1
|
Grigoryan GA. From memory disorders to the development of depression: A system approach. Biosystems 2025; 251:105440. [PMID: 40049440 DOI: 10.1016/j.biosystems.2025.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 05/06/2025]
Abstract
In this review, a hypothesis explaining the origin and genesis of depression development from the perspective of a holistic functional system of behavioral control is proposed. The core of the functional system is the memory apparatus, on which all other key components of the behavioral control system (sensory information, motivation, reinforcement, and motor activity) are interlocked. In the organization of memory traces (engrams) there are two inputs, sensory and motivational, through which the stimulus-stimulus (S-S) and stimulus-motor (S-R) engrams are formed. These engrams are organized and actualized by means of forward and backward conditional connections between cortical representations of sensory information and motivational structures of the brain. Through feedback connections from reinforcing (emotional) input to the memory apparatus, the S-S and S-R engrams are consolidated or weakened depending on the strength of reward or negative events. Depression begins with a breakdown in memory mechanisms. These breakdowns are related to problems with the three mentioned memory inputs: sensory, motivational, and reinforcing (emotional). Disruptions in sensory and motivational input lead to an inability to form new memory engrams, their actualization and retrieval. This creates difficulty in solving current and past unresolved problems, eliciting more accumulation and increasing difficulties in their solving. Unresolved tasks lead to weakening of the reinforcing input, and further impairment of consolidation of the acting engrams. Another reason for the weakening of reinforcing input is excessive action of directly harmful events or constant chronic stress. The review presents the current literature and some data from our laboratory in favor of each memory input's contribution and their impact on the development of depression, when they are problematic.
Collapse
Affiliation(s)
- Grigory A Grigoryan
- Department of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology RAS, 5a Butlerov str., Moscow, 117485, Russian Federation.
| |
Collapse
|
2
|
Ganesan S, Barrios FA, Batta I, Bauer CCC, Braver TS, Brewer JA, Brown KW, Cahn R, Cain JA, Calhoun VD, Cao L, Chetelat G, Ching CRK, Creswell JD, Dagnino PC, Davanger S, Davidson RJ, Deco G, Dutcher JM, Escrichs A, Eyler LT, Fani N, Farb NAS, Fialoke S, Fresco DM, Garg R, Garland EL, Goldin P, Hafeman DM, Jahanshad N, Kang Y, Khalsa SS, Kirlic N, Lazar SW, Lutz A, McDermott TJ, Pagnoni G, Piguet C, Prakash RS, Rahrig H, Reggente N, Saccaro LF, Sacchet MD, Siegle GJ, Tang YY, Thomopoulos SI, Thompson PM, Torske A, Treves IN, Tripathi V, Tsuchiyagaito A, Turner MD, Vago DR, Valk S, Zeidan F, Zalesky A, Turner JA, King AP. ENIGMA-Meditation: Worldwide Consortium for Neuroscientific Investigations of Meditation Practices. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:425-436. [PMID: 39515581 PMCID: PMC11975497 DOI: 10.1016/j.bpsc.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Meditation is a family of ancient and contemporary contemplative mind-body practices that can modulate psychological processes, awareness, and mental states. Over the last 40 years, clinical science has manualized meditation practices and designed various meditation interventions that have shown therapeutic efficacy for disorders including depression, pain, addiction, and anxiety. Over the past decade, neuroimaging has been used to examine the neuroscientific basis of meditation practices, effects, states, and outcomes for clinical and nonclinical populations. However, the generalizability and replicability of current neuroscientific models of meditation have not yet been established, because they are largely based on small datasets entrenched with heterogeneity along several domains of meditation (e.g., practice types, meditation experience, clinical disorder targeted), experimental design, and neuroimaging methods (e.g., preprocessing, analysis, task-based, resting-state, structural magnetic resonance imaging). These limitations have precluded a nuanced and rigorous neuroscientific phenotyping of meditation practices and their potential benefits. Here, we present ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis)-Meditation, the first worldwide collaborative consortium for neuroscientific investigations of meditation practices. ENIGMA-Meditation will enable systematic meta- and mega-analyses of globally distributed neuroimaging datasets of meditation using shared, standardized neuroimaging methods and tools to improve statistical power and generalizability. Through this powerful collaborative framework, existing neuroscientific accounts of meditation practices can be extended to generate novel and rigorous neuroscientific insights that account for multidomain heterogeneity. ENIGMA-Meditation will inform neuroscientific mechanisms that underlie therapeutic action of meditation practices on psychological and cognitive attributes, thereby advancing the field of meditation and contemplative neuroscience.
Collapse
Affiliation(s)
- Saampras Ganesan
- Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria, Australia; Contemplative Studies Centre, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Systems Lab of Neuroscience, Neuropsychiatry and Neuroengineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Fernando A Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiolgía, Querétaro, México
| | - Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Clemens C C Bauer
- Department of Psychology, Northeastern University, Boston, Massachusetts; Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University, St. Louis, Missouri
| | - Judson A Brewer
- Department of Behavioral and Social Sciences, Brown University, School of Public Health, Providence, Rhode Island
| | - Kirk Warren Brown
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Rael Cahn
- University of Southern California Department of Psychiatry & Behavioral Sciences, Los Angeles, California; University of Southern California Center for Mindfulness Science, Los Angeles, California
| | - Joshua A Cain
- Institute for Advanced Consciousness Studies, Santa Monica, California
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Lei Cao
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gaël Chetelat
- Normandie University, Université de Caen Normandie, INSERM U1237, Neuropresage Team, Cyceron, Caen, France
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - J David Creswell
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | - Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Svend Davanger
- Division of Anatomy, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Richard J Davidson
- Psychology Department and Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Janine M Dutcher
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lisa T Eyler
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Norman A S Farb
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada; Department of Psychological Clinical Science, University of Toronto, Scarborough, Ontario, Canada
| | - Suruchi Fialoke
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, New Delhi, India
| | - David M Fresco
- Department of Psychiatry and Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Rahul Garg
- National Resource Center for Value Education in Engineering, Indian Institute of Technology, New Delhi, India; Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi, India
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, Utah
| | - Philippe Goldin
- Betty Irene Moore School of Nursing, University of California Davis, Sacramento, California
| | - Danella M Hafeman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yoona Kang
- Department of Psychology, Rutgers University - Camden, Camden, New Jersey
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Namik Kirlic
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antoine Lutz
- Eduwell Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR 5292, Lyon University, Lyon, France; Lyon Neuroscience Research Centre, INSERM U1028, Lyon, France
| | - Timothy J McDermott
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Giuseppe Pagnoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Camille Piguet
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Hadley Rahrig
- Psychology Department and Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, California
| | - Luigi F Saccaro
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Alyssa Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Isaac N Treves
- Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Vaibhav Tripathi
- Center for Brain Science and Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health & Natural Sciences, The University of Tulsa, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Matthew D Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio
| | - David R Vago
- Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sofie Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Systems Neuroscience, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, INM-7, Brain & Behaviour Research Centre Jülich, Jülich, Germany
| | - Fadel Zeidan
- Department of Anesthesiology, University of California San Diego, La Jolla, California; T. Denny Sanford Institute for Empathy and Compassion, University of California San Diego, La Jolla, California
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria, Australia; Systems Lab of Neuroscience, Neuropsychiatry and Neuroengineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, Ohio; Department of Psychology, The Ohio State University, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
3
|
Yang X, Hilliard K, Gotlieb R, Immordino‐Yang MH. Transcendent thinking counteracts longitudinal effects of mid-adolescent exposure to community violence in the anterior cingulate cortex. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2025; 35:e12993. [PMID: 38923619 PMCID: PMC11758453 DOI: 10.1111/jora.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Adolescence involves extensive brain maturation, characterized by social sensitivity and emotional lability, that co-occurs with increased independence. Mid-adolescence is also a hallmark developmental stage when youths become motivated to reflect on the broader personal, ethical, and systems-level implications of happenings, a process we term transcendent thinking. Here, we examine the confluence of these developmental processes to ask, from a transdisciplinary perspective, how might community violence exposure (CVE) impact brain development during mid-adolescence, and how might youths' dispositions for transcendent thinking be protective? Fifty-five low-SES urban youth with no history of delinquency (32 female; 27 Latinx, 28 East Asian) reported their CVE and underwent structural MRI first at age 14-18, and again 2 years later. At the study's start, participants also discussed their feelings about 40 minidocumentaries featuring other teens' compelling situations in a 2-h private interview that was transcribed and coded for transcendent thinking. Controlling for CVE and brain structure at the start: (1) New CVE during the 2-year inter-scan interval was associated with greater gray matter volume (GMV) reduction over that interval in the anterior cingulate cortex (ACC), a central network hub whose reduced volume has been associated with posttraumatic stress disorder, and across multiple additional cortical and subcortical regions; (2) participants' transcendent thinking in the interview independently predicted greater GMV increase during the 2-year inter-scan interval in the ACC. Findings highlight the continued vulnerability of mid-adolescents to community violence and the importance of supporting teens' dispositions to reflect on the complex personal and systems-level implications and affordances of their civic landscape.
Collapse
Affiliation(s)
- Xiao‐Fei Yang
- Center for Affective Neuroscience, Development, Learning and EducationBrain and Creativity InstituteRossier School of EducationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Katrina Hilliard
- Center for Affective Neuroscience, Development, Learning and EducationBrain and Creativity InstituteRossier School of EducationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rebecca Gotlieb
- Center for Dyslexia, Diverse Learners, and Social Justice, School of Education and Information StudiesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Mary Helen Immordino‐Yang
- Center for Affective Neuroscience, Development, Learning and EducationBrain and Creativity InstituteRossier School of EducationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Psychology Department, Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Azrak O, Garic D, Nasir A, Swanson MR, Grzadzinski RL, Al-Ali K, Shen MD, Girault JB, St John T, Pandey J, Zwaigenbaum L, Estes AM, Wolff JJ, Dager SR, Schultz RT, Evans AC, Elison JT, Yacoub E, Kim SH, McKinstry RC, Gerig G, Pruett JR, Piven J, Botteron KN, Hazlett H, Marrus N, Styner MA. Early White Matter Microstructure Alterations in Infants with Down Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.26.25322913. [PMID: 40061339 PMCID: PMC11888504 DOI: 10.1101/2025.02.26.25322913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Importance Down syndrome, resulting from trisomy 21, is the most prevalent chromosomal disorder and a leading cause of intellectual disability. Despite its significant impact on brain development, research on the white matter microstructure in infants with Down syndrome remains limited. Objective To investigate early white matter microstructure in infants with Down syndrome using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Design Infants were recruited and scanned between March 2019 and May 2024 as participants in prospective studies conducted by the Infant Brain Imaging Study (IBIS) Network. Data were analyzed in October 2024. Setting Data collection occurred at five research centers in Minnesota, Missouri, North Carolina, Pennsylvania, and Washington. Participants Down syndrome and control infants were scanned at 6 months of age. Control infants had no Down syndrome diagnosis and either had a typically developing older sibling or, if they had an older sibling with autism, were confirmed not to meet clinical best estimate criteria for an autism diagnosis. Exposure Diagnosis of Down syndrome. Main Outcomes and Measures The outcome of interest was white matter microstructure quantified using DTI and NODDI measures. Results A total of 49 Down syndrome (28 [57.14%] female) and 37 control (18 [48.65%] female) infants were included. Infants with Down syndrome showed significant reductions in fractional anisotropy and neurite density index across multiple association tracts, particularly in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus II, consistent with reduced structural integrity and neurite density. These tracts also demonstrated increased radial diffusivity, suggesting delayed myelination. The inferior fronto-occipital fasciculus and uncinate fasciculus exhibited increased neurite dispersion and fanning in Down syndrome infants, reflected by elevated orientation dispersion index. Notably, the optic tracts in Down syndrome infants exhibited a distinct pattern of elevated fractional anisotropy and axial diffusivity, and lower radial diffusivity and orientation dispersion index, suggesting an early maturation of these pathways. Conclusions and Relevance This first characterization of white matter microstructure in Down syndrome infants reveals widespread white matter developmental delays. These findings provide new insights into the early neurodevelopment of Down syndrome and may inform early therapeutic interventions.
