Tlaxcala de Xicohténcatl, Tlaxcala, México
| | - Kevin I Medina-Bello
- Posgrado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Tlaxcala-Puebla Km. 1.5, C.P. 90062, Tlaxcala de Xicohténcatl, Tlaxcala, México
| |
Collapse
|
26
|
Leow CJ, Piller KR. Life in the fastlane? A comparative analysis of gene expression profiles across annual, semi-annual, and non-annual killifishes (Cyprinodontiformes: Nothobranchiidae). PLoS One 2024; 19:e0308855. [PMID: 39255288 PMCID: PMC11386455 DOI: 10.1371/journal.pone.0308855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
The Turquoise Killifish is an important vertebrate for the study of aging and age-related diseases due to its short lifespan. Within Nothobranchiidae, species possess annual, semi-annual, or non-annual life-histories. We took a comparative approach and examined gene expression profiles (QuantSeq) from 62 individuals from eleven nothobranchid species that span three life-histories. Our results show significant differences in differentially expressed genes (DEGs) across life-histories with non-annuals and semi-annuals being most similar, and annuals being the most distinct. At finer scales, we recovered significant differences in DEGs for DNA repair genes and show that non-annual and semi-annuals share similar gene expression profiles, while annuals are distinct. Most of the GO terms enriched in annuals are related to metabolic processes. However, GO terms, including translation, protein transport, and DNA replication initiation also are enriched in annuals. Non-annuals are enriched in Notch signaling pathway genes and downregulated in the canonical Wnt signaling pathway compared to annual species, which suggests that non-annuals have stronger regulation in cellular processes. This study provides support for congruency in DEGs involved in these life-histories and provides strong evidence that a particular set of candidate genes may be worthy of study to investigate their role in the aging process.
Collapse
Affiliation(s)
- Chi Jing Leow
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| |
Collapse
|
27
|
van Rosmalen L, Zhu J, Maier G, Gacasan EG, Lin T, Zhemchuzhnikova E, Rothenberg V, Razu S, Deota S, Ramasamy RK, Sah RL, McCulloch AD, Hut RA, Panda S. Multi-organ transcriptome atlas of a mouse model of relative energy deficiency in sport. Cell Metab 2024; 36:2015-2037.e6. [PMID: 39232281 PMCID: PMC11378950 DOI: 10.1016/j.cmet.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Insufficient energy intake to meet energy expenditure demands of physical activity can result in systemic neuroendocrine and metabolic abnormalities in activity-dependent anorexia and relative energy deficiency in sport (REDs). REDs affects >40% of athletes, yet the lack of underlying molecular changes has been a hurdle to have a better understanding of REDs and its treatment. To assess the molecular changes in response to energy deficiency, we implemented the "exercise-for-food" paradigm, in which food reward size is determined by wheel-running activity. By using this paradigm, we replicated several aspects of REDs in female and male mice with high physical activity and gradually reduced food intake, which results in weight loss, compromised bone health, organ-specific mass changes, and altered rest-activity patterns. By integrating transcriptomics of 19 different organs, we provide a comprehensive dataset that will guide future understanding of REDs and may provide important implications for metabolic health and (athletic) performance.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiaoyue Zhu
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Geraldine Maier
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erica G Gacasan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Zhemchuzhnikova
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Vince Rothenberg
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Swithin Razu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert L Sah
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D McCulloch
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roelof A Hut
- Chronobiology unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, the Netherlands
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Fontana A, Kyriazis M. How evolution makes us age: Introducing the evolvable soma theory of ageing. Biosystems 2024; 243:105271. [PMID: 39038529 DOI: 10.1016/j.biosystems.2024.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
At any moment in time, evolution is faced with a formidable challenge: refining the already highly optimised design of biological species, a feat accomplished through all preceding generations. In such a scenario, the impact of random changes (the method employed by evolution) is much more likely to be harmful than advantageous, potentially lowering the reproductive fitness of the affected individuals. Our hypothesis is that ageing is, at least in part, caused by the cumulative effect of all the experiments carried out by evolution to improve a species' design. These experiments are almost always unsuccessful, as expected given their pseudorandom nature, cause harm to the body and ultimately lead to death. This hypothesis is consistent with the concept of "terminal addition", by which nature is biased towards adding innovations at the end of development. From the perspective of evolution as an optimisation algorithm, ageing is advantageous as it allows to test innovations during a phase when their impact on fitness is present but less pronounced. Our inference suggests that ageing has a key biological role, as it contributes to the system's evolvability by exerting a regularisation effect on the fitness landscape of evolution.
