1
|
Liu M, Meng Y, Ouyang S, Zhai M, Yang L, Yang Y, Wang Y. Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside. Neural Regen Res 2026; 21:506-520. [PMID: 39851132 DOI: 10.4103/nrr.nrr-d-24-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 01/26/2025] Open
Abstract
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yijing Meng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Siguang Ouyang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Meng'ai Zhai
- Department of Neurosurgery, The 904 Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| |
Collapse
|
2
|
Ming Z, Yu W, Fan J, Ling G, Fengming C, Wei T. Efficacy of kinesthetic motor imagery based brain computer interface combined with tDCS on upper limb function in subacute stroke. Sci Rep 2025; 15:11829. [PMID: 40195429 PMCID: PMC11977199 DOI: 10.1038/s41598-025-96039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
This study investigates whether the combined effect of kinesthetic motor imagery-based brain computer interface (KI-BCI) and transcranial direct current stimulation (tDCS) on upper limb function in subacute stroke patients is more effective than using KI-BCI or tDCS alone. Forty-eight subacute stroke survivors were randomized to the KI-BCI, tDCS, or BCI-tDCS group. The KI-BCI group performed 30 min of KI-BCI training. Patients in tDCS group received 30 min of tDCS. Patients in BCI-tDCS group received 15 min of tDCS and 15 min of KI-BCI. The treatment cycle was five times a week, for four weeks. After all intervention, the Fugl-Meyer Assessment-Upper Extremity, Motor Status Scale, and the Modified Barthel Index scores of the KI-BCI group were superior to those of the tDCS group. The BCI-tDCS group was superior to the tDCS group in terms of the Motor Status Scale. Although quantitative EEG showed no significant group differences, the quantitative EEG indices in the tDCS group were significantly lower than before treatment. In conclusion, after treatment, although all intervention strategies improved upper limb motor function and daily living abilities in subacute stroke patients, KI-BCI demonstrated significantly better efficacy than tDCS. Under the same total treatment duration, the combined use of tDCS and KI-BCI did not achieve the hypothesized optimal outcome. Notably, tDCS reduced QEEG indices, possibly indicating favorable future outcomes in future.Trial registry number: ChiCTR2000034730.
Collapse
Affiliation(s)
- Zhang Ming
- Department of Mechatronic Engineering, China University of Mining and Technology, Jiangsu, China
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Wu Yu
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Jia Fan
- Department of Rehabilitation, Chongming Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gao Ling
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Chu Fengming
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Tang Wei
- Department of Mechatronic Engineering, China University of Mining and Technology, Jiangsu, China.
| |
Collapse
|
3
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2025; 62:4484-4498. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Jiang T, Yan J, Li X, Yang M, Zhuang Y, Ding Z, Tan M, Xia S, Li R, Wang W, Chen F, Xie X, Liu W. tDCS Combined with CIMT for Post-stroke Upper Extremity Rehabilitation: A Systematic Review and Meta-Analysis. NeuroRehabilitation 2025; 56:97-112. [PMID: 40260720 DOI: 10.1177/10538135241301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundTranscranial direct current stimulation (tDCS) has been widely used as an adjunctive treatment for motor function after stroke.ObjectiveTo quantify the effect of tDCS combined with constraint-induced movement therapy (CIMT) on the functional recovery of the upper limb after stroke.MethodsBy May 2024, two independent authors screened relevant randomized controlled trials (RCTs) published in English from PubMed, Embase, Web of Science and the Cochrane Library. Publication bias was assessed using the Egger's test.ResultsOf the 221 retrieved records, seven publications met the criteria for systematic review and quantitative analysis. According to estimates of Hedges'g, significant effects were revealed from Fugl-Meyer Assessment for Upper Limbs (UL-FMA) for upper limb impairment (g = 0.587, 95% CI = 0.256 to 0.919, p < 0.05) and Motor Activity Log-Amount of Movement (MAL-AoM) for perceived amount of motor (g = 0.386, 95% CI = 0.030 to 0.743, p < 0.05). Significant results favoring combined therapy were not found in Motor Activity Log-Quality of Movement (MAL-QoM) (g = 0.181, 95% CI = -0.169 to 0.531, p > 0.05), grip strength (g = 0.135, 95% CI = -0.214 to 0.485, p > 0.05) or Wolf Motor Function Test (WMFT) (g = 0.210, 95% CI = -0.117 to 0.537, p > 0.05).ConclusionsOur findings confirmed that tDCS enhanced the effect of CIMT in improving upper limb impairment and perceived amount of motor in daily life after stroke.
Collapse
Affiliation(s)
- Tao Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaohan Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yueyang Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhimin Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Mengquan Tan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sijia Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Rui Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wenju Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Feng Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xi Xie
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
5
|
Zhang Y, Zhong M, Peng T, Chen T, Cai S, Chen Z, Xu K. Non-invasive brain stimulation for upper extremity dysfunction in children with cerebral palsy: a systematic review and meta-analysis. Transl Pediatr 2025; 14:262-285. [PMID: 40115450 PMCID: PMC11921285 DOI: 10.21037/tp-24-488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are the most commonly used non-invasive brain stimulation (NIBS) techniques. However, NIBS for upper extremity dysfunction remains unclear in children with cerebral palsy (CP). Thus, we aim to determine safety and effectiveness of NIBS for upper extremity dysfunction in children with CP. Methods Two reviewers conducted literature search on five databases including PubMed, Web of Science, ProQuest, Scopus, and Embase independently. Systematic review and meta-analyses of included studies were conducted. Studies used standardized mean difference (SMD) and 95% confidence interval (CI) to calculate pooled effect size between two groups. The statistics I2 was used to assess the heterogeneity between randomized controlled trials (RCTs). Results Fifteen studies were included, with seven of which examined rTMS and eight studied tDCS. Total 366 children with CP were included. Changes in Box and Block Test (BBT) of the affected hand changed significantly in post (SMD =0.68; 95% CI: 0.02 to 1.34; P=0.044; I2=0%) and 90-minute effect (SMD =0.69; 95% CI: 0.02 to 1.36; P=0.04; I2=0%), and Modified Ashworth Scale (MAS) (SMD =-0.51; 95% CI: -0.99 to -0.03; P=0.04; I2=0%) after using tDCS were statistically significant. There was no difference of total number of dropouts between each group. No patients experienced serious adverse events. Conclusions NIBS is safe and well tolerated in children with CP. And current evidence suggests that when safety guidelines are followed, NIBS does not induce seizures in pediatric patients with no history of epilepsy or stable epilepsy. tDCS is effective in improving upper extremity dysfunction such as fine motor function especially hand dexterity, and reducing upper extremity spasticity in children with CP. Due to insufficient studies, the effectiveness of rTMS is uncertain.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Simian Cai
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiol Learn Mem 2024; 213:107958. [PMID: 38971460 DOI: 10.1016/j.nlm.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho - Rua da Universidade, 4710-057 Braga, Portugal.
| | - Gabriel Gaudencio Rêgo
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| |
Collapse
|
7
|
Albishi AM. How does combining physical therapy with transcranial direct stimulation improve upper-limb motor functions in patients with stroke? A theory perspective. Ann Med Surg (Lond) 2024; 86:4601-4607. [PMID: 39118708 PMCID: PMC11305811 DOI: 10.1097/ms9.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024] Open
Abstract
More than half of stroke survivors suffer from upper-limb dysfunction that persists years after stroke, negatively impacting patients' independence and, therefore, affecting their quality of life. Intense motor rehabilitation is required after a stroke to facilitate motor recovery. More importantly, finding new ways to maximize patients' motor recovery is a core goal of stroke rehabilitation. Thus, researchers have explored the potential benefits of combining the effects of non-invasive brain stimulation with physical therapy rehabilitation. Specifically, combining transcranial direct stimulation (tDCS) with neurorehabilitation interventions can boost the brain's responses to interventions and maximize the effects of rehabilitation to improve upper-limb recovery post-stroke. However, it is still unclear which modes of tDCS are optimal for upper-limb motor recovery in patients with stroke when combined with physical therapy interventions. Here, the authors review the existing literature suggesting combining physical therapy rehabilitation with tDCS can maximize patients' motor recovery using the Interhemispheric Competition Model in Stroke. The authors focus on two main rehabilitation paradigms, which are constraint-induced movement therapy (CIMT) and Mirror therapy with and without tDCS. The authors also discuss potential studies to elucidate further the benefit of using tDCS adjunct with these upper-limb rehabilitation paradigms and its effectiveness in patients with stroke, with the ultimate goal of maximizing patients' motor recovery.
Collapse
Affiliation(s)
- Alaa. M. Albishi
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Isik OG, Cassim TZ, Ahmed MT, Kreuzer M, Daramola AM, Garcia PS. Effect of transcranial direct current stimulation and narrow-band auditory stimulation on the intraoperative electroencephalogram: an exploratoratory feasibility study. Front Psychiatry 2024; 15:1362749. [PMID: 39081532 PMCID: PMC11286499 DOI: 10.3389/fpsyt.2024.1362749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction During general anesthesia, frontal electroencephalogram (EEG) activity in the alpha frequency band (8-12 Hz) correlates with the adequacy of analgesia. Transcranial direct current stimulation (tDCS) and auditory stimulation, two noninvasive neuromodulation techniques, can entrain alpha activity in awake or sleeping patients. This study evaluates their effects on alpha oscillations in patients under general anesthesia. Methods 30 patients receiving general anesthesia for surgery were enrolled in this two-by-two randomized clinical trial. Each participant received active or sham tDCS followed by auditory stimulation or silence according to assigned group (TDCS/AUD, TDCS/SIL, SHAM/AUD, SHAM/SIL). Frontal EEG was recorded before and after neuromodulation. Patients with burst suppression, mid-study changes in anesthetic, or incomplete EEG recordings were excluded from analysis. The primary outcome was post-stimulation change in oscillatory alpha power, compared in each intervention group against the change in the control group SHAM/SIL by Wilcoxon Rank Sum testing. Results All 30 enrolled participants completed the study. Of the 22 included for analysis, 8 were in TDCS/AUD, 4 were in TDCS/SIL, 5 were in SHAM/AUD, and 5 were in SHAM/SIL. The median change in oscillatory alpha power was +4.7 dB (IQR 4.4, 5.8 dB) in SHAM/SIL, +2.8 dB (IQR 1.5, 8.9 dB) in TDCS/SIL (p = 0.730), +5.5 dB in SHAM/AUD (p = 0.421), and -6.1 dB (IQR -10.2, -2.2 dB) in TDCS/AUD (p = 0.045). Conclusion tDCS and auditory stimulation can be administered safely intraoperatively. However, these interventions did not increase alpha power as administered and measured in this pilot study.