Collapse
Affiliation(s)
- Omar Azrak
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dea Garic
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aleeshah Nasir
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Meghan R Swanson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca L Grzadzinski
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Khalid Al-Ali
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark D Shen
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tanya St John
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lonnie Zwaigenbaum
- Autism Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Annette M Estes
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Jason J Wolff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen R Dager
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, US
| | - Guido Gerig
- Tandon School of Engineering, New York University, New York, NY, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Pan N, Ma T, Liu Y, Zhang S, Hu S, Shekara A, Cao H, Gong Q, Chen Y. Overlapping and differential neuropharmacological mechanisms of stimulants and nonstimulants for attention-deficit/hyperactivity disorder: a comparative neuroimaging analysis. Psychol Med 2025; 54:1-15. [PMID: 39806554 PMCID: PMC11769909 DOI: 10.1017/s003329172400285x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD. METHODS After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based d Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex. RESULTS Twenty-eight whole-brain task-based functional MRI studies (396 cases in the medication group and 459 cases in the control group) were included. Possible normalization effects of stimulant and nonstimulant administration converged on increased activation patterns of the left supplementary motor area (Z = 1.21, p < 0.0001, central executive network). Stimulants, relative to nonstimulants, increased brain activations in the left amygdala (Z = 1.30, p = 0.0006), middle cingulate gyrus (Z = 1.22, p = 0.0008), and superior frontal gyrus (Z = 1.27, p = 0.0006), which are within the ventral attention network. Neurodevelopmental trajectories emerged in activation patterns of the right supplementary motor area and left amygdala, with the left amygdala also presenting a sex-related difference. CONCLUSIONS Convergence in the left supplementary motor area may delineate novel therapeutic targets for effective interventions, and distinct neural substrates could account for different therapeutic responses to stimulants and nonstimulants.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA
| | - Tianyu Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yixi Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Samantha Hu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA
| | - Aniruddha Shekara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, New York, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, New York, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ding C, Kim Geok S, Sun H, Roslan S, Cao S, Zhao Y. Does music counteract mental fatigue? A systematic review. PLoS One 2025; 20:e0316252. [PMID: 39752412 PMCID: PMC11698372 DOI: 10.1371/journal.pone.0316252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Mental fatigue, a psychobiological state induced by prolonged and sustained cognitive tasks, impairs both cognitive and physical performance. Several studies have investigated strategies to counteract mental fatigue. However, potential health risks and contextual restrictions often limit these strategies, which hinder their practical application. Due to its noninvasive and portable nature, music has been proposed as a promising strategy to counteract mental fatigue. However, the effects of music on performance decrements vary with different music styles. Synthesizing studies that systematically report music style and its impact on counteracting performance decrements is crucial for theoretical and practical applications. OBJECTIVES This review aims to provide a comprehensive systematic analysis of different music styles in counteracting mental fatigue and their effects on performance decrements induced by mental fatigue. Additionally, the mechanisms by which music counteracts mental fatigue will be discussed. METHODS A comprehensive search was conducted across five databases-Web of Science, PubMed, SCOPUS, SPORTDiscus via EBSCOhost, and the Psychological and Behavioral Sciences Collection via EBSCOhost-up to November 18, 2023. The selected studies focused solely on music interventions, with outcomes including subjective feelings of mental fatigue, physiological markers, and both cognitive and behavioral performance. RESULTS Nine studies met the predetermined criteria for inclusion in this review. The types of music interventions that counteract mental fatigue include relaxing, exciting, and personal preference music, all of which were associated with decreased subjective feelings of mental fatigue and changes in objective physiological markers. Cognitive performance, particularly in inhibition and working memory tasks impaired by mental fatigue, was countered by both relaxing and exciting music. Exciting music was found to decrease reaction time more effectively than relaxing music in working memory tasks. The physiological marker of steady-state visually evoked potential-based brain-computer interface (SSVEP-BCI) amplitude increased, confirming that exciting music counteracts mental fatigue more effectively than relaxing music. Behavioral performance in tasks such as arm-pointing, the Yo-Yo intermittent test, and the 5 km time-trial, which were impaired by mental fatigue, were counteracted by personal preference music. CONCLUSION Relaxing music, exciting music, and personal preference music effectively counteract mental fatigue by reducing feelings of fatigue and mitigating performance decrements. Individuals engaged in mentally demanding tasks can effectively counteract concurrent or subsequent cognitive performance decrements by simultaneously listening to relaxing or exciting music without lyrics or by using music during recovery from mental fatigue. Exciting music is more effective than relaxing music in counteracting mental fatigue. Personal preference music is effective in counteracting behavioral performance decrements in motor control and endurance tasks. Mentally fatigued individuals could apply personal preference music to counteract subsequent motor control performance decrements or simultaneously listen to it to counteract endurance performance decrements. Future studies should specify and examine the effects of different music genres, tempos, and intensities in counteracting mental fatigue. Additionally, the role of music in counteracting mental fatigue in contexts such as work productivity, traffic accident risk, and sports requires further investigation, along with the underlying mechanisms.
Collapse
Affiliation(s)
- Cong Ding
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Sport Studies, Faculty of General Education Studies, Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu, China
| | - Soh Kim Geok
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia
| | - He Sun
- School of Physical Education, Henan University, Kaifeng, China
| | - Samsilah Roslan
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia
| | - Shudian Cao
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia
| | - Yue Zhao
- Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
7
|
Oweda J, Schmitgen MM, Henemann GM, Gerdes M, Wolf RC. Machine learning based classification of excessive smartphone users via neuronal cue reactivity. Psychiatry Res Neuroimaging 2025; 346:111903. [PMID: 39419718 DOI: 10.1016/j.pscychresns.2024.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Excessive Smartphone Use (ESU) poses a significant challenge in contemporary society, yet its recognition as a distinct disorder remains ambiguous. This study aims to address this gap by leveraging functional magnetic resonance imaging (fMRI) data and machine learning techniques to classify ESU and non-excessive smartphone users (n-ESU) based on their neural Cue-Reactivity (CR) signatures. By conducting a CR task and analyzing brain activation patterns, we identified spatial similarities between addictive smartphone use and established addictive disorders. Our approach involved employing Support Vector Machines (SVM) for classification, enhanced with feature selection methods such as Recursive Feature Elimination (RFE) and Model-based Selection and dimensionality reduction methods such as and Principal Component Analysis (PCA) to mitigate the challenges posed by limited dataset size and high dimensionality of fMRI data. The results demonstrate the effectiveness of our classification model, achieving accuracies of up to 79.9 %. Furthermore, we observed region-specific activations contributing significantly to classification accuracy, highlighting the potential biomarkers associated with ESU. External validation on longitudinal data revealed the necessity for larger training datasets to improve model generalizability. Additionally, feature selection techniques proved crucial for optimizing model performance, particularly in datasets with combined information from multiple sources. Our findings underscore the importance of incorporating more data to enhance model stability and generalizability, with implications for advancing the understanding and treatment of ESU and related disorders. Overall, our study demonstrates the promise of machine learning approaches in elucidating neural correlates of ESU and informing targeted interventions for affected individuals.
Collapse
Affiliation(s)
- Jailan Oweda
- Department of General Psychiatry, Heidelberg University Hospital, Germany; Karlsruhe Institute of Technology, Germany.
| | | | - Gudrun M Henemann
- Department of General Psychiatry, Heidelberg University Hospital, Germany
| | | | | |
Collapse
|
8
|
Xiang W, Lyu K, Li Y, Yin B, Ke L, Di Q. Chronic high temperature exposure, brain structure, and mental health: Cross-sectional and prospective studies. ENVIRONMENTAL RESEARCH 2025; 264:120348. [PMID: 39532196 DOI: 10.1016/j.envres.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
To investigate the association between chronic high temperature exposure and brain structure and how the association influences mental health, we conducted cross-sectional and prospective cohort studies within a sample of 41,552 UK Biobank participants. Chronic temperature exposure was assessed for each participant based on their residential histories and gridded reanalysis temperature data and defined as the percentage of days with a maximum temperature exceeding 27 °C over the last 20 years. Generalized additive models and difference-in-differences approaches were used to estimate the association between chronic high temperature exposure and neuroimaging outcomes obtained via brain MRI. Mediation analysis was performed to assess whether neuroimaging changes mediated the relationship between chronic high temperature exposure and behavioral decline. We observed chronic high temperature exposure was associated with widespread reduced brain volume, including global grey volume (-5859.32 mm³, 95% CI -6631.82 to -5086.83), white matter volume (-5482.47 mm³, 95% CI -6192.92 to -4772.03), regional grey matter volumes (especially in the cerebellum and brainstem), and subcortical structure volumes (especially in the accumbens, hippocampus, and thalamus). Furthermore, the association mediated depression and declined cognition. Chronic high temperature exposure also enhances age-related brain atrophy. Alterations in white matter tracts were also observed. In conclusion, our study provides multimodal MRI evidence of the adverse effects of chronic high temperature exposure on brain structure and mental health.