Collapse
|
29
|
Stewart AD, Herrick CM, Fitzgibbon TR, Wehner JM, Lev A, Venti PA, Pischedda A. Life history changes associated with over 400 generations of artificial selection on body size in Drosophila. J Evol Biol 2024; 37:851-861. [PMID: 38809925 DOI: 10.1093/jeb/voae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Body size is a trait that shapes many aspects of a species' development and evolution. Larger body size is often beneficial in animals, but it can also be associated with life history costs in natural systems. Similarly, miniaturization, the evolution of extremely small adult body size, is found in every major animal group, yet carries its own life history trade-offs. Given that these effects can depend on an animal's environment and life stage and have mainly been studied in species that are already specialized for their size, the life history changes associated with evolutionary shifts in body size warrant additional investigation. Here, we used Drosophila melanogaster populations that had undergone over 400 generations of artificial selection on body size to investigate the changes in life history traits associated with the evolution of extremely large and extremely small body sizes. Populations selected for small body size experienced strong trade-offs in multiple life history traits, including reduced female fecundity and lower juvenile viability. Although we found positively correlated changes in egg size associated with selection for both large and small body size, after adjusting for female body size, females from populations selected for large size had the lowest relative investment per egg and females from populations selected for small size had the highest relative investment per egg. Taken together, our results suggest that egg size may be a key constraint on the evolution of body size in D. melanogaster, providing insight into the broader phenomenon of body size evolution in insects.
Collapse
Affiliation(s)
- Andrew D Stewart
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Calvin M Herrick
- Department of Biology, Canisius University, Buffalo, NY, United States
| | | | - James M Wehner
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Avigayil Lev
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Patricia A Venti
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Alison Pischedda
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| |
Collapse
|
30
|
Kolb AF, Mayer C, Zitskaja A, Petrie L, Hasaballah K, Warren C, Carlisle A, Lillico S, Whitelaw B. Maternal α-casein deficiency extends the lifespan of offspring and programmes their body composition. GeroScience 2024:10.1007/s11357-024-01273-2. [PMID: 38992336 DOI: 10.1007/s11357-024-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Early nutrition has significant effects on physiological outcomes during adult life. We have analysed the effect of maternal α-casein (CSN1S1) deficiency on the physiological fate of dams and their offspring. α-casein deficiency reduces maternal milk protein concentration by more than 50% and attenuates the growth of pups to 27% (p < 0.001) of controls at the point of weaning. This is associated with a permanent reduction in adult body weight (- 31% at 25 weeks). Offspring nursed by α-casein deficient dams showed a significantly increased lifespan (+ 20%, χ2: 10.6; p = 0.001). Liver transcriptome analysis of offspring nursed by α-casein deficient dams at weaning revealed gene expression patterns similar to those found in dwarf mice (reduced expression of somatotropic axis signalling genes, increased expression of xenobiotic metabolism genes). In adult mice, the expression of somatotropic axis genes returned to control levels. This demonstrates that, in contrast to dwarf mice, attenuation of the GH-IGF signalling axis in offspring nursed by α-casein deficient dams is transient, while the changes in body size and lifespan are permanent. Offspring nursed by α-casein deficient dams showed permanent changes in body composition. Absolute and relative adipose tissue weights (p < 0.05), the percentage of body fat (p < 0.001) as well as adipocyte size in epididymal white adipose tissue are all reduced. Serum leptin levels were 25% of those found in control mice (p < 0.001). Liver lipid content and lipid composition were significantly altered in response to postnatal nutrition. This demonstrates the nutrition in early life programmes adult lipid metabolism, body composition and lifespan.
Collapse
Affiliation(s)
- Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland.
| | - Claus Mayer
- Biomathematics and Statistics Scotland (BioSS), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Alina Zitskaja
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Khulod Hasaballah
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon Lillico
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Bruce Whitelaw
- Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
31
|
Kan H, Chen Y. Revealing endogenous conditions for Peto's paradox via an ordinary differential equation model. J Math Biol 2024; 89:27. [PMID: 38970664 PMCID: PMC11227477 DOI: 10.1007/s00285-024-02123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Cancer, a disease intimately linked to cellular mutations, is commonly believed to exhibit a positive association with the cell count and lifespan of a species. Despite this assumption, the observed uniformity in cancer rates across species, referred to as the Peto's paradox, presents a conundrum. Recognizing that tumour progression is not solely dependent on cancer cells but involves intricate interactions among various cell types, this study employed a Lotka-Volterra (LV) ordinary differential equation model to analyze the evolution of cancerous cells and the cancer incidence in an immune environment. As a result, this study uncovered the sufficient conditions underlying the absence of correlation in Peto's paradox and provide insights into the reasons for the equitable distribution of cancer incidence across diverse species by applying nondimensionalization and drawing an analogy between the characteristic time interval for the variation of cell populations in the ODE model and that of cell cycles of a species.