Collapse
Affiliation(s)
- Oliver G. Isik
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Tuan Z. Cassim
- Department of Psychology, School of Social and Behavioral Science, University of Utah, Salt Lake City, UT, United States
| | - Meah T. Ahmed
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Alice M. Daramola
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Paul S. Garcia
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
9
|
Liu CL, Tu YW, Li MW, Chang KC, Chang CH, Chen CK, Wu CY. Electroencephalogram Alpha Oscillations in Stroke Recovery: Insights into Neural Mechanisms from Combined Transcranial Direct Current Stimulation and Mirror Therapy in Relation to Activities of Daily Life. Bioengineering (Basel) 2024; 11:717. [PMID: 39061800 PMCID: PMC11273914 DOI: 10.3390/bioengineering11070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The goal of stroke rehabilitation is to establish a robust protocol for patients to live independently in community. Firstly, we examined the impact of 3 hybridized transcranial direct current stimulation (tDCS)-mirror therapy interventions on activities of daily life (ADL) in stroke patients. Secondly, we explored the underlying therapeutic mechanisms with theory-driven electroencephalography (EEG) indexes in the alpha band. This was achieved by identifying the unique contributions of alpha power in motor production to ADL in relation to the premotor cortex (PMC), primary cortex (M1), and Sham tDCS with mirror therapy. The results showed that, although post-intervention ADL improvement was comparable among the three tDCS groups, one of the EEG indexes differentiated the interventions. Neural-behavioral correlation analyses revealed that different types of ADL improvements consistently corresponded with alpha power in the temporal lobe exclusively in the PMC tDCS group (all rs > 0.39). By contrast, alterations in alpha power in the central-frontal region were found to vary, with ADL primarily in the M1 tDCS group (r = -0.6 or 0.7), with the benefit depending on the complexity of the ADL. In conclusion, this research suggested two potential therapeutic mechanisms and demonstrated the additive benefits of introducing theory-driven neural indexes in explaining ADL.
Collapse
Affiliation(s)
- Chia-Lun Liu
- Department of Occupational Therapy, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ya-Wen Tu
- Department of Physical Medicine and Rehabilitation, Sijhih Cathay General Hospital, New Taipei 221, Taiwan; (Y.-W.T.); (M.-W.L.)
| | - Ming-Wei Li
- Department of Physical Medicine and Rehabilitation, Sijhih Cathay General Hospital, New Taipei 221, Taiwan; (Y.-W.T.); (M.-W.L.)
| | - Ku-Chou Chang
- Division of Cerebrovascular Diseases, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 80756, Taiwan;
- Long-Term Care Service Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
| | - Chih-Hung Chang
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA;
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chih-Kuang Chen
- Department of Medicine, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
| | - Ching-Yi Wu
- Department of Occupational Therapy, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Tang X, Zhang N, Shen Z, Guo X, Xing J, Tian S, Xing Y. Transcranial direct current stimulation for upper extremity motor dysfunction in poststroke patients: A systematic review and meta-analysis. Clin Rehabil 2024; 38:749-769. [PMID: 38425282 DOI: 10.1177/02692155241235336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To evaluate the efficacy and safety of transcranial direct current stimulation in poststroke patients with upper extremity motor dysfunction using a systematic review and meta-analysis. DATA SOURCES We searched the Web of Science, Cochrane Library, EMBASE, and PubMed for randomized controlled trials investigating the effects of both active and sham stimulation up until January 27, 2024. REVIEW METHODS Efficacy, including the upper extremity Fugl-Meyer Assessment, Action Research Arm Test, Barthel Index, and safety, were assessed. The risk of bias was assessed using the Cochrane Risk of Bias 2 tool and the Physiotherapy Evidence Database Scale. Meta-analysis was performed using the RevMan 5.4 software. RESULTS Forty-four studies with 1555 participants were included. Transcranial direct current stimulation proved effective in improving upper extremity motor function (standardized mean difference = 0.22, 95% confidence interval: 0.12-0.32, P < 0.001) and Barthel Index (mean difference = 4.65, 95% confidence interval: 2.82-6.49, P < 0.001). Subgroup analysis revealed the highest transcranial direct current stimulation efficacy in patients with subacute stroke. Both anodal and cathodal stimulation were effective against upper extremity motor dysfunction. C3/C4 was the most effective stimulus target. Optimal stimulation parameters included stimulus current densities <0.057 mA/cm2 for 20-30 min and <30 sessions. Adverse effects and dropouts during follow-up showed that transcranial direct current stimulation is safe and feasible. CONCLUSIONS Our findings suggest that both anodal and cathodal stimulation were significantly effective in subacute stroke patients, particularly when preceding other treatments and when C3/C4 is targeted.
Collapse
Affiliation(s)
- Xian Tang
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nan Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiyuan Shen
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Xin Guo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Jun Xing
- Department of Rehabilitation Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Shujuan Tian
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Yuan Xing
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital, Xuanwu Hospital, Capital Medical University, Shijiazhuang, Hebei, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Park D, Oh J, Kwon I. The effect of warm-up with transcranial direct current stimulation on performance factors in collegiate golfers. Phys Act Nutr 2024; 28:14-19. [PMID: 39097993 PMCID: PMC11298282 DOI: 10.20463/pan.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
PURPOSE This study aimed to determine the effects of warm-up using transcranial direct current stimulation (tDCS) on performance factors in collegiate golfers and to provide a scientific basis for the effectiveness and methodology of tDCS. We sought to compare the effects of tDCS as an additional treatment during warm-up. tDCS is generally activated when a small electric current is applied to the motor cortex of the cerebral cortex, which has been reported to be helpful in improving motor function. Therefore, we sought to prove the effectiveness of combined warm-up exercise and tDCS. METHODS Twenty-two collegiate male golfers were divided into tDC- (tDCS; n=11) and sham-treated (sham; n=11) groups. To examine performance factors, the following were assessed following tDCS application: carry, clubhead speed (CHS), ball speed (BS) for driver performance, countermovement jump (CMJ) for lower extremity muscle power, global rating of change (GRC) for the subjective change in condition of the participants, and test of attentional interpersonal style (TAIS) for concentration. RESULTS This study showed that warm-up with tDCS had positive effects on carry (p=.004), CHS (p=.019), BS (p=.017) of driver performance, CMJ (p=.002), and GRC (p=.005), however, no significant effect on TAIS was found, which suggest that the effects of the warm-up with tDCS were significant for driver performances, CMJ, and GRC. CONCLUSION Future studies should independently validate the effectiveness of tDCS and apply it to different situations and timeframes, such as training and competitions, to provide new alternative strategies or performance improvement.
Collapse
Affiliation(s)
- Deuksu Park
- Korea National Sport University, Seoul, Republic of Korea
| | - Jaekeun Oh
- Korea National Sport University, Seoul, Republic of Korea
| | - Ilsu Kwon
- Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Lowenthal-Raz J, Liebermann DG, Friedman J, Soroker N. Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke. Sci Rep 2024; 14:11971. [PMID: 38796610 PMCID: PMC11127956 DOI: 10.1038/s41598-024-62889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.
Collapse
Affiliation(s)
- Justine Lowenthal-Raz
- Physical Therapy Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
- Neurological Rehabilitation Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
| | - Dario G Liebermann
- Physical Therapy Department, Stanley Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Jason Friedman
- Physical Therapy Department, Stanley Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Neurological Rehabilitation Department, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Abdelhaleem N, Tawfek A, Abouamra HS, Aly MG, Elbanna ST, Mahmoud AG, Elborady AA, Gheitah PS, Elshennawy S. Combined Effect of Non-Invasive Brain Stimulation with Mirror Therapy for Improving Motor Function in Patients with Stroke: a Systematic Review with Meta-Analysis. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2024; 12:368-382. [DOI: 10.1007/s40141-024-00448-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 01/03/2025]
|
14
|
Metelski N, Gu Y, Quinn L, Friel KM, Gordon AM. Safety and efficacy of non-invasive brain stimulation for the upper extremities in children with cerebral palsy: A systematic review. Dev Med Child Neurol 2024; 66:573-597. [PMID: 37528530 DOI: 10.1111/dmcn.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023]
Abstract
AIM To evaluate available evidence examining safety and efficacy of non-invasive brain stimulation (NIBS) on upper extremity outcomes in children with cerebral palsy (CP). METHOD We electronically searched 12 sources up to May 2023 using JBI and Cochrane guidelines. Two reviewers selected articles with predetermined eligibility criteria, conducted data extraction, and assessed risk of bias using the Cochrane Risk of Bias criteria. RESULTS Nineteen studies were included: eight using repetitive transcranial magnetic stimulation (rTMS) and 11 using transcranial direct current stimulation (tDCS). Moderate certainty evidence supports the safety of rTMS and tDCS for children with CP. Very low to moderate certainty evidence suggests that rTMS and tDCS result in little to no difference in upper extremity outcomes. INTERPRETATION Evidence indicates that NIBS is a safe and feasible intervention to target upper extremity outcomes in children with CP, although it also indicates little to no significant impact on upper extremity outcomes. These findings are discussed in relation to the heterogeneous participants' characteristics and stimulation parameters. Larger studies of high methodological quality are required to inform future research and protocols for NIBS.
Collapse
Affiliation(s)
- Nicole Metelski
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Yu Gu
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Kathleen M Friel
- Burke Neurological Institute, White Plains, New York, and Weill Cornell Medicine, New York, New York, USA
| | - Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Dawson J, Abdul-Rahim AH, Kimberley TJ. Neurostimulation for treatment of post-stroke impairments. Nat Rev Neurol 2024; 20:259-268. [PMID: 38570705 DOI: 10.1038/s41582-024-00953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Neurostimulation, the use of electrical stimulation to modulate the activity of the nervous system, is now commonly used for the treatment of chronic pain, movement disorders and epilepsy. Many neurostimulation techniques have now shown promise for the treatment of physical impairments in people with stroke. In 2021, vagus nerve stimulation was approved by the FDA as an adjunct to intensive rehabilitation therapy for the treatment of chronic upper extremity deficits after ischaemic stroke. In 2024, pharyngeal electrical stimulation was conditionally approved by the UK National Institute for Health and Care Excellence for neurogenic dysphagia in people with stroke who have a tracheostomy. Many other approaches have also been tested in pivotal device trials and a number of approaches are in early-phase study. Typically, neurostimulation techniques aim to increase neuroplasticity in response to training and rehabilitation, although the putative mechanisms of action differ and are not fully understood. Neurostimulation techniques offer a number of practical advantages for use after stroke, such as precise dosing and timing, but can be invasive and costly to implement. This Review focuses on neurostimulation techniques that are now in clinical use or that have reached the stage of pivotal trials and show considerable promise for the treatment of post-stroke impairments.
Collapse
Affiliation(s)
- Jesse Dawson
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Azmil H Abdul-Rahim
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Teresa J Kimberley
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Institute of Health Professions, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Sun L, Xiao K, Shen XY, Wang S. Impact of transcranial electrical stimulation on serum neurotrophic factors and language function in patients with speech disorders. World J Clin Cases 2024; 12:1742-1749. [PMID: 38660085 PMCID: PMC11036479 DOI: 10.12998/wjcc.v12.i10.1742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Speech disorders have a substantial impact on communication abilities and quality of life. Traditional treatments such as speech and psychological therapies frequently demonstrate limited effectiveness and patient compliance. Transcranial electrical stimulation (TES) has emerged as a promising non-invasive treatment to improve neurological functions. However, its effectiveness in enhancing language functions and serum neurofactor levels in individuals with speech disorders requires further investigation. AIM To investigate the impact of TES in conjunction with standard therapies on serum neurotrophic factor levels and language function in patients with speech disorders. METHODS In a controlled study spanning from March 2019 to November 2021, 81 patients with speech disorders were divided into a control group (n = 40) receiving standard speech stimulation and psychological intervention, and an observation group (n = 41) receiving additional TES. The study assessed serum levels of ciliary neurotrophic factor (CNTF), glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF), as well as evaluations of motor function, language function, and development quotient scores. RESULTS After 3 wk of intervention, the observation group exhibited significantly higher serum levels of CNTF, GDNF, BDNF, and NGF compared to the control group. Moreover, improvements were noted in motor function, cognitive function, language skills, physical abilities, and overall development quotient scores. It is worth mentioning that the observation group also displayed superior performance in language-specific tasks such as writing, reading comprehension, retelling, and fluency. CONCLUSION This retrospective study concluded that TES combined with traditional speech and psychotherapy can effectively increase the levels of neurokines in the blood and enhance language function in patients with speech disorders. These results provide a promising avenue for integrating TES into standard treatment methods for speech disorders.