Collapse
Affiliation(s)
- Wenxin Xiang
- School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Keyi Lyu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yanjun Li
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Tsinghua University, Beijing, China
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Venditti S. Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being. Subcell Biochem 2025; 108:231-260. [PMID: 39820865 DOI: 10.1007/978-3-031-75980-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally. Among virtuous habits, meditation seemingly represents a valuable way of activating inner resources to cope with adverse experiences. While unhealthy habits, stress, and traumatic early-life events may favor the onset of diseases linked to inflammation, neuroinflammation, and neuroendocrine dysregulation, the practice of mindfulness-based techniques was associated with the alleviation of many of the above symptoms, underlying the importance of lifestyles for health and well-being. Meditation influences brain and body systemwide, eliciting structural/morphological changes as well as modulating the levels of circulating factors and the expression of genes linked to the HPA axis and the immune and neuroimmune systems. The current chapter intends to give an overview of pioneering research showing how meditation can promote health through epigenetics, by reshaping the profiles of the three main epigenetic markers, namely DNA methylation, histone modifications, and non-coding RNAs.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Alldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, et alAlldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, Shmuel A, Styner M, Sullivan E, Thiele A, Todorov O, Tsao D, Tusche A, Vlasova R, Wang Z, Wang L, Wang J, Weiss A, Wilson C, Yacoub E, Zarco W, Zhou Y, Zhu J, Margulies D, Fair D, Schroeder C, Milham M, Xu T. Brain Charts for the Rhesus Macaque Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610193. [PMID: 39257737 PMCID: PMC11383706 DOI: 10.1101/2024.08.28.610193] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
Collapse
Affiliation(s)
- S. Alldritt
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| | | | | | - R. Bethlehem
- University of Cambridge, Department of Psychology
| | | | | | | | | | | | | | | | - A. Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
| | - D.G. Amaral
- Department of Psychiatry and Behavioral Sciences and The MIND Institute
- University of California Davis
| | - C. Amiez
- Stem Cell and Brain Research Institute
| | | | - M.G. Baxter
- Section on Comparative Medicine, Wake Forest University School of Medicine
| | | | - J. Bennett
- University of California Davis, Dept of Psychology
| | - O. Berkner
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - B. Butler
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - A. Chen
- East China Normal University
| | | | | | | | | | | | | | | | | | - A. Falchier
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - A. Fox
- University of California Davis
| | | | - M. Froesel
- Institute for Cognitive Science Marc Jeannerod
| | | | | | | | - M. Gacoin
- Institute for Cognitive Science Marc Jeannerod
| | | | | | - C.M. Garin
- Department of Biomedical Engineering, Vanderbilt University
- Institut des Sciences Cognitives Marc Jeannerod (ISC-MJ)
| | | | - C. Guedj
- Lyon Neuroscience Research Center, University of Geneva
| | | | - S.B. Hamed
- Institute for Cognitive Science Marc Jeannerod
| | | | - R. Hartig
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - B. Hiba
- Institute for Cognitive Science Marc Jeannerod
| | - B.R. Howell
- Emory National Primate Research Center, Emory University
- Fralin Biomedical Research Institute, Virginia Tech
- Carilion Department of Human Development and Family Science, Virginia Tech
| | | | | | | | - J. Karpf
- Oregon National Primate Research Center
| | - S. Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University
| | - C. Klink
- Netherlands Institute for Neuroscience
| | | | | | | | | | - K.N. Lala
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews
| | | | - G. Li
- University of North Carolina at Chapel Hill
| | - P. Lindenfors
- Institute for Futures Studies, Stockholm, Sweden
- Centre for Cultural Evolution & Department of Zoology, Stockholm University, Sweden
| | - G. Linn
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - K. Masiello
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | - M. Meunier
- Lyon Neuroscience Research Center, ImpAct Team
| | | | | | | | - J. Nagy
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | | | | | - M. Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate Research
| | | | | | - M. Pinsk
- Princeton Neuroscience Institute, Princeton University
| | | | - E. Procyk
- Stem Cell and Brain Research Institute
| | - R. Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - S.M. Reader
- Department of Biology, Utrecht University
- Department of Biology, McGill University
| | | | | | - B.E. Russ
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - J. Sallet
- University of Oxford
- INSERM Stem Cell & Brain Research Institute
| | - M.M. Sanchez
- Emory National Primate Research Center; Emory University
- Department of Psychiatry & Behavioral Sciences, School of Medicine
| | | | - C.M. Schwiedrzik
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Cognitive Neurobiology
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen
- Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research
| | - J.A. Scott
- Department of Bioengineering, Santa Clara University
| | | | | | | | - M. Styner
- University of North Carolina at Chapel Hill
| | | | | | - O.S. Todorov
- Department of Biology and Helmholtz Institute, Utrecht University
| | - D. Tsao
- Department of Computation and Neural Systems, California Institute of Technology
| | | | - R. Vlasova
- University of North Carolina at Chapel Hill
| | | | - L. Wang
- East China Normal University
| | - J. Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | | | | | | | | | - Y. Zhou
- Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University
| | - J. Zhu
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - C. Schroeder
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
- Deptartment of Psychiatry, Neurology and Neurosurgery, Columbia University
| | - M. Milham
- Child Mind Institute
- Nathan Kline Institute
| | - T. Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| |
Collapse
|
11
|
Dimitrova LI, Lawrence AJ, Vissia EM, Chalavi S, Kakouris AF, Veltman DJ, Reinders AATS. Inter-identity amnesia in dissociative identity disorder resolved: A behavioural and neurobiological study. J Psychiatr Res 2024; 174:220-229. [PMID: 38653030 DOI: 10.1016/j.jpsychires.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Dissociative identity disorder (DID) is characterised by, among others, subjectively reported inter-identity amnesia, reflecting compromised information transfer between dissociative identity states. Studies have found conflicting results regarding memory transfer between dissociative identity states. Here, we investigated inter-identity amnesia in individuals with DID using self-relevant, subject specific stimuli, and behavioural and neural measures. METHODS Data of 46 matched participants were included; 14 individuals with DID in a trauma-avoidant state, 16 trauma-avoiding DID simulators, and 16 healthy controls. Reaction times and neural activation patterns related to three types of subject specific words were acquired and statistically analysed, namely non-self-relevant trauma-related words (NSt), self-relevant trauma-related words from a trauma-avoidant identity state (St), and trauma-related words from a trauma-related identity state (XSt). RESULTS We found no differences in reaction times between XSt and St words and faster reaction times for XSt over NSt. Reaction times of the diagnosed DID group were the longest. Increased brain activation to XSt words was found in the frontal and parietal regions, while decreased brain activity was found in the anterior cingulate cortex in the diagnosed DID group. DISCUSSION The current study reproduces and amalgamates previous behavioural reports as well as brain activation patterns. Our finding of increased cognitive control over self-relevant trauma-related knowledge processing has important clinical implications and calls for the redefinition of "inter-identity amnesia" to "inter-identity avoidance".
Collapse
Affiliation(s)
- Lora I Dimitrova
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry, Amsterdam UMC, Location VUmc, VU University Amsterdam, Amsterdam, the Netherlands
| | - Andrew J Lawrence
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eline M Vissia
- Heelzorg, Centre for Psychotrauma, Zwolle, the Netherlands
| | - Sima Chalavi
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Andreana F Kakouris
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location VUmc, VU University Amsterdam, Amsterdam, the Netherlands
| | - Antje A T S Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
12
|
Steinmann S, Tiedemann KJ, Kellner S, Wellen CM, Haaf M, Mulert C, Rauh J, Leicht G. Reduced frontocingulate theta connectivity during emotion regulation in major depressive disorder. J Psychiatr Res 2024; 173:245-253. [PMID: 38554620 DOI: 10.1016/j.jpsychires.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Cognitive reappraisal is an essential emotion regulation skill for social life and psychological health. However, individuals with major depressive disorder (MDD) cannot use this skill effectively. Successful cognitive reappraisal in healthy controls (HC) has been shown to be associated with theta activity in a frontal and subcortical network. In the present study, we investigated whether MDD patients are characterized by altered theta power and connectivity pattern during cognitive reappraisal compared to HC. METHODS Using EEG and eLORETA, we examined both theta activity and connectivity when 25 controls and 24 patients with MDD were asked to complete the emotion cognitive reappraisal task of viewing neutral and negative pictures and reappraise negative pictures. Habitual use of emotion regulation skills was collected using the Cognitive Emotion Regulation Questionnaire (CERQ). RESULTS The results showed that MDD patients had (1) reduced theta activity in the left dorsolateral (dlPFC), dorsomedial prefrontal (dmPFC), and rostral-ventral cingulate cortices (rvACC), as well as (2) reduced dlPFC-rvACC theta connectivity than HC during reappraisal. In addition, left dlPFC-rvACC theta connectivity was positively correlated with self-reported cognitive reappraisal in HC. This relation was not observed in MDD. In contrast, CERQ revealed significantly greater use of inadequate regulations skills and significantly lower use of adaptive skills in MDD. LIMITATION Sample size, limited solution space to cortical grey matter excluding regions such as the amygdala. CONCLUSION This study may indicate a putative frontocingulate dysfunction leading either to an increased use of inadequate emotion regulation or a decreased use of skills that serve to boost positive emotion.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kim Janine Tiedemann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Kellner
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudius M Wellen
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Psychiatry, Justus Liebig University, Giessen, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Romascano D, Piredda GF, Caneschi S, Hilbert T, Corredor R, Maréchal B, Kober T, Ledoux JB, Fornari E, Hagmann P, Denervaud S. Normative volumes and relaxation times at 3T during brain development. Sci Data 2024; 11:429. [PMID: 38664431 PMCID: PMC11045735 DOI: 10.1038/s41597-024-03267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
While research has unveiled and quantified brain markers of abnormal neurodevelopment, clinicians still work with qualitative metrics for MRI brain investigation. The purpose of the current article is to bridge the knowledge gap between case-control cohort studies and individual patient care. Here, we provide a unique dataset of seventy-three 3-to-17 years-old healthy subjects acquired with a 6-minute MRI protocol encompassing T1 and T2 relaxation quantitative sequence that can be readily implemented in the clinical setting; MP2RAGE for T1 mapping and the prototype sequence GRAPPATINI for T2 mapping. White matter and grey matter volumes were automatically quantified. We further provide normative developmental curves based on these two imaging sequences; T1, T2 and volume normative ranges with respect to age were computed, for each ROI of a pediatric brain atlas. This open-source dataset provides normative values allowing to position individual patients acquired with the same protocol on the brain maturation curve and as such provides potentially useful quantitative biomarkers facilitating precise and personalized care.
Collapse
Affiliation(s)
- David Romascano
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland.
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.
| | - Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Samuele Caneschi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Hilbert
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ricardo Corredor
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Signal Processing laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | | | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Solange Denervaud
- Department of Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
14
|
Aly M, Ishihara T, Torii S, Kamijo K. Being underweight, academic performance and cognitive control in undergraduate women. Arch Womens Ment Health 2024; 27:249-258. [PMID: 38082003 DOI: 10.1007/s00737-023-01410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 03/13/2024]
Abstract
The prevalence of underweight among young women is a serious international health issue. However, the evidence on how being underweight negatively affects brain health and cognition is still unclear. This study investigated the association between underweight status, academic performance, and neurocognitive control in young Japanese women using a cross-sectional design. We analyzed the academic performance of female undergraduates, comparing underweight and healthy-weight groups (n = 43; age 18-23 years, M = 21.1, SD = 1.3) based on their grade point average (GPA). We also analyzed their error-related negativity (ERN), an electrophysiological measure that potentially reflects academic performance, during an arrowhead version of the flanker task to assess cognitive control of action monitoring. Participants with a low body mass index were found to have lower GPAs. Furthermore, the underweight students exhibited smaller ERN amplitudes, which indicates decreased cognitive control in action monitoring. These findings suggest that a healthy weight status is essential for effective cognitive functioning and academic success in young adult women, among whom being underweight is a serious health problem.
Collapse
Affiliation(s)
- Mohamed Aly
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, Japan
- Department of Educational Sciences and Sports Psychology, Faculty of Physical Education, Assiut University, Assiut, Egypt
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, Japan.
| |
Collapse
|
15
|
Zanchi P, Ledoux JB, Fornari E, Denervaud S. Me, Myself, and I: Neural Activity for Self versus Other across Development. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1914. [PMID: 38136116 PMCID: PMC10742061 DOI: 10.3390/children10121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Although adults and children differ in self-vs.-other perception, a developmental perspective on this discriminative ability at the brain level is missing. This study examined neural activation for self-vs.-other in a sample of 39 participants spanning four different age groups, from 4-year-olds to adults. Self-related stimuli elicited higher neural activity within two brain regions related to self-referential thinking, empathy, and social cognition processes. Second, stimuli related to 'others' (i.e., unknown peer) elicited activation within nine additional brain regions. These regions are associated with multisensory processing, somatosensory skills, language, complex visual stimuli, self-awareness, empathy, theory of mind, and social recognition. Overall, activation maps were gradually increasing with age. However, patterns of activity were non-linear within the medial cingulate cortex for 'self' stimuli and within the left middle temporal gyrus for 'other' stimuli in 7-10-year-old participants. In both cases, there were no self-vs.-other differences. It suggests a critical period where the perception of self and others are similarly processed. Furthermore, 11-19-year-old participants showed no differences between others and self within the left inferior orbital gyrus, suggesting less distinction between self and others in social learning. Understanding the neural bases of self-vs.-other discrimination during development can offer valuable insights into how social contexts can influence learning processes during development, such as when to introduce peer-to-peer teaching or group learning.