Collapse
Affiliation(s)
- Haichun Kan
- SCS Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yu Chen
- SCS Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
32
|
Zheng Y, Huang S, Fan H, Liu H, Xu J, Craig NJ, Li JY, He W, Su L. Microplastics in different tissues of historical and live samples of endangered mega-fish (Acipenser sinensis) and their potential relevance to exposure pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106943. [PMID: 38733942 DOI: 10.1016/j.aquatox.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The Chinese sturgeon (Acipenser sinensis) is an endangered freshwater mega-fish (IUCN-red listed) that survives in the Yangtze River Basin, but the population of which has declined significantly in response to environmental pressures generated by human activities. In order to evaluate the interaction between Chinese sturgeon and microplastics (MPs) for the first time, we examined the gut and gills of historical samples (n = 27), in conjunction with the blood and mucus of live samples (n = 10), to explore the potential pathways involved in MP uptake. We detected MPs in 62.9 % of the field fish, with no significant difference between guts (mean=0.9 items/individual) and gills (mean=0.8 items/individual). The abundance of MPs in fish from 2017 was significantly higher than that from 2015 to 2016 with regards to both gills and gut samples. The size of MPs in gills was significantly smaller than those in guts, yet both contained mostly fibers (90.2 %). No MPs were confirmed in blood, however 62.5 % of mucus samples contained MPs. The MPs in mucus indicated the possibility of MPs entering Chinese sturgeons if their skins were damaged. The body size of Chinese sturgeons affected their MPs uptake by ingestion and inhalation, as less MPs were detected in the gut and gills of smaller individuals. Combining the evidence from historical and live samples, we revealed the presence of MPs in different tissues of Chinese sturgeon and their potential relevance to exposure pathways. Our work expands the understanding of multiple exposure pathways between MPs and long-lived mega-fish, while emphasizing the potential risks of long-term exposure in the field.
Collapse
Affiliation(s)
- Yueping Zheng
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Sirui Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Houyong Fan
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Hanqi Liu
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Nicholas J Craig
- School of Biosciences, the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Juan-Ying Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Wenhui He
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
33
|
Masoero G, Dumas MN, Martin JGA, Bize P. Trait-specific sensitive developmental windows: Wing growth best integrates weather conditions encountered throughout the development of nestling Alpine swifts. Ecol Evol 2024; 14:e11491. [PMID: 38855314 PMCID: PMC11156578 DOI: 10.1002/ece3.11491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
The size and growth patterns of nestling birds are key determinants of their survival up to fledging and long-term fitness. However, because traits such as feathers, skeleton and body mass can follow different developmental trajectories, our understanding of the impact of adverse weather on development requires insights into trait-specific sensitive developmental windows. We analysed data from nestling Alpine swifts in Switzerland measured throughout growth up to the age of 50 days (i.e. fledging between 50 and 70 days), for wing length and body mass (2693 nestlings in 25 years) and sternum length (2447 nestlings in 22 years). We show that the sensitive developmental windows for wing and sternum length corresponded to the periods of trait-specific peak growth, which span almost the whole developmental period for wings and the first half for the sternum. Adverse weather conditions during these periods slowed down growth and reduced size. Although nestling body mass at 50 days showed the greatest inter-individual variation, this was explained by weather in the two days before measurement rather than during peak growth. Interestingly, the relationship between temperature and body mass was not linear, and the initial sharp increase in body mass associated with the increase in temperature was followed by a moderate drop on hot days, likely linked to heat stress. Nestlings experiencing adverse weather conditions during wing growth had lower survival rates up to fledging and fledged at later ages, presumably to compensate for slower wing growth. Overall, our results suggest that measures of feather growth and, to some extent, skeletal growth best capture the consequences of adverse weather conditions throughout the whole development of offspring, while body mass better reflects the short, instantaneous effects of weather conditions on their body reserves (i.e. energy depletion vs. storage in unfavourable vs. favourable conditions).