Collapse
Affiliation(s)
- Li Sun
- Department of Rehabilitation Medicine, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Kai Xiao
- Department of Rehabilitation Medicine, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Xiao-Yan Shen
- Department of Rehabilitation Medicine, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| | - Shu Wang
- Department of Rehabilitation Medicine, General Hospital of the Yangtze River Shipping, Wuhan 430010, Hubei Province, China
| |
Collapse
|
17
|
Jia J, Guo J, Yao L, Zhang D. Editorial: Novel technologies targeting the rehabilitation of neurological disorders. Front Neurosci 2024; 18:1367286. [PMID: 38595971 PMCID: PMC11002261 DOI: 10.3389/fnins.2024.1367286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Department of Translational Neuroscience of Shanghai Jing'an District Centre Hospital, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin Yao
- College of Computer Science, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
18
|
Kim S, Park HY. Update on Non-invasive Brain Stimulation on Stroke Motor Impairment: A Narrative Review. BRAIN & NEUROREHABILITATION 2024; 17:e5. [PMID: 38585032 PMCID: PMC10990843 DOI: 10.12786/bn.2024.17.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 04/09/2024] Open
Abstract
Stroke is a leading global cause of death and disability, with motor impairment being one of the common post-stroke complications. Rehabilitation is crucial for functional recovery. Recently, non-invasive brain stimulation (NIBS) has emerged as a promising intervention that allows neuromodulation by activating or inhibiting neural activity in specific brain regions. This narrative review aims to examine current research on the effects of various NIBS techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, and transcranial focused ultrasound on post-stroke motor function.
Collapse
Affiliation(s)
- Sejoon Kim
- Department of Rehabilitation Medicine, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Yeon Park
- Department of Rehabilitation Medicine, Bucheon St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
19
|
Kim E, Lee G, Lee J, Kim YH. Simultaneous high-definition transcranial direct current stimulation and robot-assisted gait training in stroke patients. Sci Rep 2024; 14:4483. [PMID: 38396060 PMCID: PMC10891044 DOI: 10.1038/s41598-024-53482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigates whether simultaneous high-definition transcranial direct current stimulation (HD-tDCS) enhances the effects of robot-assisted gait training in stroke patients. Twenty-four participants were randomly allocated to either the robot-assisted gait training with real HD-tDCS group (real HD-tDCS group) or robot-assisted gait training with sham HD-tDCS group (sham HD-tDCS group). Over four weeks, both groups completed 10 sessions. The 10 Meter Walk Test, Timed Up and Go, Functional Ambulation Category, Functional Reach Test, Berg Balance Scale, Dynamic Gait Index, Fugl-Meyer Assessment, and Korean version of the Modified Barthel Index were conducted before, immediately after, and one month after the intervention. The real HD-tDCS group showed significant improvements in the 10 Meter Walk Test, Timed Up and Go, Functional Reach Test, and Berg Balance Scale immediately and one month after the intervention, compared with before the intervention. Significant improvements in the Dynamic Gait Index and Fugl-Meyer Assessment were also observed immediately after the intervention. The sham HD-tDCS group showed no significant improvements in any of the tests. Application of HD-tDCS during robot-assisted gait training has a positive effect on gait and physical function in chronic stroke patients, ensuring long-term training effects. Our results suggest the effectiveness of HD-tDCS as a complementary tool to enhance robotic gait rehabilitation therapy in chronic stroke patients.
Collapse
Affiliation(s)
- Eunmi Kim
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Gihyoun Lee
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea.
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Haeundae Sharing and Happiness Hospital, Busan, 48101, Republic of Korea.
| |
Collapse
|
20
|
Yan M, Liu J, Guo Y, Hou Q, Song J, Wang X, Yu W, Lü Y. Comparative efficacy of non-invasive brain stimulation for post-stroke cognitive impairment: a network meta-analysis. Aging Clin Exp Res 2024; 36:37. [PMID: 38345751 PMCID: PMC10861650 DOI: 10.1007/s40520-023-02662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) is a burgeoning approach with the potential to significantly enhance cognition and functional abilities in individuals who have undergone a stroke. However, the current evidence lacks robust comparisons and rankings of various NIBS methods concerning the specific stimulation sites and parameters used. To address this knowledge gap, this systematic review and meta-analysis seek to offer conclusive evidence on the efficacy and safety of NIBS in treating post-stroke cognitive impairment. METHODS A systematic review of randomized control trials (RCT) was performed using Bayesian network meta-analysis. We searched RCT in the following databases until June 2022: Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and EMBASE. We compared any active NIBS to control in terms of improving cognition function and activities of daily living (ADL) capacity following stroke. RESULTS After reviewing 1577 retrieved citations, a total of 26 RCTs were included. High-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (mean difference 2.25 [95% credible interval 0.77, 3.66]) was identified as a recommended approach for alleviating the global severity of cognition. Dual-rTMS (27.61 [25.66, 29.57]) emerged as a favorable technique for enhancing ADL function. In terms of stimulation targets, the dorsolateral prefrontal cortex exhibited a higher ranking in relation to the global severity of cognition. CONCLUSIONS Among various NIBS techniques, HF-rTMS stands out as the most promising intervention for enhancing cognitive function. Meanwhile, Dual-rTMS is highly recommended for improving ADL capacity.
Collapse
Affiliation(s)
- Mengyu Yan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Jiarui Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Yiming Guo
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Qingtao Hou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Xiaoqin Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China.
| |
Collapse
|
21
|
Zhu F, Xu X, Jin M, Chen J, Feng X, Wang J, Yu D, Wang R, Lian Y, Huai B, Lou X, Shi X, He T, Lu J, Zhang JJ, Bai Z. Priming transcranial direct current stimulation for improving hemiparetic upper limb in patients with subacute stroke: study protocol for a randomised controlled trial. BMJ Open 2024; 14:e079372. [PMID: 38309762 PMCID: PMC10840068 DOI: 10.1136/bmjopen-2023-079372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that modulates brain states by applying a weak electrical current to the brain cortex. Several studies have shown that anodal stimulation of the ipsilesional primary motor cortex (M1) may promote motor recovery of the affected upper limb in patients with stroke; however, a high-level clinical recommendation cannot be drawn in view of inconsistent findings. A priming brain stimulation protocol has been proposed to induce stable modulatory effects, in which an inhibitory stimulation is applied prior to excitatory stimulation to a brain area. Our recent work showed that priming theta burst magnetic stimulation demonstrated superior effects in improving upper limb motor function and neurophysiological outcomes. However, it remains unknown whether pairing a session of cathodal tDCS with a session of anodal tDCS will also capitalise on its therapeutic effects. METHODS AND ANALYSIS This will be a two-arm double-blind randomised controlled trial involving 134 patients 1-6 months after stroke onset. Eligible participants will be randomly allocated to receive 10 sessions of priming tDCS+robotic training, or 10 sessions of non-priming tDCS+robotic training for 2 weeks. The primary outcome is the Fugl-Meyer Assessment-upper extremity, and the secondary outcomes are the Wolf Motor Function Test and Modified Barthel Index. The motor-evoked potentials, regional oxyhaemoglobin level and resting-state functional connectivity between the bilateral M1 will be acquired and analysed to investigate the effects of priming tDCS on neuroplasticity. ETHICS AND DISSEMINATION The study has been approved by the Research Ethics Committee of the Shanghai Yangzhi Rehabilitation Center (reference number: Yangzhi2023-022) and will be conducted in accordance with the Declaration of Helsinki of 1964, as revised in 2013. TRIAL REGISTRATION NUMBER ChiCTR2300074681.
Collapse
Affiliation(s)
- Feifei Zhu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xiaojing Xu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Minxia Jin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Jiahui Chen
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Feng
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Jiaren Wang
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Dan Yu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Rong Wang
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yijie Lian
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Baoyu Huai
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyu Lou
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyu Shi
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ting He
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Jiani Lu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhongfei Bai
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Fritsch B, Mayer M, Reis J, Gellner AK. Safety of ipsilesional anodal transcranial direct current stimulation in acute photothrombotic stroke: implications for early neurorehabilitation. Sci Rep 2024; 14:2501. [PMID: 38291061 PMCID: PMC10827716 DOI: 10.1038/s41598-024-51839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Early rehabilitation in the acute phase of stroke, that bears unique neuroplastic properties, is the current standard to reduce disability. Anodal transcranial direct current stimulation can augment neurorehabilitation in chronic stroke. Studies in the acute phase are sparse and held back by inconclusive preclinical data pointing towards potential negative interaction of the excitability increasing tDCS modality with stroke-induced glutamate toxicity. In this present study, we aimed to evaluate structural and behavioral safety of anodal tDCS applied in the acute phase of stroke. Photothrombotic stroke including the right primary motor cortex was induced in rats. 24 h after stroke anodal tDCS was applied for 20 min ipsilesionally at one of four different current densities in freely moving animals. Effects on the infarct volume and on stroke induced neuroinflammation were assessed. Behavioral consequences were monitored. Infarct volume and the modified Neurological Severity Score were not affected by anodal tDCS. Pasta handling, a more sensitive task for sensorimotor deficits, and microglia reactivity indicated potentially harmful effects at the highest tDCS current density tested (47.8 A/m2), which is more than 60 times higher than intensities commonly used in humans. Compared to published safety limits of anodal tDCS in healthy rats, recent stroke does not increase the sensitivity of the brain to anodal tDCS, as assessed by lesion size and neuroinflammatory response. Behavioral deficits only occurred at the highest intensity, which was associated with increased neuroinflammation. When safety limits of commonly used clinical tDCS are met, augmentation of early neurorehabilitation after stroke by anodal tDCS appears to be feasible.
Collapse
Affiliation(s)
- Brita Fritsch
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Marleen Mayer
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Janine Reis
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Anne-Kathrin Gellner
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
23
|
Peng RHT, He D, James SA, Williamson JN, Skadden C, Jain S, Hassaneen W, Miranpuri A, Kaur A, Sarol JN, Yang Y. Determining the effects of targeted high-definition transcranial direct current stimulation on reducing post-stroke upper limb motor impairments-a randomized cross-over study. Trials 2024; 25:34. [PMID: 38195605 PMCID: PMC10775560 DOI: 10.1186/s13063-023-07886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Stroke is one of the leading causes of death in the USA and is a major cause of serious disability for adults. This randomized crossover study examines the effect of targeted high-definition transcranial direct current transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post-acute phase of stroke recovery. METHODS This randomized double-blinded cross-over study includes four intervention arms: anodal, cathodal, and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized order, with a 2-week washout period between each intervention. The primary outcome measure is change in Motor Evoked Potential. Secondary outcome measures include the Fugl-Meyer Upper Extremity (FM-UE) score, a subset of FM-UE (A), related to the muscle synergies, and the Modified Ashworth Scale. DISCUSSION We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excitability of the damaged cortico-spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation of the cortico-reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spasticity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the targeting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, and medicine. TRIAL REGISTRATION ClinicalTrials.gov NCT05479006 . Registered on 26 July 2022.