Collapse
Affiliation(s)
- Paola Zanchi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jean-Baptiste Ledoux
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Eleonora Fornari
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Solange Denervaud
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, 1005 Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
- MRI Animal Imaging and Technology, Polytechnical School of Lausanne, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Burke T, Holleran L, Mothersill D, Lyons J, O'Rourke N, Gleeson C, Cannon DM, McKernan DP, Morris DW, Kelly JP, Hallahan B, McDonald C, Donohoe G. Bilateral anterior corona radiata microstructure organisation relates to impaired social cognition in schizophrenia. Schizophr Res 2023; 262:87-94. [PMID: 37931564 DOI: 10.1016/j.schres.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE The Corona Radiata (CR) is a large white matter tract in the brain comprising of the anterior CR (aCR), superior CR (sCR), and posterior CR (pCR), which have associations with cognition, self-regulation, and, in schizophrenia, positive symptom severity. This study tested the hypothesis that the microstructural organisation of the aCR, as measured by Fractional Anisotropy (FA) using Diffusion Tensor Imaging (DTI), would relate to poorer social cognitive outcomes and higher positive symptom severity for people with schizophrenia, when compared to healthy participants. We further hypothesised that increased positive symptoms would relate to poorer social cognitive outcomes. METHODS Data were derived from n = 178 healthy participants (41 % females; 36.11 ± 12.36 years) and 58 people with schizophrenia (30 % females; 42.4 ± 11.1 years). The Positive and Negative Symptom Severity Scale measured clinical symptom severity. Social Cognition was measured using the Reading the Mind in the Eyes Test (RMET) Total Score, as well as the Positive, Neutral, and Negative stimuli valence. The ENIGMA-DTI protocol tract-based spatial statistics (TBSS) was used. RESULTS There was a significant difference in FA for the CR, in individuals with schizophrenia compared to healthy participants. On stratification, both the aCR and pCR were significantly different between groups, with patients showing reduced white matter tract microstructural organisation. Significant negative correlations were observed between positive symptomatology and reduced microstructural organisation of the aCR. Performance for RMET negative valence items was significantly correlated bilaterally with the aCR, but not the sCR or pCR, and no relationship to positive symptoms was observed. CONCLUSIONS These data highlight specific and significant microstructural white-matter differences for people with schizophrenia, which relates to positive clinical symptomology and poorer performance on social cognition stimuli. While reduced FA is associated with higher positive symptomatology in schizophrenia, this study shows the specific associated with anterior frontal white matter tracts and reduced social cognitive performance. The aCR may have a specific role to play in frontal-disconnection syndromes, psychosis, and social cognitive profile within schizophrenia, though further research requires more sensitive, specific, and detailed consideration of social cognition outcomes.
Collapse
Affiliation(s)
- Tom Burke
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Laurena Holleran
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - David Mothersill
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Psychology Department, School of Business, National College of, Ireland
| | - James Lyons
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Nathan O'Rourke
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Christina Gleeson
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - Dara M Cannon
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Derek W Morris
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland; Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Galway, Ireland.
| |
Collapse
|
17
|
Vanova M, Ettinger U, Aldridge-Waddon L, Jennings B, Norbury R, Kumari V. Positive schizotypy and Motor Impulsivity correlate with response aberrations in ventral attention network during inhibitory control. Cortex 2023; 169:235-248. [PMID: 37952300 DOI: 10.1016/j.cortex.2023.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 11/14/2023]
Abstract
Inhibitory control (IC) aberrations are present in various psychopathologies, including schizophrenia spectrum and personality disorders, especially in association with antisocial or violent behaviour. We investigated behavioural and neural associations between IC and psychopathology-related traits of schizotypy [Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)], psychopathy [Triarchic Psychopathy Measure (TriPM)], and impulsivity [Barratt Impulsiveness Scale (BIS-11)], using a novel Go/No-Go Task (GNG) featuring human avatars in 78 healthy adults (25 males, 53 females; mean age = 25.96 years, SD = 9.85) and whole-brain functional magnetic resonance imaging (fMRI) in a separate sample of 22 right-handed healthy individuals (7 males, 15 females; mean age = 24.13 years, SD = 5.40). Behaviourally, O-LIFE Impulsive Nonconformity (impulsive, anti-social, and eccentric behaviour) significantly predicted 16 % of variance in false alarms (FAs). O-LIFE Unusual Experiences (positive schizotypy) and BIS-11 Motor Impulsivity predicted 15 % of d prime (d') (sensitivity index) for the fastest (400 ms) GNG trials. When examined using fMRI, higher BIS-11 Motor Impulsivity uniquely, and also together with Unusual Experiences, was associated with lower activity in the left lingual gyrus during successful inhibition (correct No-Go over baseline). Additionally, higher Impulsive Nonconformity was associated with lower activity in the caudate nucleus and anterior cingulate during No-Go compared to Go stimuli reactions. Positive schizotypy, motor, and antisocial-schizotypal impulsivity correlate with some common but mostly distinct neural activation patterns during response inhibition in areas within or associated with the ventral attention network.
Collapse
Affiliation(s)
- Martina Vanova
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Dementia Research Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.
| | | | - Luke Aldridge-Waddon
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Ben Jennings
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Ray Norbury
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Veena Kumari
- Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| |
Collapse
|
18
|
Sokołowski A, Roy ARK, Goh SM, Hardy EG, Datta S, Cobigo Y, Brown JA, Spina S, Grinberg L, Kramer J, Rankin KP, Seeley WW, Sturm VE, Rosen HJ, Miller BL, Perry DC. Neuropsychiatric symptoms and imbalance of atrophy in behavioral variant frontotemporal dementia. Hum Brain Mapp 2023; 44:5013-5029. [PMID: 37471695 PMCID: PMC10502637 DOI: 10.1002/hbm.26428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/25/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Behavioral variant frontotemporal dementia is characterized by heterogeneous frontal, insular, and anterior temporal atrophy patterns that vary along left-right and dorso-ventral axes. Little is known about how these structural imbalances impact clinical symptomatology. The goal of this study was to assess the frequency of frontotemporal asymmetry (right- or left-lateralization) and dorsality (ventral or dorsal predominance of atrophy) and to investigate their clinical correlates. Neuropsychiatric symptoms and structural images were analyzed for 250 patients with behavioral variant frontotemporal dementia. Frontotemporal atrophy was most often symmetric while left-lateralized (9%) and right-lateralized (17%) atrophy were present in a minority of patients. Atrophy was more often ventral (32%) than dorsal (3%) predominant. Patients with right-lateralized atrophy were characterized by higher severity of abnormal eating behavior and hallucinations compared to those with left-lateralized atrophy. Subsequent analyses clarified that eating behavior was associated with right atrophy to a greater extent than a lack of left atrophy, and hallucinations were driven mainly by right atrophy. Dorsality analyses showed that anxiety, euphoria, and disinhibition correlated with ventral-predominant atrophy. Agitation, irritability, and depression showed greater severity with a lack of regional atrophy, including in dorsal regions. Aberrant motor behavior and apathy were not explained by asymmetry or dorsality. This study provides additional insight into how anatomical heterogeneity influences the clinical presentation of patients with behavioral variant frontotemporal dementia. Behavioral symptoms can be associated not only with the presence or absence of focal atrophy, but also with right/left or dorsal/ventral imbalance of gray matter volume.
Collapse
Affiliation(s)
- Andrzej Sokołowski
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ashlin R. K. Roy
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sheng‐Yang M. Goh
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Emily G. Hardy
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Samir Datta
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jesse A. Brown
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lea Grinberg
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine P. Rankin
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William W. Seeley
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia E. Sturm
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - David C. Perry
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
19
|
Isakoglou C, Haak KV, Wolfers T, Floris DL, Llera A, Oldehinkel M, Forde NJ, Oakley BFM, Tillmann J, Holt RJ, Moessnang C, Loth E, Bourgeron T, Baron-Cohen S, Charman T, Banaschewski T, Murphy DGM, Buitelaar JK, Marquand AF, Beckmann CF. Fine-grained topographic organization within somatosensory cortex during resting-state and emotional face-matching task and its association with ASD traits. Transl Psychiatry 2023; 13:270. [PMID: 37500630 PMCID: PMC10374902 DOI: 10.1038/s41398-023-02559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.
Collapse
Affiliation(s)
- Christina Isakoglou
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands.
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Koen V Haak
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Alberto Llera
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Natalie J Forde
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bethany F M Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Julian Tillmann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, Paris, France
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Hennig-Fast K, Meissner D, Steuwe C, Dehning S, Blautzik J, Eilert DW, Zill P, Müller N, Meindl T, Reiser M, Möller HJ, Falkai P, Driessen M, Buchheim A. The Interplay of Oxytocin and Attachment in Schizophrenic Patients: An fMRI Study. Brain Sci 2023; 13:1125. [PMID: 37626482 PMCID: PMC10452454 DOI: 10.3390/brainsci13081125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Attachment theory offers an important framework for understanding interpersonal interaction experiences. In the present study, we examined the neural correlates of attachment patterns and oxytocin in schizophrenic patients (SZP) compared to healthy controls (HC) using fMRI. We assumed that male SZP shows a higher proportion of insecure attachment and an altered level of oxytocin compared to HC. On a neural level, we hypothesized that SZP shows increased neural activation in memory and self-related brain regions during the activation of the attachment system compared to HC. METHODS We used an event-related design for the fMRI study based on stimuli that were derived from the Adult Attachment Projective Picture System to examine attachment representations and their neural and hormonal correlates in 20 male schizophrenic patients compared to 20 male healthy controls. RESULTS A higher proportion of insecure attachment in schizophrenic patients compared to HC could be confirmed. In line with our hypothesis, Oxytocin (OXT) levels in SZP were significantly lower than in HC. We found increasing brain activations in SZP when confronted with personal relevant sentences before attachment relevant pictures in the precuneus, TPJ, insula, and frontal areas compared to HC. Moreover, we found positive correlations between OXT and bilateral dlPFC, precuneus, and left ACC in SZP only. CONCLUSION Despite the small sample sizes, the patients' response might be considered as a mode of dysregulation when confronted with this kind of personalized attachment-related material. In the patient group, we found positive correlations between OXT and three brain areas (bilateral dlPFC, precuneus, left ACC) and may conclude that OXT might modulate within this neural network in SZP.