Collapse
Affiliation(s)
- Giulia Masoero
- Swiss Ornithological InstituteSempachSwitzerland
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | | | | | - Pierre Bize
- Swiss Ornithological InstituteSempachSwitzerland
| |
Collapse
|
34
|
Gürel S, Pak EN, Tek NA. Aging Processes Are Affected by Energy Balance: Focused on the Effects of Nutrition and Physical Activity on Telomere Length. Curr Nutr Rep 2024; 13:264-279. [PMID: 38498288 PMCID: PMC11133118 DOI: 10.1007/s13668-024-00529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW The number and proportion of individuals aged 60 and over are increasing globally. The increase in the elderly population has important social and economic effects. Telomere length is an important marker for healthy aging. Here, we review the relevance between telomere length and energy balance by determining the effects of physical activity, nutrients, dietary patterns, and foods on healthy aging and telomere length with related studies. RECENT FINDINGS Evidence emphasizes the importance of telomere length and integrity for healthy aging. It also focuses on the importance of potential interventions such as physical activity and a healthy diet to improve this process. We suggest that ensuring energy balance with regular physical activity and healthy diets can contribute to the aging process by protecting telomere length. In addition, different methods in studies, short and inconsistent durations, different types of exercise, different diet patterns, and non-standard foods have led to conflicting results. More studies are needed to elucidate molecular-based mechanisms.
Collapse
Affiliation(s)
- Satı Gürel
- Department of Nutrition and Dietetics, Faculty of Health Science, Trakya University, 22030, Edirne, Turkey
| | - Elif Nisa Pak
- Department of Nutrition and Dietetics, Faculty of Health Science, Kilis 7 Aralık University, 79000, Kilis, Turkey.
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| |
Collapse
|
35
|
Boratyński JS, Iwińska K, Wirowska M, Borowski Z, Zub K. Predation can shape the cascade interplay between heterothermy, exploration and maintenance metabolism under high food availability. Ecol Evol 2024; 14:e11579. [PMID: 38932950 PMCID: PMC11199196 DOI: 10.1002/ece3.11579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Maintenance metabolism as the minimum energy expenditure needed to maintain homeothermy (a high and stable body temperature, T b), reflects the magnitude of metabolic machinery and the associated costs of self-maintenance in endotherms (organisms able to produce heat endogenously). Therefore, it can interact with most, if not all, organismal functions, including the behavior-fitness linkage. Many endothermic animals can avoid the costs of maintaining homeothermy and temporally reduce T b and metabolism by entering heterothermic states like torpor, the most effective energy-saving strategy. Variations in BMR, behavior, and torpor use are considered to be shaped by food resources, but those conclusions are based on research studying these traits in isolation. We tested the effect of ecological contexts (food availability and predation risk) on the interplay between the maintenance costs of homeothermy, heterothermy, and exploration in a wild mammal-the yellow-necked mouse. We measured maintenance metabolism as basal metabolic rate (BMR) using respirometry, distance moved (exploration) in the open-field test, and variation in T b (heterothermy) during short-term fasting in animals captured at different locations of known natural food availability and predator presence, and with or without supplementary food resources. We found that in winter, heterothermy and exploration (but not BMR) negatively correlated with natural food availability (determined in autumn). Supplementary feeding increased mouse density, predation risk and finally had a positive effect on heterothermy (but not on BMR or exploration). The path analysis testing plausible causal relationships between the studied traits indicated that elevated predation risk increased heterothermy, which in turn negatively affected exploration, which positively correlated with BMR. Our study indicates that adaptive heterothermy is a compensation strategy for balancing the energy budget in endothermic animals experiencing low natural food availability. This study also suggests that under environmental challenges like increased predation risk, the use of an effective energy-saving strategy predicts behavioral expression better than self-maintenance costs under homeothermy.
Collapse
Affiliation(s)
| | - Karolina Iwińska
- University of Białystok Doctoral School in Exact and Natural SciencesBiałystokPoland
| | - Martyna Wirowska
- Department of Systematic ZoologyAdam Mickiewicz UniversityPoznańPoland
| | - Zbigniew Borowski
- Department of Forest EcologyForest Research InstituteSękocin StaryPoland
| | - Karol Zub
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
36
|
Chmilar SL, Luzardo AC, Dutt P, Pawluk A, Thwaites VC, Laird RA. Caloric restriction extends lifespan in a clonal plant. Ecol Lett 2024; 27:e14444. [PMID: 38814322 DOI: 10.1111/ele.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
When subjected to dietary caloric restriction (CR), individual animals often outlive well-fed conspecifics. Here, we address whether CR also extends lifespan in plants. Whereas caloric intake in animals comes from ingestion, in plants it derives from photosynthesis. Thus, factors that reduce photosynthesis, such as reduced light intensity, can induce CR. In two lab experiments investigating the aquatic macrophyte Lemna minor, we tracked hundreds of individuals longitudinally, with light intensity-and hence, CR-manipulated using neutral-density filters. In both experiments, CR dramatically increased lifespan through a process of temporal scaling. Moreover, the magnitude of lifespan extension accorded with the assumptions that (a) light intensity positively relates to photosynthesis following Michaelis-Menten kinetics, and (b) photosynthesis negatively relates to lifespan via a power law. Our results emphasize that CR-mediated lifespan extension applies to autotrophs as well as heterotrophs, and suggest that variation in light intensity has quantitatively predictable effects on plant aging trajectories.