Collapse
Affiliation(s)
- Rita Huan-Ting Peng
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Urbana, IL, USA
| | - Dorothy He
- The University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shirley A James
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Sanjiv Jain
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amandeep Kaur
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jesus N Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Foundation Hospital, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Li J, Zhou W, Liang L, Li Y, Xu K, Li X, Huang Z, Jin Y. Noninvasive electrical stimulation as a neuroprotective strategy in retinal diseases: a systematic review of preclinical studies. J Transl Med 2024; 22:28. [PMID: 38184580 PMCID: PMC10770974 DOI: 10.1186/s12967-023-04766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Electrical activity has a crucial impact on the development and survival of neurons. Numerous recent studies have shown that noninvasive electrical stimulation (NES) has neuroprotective action in various retinal disorders. OBJECTIVE To systematically review the literature on in vivo studies and provide a comprehensive summary of the neuroprotective action and the mechanisms of NES on retinal disorders. METHODS Based on the PRISMA guideline, a systematic review was conducted in PubMed, Web of Science, Embase, Scopus and Cochrane Library to collect all relevant in vivo studies on "the role of NES on retinal diseases" published up until September 2023. Possible biases were identified with the adopted SYRCLE's tool. RESULTS Of the 791 initially gathered studies, 21 articles met inclusion/exclusion criteria for full-text review. The results revealed the neuroprotective effect of NES (involved whole-eye, transcorneal, transscleral, transpalpebral, transorbital electrical stimulation) on different retinal diseases, including retinitis pigmentosa, retinal degeneration, high-intraocular pressure injury, traumatic optic neuropathy, nonarteritic ischemic optic neuropathy. NES could effectively delay degeneration and apoptosis of retinal neurons, preserve retinal structure and visual function with high security, and its mechanism of action might be related to promoting the secretion of neurotrophins and growth factors, decreasing inflammation, inhibiting apoptosis. The quality scores of included studies ranged from 5 to 8 points (a total of 10 points), according to SYRCLE's risk of bias tool. CONCLUSION This systematic review indicated that NES exerts neuroprotective effects on retinal disease models mainly through its neurotrophic, anti-inflammatory, and anti-apoptotic capabilities. To assess the efficacy of NES in a therapeutic setting, however, well-designed clinical trials are required in the future.
Collapse
Affiliation(s)
- Jiaxian Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Wei Zhou
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Lina Liang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China.
| | - Yamin Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Kai Xu
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Xiaoyu Li
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Ziyang Huang
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| | - Yu Jin
- Department of Eye Function Laboratory, Eye Hospital, China Academy of Chinese Medical Sciences, 33 Lugu Road, Shijingshan District, Beijing, 100040, People's Republic of China
| |
Collapse
|
25
|
Fan W, Fan Y, Liao Z, Yin Y. Effect of Transcranial Direct Current Stimulation on Patients With Disorders of Consciousness: A Systematic Review and Meta-analysis. Am J Phys Med Rehabil 2023; 102:1102-1110. [PMID: 37205736 DOI: 10.1097/phm.0000000000002290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVES The aims of this study are to evaluate the efficacy of transcranial direct current stimulation for improving disorders of consciousness and to compare efficacy of the different etiologies of disorders of consciousness. DESIGN Randomized controlled trials or crossover trials examining effects of transcranial direct current stimulation in patients with disorders of consciousness were searched in PubMed, Embase, Cochrane Library, and Web of Science. The sample characteristics, etiology, transcranial direct current stimulation treatment characteristics, and outcomes were extracted. Meta-analysis was performed using the RevMan software. RESULTS We included nine trials providing data with 331 participants and found that transcranial direct current stimulation improved the Coma Recovery Scale-Revised score of disorders of consciousness patients. We found a significant improvement of Coma Recovery Scale-Revised score in the minimally conscious state group (weighted mean difference = 0.77, 95% confidence interval = 0.30-1.23, P = 0.001), but not in the vegetative state or unresponsive wakefulness syndrome group. The effects of transcranial direct current stimulation are related to etiology, as the Coma Recovery Scale-Revised score was improved in the traumatic brain injury group (weighted mean difference = 1.18, 95% confidence interval = 0.60-1.75, P < 0.001), but not in vascular accident and anoxia groups. CONCLUSIONS This meta-analysis revealed the evidence for positive effects of transcranial direct current stimulation on disorders of consciousness without adverse effects observed in minimally conscious state patients. In particular, transcranial direct current stimulation may be an effective treatment in rehabilitating cognitive functions in people with traumatic brain injury.
Collapse
Affiliation(s)
- Wei Fan
- From the Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China (WF, YY); Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China (YF); and Department of Rehabilitation, Liucheng Hospital of Traditional Chinese Medicine, Liuzhou, China (ZL)
| | | | | | | |
Collapse
|
26
|
Allen CB, Williamson TK, Norwood SM, Gupta A. Do Electrical Stimulation Devices Reduce Pain and Improve Function?-A Comparative Review. Pain Ther 2023; 12:1339-1354. [PMID: 37751060 PMCID: PMC10616008 DOI: 10.1007/s40122-023-00554-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Multiple forms of electrical stimulation (ES) potentially offer widely varying clinical benefits. Diminished function commonly associated with acute and chronic pain lessens productivity and increases medical costs. This review aims to compare the relative effects of various forms of ES on functional and pain outcomes. METHODS A comprehensive literature search focused on studies of commonly marketed forms of ES used for treatment of pain and improvement of function. Peer-reviewed manuscripts were categorized as "Important" (systematic review or meta-analysis, randomized controlled trial, observational cohort study) and "Minor" (retrospective case series, case report, opinion review) for each identified form of ES. RESULTS AND DISCUSSION Varying forms of ES have markedly different technical parameters, applications, and indications, based on clinically meaningful impact on pain perception, function improvement, and medication reduction. Despite being around for decades, there is limited quality evidence for most forms of ES, although there are several notable exceptions for treatment of specific indications. Neuromuscular electrical stimulation (NMES) has well-demonstrated beneficial effects for rehabilitation of selective spinal cord injured (SCI), post-stroke, and debilitated inpatients. Functional electrical stimulation (FES) has similarly shown effectiveness in rehabilitation of some stroke, SCI, and foot drop outpatients. H-Wave® device stimulation (HWDS) has moderate supportive evidence for treatment of acute and refractory chronic pain, consistently demonstrating improvements in function and pain measures across diverse populations. Interestingly, transcutaneous electrical nerve stimulation (TENS), the most widely used form of ES, demonstrated insignificant or very low levels of pain and functional improvement. CONCLUSION Ten of 13 reviewed forms of ES have only limited quality evidence for clinically significant reduction of pain or improvement of function across different patient populations. NMES and FES have reasonably demonstrated effectiveness, albeit for specific clinical rehabilitation indications. HWDS was associated with the most clinically significant outcomes, in terms of functional improvement combined with reduction of pain and medication use. More rigorous long-term clinical trials are needed to further validate appropriate use and specific indications for most forms of ES. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Christian B Allen
- University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX, 78235, USA
| | - Tyler K Williamson
- Department of Orthopaedic Surgery, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA, 30043, USA.
- Regenerative Orthopaedics, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
27
|
Rodrigues NO, Vidal Bravalhieri AA, de Moraes TP, Barros JA, Ansai JH, Christofoletti G. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Cognition, Anxiety, and Mobility in Community-Dwelling Older Individuals: A Controlled Clinical Trial. Brain Sci 2023; 13:1614. [PMID: 38137062 PMCID: PMC10741841 DOI: 10.3390/brainsci13121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has gained popularity as a method of modulating cortical excitability in people with physical and mental disabilities. However, there is a lack of consensus on its effectiveness in older individuals. This study aimed to assess the efficacy of a 2-month tDCS program for improving physical and mental performance in community-dwelling older individuals. In this single-blinded, controlled clinical trial, forty-two participants were allocated to one of three groups: (1) the tDCS group, which received, twice a week, 20 min sessions of 2 mA electric current through electrodes placed on the dorsolateral prefrontal cortex; (2) the tDCS-placebo group, which underwent the same electrode placement as the tDCS group but without actual electric stimulation; and (3) the cognitive-control group, which completed crossword puzzles. Main outcome measures were cognition, mobility, and anxiety. Multivariate analyses of variance were employed. Significance was set at 5% (p < 0.05). Regarding the results, no significant benefits were observed in the tDCS group compared with the tDCS-placebo or cognitive-control groups for cognition (p = 0.557), mobility (p = 0.871), or anxiety (p = 0.356). Cognition exhibited positive oscillations during the assessments (main effect of time: p = 0.001). However, given that all groups showed similar variations in cognitive scores (main effect of group: p = 0.101; group × time effect: p = 0.557), it is more likely that the improvement reflects the learning response of the participants to the cognitive tests rather than the effect of tDCS. In conclusion, a 2-month tDCS program with two sessions per week appears to be ineffective in improving physical and mental performance in community-dwelling older individuals. Further studies are necessary to establish whether or not tDCS is effective in healthy older individuals.
Collapse
Affiliation(s)
- Nathalia Oliveira Rodrigues
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| | - Anna Alice Vidal Bravalhieri
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| | - Tatiane Pereira de Moraes
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| | - Jorge Aparecido Barros
- Department of Physical Therapy, Dom Bosco Catholic University (UCDB), Campo Grande 79117-900, Brazil;
| | - Juliana Hotta Ansai
- Department of Gerontology, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, Brazil;
| | - Gustavo Christofoletti
- Institute of Health, Faculty of Medicine, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79060-900, Brazil; (N.O.R.); (A.A.V.B.); (T.P.d.M.)
| |
Collapse
|
28
|
Ahmed I, Mustafaoglu R, Rossi S, Cavdar FA, Agyenkwa SK, Pang MYC, Straudi S. Non-invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-analysis. Arch Phys Med Rehabil 2023; 104:1683-1697. [PMID: 37245690 DOI: 10.1016/j.apmr.2023.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To compare the efficacy of non-invasive brain stimulation (NiBS) such as transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation (TBS), and transcutaneous vagus nerve stimulation (taVNS) in upper limb stroke rehabilitation. DATA SOURCES PubMed, Web of Science, and Cochrane databases were searched from January 2010 to June 2022. DATA SELECTION Randomized controlled trials (RCTs) assessing the effects of "tDCS", "rTMS", "TBS", or "taVNS" on upper limb motor function and performance in activities of daily livings (ADLs) after stroke. DATA EXTRACTION Data were extracted by 2 independent reviewers. Risk of bias was evaluated with the Cochrane Risk of Bias tool. DATA SYNTHESIS 87 RCTs with 3750 participants were included. Pairwise meta-analysis showed that all NiBS except continuous TBS (cTBS) and cathodal tDCS were significantly more efficacious than sham stimulation for motor function (standardized mean difference [SMD] range 0.42-1.20), whereas taVNS, anodal tDCS, and both low and high frequency rTMS were significantly more efficacious than sham stimulation for ADLs (SMD range 0.54-0.99). NMA showed that taVNS was more effective than cTBS (SMD:1.00; 95% CI (0.02-2.02)), cathodal tDCS (SMD:1.07; 95% CI (0.21-1.92)), and Physical rehabilitation alone (SMD:1.46; 95% CI (0.59-2.33)) for improving motor function. P-score found that taVNS is best ranked treatment in improving motor function (SMD: 1.20; 95% CI (0.46-1.95)) and ADLs (SMD:1.20; 95% CI (0.45-1.94)) after stroke. After taVNS, excitatory stimulation protocols (intermittent TBS, anodal tDCS, and HF-rTMS) are most effective in improving motor function and ADLs after acute/sub-acute (SMD range 0.53-1.63) and chronic stroke (SMD range 0.39-1.16). CONCLUSIONS Evidence suggests that excitatory stimulation protocols are the most promising intervention in improving upper limb motor function and performance in ADLs. taVNS appeared to be a promising intervention for stroke patients, but further large RCTs are required to confirm its relative superiority.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey.