Collapse
Affiliation(s)
- Kristina Hennig-Fast
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
- Department of Psychiatry and Psychotherapy, University of Bielefeld, 33615 Bielefeld, Germany
| | - Dominik Meissner
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Carolin Steuwe
- Department of Psychiatry and Psychotherapy, University of Bielefeld, 33615 Bielefeld, Germany
| | - Sandra Dehning
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Janusch Blautzik
- Department of Radiology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Dirk W. Eilert
- Department of Psychology, University Innsbruck, 6020 Innsbruck, Austria
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Thomas Meindl
- Department of Radiology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Hans-Jürgen Möller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Martin Driessen
- Department of Psychiatry and Psychotherapy, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna Buchheim
- Department of Psychology, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Bijlsma A, Vanderschuren LJMJ, Wierenga CJ. Social play behavior shapes the development of prefrontal inhibition in a region-specific manner. Cereb Cortex 2023:bhad212. [PMID: 37317037 PMCID: PMC10393492 DOI: 10.1093/cercor/bhad212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Experience-dependent organization of neuronal connectivity is critical for brain development. We recently demonstrated the importance of social play behavior for the developmental fine-tuning of inhibitory synapses in the medial prefrontal cortex in rats. When these effects of play experience occur and if this happens uniformly throughout the prefrontal cortex is currently unclear. Here we report important temporal and regional heterogeneity in the impact of social play on the development of excitatory and inhibitory neurotransmission in the medial prefrontal cortex and the orbitofrontal cortex. We recorded in layer 5 pyramidal neurons from juvenile (postnatal day (P)21), adolescent (P42), and adult (P85) rats after social play deprivation (between P21 and P42). The development of these prefrontal cortex subregions followed different trajectories. On P21, inhibitory and excitatory synaptic input was higher in the orbitofrontal cortex than in the medial prefrontal cortex. Social play deprivation did not affect excitatory currents, but reduced inhibitory transmission in both medial prefrontal cortex and orbitofrontal cortex. Intriguingly, the reduction occurred in the medial prefrontal cortex during social play deprivation, whereas the reduction in the orbitofrontal cortex only became manifested after social play deprivation. These data reveal a complex interaction between social play experience and the specific developmental trajectories of prefrontal subregions.
Collapse
Affiliation(s)
- Ate Bijlsma
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Section Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Gao MM, Vlisides-Henry RD, Kaliush PR, Thomas L, Butner J, Raby KL, Conradt E, Crowell SE. Dynamics of mother-infant parasympathetic regulation during face-to-face interaction: The role of maternal emotion dysregulation. Psychophysiology 2023; 60:e14248. [PMID: 36637055 PMCID: PMC10175143 DOI: 10.1111/psyp.14248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
The dynamics of parent-infant physiology are essential for understanding how biological substrates of emotion regulation are organized during infancy. Although parent-infant physiological processes are dyadic in nature, research is limited in understanding how one person's physiological responses predict one's own and as well as the other person's responses in the subsequent moment. In this study, we examined mother-infant respiratory sinus arrhythmia (RSA) dynamics during the Still-Face Paradigm (SFP) among 106 mothers (Mage = 29.54) and their 7-month-old infants (55 males). Given mothers' role in shaping dyadic interactions with their infant, we also tested how mothers' self-reported emotion dysregulation (measured via the Difficulties in Emotion Regulation Scale) associated with these dynamics. Results showed that both mothers' and infants' RSA tended to return to their respective homeostatic points (i.e., exhibited return strength) during each SFP episode, indicating stability in RSA for mother-infant dyads. Significant shifts in mother and infant RSA return strength were observed across SFP episodes, highlighting the role of contextual demands on each individual's physiological dynamics. Mother-infant RSA dynamics varied as a function of maternal self-reported emotion dysregulation. Specifically, RSA levels of infants with more dysregulated mothers had a weaker tendency to return to homeostasis during the Reunion episode and were less affected by their mothers' RSA during the Still-Face and Reunion episodes of the SFP, suggesting a less effective coregulatory influence. Our findings have implications for the intergenerational transmission of emotion dysregulation via mother-infant physiological dynamics.
Collapse
Affiliation(s)
- Mengyu Miranda Gao
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | | | - Parisa R Kaliush
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Leah Thomas
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan Butner
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - K Lee Raby
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Elisabeth Conradt
- Department of Psychiatry and Pediatrics, Duke University, Durham, North Carolina, USA
| | - Sheila E Crowell
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA.,Department of OB/GYN, University of Utah, Salt Lake City, Utah, USA.,Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Rueda MR, Moyano S, Rico-Picó J. Attention: The grounds of self-regulated cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1582. [PMID: 34695876 DOI: 10.1002/wcs.1582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 01/19/2023]
Abstract
Everyone knows what paying attention is, yet not everybody knows what this means in cognitive and brain function terms. The attentive state can be defined as a state of optimal activation that allows selecting the sources of information and courses of action in order to optimize our interaction with the environment in accordance with either the saliency of the stimulation or internal goals and intentions. In this article we argue that paying attention consists in tuning the mind with the environment in a conscious and controlled mode in order to enable the strategic and flexible adaptation of responses in accordance with internal motivations and goals. We discuss the anatomy and neural mechanisms involved in attention functions and present a brief overview of the neurocognitive development of this seminal cognitive function on the grounds of self-regulated behavior. This article is categorized under: Psychology > Attention (BEAB) Brain Function and Dysfunction (BEAC) Cognitive Development (BAAD).
Collapse
Affiliation(s)
- M Rosario Rueda
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Sebastián Moyano
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Josué Rico-Picó
- Department of Experimental Psychology, University of Granada, Granada, Spain
| |
Collapse
|
24
|
Liu F, Yu T, Xu Y, Che H. Psychological maltreatment and aggression in preadolescence: Roles of temperamental effortful control and maladaptive cognitive emotion regulation strategies. CHILD ABUSE & NEGLECT 2023; 135:105996. [PMID: 36528933 DOI: 10.1016/j.chiabu.2022.105996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Aggression is a type of externalization problem, which is common in preadolescence. The cause of preadolescents' aggression can be traced to their adverse family experiences, such as childhood psychological maltreatment. Therefore, exploring the cause and mechanism underlying aggressive behavior in preadolescents who have experienced psychological maltreatment is critical to preadolescents' healthy development. OBJECTIVE The purpose of this study is to explore the mediating effects of effortful control and maladaptive cognitive emotion regulation strategies in the relationship between psychological maltreatment and aggressive behavior among preadolescents. PARTICIPANTS AND SETTING A total sample of 940 preadolescents (50.53 % males and 49.47 % females, Mage = 9.75 years, SD = 1.17) were selected from two primary schools in Liaoning province, China. All preadolescents were in grades 3-5. METHODS The participants completed questionnaires regarding psychological maltreatment, effortful control, cognitive emotion regulation strategies, and aggression. RESULTS The results revealed that: (a) psychological maltreatment was positively associated with aggressive behavior; and (b) effortful control and maladaptive cognitive emotion regulation mediated the link between psychological maltreatment and aggression in a sequential pattern. CONCLUSIONS The present study provides further understanding of the relations between psychological maltreatment and aggression, and it also provides prevention and intervention suggestions concerning how to reduce the effect of psychological maltreatment on aggressive behavior among preadolescents.
Collapse
Affiliation(s)
- Fang Liu
- Department and Institute of Psychology, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Tengxu Yu
- Department of Psychology, Liaoning Normal University, Dalian 116029, Liaoning Province, China
| | - Yanan Xu
- Department and Institute of Psychology, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Hanbo Che
- School of Education, Liaoning Normal University, Dalian 116029, Liaoning Province, China.
| |
Collapse
|
25
|
Effects of Mental Fatigue on Strength Endurance: A Systematic Review and Meta-Analysis. Motor Control 2022; 27:442-461. [PMID: 36509089 DOI: 10.1123/mc.2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
The purpose of the present systematic review and meta-analysis was to explore the effects of mental fatigue on upper and lower body strength endurance. Searches for studies were performed in the PubMed/MEDLINE and Web of Science databases. We included studies that compared the effects of a demanding cognitive task (set to induce mental fatigue) with a control condition on strength endurance in dynamic resistance exercise (i.e., expressed as the number of performed repetitions at a given load). The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences. Seven studies were included in the review. We found that mental fatigue significantly reduced the number of performed repetitions for upper body exercises (standardized mean difference: -0.41; 95% confidence interval [-0.70, -0.12]; p = .006; I2 = 0%). Mental fatigue also significantly reduced the number of performed repetitions in the analysis for lower body exercises (standardized mean difference: -0.39; 95% confidence interval [-0.75, -0.04]; p = .03; I2 = 0%). Our results showed that performing a demanding cognitive task-which induces mental fatigue-impairs strength endurance performance. Collectively, our findings suggest that exposure to cognitive tasks that may induce mental fatigue should be minimized before strength endurance-based resistance exercise sessions.
Collapse
|
26
|
Wilkinson M, Keehn RJ, Linke A, You Y, Gao Y, Alemu K, Correas A, Rosen B, Kohli J, Wagner L, Sridhar A, Marinkovic K, Müller RA. fMRI BOLD and MEG theta power reflect complementary aspects of activity during lexicosemantic decision in adolescents with ASD. NEUROIMAGE. REPORTS 2022; 2:100134. [PMID: 36438080 PMCID: PMC9683354 DOI: 10.1016/j.ynirp.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuroimaging studies of autism spectrum disorder (ASD) have been predominantly unimodal. While many fMRI studies have reported atypical activity patterns for diverse tasks, the MEG literature in ASD remains comparatively small. Our group recently reported atypically increased event-related theta power in individuals with ASD during lexicosemantic processing. The current multimodal study examined the relationship between fMRI BOLD signal and anatomically-constrained MEG (aMEG) theta power. Thirty-three adolescents with ASD and 23 typically developing (TD) peers took part in both fMRI and MEG scans, during which they distinguished between standard words (SW), animal words (AW), and pseudowords (PW). Regions-of-interest (ROIs) were derived based on task effects detected in BOLD signal and aMEG theta power. BOLD signal and theta power were extracted for each ROI and word condition. Compared to TD participants, increased theta power in the ASD group was found across several time windows and regions including left fusiform and inferior frontal, as well as right angular and anterior cingulate gyri, whereas BOLD signal was significantly increased in the ASD group only in right anterior cingulate gyrus. No significant correlations were observed between BOLD signal and theta power. Findings suggest that the common interpretation of increases in BOLD signal and theta power as 'activation' require careful differentiation, as these reflect largely distinct aspects of regional brain activity. Some group differences in dynamic neural processing detected with aMEG that are likely relevant for lexical processing may be obscured by the hemodynamic signal source and low temporal resolution of fMRI.
Collapse
Affiliation(s)
- M. Wilkinson
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - R.J. Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - A.C. Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Y. You
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Y. Gao
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - K. Alemu
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - A. Correas
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - B.Q. Rosen
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - J.S. Kohli
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - L. Wagner
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - A. Sridhar
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| | - K. Marinkovic
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Spatiotemporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA, United States
- Radiology Department, University of California at San Diego, CA, United States
| | - R.-A. Müller
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
27
|
Fani N, Eghbalzad L, Harnett NG, Carter SE, Price M, Stevens JS, Ressler KJ, van Rooij SJH, Bradley B. Racial discrimination associates with lower cingulate cortex thickness in trauma-exposed black women. Neuropsychopharmacology 2022; 47:2230-2237. [PMID: 36100659 PMCID: PMC9630426 DOI: 10.1038/s41386-022-01445-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Racial discrimination (RD) has been consistently linked to adverse brain health outcomes. These may be due in part to RD effects on neural networks involved with threat appraisal and regulation; RD has been linked to altered activity in the rostral anterior cingulate cortex (rACC) and structural decrements in the anterior cingulum bundle and hippocampus. In the present study, we examined associations of RD with cingulate, hippocampus and amygdala gray matter morphology in a sample of trauma-exposed Black women. Eighty-one Black women aged 19-62 years were recruited as part of an ongoing study of trauma. Participants completed assessments of RD, trauma exposure, and posttraumatic stress disorder (PTSD), and underwent T1-weighted anatomical imaging. Cortical thickness, surface area and gray matter volume were extracted from subregions of cingulate cortex, and gray matter volume was extracted from amygdala and hippocampus, and entered into partial correlation analyses that included RD and other socio-environmental variables. After correction for multiple comparisons and accounting for variance associated with other stressors and socio-environmental factors, participants with more RD exposure showed proportionally lower cortical thickness in the left rACC, caudal ACC, and posterior cingulate cortex (ps < = 0.01). These findings suggest that greater experiences of RD are linked to compromised cingulate gray matter thickness. In the context of earlier findings indicating that RD produces increased response in threat neurocircuitry, our data suggest that RD may increase vulnerability for brain health problems via cingulate cortex alterations. Further research is needed to elucidate biological mechanisms for these changes.