Collapse
Affiliation(s)
- Suzanne L Chmilar
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Amanda C Luzardo
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Priyanka Dutt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Abbe Pawluk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Victoria C Thwaites
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert A Laird
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
37
|
Koçak G, Uyulgan S, Polatlı E, Sarı V, Kahveci B, Bursali A, Binokay L, Reçber T, Nemutlu E, Mardinoğlu A, Karakülah G, Utine CA, Güven S. Generation of Anterior Segment of the Eye Cells from hiPSCs in Microfluidic Platforms. Adv Biol (Weinh) 2024; 8:e2400018. [PMID: 38640945 DOI: 10.1002/adbi.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.
Collapse
Affiliation(s)
- Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sude Uyulgan
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Elifsu Polatlı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Burak Kahveci
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
| | - Leman Binokay
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, 35340, Türkiye
| |
Collapse
|
38
|
Huijsmans TERG, Courtiol A, Van Soom A, Smits K, Rousset F, Wauters J, Hildebrandt TB. Quantifying maternal investment in mammals using allometry. Commun Biol 2024; 7:475. [PMID: 38637653 PMCID: PMC11026411 DOI: 10.1038/s42003-024-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Maternal investment influences the survival and reproduction of both mothers and their progeny and plays a crucial role in understanding individuals' life-history and population ecology. To reveal the complex mechanisms associated with reproduction and investment, it is necessary to examine variations in maternal investment across species. Comparisons across species call for a standardised method to quantify maternal investment, which remained to be developed. This paper addresses this limitation by introducing the maternal investment metric - MI - for mammalian species, established through the allometric scaling of the litter mass at weaning age by the adult mass and investment duration (i.e. gestation + lactation duration) of a species. Using a database encompassing hundreds of mammalian species, we show that the metric is not highly sensitive to the regression method used to fit the allometric relationship or to the proxy used for adult body mass. The comparison of the maternal investment metric between mammalian subclasses and orders reveals strong differences across taxa. For example, our metric confirms that Eutheria have a higher maternal investment than Metatheria. We discuss how further research could use the maternal investment metric as a valuable tool to understand variation in reproductive strategies.
Collapse
Affiliation(s)
- Tim E R G Huijsmans
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - François Rousset
- Institute of Evolutionary Science of Montpellier, University of Montpellier, CNRS, IRD, campus Triolet, 34095, Montpellier cedex 05, France
| | - Jella Wauters
- Department of Reproduction Biology, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Thomas B Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195, Berlin, Germany
| |
Collapse
|
39
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
40
|
Perillo M, Silla A, Punzo A, Caliceti C, Kriete A, Sell C, Lorenzini A. Peto's paradox: Nature has used multiple strategies to keep cancer at bay while evolving long lifespans and large body masses. A systematic review. Biomed J 2024; 47:100654. [PMID: 37604250 PMCID: PMC10973980 DOI: 10.1016/j.bj.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Comparative oncology is an understudied field of science. We are far from understanding the key mechanisms behind Peto's paradox, i.e., understanding how long-lived and large animals are not subject to a higher cancer burden despite the longer exposure time to mutations and the larger number of cells exposed. In this work, we investigated the scientific evidence on such mechanisms through a systematic mini-review of the literature about the relation of longevity and/or large body mass with physiological, genetic, or environmental traits among mammalian species. More than forty thousand articles were retrieved from three repositories, and 383 of them were screened using an active-learning-based tool. Of those, 36 articles on longevity and 37 on body mass were selected for the review. Such articles were examined focusing on: number and type of species considered, statistical methods used, traits investigated, and observed relationship with longevity and/or body mass. Where applicable, the traits investigated were matched with one or more hallmarks of cancer. We obtained a list of potential candidate traits to explain Peto's paradox related to replicative immortality, cell senescence, genome instability and mutations, proliferative signaling, growth suppression evasion, and cell resistance to death. Our investigation suggests that different strategies have been followed to prevent cancer in large and long-lived species. The large number of papers retrieved emphasizes that more studies can be launched in the future, using more efficient analytical approaches to comprehensively evaluate the convergent biological mechanisms essential for acquiring longevity and large body mass without increasing cancer risk.