| | - Rustem Mustafaoglu
- Istanbul University-Cerrahpasa, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Simone Rossi
- Department of Medicine, Surgery, and Neuroscience, Si-BIN Lab, Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Fatih A Cavdar
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey; Istanbul Okan University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Seth Kwame Agyenkwa
- Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University, Ferrara, Italy
| |
Collapse
|
29
|
Hong-Yu L, Zhi-Jie Z, Juan L, Ting X, Wei-Chun H, Ning Z. Effects of Cerebellar Transcranial Direct Current Stimulation in Patients with Stroke: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:973-984. [PMID: 36028789 DOI: 10.1007/s12311-022-01464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The cerebellum is involved in regulating motor, affective, and cognitive processes. It is a promising target for transcranial direct current stimulation (tDCS) intervention in stroke. OBJECTIVES To review the current evidence for cerebellar tDCS (ctDCS) in stroke, its problems, and its future directions. METHODS We searched the Web of Science, MEDLINE, CINAHL, EMBASE, Cochrane Library, and PubMed databases. Eligible studies were identified after a systematic literature review of the effects of ctDCS in stroke patients. The changes in assessment scale scores and objective indicators after stimulation were reviewed. RESULTS Eleven studies were included in the systematic review, comprising 169 stroke patients. Current evidence suggests that anode tDCS on the right cerebellar hemisphere does not appear to enhance language processing in stroke patients. Compared with the sham group, stroke patients showed a significant improvement in the verb generation task after cathodal ctDCS stimulation. However, with regard to naming, two studies came to the opposite conclusion. The contralesional anodal ctDCS is expected to improve standing balance but not motor learning in stroke patients. The bipolar bilateral ctDCS protocol to target dentate nuclei (PO10h and PO9h) had a positive effect on standing balance, goal-directed weight shifting, and postural control in stroke patients. CONCLUSIONS ctDCS appears to improve poststroke language and motor dysfunction (particularly gait). However, the evidence for these results was insufficient, and the quality of the relevant studies was low. ctDCS stimulation parameters and individual factors of participants may affect the therapeutic effect of ctDCS. Researchers need to take a more regulated approach in the future to conduct studies with large sample sizes. Overall, ctDCS remains a promising stroke intervention technique that could be used in the future.
Collapse
Affiliation(s)
- Li Hong-Yu
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China.
| | - Zhang Zhi-Jie
- Yinchuan Stomatology Hospital, Yinchuan, 750002, China
| | - Li Juan
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Xiong Ting
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - He Wei-Chun
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Zhu Ning
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| |
Collapse
|
30
|
Cordeiro BNDL, Kuster E, Thibaut A, Rodrigues Nascimento L, Gonçalves JV, Arêas GPT, Paiva WS, Arêas FZDS. Is transcranial direct current stimulation (tDCS) effective to improve cognition and functionality after severe traumatic brain injury? A perspective article and hypothesis. Front Hum Neurosci 2023; 17:1162854. [PMID: 37635806 PMCID: PMC10448524 DOI: 10.3389/fnhum.2023.1162854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Severe traumatic brain injury (sTBI) is an important cause of disability and mortality and affects people of all ages. Current scientific evidence indicates that motor dysfunction and cognitive impairment are the main limiting factors in patients with sTBI. Transcranial direct current stimulation (tDCS) seems to be a good therapeutic option, but when it comes to patients with sTBI, the results are inconclusive, and some protocols have not yet been tested. In addition, there is still a lack of information on tDCS-related physiological mechanisms, especially during the acute phase. In the present study, based on current evidence on tDCS mechanisms of action, we hypothesized that performing tDCS sessions in individuals with sTBI, especially in the acute and subacute phases, together with conventional therapy sessions, could improve cognition and motor function in this population. This hypothesis presents a new possibility for treating sTBI, seeking to elucidate the extent to which early tDCS may affect long-term clinical outcomes.
Collapse
Affiliation(s)
| | - Elizângela Kuster
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Lucas Rodrigues Nascimento
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jessica Vaz Gonçalves
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Fernando Zanela da Silva Arêas
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
31
|
Ahmed I, Mustafaoglu R, Benkhalifa N, Yakhoub YH. Does noninvasive brain stimulation combined with other therapies improve upper extremity motor impairment, functional performance, and participation in activities of daily living after stroke? A systematic review and meta-analysis of randomized controlled trial. Top Stroke Rehabil 2023; 30:213-234. [PMID: 35112659 DOI: 10.1080/10749357.2022.2026278] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Several studies have investigated the effect of noninvasive brain stimulation (NIBS) on upper limb motor function in stroke, but the evidence so far is conflicting. OBJECTIVE We aimed to determine the effect of NIBS on upper limb motor impairment, functional performance, and participation in activities of daily living after stroke. METHOD Literature search was conducted for randomized controlled trials (RCTs) assessing the effect of "tDCS" or "rTMS" combined with other therapies on upper extremity motor recovery after stroke. The outcome measures were Fugl-Meyer Assessment of Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT), and Barthel Index (BI). The mean difference (MD) and 95%CI were estimated for motor outcomes. Cochrane risk of bias tool was used to assess the quality of evidence. RESULT Twenty-five RCTs involving 1102 participants were included in the review. Compared to sham stimulation, NIBS combined with other therapies has effectively improved FMA-UE (MD0.97 [95%CI, 0.09 to 1.86; p = .03]) and BI score (MD9.11 [95%CI, 2.27 to 15.95; p = .009]) in acute/sub-acute stroke (MD1.73 [95%CI, 0.61 to 2.85; p = .003]) but unable to modify FMA-UE score in chronic stroke (MD-0.31 [95%CI, -1.77 to 1.15; p = .68]). Only inhibitory (MD3.04 [95%CI, 1.76 to 4.31; I2 = 82%, p < .001] protocol is associated with improved FMA-UE score. Twenty minutes of stimulation/session for ≥20 sessions was found to be effective in improving FMA-UE score (Stimulation time: ES0.45; p ≤ .001; Sessions: ES0.33; p ≤ .001). The NIBS did not produce any significant improvement in WMFT as compared to sham NIBS (MD0.91 [95% CI, -0.89 to 2.70; p = .32]). CONCLUSION Moderate to high-quality evidence suggested that NIBS combined with other therapies is effective in improving upper extremity motor impairment and participation in activities of daily living after acute/sub-acute stroke.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rustem Mustafaoglu
- Department of Physiotherapy and Rehabilitation, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nesrine Benkhalifa
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Yakhoub Hassan Yakhoub
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
32
|
Kolmos M, Madsen MJ, Liu ML, Karabanov A, Johansen KL, Thielscher A, Gandrup K, Lundell H, Fuglsang S, Thade E, Christensen H, Iversen HK, Siebner HR, Kruuse C. Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: study protocol of a randomized sham-controlled trial. Trials 2023; 24:216. [PMID: 36949490 PMCID: PMC10035265 DOI: 10.1186/s13063-023-07234-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Many patients do not fully regain motor function after ischemic stroke. Transcranial direct current stimulation (TDCS) targeting the motor cortex may improve motor outcome as an add-on intervention to physical rehabilitation. However, beneficial effects on motor function vary largely among patients within and across TDCS trials. In addition to a large heterogeneity of study designs, this variability may be caused by the fact that TDCS was given as a one-size-fits-all protocol without accounting for anatomical differences between subjects. The efficacy and consistency of TDCS might be improved by a patient-tailored design that ensures precise targeting of a physiologically relevant area with an appropriate current strength. METHODS In a randomized, double-blinded, sham-controlled trial, patients with subacute ischemic stroke and residual upper-extremity paresis will receive two times 20 min of focal TDCS of ipsilesional primary motor hand area (M1-HAND) during supervised rehabilitation training three times weekly for 4 weeks. Anticipated 60 patients will be randomly assigned to active or sham TDCS of ipsilesional M1-HAND, using a central anode and four equidistant cathodes. The placement of the electrode grid on the scalp and current strength at each cathode will be personalized based on individual electrical field models to induce an electrical current of 0.2 V/m in the cortical target region resulting in current strengths between 1 and 4 mA. Primary endpoint will be the difference in change of Fugl-Meyer Assessment of Upper Extremity (FMA-UE) score between active TDCS and sham at the end of the intervention. Exploratory endpoints will include UE-FMA at 12 weeks. Effects of TDCS on motor network connectivity and interhemispheric inhibition will be assessed with functional MRI and transcranial magnetic stimulation. DISCUSSION The study will show the feasibility and test the efficacy of personalized, multi-electrode anodal TDCS of M1-HAND in patients with subacute stroke patients with upper-extremity paresis. Concurrent multimodal brain mapping will shed light into the mechanisms of action of therapeutic personalized TDCS of M1-HAND. Together, the results from this trial may inform future personalized TDCS studies in patients with focal neurological deficits after stroke.
Collapse
Affiliation(s)
- Mia Kolmos
- Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital -Herlev and Gentofte, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Mads Just Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marie Louise Liu
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Anke Karabanov
- Department of Nutrition, Exercise and Sport (NEXS), Copenhagen University, Copenhagen, Denmark
| | - Katrine Lyders Johansen
- Department of Physiotherapy and Occupational Therapy, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Karen Gandrup
- Department of Radiology, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Søren Fuglsang
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Esben Thade
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Hanne Christensen
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Kruuse
- Neurovascular Research Unit (NVRU), Department of Neurology, Copenhagen University Hospital -Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Li KP, Wu JJ, Zhou ZL, Xu DS, Zheng MX, Hua XY, Xu JG. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci 2023; 13:brainsci13030451. [PMID: 36979261 PMCID: PMC10046557 DOI: 10.3390/brainsci13030451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Kun-Peng Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zong-Lei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
- Correspondence: (M.-X.Z.); (X.-Y.H.); (J.-G.X.)
| |
Collapse
|
34
|
Missé RG, dos Santos AM, Borges IBP, Simões MSM, Silvério LR, Correia BL, Kim AWS, Caetano AM, Pasoto SG, Saad CGS, Domiciano DS, Tanaka C, Greve JMD, Baptista AF, Shinjo SK. Transcranial direct current electrical stimulation in combination with aerobic exercise: A pilot study in post-COVID-19 systemic autoimmune rheumatic patients. World J Rheumatol 2023; 11:1-12. [DOI: 10.5499/wjr.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 02/01/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Systemic autoimmune rheumatic diseases (SARDs) are a group of diseases with multiorgan involvement and a high prevalence of chronic pain and fatigue. Patients with SARDs and post-coronavirus disease 2019 (COVID-19) syndrome experience aggravation of symptoms. In this context, it is essential to establish strategies to reduce chronic pain and fatigue and improve quality of life.
AIM To assess the efficacy of transcranial direct current stimulation (tDCS) for the treatment of fatigue and pain-associated post-COVID-19 syndrome in patients with SARDs.
METHODS This study included nine patients with different types of SARDs. All patients had reverse transcription-polymerase chain reaction (RT-PCR) test confirmed COVID-19 as well as significant, persistent fatigue and pain that began to worsen after infection. Anodal tDCS was administered in five daily sessions (2mA, 20 min). Concomitantly, patients were involved in aerobic exercise program. All participants were evaluated using specific questionnaires and strength assessment by handgrip and physical function by timed-up-and-go test and sit-to-stand test at baseline (within one week before tDCS protocol), and one week after tDCS protocol. During all procedures, the patients’ treatments remained unchanged.