Collapse
Affiliation(s)
- Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Leyla Eghbalzad
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sierra E Carter
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Matthew Price
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
28
|
Chen L, Chang H, Rudoler J, Arnardottir E, Zhang Y, de Los Angeles C, Menon V. Cognitive training enhances growth mindset in children through plasticity of cortico-striatal circuits. NPJ SCIENCE OF LEARNING 2022; 7:30. [PMID: 36371438 PMCID: PMC9653476 DOI: 10.1038/s41539-022-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Growth mindset, the belief that one's abilities can improve through cognitive effort, is an important psychological construct with broad implications for enabling children to reach their highest potential. However, surprisingly little is known about malleability of growth mindset in response to cognitive interventions in children and its neurobiological underpinnings. Here we address critical gaps in our knowledge by investigating behavioral and brain changes in growth mindset associated with a four-week training program designed to enhance foundational, academically relevant, cognitive skills in 7-10-year-old children. Cognitive training significantly enhanced children's growth mindset. Cross-lagged panel analysis of longitudinal pre- and post-training data revealed that growth mindset prior to training predicted cognitive abilities after training, providing support for the positive role of growth mindset in fostering academic achievement. We then examined training-induced changes in brain response and connectivity associated with problem solving in relation to changes in growth mindset. Children's gains in growth mindset were associated with increased neural response and functional connectivity of the dorsal anterior cingulate cortex, striatum, and hippocampus, brain regions crucial for cognitive control, motivation, and memory. Plasticity of cortico-striatal circuitry emerged as the strongest predictor of growth mindset gains. Taken together, our study demonstrates that children's growth mindset can be enhanced by cognitive training, and elucidates the potential neurobiological mechanisms underlying its malleability. Findings provide important insights into effective interventions that simultaneously promote growth mindset and learning during the early stages of cognitive development.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, CA, 95053, USA.
- Neuroscience Program, Santa Clara University, Santa Clara, CA, 95053, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Jeremy Rudoler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eydis Arnardottir
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Carlo de Los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Peterson BS, Bansal R, Sawardekar S, Nati C, Elgabalawy ER, Hoepner LA, Garcia W, Hao X, Margolis A, Perera F, Rauh V. Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J Child Psychol Psychiatry 2022; 63:1316-1331. [PMID: 35165899 DOI: 10.1111/jcpp.13578] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution disrupts cognitive, emotional, and behavioral development. The brain disturbances associated with prenatal air pollution are largely unknown. METHODS In this prospective cohort study, we estimated prenatal exposures to fine particulate matter (PM2.5 ) and polycyclic aromatic hydrocarbons (PAH), and then assessed their associations with measures of brain anatomy, tissue microstructure, neurometabolites, and blood flow in 332 youth, 6-14 years old. We then assessed how those brain disturbances were associated with measures of intelligence, ADHD and anxiety symptoms, and socialization. RESULTS Both exposures were associated with thinning of dorsal parietal cortices and thickening of postero-inferior and mesial wall cortices. They were associated with smaller white matter volumes, reduced organization in white matter of the internal capsule and frontal lobe, higher metabolite concentrations in frontal cortex, reduced cortical blood flow, and greater microstructural organization in subcortical gray matter nuclei. Associations were stronger for PM2.5 in boys and PAH in girls. Youth with low exposure accounted for most significant associations of ADHD, anxiety, socialization, and intelligence measures with cortical thickness and white matter volumes, whereas it appears that high exposures generally disrupted these neurotypical brain-behavior associations, likely because strong exposure-related effects increased the variances of these brain measures. CONCLUSIONS The commonality of effects across exposures suggests PM2.5 and PAH disrupt brain development through one or more common molecular pathways, such as inflammation or oxidative stress. Progressively higher exposures were associated with greater disruptions in local volumes, tissue organization, metabolite concentrations, and blood flow throughout cortical and subcortical brain regions and the white matter pathways interconnecting them. Together these affected regions comprise cortico-striato-thalamo-cortical circuits, which support the regulation of thought, emotion, and behavior.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Carlo Nati
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Eman R Elgabalawy
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, SUNY Downstate School of Public Health, Brooklyn, NY, USA
| | - Wanda Garcia
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xuejun Hao
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Amy Margolis
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA.,Columbia Center for Children's Environmental Health, New York, NY, USA
| |
Collapse
|
30
|
Chen L, Li X, Xing L. From mindfulness to work engagement: The mediating roles of work meaningfulness, emotion regulation, and job competence. Front Psychol 2022; 13:997638. [PMID: 36389549 PMCID: PMC9643705 DOI: 10.3389/fpsyg.2022.997638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 09/19/2023] Open
Abstract
Drawing from the grounded theory of work engagement, this research aims to explore three essential yet previously unexamined pathways-work meaningfulness, emotion regulation, and job competence in simultaneously transmitting the effects of mindfulness training to employee experience of work engagement. We employed a six-wave quasi-experimental design and recruited 129 employees (77 from experimental group and 59 from control group) to participate in the quasi-experiment, and tested our simultaneous mediating models using the structural equation modeling. Results showed that mindfulness facilitated employees' work meaningfulness, emotion regulation, and job competence, which in turn enhanced employee work engagement. By doing so, we add to the mindfulness literature by showing that the three essential psychological states are important machanims that link mindfulness to work engagement. Practicially, this research reveals that mindfulness training is an effective tool to influence employees' psychological states (e.g., meaningfulness, competence), which ultimately develop their work engagement in the workplace.
Collapse
Affiliation(s)
- Liang Chen
- Department of Business and Administration, East China University of Science and Technology, Shanghai, China
| | - Xiaobei Li
- Department of Business Administration, Shanghai Business School, Shanghai, China
| | - Lu Xing
- Department of Business Administration, Hunan University, Changsha, Hunan, China
| |
Collapse
|
31
|
Rahrig H, Vago DR, Passarelli MA, Auten A, Lynn NA, Brown KW. Meta-analytic evidence that mindfulness training alters resting state default mode network connectivity. Sci Rep 2022; 12:12260. [PMID: 35851275 PMCID: PMC9293892 DOI: 10.1038/s41598-022-15195-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
This meta-analysis sought to expand upon neurobiological models of mindfulness through investigation of inherent brain network connectivity outcomes, indexed via resting state functional connectivity (rsFC). We conducted a systematic review and meta-analysis of rsFC as an outcome of mindfulness training (MT) relative to control, with the hypothesis that MT would increase cross-network connectivity between nodes of the Default Mode Network (DMN), Salience Network (SN), and Frontoparietal Control Network (FPCN) as a mechanism of internally-oriented attentional control. Texts were identified from the databases: MEDLINE/PubMed, ERIC, PSYCINFO, ProQuest, Scopus, and Web of Sciences; and were screened for inclusion based on experimental/quasi-experimental trial design and use of mindfulness-based training interventions. RsFC effects were extracted from twelve studies (mindfulness n = 226; control n = 204). Voxel-based meta-analysis revealed significantly greater rsFC (MT > control) between the left middle cingulate (Hedge's g = .234, p = 0.0288, I2 = 15.87), located within the SN, and the posterior cingulate cortex, a focal hub of the DMN. Egger's test for publication bias was nonsignificant, bias = 2.17, p = 0.162. In support of our hypothesis, results suggest that MT targets internetwork (SN-DMN) connectivity implicated in the flexible control of internally-oriented attention.
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| | - David R Vago
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA, TN
| | - Matthew A Passarelli
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Allison Auten
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Nicholas A Lynn
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, 806 W. Franklin Street, Richmond, VA, 23284, USA.
| |
Collapse
|
32
|
Effortless training of attention and self-control: mechanisms and applications. Trends Cogn Sci 2022; 26:567-577. [DOI: 10.1016/j.tics.2022.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022]
|
33
|
Zimmermann P, Spangler G. Longitudinal Influences of DRD4 Polymorphism and Early Maternal Caregiving on Personality Development and Problem Behavior in Middle Childhood and Adolescence. Front Hum Neurosci 2022; 16:839340. [PMID: 35496066 PMCID: PMC9048738 DOI: 10.3389/fnhum.2022.839340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Most studies examining gene-environment effects on self-regulation focus on outcomes early childhood or adulthood. However, only a few studies investigate longitudinal effects during middle childhood and adolescence and compare two domains of early caregiving. In a longitudinal follow-up with a sample of N = 87, we studied the effects of differences in the DRD4 tandem repeat polymorphisms and two domains of early maternal caregiving quality on children's personality development using Block's California Child Q-Set (CCQ) at age six and age 12 and on problem behavior at ages six and seven. Early maternal regulation quality predicted later ego-resiliency and aggressiveness. In addition, significant gene-environment interactions revealed that children with the 7+ DRD4 tandem repeat polymorphism and poor maternal regulation quality in infancy showed lower scores in ego-resiliency and higher scores in ego-undercontrol and CCQ aggressiveness. In contrast, children who had experienced effective maternal regulation in infancy showed a comparable level in personality traits and problem behavior as the DRD4 7- group independent of the levels of maternal regulatory behavior. Similarly, longitudinal caregiving × DRD4 interactions were found for behavior problems in middle childhood, especially for oppositional-aggression, inattentive-hyperactivity, and social competence. Early caregiving effects were only found for maternal regulation quality, but not for maternal responsiveness. Effective early maternal regulation in infancy can moderate the negative effect of DRD4 7+ on children's self-regulation in middle childhood and adolescence. However, maternal responsiveness has no comparable effects. It seems relevant to consider several dimensions of early caregiving and to also measure the environment in more detail in gene-environment studies.
Collapse
Affiliation(s)
- Peter Zimmermann
- Institute of Psychology, Department of Developmental Psychology, University of Wuppertal, Wuppertal, Germany
| | - Gottfried Spangler
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Zhang L, Vashisht H, Nethra A, Slattery B, Ward T. Differences in Learning and Persistency Characterizing Behavior in Chronic Pain for the Iowa Gambling Task: Web-Based Laboratory-in-the-Field Study. J Med Internet Res 2022; 24:e26307. [PMID: 35384855 PMCID: PMC9021953 DOI: 10.2196/26307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chronic pain is a significant worldwide health problem. It has been reported that people with chronic pain experience decision-making impairments, but these findings have been based on conventional laboratory experiments to date. In such experiments, researchers have extensive control of conditions and can more precisely eliminate potential confounds. In contrast, there is much less known regarding how chronic pain affects decision-making captured via laboratory-in-the-field experiments. Although such settings can introduce more experimental uncertainty, collecting data in more ecologically valid contexts can better characterize the real-world impact of chronic pain. Objective We aim to quantify decision-making differences between individuals with chronic pain and healthy controls in a laboratory-in-the-field environment by taking advantage of internet technologies and social media. Methods A cross-sectional design with independent groups was used. A convenience sample of 45 participants was recruited through social media: 20 (44%) participants who self-reported living with chronic pain, and 25 (56%) people with no pain or who were living with pain for <6 months acting as controls. All participants completed a self-report questionnaire assessing their pain experiences and a neuropsychological task measuring their decision-making (ie, the Iowa Gambling Task) in their web browser at a time and location of their choice without supervision. Results Standard behavioral analysis revealed no differences in learning strategies between the 2 groups, although qualitative differences could be observed in the learning curves. However, computational modeling revealed that individuals with chronic pain were quicker to update their behavior than healthy controls, which reflected their increased learning rate (95% highest–posterior-density interval [HDI] 0.66-0.99) when fitted to the Values-Plus-Perseverance model. This result was further validated and extended on the Outcome-Representation Learning model as higher differences (95% HDI 0.16-0.47) between the reward and punishment learning rates were observed when fitted to this model, indicating that individuals with chronic pain were more sensitive to rewards. It was also found that they were less persistent in their choices during the Iowa Gambling Task compared with controls, a fact reflected by their decreased outcome perseverance (95% HDI −4.38 to −0.21) when fitted using the Outcome-Representation Learning model. Moreover, correlation analysis revealed that the estimated parameters had predictive value for the self-reported pain experiences, suggesting that the altered cognitive parameters could be potential candidates for inclusion in chronic pain assessments. Conclusions We found that individuals with chronic pain were more driven by rewards and less consistent when making decisions in our laboratory-in-the-field experiment. In this case study, it was demonstrated that, compared with standard statistical summaries of behavioral performance, computational approaches offered superior ability to resolve, understand, and explain the differences in decision-making behavior in the context of chronic pain outside the laboratory.