Collapse
Affiliation(s)
- Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Alessia Silla
- Department for Life Quality Studies, University of Bologna, Italy
| | - Angela Punzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; National Institute of Biosystems and Biostructures INBB, Rome, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; National Institute of Biosystems and Biostructures INBB, Rome, Italy
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Christian Sell
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; National Institute of Biosystems and Biostructures INBB, Rome, Italy
| |
Collapse
|
41
|
Khaliq I, Rixen C, Zellweger F, Graham CH, Gossner MM, McFadden IR, Antão L, Brodersen J, Ghosh S, Pomati F, Seehausen O, Roth T, Sattler T, Supp SR, Riaz M, Zimmermann NE, Matthews B, Narwani A. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 2024; 15:1921. [PMID: 38429327 PMCID: PMC10907361 DOI: 10.1038/s41467-024-46282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Department of Zoology, Government (defunct) post-graduate college, Dera Ghazi Khan, 32200, Pakistan.
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - Florian Zellweger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- University of London, Queen Mary, London, UK
| | - Laura Antão
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Tobias Roth
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Hintermann & Weber AG Austrasse 2a, 4153, Reinach, Switzerland
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Sarah R Supp
- Denison University, Data Analytics Program, Granville, OH, 43023, USA
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
42
|
Endale F, Nigussie A, Tamene A, Habte A, Ermias D, Beyamo A, Tadesse T, Sulamo D, Belachew T. Abdominal obesity and associated factors among urban adults in Southwest Ethiopia: a community-based cross-sectional study. Pan Afr Med J 2024; 47:47. [PMID: 38681102 PMCID: PMC11055183 DOI: 10.11604/pamj.2024.47.47.34746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/25/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION the obesity epidemic is growing faster in developing countries with no exception of Ethiopia. Currently, abdominal obesity is identified as a major risk factor for chronic diseases due to the accumulation of liable fat. However, despite the evidence of certain documented data, abdominal obesity has been on the rise in Ethiopia, especially in urban areas. Therefore, this study aimed to assess the prevalence and factors associated with abdominal obesity among adults in Jimma town, Southwest Ethiopia. METHODS a community-based cross-sectional study was employed on 845 adults selected using a multi-stage sampling technique. Data were collected using a pretested interviewer-administered questionnaire. Data were entered using Epi-data version 3.1 and exported to STATA version 14 for analysis. Simple linear regression was conducted to identify candidate variables. A multivariable linear regression model was fitted to identify factors associated with abdominal obesity. P-value<0.05 was used to declare statistical significance. RESULTS a total of 806 respondents participated in this study, making a response rate of 95.4%. The magnitude of abdominal obesity was found to be 24.6% (95% CI: 21.5, 27.5). Physical activity (β= -2.053; 95%CI: -3.353, -0.454), alcohol consumption (β=1.631; 95%CI: 0.176, 3.087), and age (β=0.319; 95%CI: 0.250, 0.389) were significantly associated with abdominal obesity. CONCLUSION the magnitude of abdominal obesity among adults in the study area was high compared to previous studies. Alcohol drinking, being physically inactive, and age were predictors of abdominal obesity. There is a need for intervention for adults with physical inactivity and alcohol consumption to reduce abdominal obesity.