RESULTS The sample comprised eight women and one man with a mean age of 48.7 ± 9.6 years. After the tDCS protocol, pain and fatigue significantly improved on the visual analog scale (P < 0.05). The physical function also improved 9.5 ± 2.7 vs 6.8 ± 0.8 (P = 0.001) for timed-up-go-test and 10.3 ± 3.7 vs 15.1 ± 4.0 (P = 0.037) for sit-to-stand test. None of the patients experienced any adverse events.
CONCLUSION The present study showed that tDCS in combination with aerobic exercise was effective in improving physical function, and reducing fatigue/pain in SARDs patients with post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Rafael Giovani Missé
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alexandre Moura dos Santos
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isabela Bruna Pires Borges
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marlise Sítima Mendes Simões
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lorenza Rosa Silvério
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Lindoso Correia
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Wook Sook Kim
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Aline Marques Caetano
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra Gofinet Pasoto
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carla Gonçalves Schahin Saad
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Diogo Souza Domiciano
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarice Tanaka
- Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Núcleo de Assistência e Pesquisa em Neuromodulação, Sao Paulo, Brazil
| | - Julia Maria D’Andrea Greve
- Laboratório de Estudos do Movimento, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Clinical Implementation of Noninvasive Brain Stimulation in an Outpatient Neurorehabilitation Program. Am J Phys Med Rehabil 2023; 102:S79-S84. [PMID: 36634336 DOI: 10.1097/phm.0000000000002135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT Motor, speech, and cognitive impairments are the most common consequences of neurological disorders. There has been an increasing interest in the use of noninvasive brain stimulation techniques such as transcranial direct current stimulation and transcranial magnetic stimulation to augment the effects of neurorehabilitation. Numerous research studies have shown that transcranial direct current stimulation and transcranial magnetic stimulation are highly promising neuromodulation tools that can work as adjuvants to standard neurorehabilitation services, including physical therapy, occupational therapy, and speech-language pathology. However, to date, there are vast differences in methodology in studies including noninvasive brain stimulation parameters, patient characteristics, time point of intervention after injury, and outcome measures, making it difficult to translate and implement transcranial direct current stimulation and transcranial magnetic stimulation in the clinical setting. Despite this, a series of principles are thought to underlie the effectiveness of noninvasive brain stimulation techniques. We developed a noninvasive brain stimulation rehabilitation program using these principles to provide best practices for applying transcranial direct current stimulation and/or transcranial magnetic stimulation as rehabilitation adjuvants in the clinical setting to help improve neurorehabilitation outcomes. This article outlines our approach, philosophy, and experience.
Collapse
|
36
|
Tedla JS, Sangadala DR, Reddy RS, Gular K, Kakaraparthi VN, Asiri F. Transcranial direct current stimulation (tDCS) effects on upper limb motor function in stroke: an overview review of the systematic reviews. Brain Inj 2023; 37:122-133. [PMID: 36617689 DOI: 10.1080/02699052.2022.2163289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Stroke is the prime cause of disability in the elderly population. Transcranial direct current stimulation (tDCS) is an emerging noninvasive brain stimulation in rehabilitating upper limb function post-stroke. However, mixed evidence exists in the literature and ambiguous conclusions regarding the effect of tDCS on upper limb function. OBJECTIVE This study aimed to assess the current evidence on the effect of (tDCS) on upper limb motor function and activities of daily living in patients after stroke by conducting an overview of systematic reviews. METHODOLOGY We performed electronic database searches and gray literature searches for the articles. RESULTS Two distinct literature searches gathered a total of 203 studies. Out of them, six systematic reviews and meta-analyses were included for methodological quality assessment and data extraction. All included studies were determined to be of good to high quality based on a methodological appraisal using the Assessment of Multiple Systematic Reviews checklist. CONCLUSION Identified evidence suggests that tDCS has superior effects to control interventions in improving functions of the upper limb and activities of daily living in patients who have had a stroke. Moreover, cathodal stimulation over the non-affected brain region was more effective than anodal and dual tDCS stimulation.
Collapse
Affiliation(s)
- Jaya Shanker Tedla
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Devika Rani Sangadala
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Ravi Shankar Reddy
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Kumar Gular
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Venkata Nagaraj Kakaraparthi
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Faisal Asiri
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Zhou K, Zhou Y, Zeng Y, Zhang J, Cai X, Qin J, Li Z, Yan F. Research Hotspots and Global Trends of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Neuropsychiatr Dis Treat 2023; 19:601-613. [PMID: 36950717 PMCID: PMC10025138 DOI: 10.2147/ndt.s400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023] Open
Abstract
Purpose Transcranial direct current stimulation has been widely used in the clinical treatment of stroke. The purpose of this study was to perform a bibliometric analysis of scientific literature in this field. Methods Articles and reviews regarding transcranial direct current stimulation in stroke from January 01, 2004 to May 31, 2022 were identified from the Science Citation Index-Expanded of the Web of Science Core Collection database. CiteSpace 6.1.R2, Bibliometrix and the Bibliometric Online Analysis Platform were used to analyze data. Results A total of 905 papers were obtained, with the highest number of publications coming from the USA. The institutions and authors with the most publications were Harvard Medical School and Fregni F respectively. Nitsche MA had the most co-citations, followed by Fregni F. Neurosciences was the most fruitful research area and Brain Stimulation had the highest H-index. The research topics could be divided into three sections: mechanisms of treatment, comparison of efficacy with transcranial magnetic stimulation, clinical application of post-stroke dysfunction. The field of "walking", "strength" and "virtual reality therapy" are the future research hotspots of transcranial direct current stimulation. Conclusion The overall research showed a slow growth trend, and the outstanding contribution of the USA in this field cannot be ignored. Relevant researchers are suggested to focus on international collaboration and actively conduct high-quality randomized controlled clinical trials on research hotspots and frontiers in order to identify the optimal stimulation paradigm for clinical purposes.
Collapse
Affiliation(s)
- Kebing Zhou
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zhou
- Department of Rehabilitation, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuena Zeng
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Jiahui Zhang
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Xiaoyan Cai
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Jieying Qin
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, People’s Republic of China
- Correspondence: Fengxia Yan; Jiahui Zhang, School of Nursing, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 510632, People’s Republic of China, Tel +86-20-85225836, Fax +86-20-8522227, Email ;
| |
Collapse
|
38
|
Schwell G, Kozol Z, Tarshansky D, Einat M, Frenkel-Toledo S. The effect of action observation combined with high-definition transcranial direct current stimulation on motor performance in healthy adults: A randomized controlled trial. Front Hum Neurosci 2023; 17:1126510. [PMID: 36936614 PMCID: PMC10014919 DOI: 10.3389/fnhum.2023.1126510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Action observation (AO) can improve motor performance in humans, probably via the human mirror neuron system. In addition, there is some evidence that transcranial direct current stimulation (tDCS) can improve motor performance. However, it is yet to be determined whether AO combined with tDCS has an enhanced effect on motor performance. We investigated the effect of AO combined with high-definition tDCS (HD-tDCS) targeting the inferior parietal lobe (IPL) and inferior frontal gyrus (IFG), the main aggregates of the human mirror neuron system, on motor performance in healthy adults and compared the immediate vs. 24-h retention test effects (anodal electrodes were placed over these regions of interest). Sixty participants were randomly divided into three groups that received one of the following single-session interventions: (1) observation of a video clip that presented reaching movement sequences toward five lighted units + active HD-tDCS stimulation (AO + active HD-tDCS group); (2) observation of a video clip that presented the same reaching movement sequences + sham HD-tDCS stimulation (AO + sham HD-tDCS group); and (3) observation of a video clip that presented neutral movie while receiving sham stimulation (NM + sham HD-tDCS group). Subjects' reaching performance was tested before and immediately after each intervention and following 24 h. Subjects performed reaching movements toward units that were activated in the same order as the observed sequence during pretest, posttest, and retest. Occasionally, the sequence order was changed by beginning the sequence unexpectedly with a different activated unit. Outcome measures included mean Reaching Time and difference between the Reaching Time of the unexpected and expected reaching movements (Delta). In the posttest and retest, Reaching Time and Delta improved in the AO + sham HD-tDCS group compared to the NM + HD-sham tDCS group. In addition, at posttest, Delta improved in the AO + active HD-tDCS group compared to the NM + sham HD-tDCS group. It appears that combining a montage of active HD-tDCS, which targets the IPL and IFG, with AO interferes with the positive effects of AO alone on the performance of reaching movement sequences.
Collapse
Affiliation(s)
- Gidon Schwell
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Zvi Kozol
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - David Tarshansky
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Moshe Einat
- Department of Electrical and Electronic Engineering, Ariel University, Ariel, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra’anana, Israel
- *Correspondence: Silvi Frenkel-Toledo,
| |
Collapse
|
39
|
Parikh V, Medley A, Chung YC, Goh HT. Optimal timing and neural loci: a scoping review on the effect of non-invasive brain stimulation on post-stroke gait and balance recovery. Top Stroke Rehabil 2023; 30:84-100. [PMID: 34859744 DOI: 10.1080/10749357.2021.1990467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/02/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Little is known about the optimal timing and neural loci for applying noninvasive brain stimulation (NIBS) to promote gait and balance recovery after stroke. OBJECTIVE To identify the optimal timing and neural loci of NIBS for gait and balance recovery after stroke. METHODS We performed a PubMed search using keywords of stroke, transcranial magnetic stimulation, transcranial direct current stimulation, NIBS, balance, and gait. Interventional trials with various designs published in English were selected. Both flowcharts and tables were used for the result presentation. RESULTS The majority of selected 31 studies included individuals with chronic stroke and primary motor cortex (M1) stimulation. Studies' quality ranged from 4 to 10 (max = 10) on the Pedro scale. NIBS led to improvements in gait and balance in individuals with chronic and subacute stroke, yet the evidence for the acute phase of stroke is limited. Further, stimulation over the ipsilesional M1 resulted in improvement in gait and balanced performance. Stimulation over non-motor regions such as the cerebellum has been limitedly explored. CONCLUSION Current evidence supports the use of NIBS to the M1 in conjunction with behavioral training to improve gait and balance performance in individuals with subacute and chronic stroke. Future research is recommended to evaluate the effect of NIBS during acute stroke and over neural loci other than M1, and to implement a more rigorous method.
Collapse
Affiliation(s)
- Vyoma Parikh
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| | - Ann Medley
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui-Ting Goh
- School of Physical Therapy, Texas Woman's University, Dallas, Texas
| |
Collapse
|
40
|
Melnikova EA, Starkova EY, Razumov AN. [Modern view on upper limb physical rehabilitation after stroke. Literature review]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:42-53. [PMID: 36971671 DOI: 10.17116/kurort202310001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Stroke is the world's second leading cause of death and the first cause of disability among all diseases. The most common complication of a stroke is a violation of the motor function of the limbs, which significantly worsens the quality of life and the level of self-care and independence of patients. Restoring the function of the upper limb is one of the priority tasks of rehabilitation after a stroke. A large number of factors, such as the location and size of the primary brain lesion, the presence of complications in the form of spasticity, impaired skin and proprioceptive sensitivity, and comorbidities, determine the patient's rehabilitation potential and the prognosis of ongoing rehabilitation measures. Of particular note are the timing of the start of rehabilitation measures, the duration and regularity of the treatment methods. A number of authors propose scales for assessing the rehabilitation prognosis, as well as algorithms for compiling rehabilitation programs for restoring the function of the upper limb. A fairly large number of rehabilitation methods and their combinations have been proposed, including special methods of kinesitherapy, robotic mechanotherapy with biofeedback, the use of physiotherapeutic factors, manual and reflex effects, as well as ready-made programs that include sequential and combined use of various methods. Dozens of studies have been devoted to comparative analysis and evaluation of the effectiveness of these methods. The purpose of this work is to review current research on a given topic and draw up our own conclusion on the appropriateness of using and combining these methods at various stages of rehabilitation in stroke patients.