Collapse
Affiliation(s)
- Lili Zhang
- School of Computing, Dublin City University, Dublin, Ireland.,Insight Science Foundation Ireland Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | | | - Alekhya Nethra
- School of Computing, Dublin City University, Dublin, Ireland
| | - Brian Slattery
- School of Psychology, Dublin City University, Dublin, Ireland
| | - Tomas Ward
- School of Computing, Dublin City University, Dublin, Ireland.,Insight Science Foundation Ireland Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| |
Collapse
|
35
|
Sun X, Wang G, Chen M, Zhao J, Zhang Y, Jiang Y, Zhu Q, Rong T, Jiang F. The effects of improvements of sleep disturbances throughout kindergarten on executive function: A latent change score analysis. COGNITIVE DEVELOPMENT 2022. [DOI: 10.1016/j.cogdev.2022.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Vafaee F, Shirzad S, Shamsi F, Boskabady MH. Neuroscience and treatment of asthma, new therapeutic strategies and future aspects. Life Sci 2022; 292:120175. [PMID: 34826435 DOI: 10.1016/j.lfs.2021.120175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
AIMS Asthma is an airway inflammatory disease that is affected by neurological and psychological factors. The aim of present review is to investigating the relationship between neural functions and neurobiological changes and asthma symptoms. MAIN METHODS The information in this article is provided from articles published in English and reputable database using appropriate keywords from 1970 to October 2020. KEY FINDINGS The symptoms of asthma such as cough, difficult breathing, and mucus secretion get worse when a person is suffering from stress, anxiety, and depression. The function of the insula, anterior cingulate cortex, and hypothalamic-pituitary-adrenal axis changes in response to stress and psychological disease; then the stress hormones are produced from neuroendocrine system, which leads to asthma exacerbation. The evidence represents that psychological therapies or neurological rehabilitation reduces the inflammation through modulating the activity of neurocircuitry and the function of brain centers involved in asthma. Moreover, the neurotrophins and neuropeptides are the key mediators in the neuro-immune interactions, which secrete from the airway nerves in response to brain signals, and they could be the target of many new therapies in asthma. SIGNIFICANCE This review provides an insight into the vital role of the central and peripheral nervous system in development and exacerbation of asthma and provide practical approaches and strategies on neural networks to improve the airway inflammation and asthma severity.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shamsi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Heart's eyes to see color: Cardiac vagal tone modulates the impact of ethnicity on selected attention under high load. Int J Psychophysiol 2022; 176:27-35. [DOI: 10.1016/j.ijpsycho.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/15/2022]
|
38
|
Chalmers T, Eaves S, Lees T, Lin CT, Newton PJ, Clifton-Bligh R, McLachlan CS, Gustin SM, Lal S. The relationship between neurocognitive performance and HRV parameters in nurses and non-healthcare participants. Brain Behav 2022; 12:e2481. [PMID: 35191214 PMCID: PMC8933753 DOI: 10.1002/brb3.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/04/2021] [Accepted: 12/19/2021] [Indexed: 11/05/2022] Open
Abstract
Nurses represent the largest sector of the healthcare workforce, and it is established that they are faced with ongoing physical and mental demands that leave many continuously stressed. In turn, this chronic stress may affect cardiac autonomic activity, which can be non-invasively evaluated using heart rate variability (HRV). The association between neurocognitive parameters during acute stress situations and HRV has not been previously explored in nurses compared to non-nurses and such, our study aimed to assess these differences. Neurocognitive data were obtained using the Mini-Mental State Examination and Cognistat psychometric questionnaires. ECG-derived HRV parameters were acquired during the Trier Social Stress Test. Between-group differences were found in domain-specific cognitive performance for the similarities (p = .03), and judgment (p = .002) domains and in the following HRV parameters: SDNNbaseline, (p = .004), LFpreparation (p = .002), SDNNpreparation (p = .002), HFpreparation (p = .02), and TPpreparation (p = .003). Negative correlations were found between HF power and domain-specific cognitive performance in nurses. In contrast, both negative and positive correlations were found between HRV and domain-specific cognitive performance in the non-nurse group. The current findings highlight the prospective use of autonomic HRV markers in relation to cognitive performance while building a relationship between autonomic dysfunction and cognition.
Collapse
Affiliation(s)
- Taryn Chalmers
- Neuroscience Research Unit, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Shamona Eaves
- Neuroscience Research Unit, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ty Lees
- The Pennsylvania State University Department of Human Development and Family Studies, University Park, Pennsylvania, USA
| | - Chin-Teng Lin
- Computational Intelligence and Brain Computer Interface Centre (CIBCI), FEIT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Phillip J Newton
- School of Nursing & Midwifery, Western Sydney University, Penrith South, New South Wales, Australia
| | - Roderick Clifton-Bligh
- Medicine, Northern Clinical School, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Craig S McLachlan
- Centre for Healthy Futures, Torrens University Australia - Sydney Campus Pyrmont, Pyrmont, New South Wales, Australia
| | - Sylvia M Gustin
- University of New South Wales School of Psychology, Sydney, New South Wales, Australia
| | - Sara Lal
- Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Yacou MA, Chowdury A, Easter P, Hanna GL, Rosenberg DR, Diwadkar VA. Sustained attention induces altered effective connectivity of the ascending thalamo-cortical relay in obsessive-compulsive disorder. Front Psychiatry 2022; 13:869106. [PMID: 36032258 PMCID: PMC9402224 DOI: 10.3389/fpsyt.2022.869106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal function of the thalamo-cortical relay is considered a hallmark of obsessive-compulsive disorder (OCD) and aberrant network interactions may underpin many of the clinical and cognitive symptoms that characterize the disorder. Several statistical approaches have been applied to in vivo fMRI data to support the general loss of thalamo-cortical connectivity in OCD. However, (a) few studies have assessed the contextual constraints under which abnormal network interactions arise or (b) have used methods of effective connectivity to understand abnormal network interactions. Effective connectivity is a particularly valuable method as it describes the putative causal influences that brain regions exert over each other, as opposed to the largely statistical consistencies captured in functional connectivity techniques. Here, using dynamic causal modeling (DCM), we evaluated how attention demand induced inter-group differences (HC ≠ OCD) in effective connectivity within a motivated thalamo-cortical network. Of interest was whether these effects were observed on the ascending thalamo-cortical relay, essential for the sensory innervation of the cortex. fMRI time series data from sixty-two participants (OCD, 30; HC, 32) collected using an established sustained attention task were submitted to a space of 162 competing models. Across the space, models distinguished between competing hypotheses of thalamo-cortical interactions. Bayesian model selection (BMS) identified marginally differing likely generative model architectures in OCD and HC groups. Bayesian model averaging (BMA), was used to weight connectivity parameter estimates across all models, with each parameter weighted by each model's posterior probability, thus providing more stable estimates of effective connectivity. Inferential statistical analyses of estimated parameters revealed two principal results: (1) Significantly reduced intrinsic connectivity of the V1 → SPC pathway in OCD, suggested connective weakness in the early constituents of the dorsal visual pathway; (2) More pertinent with the discovery possibilities afforded by DCM, sustained attention in OCD patients induced significantly reduced contextual modulation of the ascending relay from the thalamus to the prefrontal cortex. These results form an important complement to our understanding of the contextual bases of thalamo-cortical network deficits in OCD, emphasizing vulnerability of the ascending relay.
Collapse
Affiliation(s)
- Mario A Yacou
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Philip Easter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
40
|
Yang S, Wu Y, Sun L, Ma M, Ou S, Meng Y, Meng J, Zeng C, Huang Q, Wu Y. White matter abnormalities and multivariate pattern analysis in anti-NMDA receptor encephalitis. Front Psychiatry 2022; 13:997758. [PMID: 36213924 PMCID: PMC9537694 DOI: 10.3389/fpsyt.2022.997758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate white matter (WM) microstructural alterations and their relationship correlation with disease severity in anti-NMDA receptor (NMDAR) encephalitis. Multivariate pattern analysis (MVPA) was applied to discriminate between patients and healthy controls and explore potential imaging biomarkers. METHODS Thirty-two patients with anti-NMDAR encephalitis and 26 matched healthy controls underwent diffusion tensor imaging. Tract-based spatial statistics and atlas-based analysis were used to determine WM microstructural alterations between the two groups. MVPA, based on a machine-learning algorithm, was applied to classify patients and healthy controls. RESULTS Patients exhibited significantly reduced fractional anisotropy in the corpus callosum, fornix, cingulum, anterior limb of the internal capsule, and corona radiata. Moreover, mean diffusivity was increased in the anterior corona radiata and body of the corpus callosum. On the other hand, radial diffusivity was increased in the anterior limb of the internal capsule, cingulum, corpus callosum, corona radiata, and fornix. WM changes in the cingulum, fornix, and retrolenticular part of the internal capsule were correlated with disease severity. The accuracy, sensitivity, and specificity of fractional anisotropy-based classification were each 78.33%, while they were 67.71, 65.83, and 70% for radial diffusivity. CONCLUSION Widespread WM lesions were detected in anti-NMDAR encephalitis. The correlation between WM abnormalities and disease severity suggests that these alterations may serve a key role in the pathophysiological mechanisms of anti-NMDAR encephalitis. The combination of tract-based spatial statistics and MVPA may provide more specific and complementary information at the group and individual levels.
Collapse
Affiliation(s)
- Shengyu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sijie Ou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youshi Meng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Meng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunmei Zeng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
41
|
Grimm C, Frässle S, Steger C, von Ziegler L, Sturman O, Shemesh N, Peleg-Raibstein D, Burdakov D, Bohacek J, Stephan KE, Razansky D, Wenderoth N, Zerbi V. Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia. Cell Rep 2021; 37:110161. [PMID: 34965430 DOI: 10.1016/j.celrep.2021.110161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The basal ganglia (BG) are a group of subcortical nuclei responsible for motor and executive function. Central to BG function are striatal cells expressing D1 (D1R) and D2 (D2R) dopamine receptors. D1R and D2R cells are considered functional antagonists that facilitate voluntary movements and inhibit competing motor patterns, respectively. However, whether they maintain a uniform function across the striatum and what influence they exert outside the BG is unclear. Here, we address these questions by combining optogenetic activation of D1R and D2R cells in the mouse ventrolateral caudoputamen with fMRI. Striatal D1R/D2R stimulation evokes distinct activity within the BG-thalamocortical network and differentially engages cerebellar and prefrontal regions. Computational modeling of effective connectivity confirms that changes in D1R/D2R output drive functional relationships between these regions. Our results suggest a complex functional organization of striatal D1R/D2R cells and hint toward an interconnected fronto-BG-cerebellar network modulated by striatal D1R and D2R cells.