Collapse
Affiliation(s)
- Fitsum Endale
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Aderajew Nigussie
- Department of Nutrition and Dietetics, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Aiggan Tamene
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Aklilu Habte
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Dejene Ermias
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Abera Beyamo
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Tegegn Tadesse
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Dawit Sulamo
- School of Public Health, College of Medicine and Health Sciences, Wachemo University, Hosanna, Ethiopia
| | - Tefera Belachew
- Department of Nutrition and Dietetics, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
43
|
Szasz A. Peto's "Paradox" and Six Degrees of Cancer Prevalence. Cells 2024; 13:197. [PMID: 38275822 PMCID: PMC10814230 DOI: 10.3390/cells13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peto's paradox and the epidemiologic observation of the average six degrees of tumor prevalence are studied and hypothetically solved. A simple consideration, Petho's paradox challenges our intuitive understanding of cancer risk and prevalence. Our simple consideration is that the more a cell divides, the higher the chance of acquiring cancerous mutations, and so the larger or longer-lived organisms have more cells and undergo more cell divisions over their lifetime, expecting to have a higher risk of developing cancer. Paradoxically, it is not supported by the observations. The allometric scaling of species could answer the Peto paradox. Another paradoxical human epidemiology observation in six average mutations is necessary for cancer prevalence, despite the random expectations of the tumor causes. To solve this challenge, game theory could be applied. The inherited and random DNA mutations in the replication process nonlinearly drive cancer development. The statistical variance concept does not reasonably describe tumor development. Instead, the Darwinian natural selection principle is applied. The mutations in the healthy organism's cellular population can serve the species' evolutionary adaptation by the selective pressure of the circumstances. Still, some cells collect multiple uncorrected mutations, adapt to the extreme stress in the stromal environment, and develop subclinical phases of cancer in the individual. This process needs extensive subsequent DNA replications to heritage and collect additional mutations, which are only marginal alone. Still, together, they are preparing for the first stage of the precancerous condition. In the second stage, when one of the caretaker genes is accidentally mutated, the caused genetic instability prepares the cell to fight for its survival and avoid apoptosis. This can be described as a competitive game. In the third stage, the precancerous cell develops uncontrolled proliferation with the damaged gatekeeper gene and forces the new game strategy with binary cooperation with stromal cells for alimentation. In the fourth stage, the starving conditions cause a game change again, starting a cooperative game, where the malignant cells cooperate and force the cooperation of the stromal host, too. In the fifth stage, the resetting of homeostasis finishes the subclinical stage, and in the fifth stage, the clinical phase starts. The prevention of the development of mutated cells is more complex than averting exposure to mutagens from the environment throughout the organism's lifetime. Mutagenic exposure can increase the otherwise random imperfect DNA reproduction, increasing the likelihood of cancer development, but mutations exist. Toxic exposure is more challenging; it may select the tolerant cells on this particular toxic stress, so these mutations have more facility to avoid apoptosis in otherwise collected random mutational states.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
44
|
Zintel TM, Pizzollo J, Claypool CG, Babbitt CC. Astrocytes Drive Divergent Metabolic Gene Expression in Humans and Chimpanzees. Genome Biol Evol 2024; 16:evad239. [PMID: 38159045 PMCID: PMC10829071 DOI: 10.1093/gbe/evad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type-specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.
Collapse
Affiliation(s)
- Trisha M Zintel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christopher G Claypool
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
45
|
Zhu Y, Liu W, Qi Z. Adipose tissue browning and thermogenesis under physiologically energetic challenges: a remodelled thermogenic system. J Physiol 2024; 602:23-48. [PMID: 38019069 DOI: 10.1113/jp285269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Metabolic diseases such as obesity and diabetes are often thought to be caused by reduced energy expenditure, which poses a serious threat to human health. Cold exposure, exercise and caloric restriction have been shown to promote adipose tissue browning and thermogenesis. These physiological interventions increase energy expenditure and thus have emerged as promising strategies for mitigating metabolic disorders. However, that increased adipose tissue browning and thermogenesis elevate thermogenic consumption is not a reasonable explanation when humans and animals confront energetic challenges imposed by these interventions. In this review, we collected numerous results on adipose tissue browning and whitening and evaluated this bi-directional conversion of adipocytes from the perspective of energy homeostasis. Here, we propose a new interpretation of the role of adipose tissue browning under energetic challenges: increased adipose tissue browning and thermogenesis under energy challenge is not to enhance energy expenditure, but to reestablish a more economical thermogenic pattern to maintain the core body temperature. This can be achieved by enhancing the contribution of non-shivering thermogenesis (adipose tissue browning and thermogenesis) and lowering shivering thermogenesis and high intensity shivering. Consequently, the proportion of heat production in fat increases and that in skeletal muscle decreases, enabling skeletal muscle to devote more energy reserves to overcoming environmental stress.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai, China
| | - Weina Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai, China
- School of Physical Education and Health, East China Normal University, Shanghai, China
| |
Collapse
|
46
|