Collapse
Affiliation(s)
- E A Melnikova
- Moscow Regional Scientific Research Clinical Institute named after M.F. Vladimirsky, Moscow, Russia
| | - E Yu Starkova
- Moscow Regional Scientific Research Clinical Institute named after M.F. Vladimirsky, Moscow, Russia
| | - A N Razumov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
41
|
Meng J, Yan Z, Gu F, Tao X, Xue T, Liu D, Wang Z. Transcranial direct current stimulation with virtual reality versus virtual reality alone for upper extremity rehabilitation in stroke: A meta-analysis. Heliyon 2022; 9:e12695. [PMID: 36685449 PMCID: PMC9849940 DOI: 10.1016/j.heliyon.2022.e12695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Background Stroke is one of the most prevalent diseases. Motor impairment in patients with stroke frequently affects the upper extremities. Several randomized clinical trials (RCTs) have tried to prove whether or not the combination of transcranial direct current stimulation (tDCS) with virtual reality (VR) is superior to VR alone for upper extremity rehabilitation. Methods We searched Embase, MEDLINE, the Cochrane Library database, and Clinicaltrials.gov for relevant RCTs published before June 10, 2022. The results were analyzed by using standard mean differences (SMD) and 95% confidence intervals (95% CI). Results We pooled 120 patients from 4 RCTs. There were no significant improvements in the Fugl-Meyer Upper Extremity scale (SMD = 0.51; 95% CI, -0.04 to 1.06), the Box and Block Test (SMD = 0.42; 95% CI, -0.02 to 0.86), and the Modified Ashworth Scale after the combined treatment of tDCS and VR. But tDCS combined with VR could enhance the Barthel Index scores in patients with stroke compared to VR alone (SMD = 0.49; 95% CI, 0.04 to 0.94). Conclusions The combination of tDCS and VR can improve the quality of daily living in patients with stroke. No more satisfactory efficacy has been demonstrated in terms of upper extremity function. However, we observe a distinct trend toward significance in some outcomes.
Collapse
Affiliation(s)
- Jiahao Meng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Zeya Yan
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Feng Gu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Xinyu Tao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Dan Liu
- Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China,Corresponding author. Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China,Corresponding author. Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| |
Collapse
|
42
|
Li C, Tu S, Xu S, Zhang Y, Yan Z, Jia J, Tian S. Research Hotspots and Frontiers of Transcranial Direct Current Stimulation in Stroke: A Bibliometric Analysis. Brain Sci 2022; 13:brainsci13010015. [PMID: 36671997 PMCID: PMC9856087 DOI: 10.3390/brainsci13010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Over the past decade, many studies in the field of transcranial direct current stimulation (tDCS) in stroke have been published in scholarly journals. However, a scientometric analysis focusing on tDCS after stroke is still missing. The purpose of this study is to deliver a bibliometric analysis to investigate the global hotspots and frontiers in the domain of tDCS in stroke from 2012 to 2021. Methods: Articles and reviews related to tDCS in stroke were retrieved and obtained from the Web of Science core collection database from 2012 to 2021. Data visualization and analysis were conducted by using CiteSpace, VOSviewer, and Microsoft Excel 2019. Results: Finally, 371 publications were included in the scientometric analysis, including 288 articles and 83 reviews. The results showed that the number of publications per year increased from 15 to 68 in the last 10 years. Neurosciences was the main research hotspot category (n = 201). Frontiers in Human Neuroscience was the most published journal with 14 papers. The most productive author, institution, and country were Fregni F (n = 13), the League of European Research Universities (n = 37), and the United States of America (n = 98), respectively. A burstness analysis of keywords and the literature indicated that current studies in the field of tDCS in stroke focused on poststroke aphasia, tDCS combined with robotic therapy, and anatomical parameters. Conclusion: The research of tDCS in stroke is predicted to remain a research hotspot in the future. We recommend investigating the curative effect of other different tDCS closed-loop rehabilitation methods for different stroke dysfunctions. In conclusion, this bibliometric study presented the hotspots and trends of tDCS in stroke over the last decade, which may help researchers manage their further studies.
Collapse
Affiliation(s)
- Chong Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
| | - Shuting Tu
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shuo Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongli Zhang
- Institute of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhijie Yan
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.J.); (S.T.)
| | - Shiliu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200040, China
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai 200433, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200031, China
- Fujian Sports Vocational Education and Technical College, Fuzhou 350003, China
- Correspondence: (J.J.); (S.T.)
| |
Collapse
|
43
|
Yuasa A, Uehara S, Ushizawa K, Toyama T, Gomez-Tames J, Hirata A, Otaka Y. Effects of cerebellar transcranial direct current stimulation on upper limb motor function after stroke: study protocol for the pilot of a randomized controlled trial. Pilot Feasibility Stud 2022; 8:259. [PMCID: PMC9748387 DOI: 10.1186/s40814-022-01223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Transcranial direct current stimulation (tDCS) is a technique that can noninvasively modulate neural states in a targeted brain region. As cerebellar activity levels are associated with upper limb motor improvement after stroke, the cerebellum is a plausible target of tDCS. However, the effect of tDCS remains unclear. Here, we designed a pilot study to assess: (1) the feasibility of a study that aims to examine the effects of cerebellar tDCS combined with an intensive rehabilitation approach based on the concept of constraint-induced movement therapy (CIMT) and (2) the preliminary outcome of the combined approach on upper limb motor function in patients with stroke in the chronic stage.
Methods
This pilot study has a double-blind randomized controlled design. Twenty-four chronic stroke patients with mild to moderate levels of upper limb motor impairment will be randomly assigned to an active or sham tDCS group. The participants will receive 20 min of active or sham tDCS to the contralesional cerebellum at the commencement of 4 h of daily intensive training, repeatedly for 5 days per week for 2 weeks. The primary outcomes are recruitment, enrollment, protocol adherence, and retention rates and measures to evaluate the feasibility of the study. The secondary outcome is upper limb motor function which will be evaluated using the Action Research Arm Test, Fugl-Meyer Assessment, for the upper extremity and the Motor Activity Log. Additionally, neurophysiological and neuroanatomical assessments of the cerebellum will be performed using transcranial magnetic stimulation and magnetic resonance imaging. These assessments will be conducted before, at the middle, and after the 2-week intervention, and finally, 1 month after the intervention. Any adverse events that occur during the study will be recorded.
Discussion
Cerebellar tDCS combined with intensive upper limb training may increase the gains of motor improvement when compared to the sham condition. The present study should provide valuable evidence regarding the feasibility of the design and the efficacy of cerebellar tDCS for upper limb motor function in patients with stroke before a future large trial is conducted.
Trial registration
This study has been registered at the Japan Registry of Clinical Trials (jRCTs042200078). Registered 17 December 2020
Collapse
|
44
|
Saikaley M, Pauli G, Sun H, Serra JR, Iruthayarajah J, Teasell R. Network Meta-Analysis of Non-Conventional Therapies for Improving Upper Limb Motor Impairment Poststroke. Stroke 2022; 53:3717-3727. [PMID: 36252104 PMCID: PMC9698094 DOI: 10.1161/strokeaha.122.040687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Network meta-analysis is a method that can estimate relative efficacy between treatments that may not have been compared directly within the literature. The purpose of this study is to present a network meta-analysis of non-conventional interventions to improve upper extremity motor impairment after stroke. METHODS A literature search was conducted in 5 databases from their inception until April 1, 2021. Terms were used to narrow down articles related to stroke, the upper extremity, and interventional therapies. Randomized controlled trials written in English were eligible if; 50% poststroke patients; ≥18 years old; applied an intervention for the upper extremity, and/or used the Fugl-Meyer upper extremity scale as an outcome measure; the intervention had ≥3 randomized controlled trials with comparisons against a conventional care group; conventional care groups were dose matched for therapy time. A Bayesian network meta-analysis approach was taken to estimate mean difference (MD) and 95% CI. RESULTS One hundred seventy-six randomized controlled trials containing 6781 participants examining 20 non-conventional interventions were identified for inclusion within the final model. Eight of the identified interventions proved significantly better than conventional care, with modified constraint induced movement therapy (MD, 6.7 [95% CI, 4.3-8.9]), high frequency repetitive transcranial magnetic stimulation (MD, 5.4 [95% CI, 1.9-8.9]), mental imagery (MD, 5.4 [95% CI, 1.8-8.9]), bilateral arm training (MD, 5.2 [95% CI, 2.2-8.1]), and intermittent theta-burst stimulation (MD, 5.1 [95% CI, 0.62-9.5]) occupying the top 5 spots according to the surface under the cumulative ranking curve. CONCLUSIONS Overall, it would seem that modified constraint induced movement therapy has the greatest probability of being the most effective intervention, with high-frequency repetitive transcranial magnetic stimulation, mental imagery, and bilateral arm training all having similar probabilities of occupying the next spot in the rankings. We think this analysis can provide a guide for where future resources and clinical trials should be directed, and where a clinician may begin when considering alternative therapeutic interventions.
Collapse
Affiliation(s)
- Marcus Saikaley
- Parkwood Institute Research (M.S., G.P., H.S., J.R.S., J.I., R.T.), Parkwood Institute, London, ON
| | - Griffin Pauli
- Parkwood Institute Research (M.S., G.P., H.S., J.R.S., J.I., R.T.), Parkwood Institute, London, ON
| | - Hao Sun
- Parkwood Institute Research (M.S., G.P., H.S., J.R.S., J.I., R.T.), Parkwood Institute, London, ON
| | - Julisa Rodriguez Serra
- Parkwood Institute Research (M.S., G.P., H.S., J.R.S., J.I., R.T.), Parkwood Institute, London, ON
| | - Jerome Iruthayarajah
- Parkwood Institute Research (M.S., G.P., H.S., J.R.S., J.I., R.T.), Parkwood Institute, London, ON
| | - Robert Teasell
- Parkwood Institute Research (M.S., G.P., H.S., J.R.S., J.I., R.T.), Parkwood Institute, London, ON
- St. Joseph’s Health Care (R.T.), Parkwood Institute, London, ON
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON (R.T.)
| |
Collapse
|
45
|
Which type of mind-body exercise is most effective in improving functional performance and quality of life in patients with Parkinson's disease? A systematic review with network meta-analysis. Acta Neurol Belg 2022; 122:1433-1446. [PMID: 36056269 DOI: 10.1007/s13760-022-02070-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Several studies have investigated the effect of mind-body exercise (MBE) on functional performance and health-related quality of life (HRQoL) in Parkinson's disease (PD), but it is still very difficult for clinicians to make informed decision on the best mind-body exercise for PD. PURPOSE We analyzed the relative efficacy of MBE (yoga, Tai-Chi, Pilates, Qigong, and dance) in improving functional performance and HRQoL in patients with PD. METHODS A systematic review of randomized controlled trials (RCTs) was performed using network meta-analysis (NMA), searching the following databases: Cochrane, Web of Science, and PubMed using specific keywords until December 28, 2021, assessing the effects of MBE on functional performance and HRQoL in patients with PD. RESULTS This review included 60 RCTs with 2037 participants. A ranking of MBE for modifying various aspects of functional performance and HRQoL was achieved. Pairwise NMA showed Pilates to be the most effective in improving functional mobility (MD: - 3.81; 95% CI (- 1.55, - 6.07) and balance performance (SMD: 2.83; 95% CI (1.87, 3.78). Yoga (MD: - 5.95; 95% CI (- 8.73, - 3.16) and dance (MD: - 5.87; 95% CI (- 8.73, - 3.01) to be the most effective in improving motor function, whereas Qigong (MD: 0.32; 95% CI (0.00, 0.64) was most effective in improving gait speed. Considering HRQoL, dance was found to be the most effective (SMD: - 0.36; 95% CI (- 0.70, -0.01). CONCLUSION MBE should be considered an effective strategy for improving functional performance and HRQoL in patients with PD. The most effective MBE intervention varied with the functional performance domain. Dance was an effective exercise for improving HRQoL among people with PD. PROSPERO REGISTRATION ID CRD42022301030.