Igamberdiev AU. Biological thermodynamics: Ervin Bauer and the unification of life sciences and physics. Biosystems 2024; 235:105089. [PMID: 38000544 DOI: 10.1016/j.biosystems.2023.105089] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Biological systems operate toward the maximization of their self-maintenance and adaptability. This is achieved through the establishment of robust self-maintaining configurations acting as attractors resistant to external and internal perturbations. Ervin Bauer (1890-1938) was the first who formulated this essential thermodynamic constraint in the operation of biological systems, which he defined as the stable non-equilibrium state. The latter appears as the basic attractor relative to which biological organization is established. The stable non-equilibrium state represents a generalized cell energy status corresponding to efficient spatiotemporal organization of the fluxes of matter and energy and constantly reproducing the conditions of self-maintenance of metabolism and controlling the rates of major metabolic fluxes that follow thermodynamically and kinetically defined computational principles. This state is realized in the autopoietic structures having closed loops of causation based on the operation of biological codes. The principle of thermodynamic buffering determines the conditions for optimization of the fluxes of load and consumption in metabolism establishing the conditions of metabolic stable non-equilibrium. In developing and evolving biological systems, the principle of stable non-equilibrium is transformed into the principle of increasing external work, which is grounded in the hyper-restorative non-equilibrium dynamics. Bauer's concept of the stable non-equilibrium state puts thermodynamics into the frames of the internal biological causality governing self-maintenance and development of living systems. It can be defined as a relational theory of biological thermodynamics since the standard to which it refers represents the actual biological function rather than the abstract state of thermodynamic equilibrium.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
47
|
Padilla P, Herrel A, Denoël M. What makes a great invader? Anatomical traits as predictors of locomotor performance and metabolic rate in an invasive frog. J Exp Biol 2023; 226:jeb246717. [PMID: 37955111 DOI: 10.1242/jeb.246717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Invasive species are characterized by their ability to establish and spread in a new environment. In alien populations of anurans, dispersal and fitness-related traits such as endurance, burst performance and metabolism are key to their success. However, few studies have investigated inter-individual variation in these traits and more specifically have attempted to understand the drivers of variation in these traits. Associations of anatomical features may be excellent predictors of variation in performance and could be targets for selection or subject to trade-offs during invasions. In this study, we used marsh frogs (Pelophylax ridibundus), a species that has been introduced in many places outside its native range and which is now colonizing large areas of Western Europe. We first measured the inter-individual variation in resting metabolism, the time and distance they were able to jump until exhaustion, and their peak jump force, and then measured the mass of specific organs and lengths of body parts suspected to play a role in locomotion and metabolism. Among the 5000 bootstrap replicates on body size-corrected variables, our statistical models most often selected the stomach (75.42%), gonads (71.46%) and the kidneys (67.26%) as predictors of inter-individual variation in metabolism, and the gluteus maximus muscle (97.24%) mass was the most frequently selected predictor of jump force. However, endurance was poorly associated with the anatomical traits (R2distance=0.42, R2time=0.37). These findings suggest that selection on these predictors may lead to physiological changes that may affect the colonization, establishment and dispersal of these frogs.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Anthony Herrel
- UMR 7179 C.N.R.S./M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000 Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège, 4020 Liège, Belgium
| |
Collapse
|
48
|
Yasuda K, Miyazawa M, Ishii T, Ishii N. The role of nutrition and oxidative stress as aging factors in Caenorhabditis elegans. J Clin Biochem Nutr 2023; 73:173-177. [PMID: 37970544 PMCID: PMC10636583 DOI: 10.3164/jcbn.23-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 11/17/2023] Open
Abstract
The molecular mechanism of aging, which has been a "black box" for many years, has been elucidated in recent years, and the nematode C. elegans, which is a model animal for aging research, has played a major role in its elucidation. From the analysis of C. elegans longevity-related mutant genes, many signal transduction systems, with the insulin/insulin-like growth factor signal transduction system at the core, have emerged. It has become clear that this signal transduction system is greatly affected by external nutrients and is involved in the downstream regulation of oxidative stress, which is considered to be one of the main causes of aging.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Health Management, Undergraduate School of Health Studies, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masaki Miyazawa
- Department of Health Management, Undergraduate School of Health Studies, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takamasa Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Naoaki Ishii
- Office of Professor Emeritus, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
49
|
Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1692-1703. [PMID: 38105191 PMCID: PMC10792675 DOI: 10.1134/s0006297923110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the "pace-of-life." A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.
Collapse
Affiliation(s)
- Rong Yuan
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| | - Erin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
| | - Kevin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| |
Collapse
|
50
|
Iannello M, Forni G, Piccinini G, Xu R, Martelossi J, Ghiselli F, Milani L. Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution. Genome Biol Evol 2023; 15:evad159. [PMID: 37647860 PMCID: PMC10646442 DOI: 10.1093/gbe/evad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach-which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution-with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are-at least partially-shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giobbe Forni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ran Xu
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Jacopo Martelossi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|