Collapse
|
46
|
van der Cruijsen J, Dooren RF, Schouten AC, Oostendorp TF, Frens MA, Ribbers GM, van der Helm FCT, Kwakkel G, Selles RW. Addressing the inconsistent electric fields of tDCS by using patient-tailored configurations in chronic stroke: Implications for treatment. Neuroimage Clin 2022; 36:103178. [PMID: 36084558 PMCID: PMC9465435 DOI: 10.1016/j.nicl.2022.103178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool to improve and speed up motor rehabilitation after stroke, but inconsistent clinical effects refrain tDCS from clinical implementation. Therefore, this study aimed to assess the need for individualized tDCS configurations in stroke, considering interindividual variability in brain anatomy and motor function representation. We simulated tDCS in individualized MRI-based finite element head models of 21 chronic stroke subjects and 10 healthy age-matched controls. An anatomy-based stimulation target, i.e. the motor hand knob, was identified with MRI, whereas a motor function-based stimulation target was identified with EEG. For each subject, we simulated conventional anodal tDCS electrode configurations and optimized electrode configurations to maximize stimulation strength within the anatomical and functional target. The normal component of the electric field was extracted and compared between subjects with stroke and healthy, age-matched controls, for both targets, during conventional and optimized tDCS. Electrical field strength was significantly lower, more variable and more frequently in opposite polarity for subjects with stroke compared to healthy age-matched subjects, both for the anatomical and functional target with conventional, i.e. non-individualized, electrode configurations. Optimized, i.e. individualized, electrode configurations increased the electrical field strength in the anatomical and functional target for subjects with stroke but did not reach the same levels as in healthy subjects. Considering individual brain structure and motor function is crucial for applying tDCS in subjects with stroke. Lack of individualized tDCS configurations in subjects with stroke results in lower electric fields in stimulation targets, which may partially explain the inconsistent clinical effects of tDCS in stroke trials.
Collapse
Affiliation(s)
- Joris van der Cruijsen
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; Radboud University Medical Center, dept. of Rehabilitation, Reinier Postlaan 2, 6525 GC, Nijmegen, The Netherlands.
| | - Renée F Dooren
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Alfred C Schouten
- Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; University of Twente, dept. of Biomechanical Engineering, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Thom F Oostendorp
- Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Maarten A Frens
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Gerard M Ribbers
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Rijndam Rehabilitation, Westersingel 300, 3015 LJ, Rotterdam, The Netherlands
| | - Frans C T van der Helm
- Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; Northwestern University of Chicago, dept. of Physical Therapy and Movement Sciences, 420 E Superior St, Chicago, IL 60611, United States
| | - Gert Kwakkel
- Northwestern University of Chicago, dept. of Physical Therapy and Movement Sciences, 420 E Superior St, Chicago, IL 60611, United States; Amsterdam University Medical Centre, dept. of Rehabilitation Medicine, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Ruud W Selles
- Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
47
|
刘 蒙, 徐 桂, 于 洪, 王 春, 孙 长, 郭 磊. [Research on electroencephalogram power spectral density of stroke patients under transcranial direct current stimulation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:498-506. [PMID: 35788519 PMCID: PMC10950774 DOI: 10.7507/1001-5515.202110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/19/2022] [Indexed: 06/15/2023]
Abstract
Transcranial direct current stimulation (tDCS) has become a new method of post-stroke rehabilitation treatment and is gradually accepted by people. However, the neurophysiological mechanism of tDCS in the treatment of stroke still needs further study. In this study, we recruited 30 stroke patients with damage to the left side of the brain and randomly divided them into a real tDCS group (15 cases) and a sham tDCS group (15 cases). The resting EEG signals of the two groups of subjects before and after stimulation were collected, then the difference of power spectral density was analyzed and compared in the band of delta, theta, alpha and beta, and the delta/alpha power ratio (DAR) was calculated. The results showed that after real tDCS, delta band energy decreased significantly in the left temporal lobes, and the difference was statistically significant ( P < 0.05); alpha band energy enhanced significantly in the occipital lobes, and the difference was statistically significant ( P < 0.05); the difference of theta and beta band energy was not statistically significant in the whole brain region ( P > 0.05). Furthermore, the difference of delta, theta, alpha and beta band energy was not statistically significant after sham tDCS ( P > 0.05). On the other hand, the DAR value of stroke patients decreased significantly after real tDCS, and the difference was statistically significant ( P < 0.05), and there was no significant difference in sham tDCS ( P > 0.05). This study reveals to a certain extent the neurophysiological mechanism of tDCS in the treatment of stroke.
Collapse
Affiliation(s)
- 蒙蒙 刘
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 桂芝 徐
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 洪丽 于
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 春方 王
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 长城 孙
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - 磊 郭
- 河北工业大学 电气工程学院 省部共建电工装备可靠性与智能化国家重点实验室(天津 300130)State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- 河北工业大学 电气工程学院 天津市生物电工与智能健康重点实验室(天津 300130)Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
48
|
Tedla JS, Rodrigues E, Ferreira AS, Vicente J, Reddy RS, Gular K, Sangadala DR, Kakaraparthi VN, Asiri F, Midde AK, Dixit S. Transcranial direct current stimulation combined with trunk-targeted, proprioceptive neuromuscular facilitation in subacute stroke: a randomized controlled trial. PeerJ 2022; 10:e13329. [PMID: 35505681 PMCID: PMC9057289 DOI: 10.7717/peerj.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Stroke is the foremost cause of death and disability worldwide. Improving upper extremity function and quality of life are two paramount therapeutic targets during rehabilitation. Aim of the study To investigate the effects of transcranial direct current stimulation (tDCS) combined with trunk-targeted proprioceptive neuromuscular facilitation (PNF) on impairments, activity limitations, and participation restrictions of subjects with subacute stroke. Methodology Fifty-four subjects with subacute stroke were divided into three groups using block randomization. All three groups received rehabilitation sessions lasting 90 min in duration, four times per week, for 6 weeks. Group 1 (n = 18) received conventional physical therapy (CPT); group 2 (n = 18) received CPT, trunk-targeted PNF, and sham tDCS; and group 3 (n = 18) received CPT, trunk-targeted PNF, and bihemispheric motor cortex stimulation with tDCS. Changes in motor impairment, motor activity, and health-related quality of life assessments were outcome measures. Results A two-way linear mixed model analysis revealed interaction effects (group × time) for all outcome measurements (Trunk Impairment Scale, Fugl-Meyer Assessment of Motor Recovery after stroke upper extremity subsection, Wolf Motor Function Test, 10-Meter Walk Test, and the Stroke-Specific Quality of Life scale; all p < 0.01 or lower). Overall, post-pre mean differences demonstrate more substantial improvement in the active tDCS group, followed by sham stimulation associated with the PNF group and the group that received CPT alone. Conclusion Trunk-targeted PNF combined with bihemispheric tDCS along with CPT engender larger improvements in upper extremity and trunk impairment, upper limb function, gait speed, and quality of life in the subacute stroke population.
Collapse
Affiliation(s)
- Jaya Shanker Tedla
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia,Postgraduate Program in Rehabilitation Science, University Center Augusto Motta UNISUAM, Rio de Janeiro, Brazil
| | - Erika Rodrigues
- Postgraduate Program in Rehabilitation Science, University Center Augusto Motta UNISUAM, Rio de Janeiro, Brazil
| | - Arthur S. Ferreira
- Postgraduate Program in Rehabilitation Science, University Center Augusto Motta UNISUAM, Rio de Janeiro, Brazil
| | - Jose Vicente
- Professor of Neurological Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ravi Shankar Reddy
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia
| | - Kumar Gular
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia
| | - Devika Rani Sangadala
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia
| | - Venkata Nagaraj Kakaraparthi
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia
| | - Faisal Asiri
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia
| | - Ajaya Kumar Midde
- Head of Neurorehabilitation, Department of Physiotherapy, Krishna Institute of Medical Sciences, Secunderabad, Telangana, India
| | - Snehil Dixit
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Aseer, Saudi Arabia
| |
Collapse
|
49
|
Vlotinou P, Tsiptsios D, Karatzetzou S, Kalogirou G, Stefas E, Aggelousis N, Vadikolias K. Transcranial Direct Current Stimulation in Conjunction with Mirror Therapy for Upper Extremity Rehabilitation in Chronic Stroke Patients. MAEDICA 2022; 17:169-176. [PMID: 35733745 PMCID: PMC9168586 DOI: 10.26574/maedica.2022.17.1.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: Stroke represents a major cause of upper limb motor impairment among stroke survivors, resulting in functional disability and affecting negatively their quality of life. Thus, it is imperative that stroke rehabilitation be efficient. Up to the present, several intervention methods have been proposed in an attempt to improve recovery potential poststroke, transcranial direct current stimulation (tDCS) and mirror therapy (MT) being among them. The aim of this review is to investigate the utility of tDCS administration in conjunction with MT on chronic stroke population. Methods: A literature research of two databases (MEDLINE and Scopus) was conducted in order to identify all relevant studies published between January 1st 2010 and September 30th 2021 that focused on the efficacy of the combined application of tDCS and MT on upper limb rehabilitation among chronic stroke patients. Results: Three studies fulfilled the selection criteria and were included in the present review. Transcranial direct current stimulation application along with MT exhibited statistically significant increases in Box and block test, grip strength, Action research arm test score and Nottingham extended activities of daily living score within the experimental group compared to controls. The timing-dependent interaction effects seem to be of key importance, as sequentially delivered tDCS prior to MT is considered to be more advantageous and time-efficient compared to the concurrent application of tDCS and MT. Conclusions: Application of tDCS in parallel with MT represents a promising neurorehabilitation tool for post-stroke patients regarding upper limb motor performance, movement efficiency and daily function. Future studies are needed in order to clarify whether sequential or concurrent tDCS and MT application is more beneficial.
Collapse
Affiliation(s)
- Penelope Vlotinou
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stella Karatzetzou
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Kalogirou
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftherios Stefas
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | | |
Collapse
|
50
|
Muffel T, Shih PC, Kalloch B, Nikulin V, Villringer A, Sehm B. Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients. Brain Stimul 2022; 15:509-522. [DOI: 10.1016/j.brs.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
|