Collapse
Affiliation(s)
- Christina Grimm
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Céline Steger
- Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland; Center for MR Research, University Children's Hospital Zurich, Zürich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Daria Peleg-Raibstein
- Laboratory of Neurobehavioral Dynamics, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, Zürich, Switzerland; Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Denis Burdakov
- Laboratory of Neurobehavioral Dynamics, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, Zürich, Switzerland; Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland; Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Munich, Germany; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; Neuroscience Center Zurich, ETH Zürich and University of Zurich, Zürich, Switzerland.
| |
Collapse
|
42
|
Johnson CA, Garnett EO, Chow HM, Spray GJ, Zhu DC, Chang SE. Developmental Factors That Predict Head Movement During Resting-State Functional Magnetic Resonance Imaging in 3-7-Year-Old Stuttering and Non-stuttering Children. Front Neurosci 2021; 15:753010. [PMID: 34803590 PMCID: PMC8595248 DOI: 10.3389/fnins.2021.753010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Early childhood marks a period of dynamic neurocognitive development. Preschool-age coincides with the onset of many childhood disorders and is a developmental period that is frequently studied to determine markers of neurodevelopmental disorders. Magnetic resonance imaging (MRI) is often used to explore typical brain development and the neural bases of neurodevelopmental disorders. However, acquiring high-quality MRI data in young children is challenging. The enclosed space and loud sounds can trigger unease and cause excessive head movement. A better understanding of potential factors that predict successful MRI acquisition would increase chances of collecting useable data in children with and without neurodevelopmental disorders. We investigated whether age, sex, stuttering status, and childhood temperament as measured using the Child Behavioral Questionnaire, could predict movement extent during resting-state functional MRI (rs-fMRI) in 76 children aged 3–7 years, including 42 children who stutter (CWS). We found that age, sex, and temperament factors could predict motion during rs-fMRI scans. The CWS were not found to differ significantly from controls in temperament or head movement during scanning. Sex and age were significant predictors of movement. However, age was no longer a significant predictor when temperament, specifically effortful control, was considered. Controlling for age, boys with higher effortful control scores moved less during rs-fMRI procedures. Additionally, boys who showed higher negative affectivity showed a trend for greater movement. Considering temperament factors in addition to age and sex may help predict the success of acquiring useable rs-fMRI (and likely general brain MRI) data in young children in MR neuroimaging.
Collapse
Affiliation(s)
- Chelsea A Johnson
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Gregory J Spray
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, United States
| | - Soo-Eun Chang
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Sokołowski A, Morawetz C, Folkierska-Żukowska M, Dragan W. Brain Activation During Cognitive Reappraisal Depending on Regulation Goals and Stimulus Valence. Soc Cogn Affect Neurosci 2021; 17:559-570. [PMID: 34746952 PMCID: PMC9164203 DOI: 10.1093/scan/nsab117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 10/02/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Neural bases of cognitive reappraisal may depend on the direction of regulation (up- or downregulation) and stimulus valence (positive or negative). This study aimed to examine this using a cognitive reappraisal task and conjunction analysis on a relatively large sample of 83 individuals. We identified regions in which activations were common for all these types of emotion regulation. We also investigated differences in brain activation between the ‘decrease’ and ‘increase’ emotional response conditions, and between the regulation of negative and positive emotions. The common activation across conditions involved mainly the prefrontal and temporal regions. Decreasing emotions was associated with stronger involvement of the dorsolateral prefrontal cortex, while increasing with activation of the amygdala and hippocampus. Regulation of negative emotions involved stronger activation of the lateral occipital cortex, while regulation of positive emotions involved stronger activation of the anterior cingulate cortex extending to the medial prefrontal cortex. This study adds to previous findings, not only by doing a conjunction analysis on both emotional valences and regulation goals, but also doing this in a bigger sample size. Results suggest that reappraisal is not a uniform process and may have different neural bases depending on regulation goals and stimulus valence.
Collapse
Affiliation(s)
- Andrzej Sokołowski
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Carmen Morawetz
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
44
|
Chen HY, Meng LF, Yu Y, Chen CC, Hung LY, Lin SC, Chi HJ. Developmental Traits of Impulse Control Behavior in School Children under Controlled Attention, Motor Function, and Perception. CHILDREN-BASEL 2021; 8:children8100922. [PMID: 34682188 PMCID: PMC8534984 DOI: 10.3390/children8100922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
This research surveyed the characteristics of the developmental traits of impulse control behavior in children through parent-report questionnaires. After matching for gender and attention behavior, as well as controlling for variables (motor and perception) which might confound impulse control, 710 participants (355 girls and 355 boys; grade, 1–5; age, 7–12 years) were recruited from a database of 1763 children. Results demonstrated that there was a significant difference between grade 1 and grade 5 in impulse control. Conversely, no significant differences were found when comparing other grades. The present findings indicate that a striking development of impulse control occurs from grade 4 to 5. Moreover, the plateau of impulse control development from grade 1 to 4 implies that a long transition period is needed to prepare children to develop future impulse control. In conclusion, the age-dependent maturation associated with stage-wise development is a critical characteristic of impulse control development in school age children. Further discussions are made regarding this characteristic, such as from the perspective of frontal lobe development.
Collapse
Affiliation(s)
- Hsin-Yung Chen
- Department of Occupational Therapy & Graduate Institute of Clinical Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Department of Neurology and Dementia Center, Taoyuan Chang Gung Memorial Hospital, Taoyuan City 33378, Taiwan;
| | - Ling-Fu Meng
- Department of Occupational Therapy & Graduate Institute of Clinical Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, Chiayi Chang Gung Memorial Hospital, Puzi City 613016, Taiwan;
- Correspondence:
| | - Yawen Yu
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO 80523-1573, USA;
| | - Chen-Chi Chen
- Health Center, Taipei Fushing Private School, Taipei City 106343, Taiwan;
| | - Li-Yu Hung
- Department of Special Education, National Taiwan Normal University, Taipei City 106308, Taiwan;
- College of Teacher Education, National Taiwan Normal University, Taipei City 106308, Taiwan
| | - Shih-Che Lin
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, Chiayi Chang Gung Memorial Hospital, Puzi City 613016, Taiwan;
| | - Huang-Ju Chi
- Department of Neurology and Dementia Center, Taoyuan Chang Gung Memorial Hospital, Taoyuan City 33378, Taiwan;
| |
Collapse
|
45
|
Robinson JC, Brandon MP. Skipping ahead: A circuit for representing the past, present, and future. eLife 2021; 10:e68795. [PMID: 34647521 PMCID: PMC8516414 DOI: 10.7554/elife.68795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
Envisioning the future is intuitively linked to our ability to remember the past. Within the memory system, substantial work has demonstrated the involvement of the prefrontal cortex and the hippocampus in representing the past and present. Recent data shows that both the prefrontal cortex and the hippocampus encode future trajectories, which are segregated in time by alternating cycles of the theta rhythm. Here, we discuss how information is temporally organized by these brain regions supported by the medial septum, nucleus reuniens, and parahippocampal regions. Finally, we highlight a brain circuit that we predict is essential for the temporal segregation of future scenarios.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Department of Psychological and Brain Sciences, Rajen Kilachand Center for Integrated Life Sciences and Engineering, Boston UniversityBostonUnited States
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill UniversityMontrealCanada
| |
Collapse
|
46
|
Van Hedger K, Mayo LM, Bershad AK, Madray R, de Wit H. Effects of Acute Drug Administration on Emotion: A Review of Pharmacological MRI Studies. CURRENT ADDICTION REPORTS 2021; 8:181-193. [PMID: 34631363 DOI: 10.1007/s40429-021-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose of review Many drug users claim to use drugs to cope with negative emotions, which may, in turn, result in persistent emotional blunting or anhedonia even when they are not using drugs. The purpose of this review is to describe the ways acute administration of psychoactive drugs impacts brain regions during emotion-related tasks, as a first step in understanding how drugs influence emotion processing in the brain. Recent findings Drugs have varying effects on neural responses to emotional stimuli. In general, alcohol, analgesics, and psychedelics reduce neural reactivity to negative emotional stimuli in the amygdala and other brain regions. Other drugs produce mixed effects: Stimulants such as caffeine and modafinil increase brain activation while viewing emotional stimuli, whereas MDMA decreases activation during presentation of negative images. The effects of cannabinoids (cannabidiol and THC) are mixed. There are also inconsistent findings on the associations between neural responses to emotional stimuli and subjective drug effects. Summary Consistent with the notion that individuals might use drugs non-medically to diminish the experience of negative emotions, several drugs of abuse decrease neural responses to negative stimuli in limbic brain regions. These neural actions may underlie the reported 'emotional blunting' of drugs, which may contribute to drug-seeking behavior. Future work is needed to examine these limbic responses in relation to self-reports of changes in affect, both during acute administration and after extended drug use.
Collapse
Affiliation(s)
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Anya K Bershad
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Racheal Madray
- Undergraduate Program in Neuroscience, Western University, London, ON, Canada
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Agustí A, Campillo I, Balzano T, Benítez-Páez A, López-Almela I, Romaní-Pérez M, Forteza J, Felipo V, Avena NM, Sanz Y. Bacteroides uniformis CECT 7771 Modulates the Brain Reward Response to Reduce Binge Eating and Anxiety-Like Behavior in Rat. Mol Neurobiol 2021; 58:4959-4979. [PMID: 34228269 PMCID: PMC8497301 DOI: 10.1007/s12035-021-02462-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Food addiction (FA) is characterized by behavioral and neurochemical changes linked to loss of food intake control. Gut microbiota may influence appetite and food intake via endocrine and neural routes. The gut microbiota is known to impact homeostatic energy mechanisms, but its role in regulating the reward system is less certain. We show that the administration of Bacteroides uniformis CECT 7771 (B. uniformis) in a rat FA model impacts on the brain reward response, ameliorating binge eating and decreasing anxiety-like behavior. These effects are mediated, at least in part, by changes in the levels of dopamine, serotonin, and noradrenaline in the nucleus accumbens and in the expression of dopamine D1 and D2 receptors in the prefrontal cortex and intestine. B. uniformis reverses the fasting-induced microbiota changes and increases the abundance of species linked to healthy metabolotypes. Our data indicate that microbiota-based interventions might help to control compulsive overeating by modulating the reward response.
Collapse
Grants
- AGL2014-52101-P Ministry of Science, Innovationa and Universities (MCIU, Spain)
- AGL2017-88801-P Ministry of Science, Innovation and Universities (MCIU,Spain)
- PROMETEO/2019/015 Conselleria de Educación, Investigación, Cultura y Deporte de la Comunidad valenciana
- AGL2017-88801-P Ministry of Science, Innovation and Universities (MCIU, Spain)
- PTA Ministry of Science, Innovation and Univesities (MCIU, Spain)
- Ministry of Science, Innovation and Universities (MCIU, Spain)
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain.
| | - Isabel Campillo
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología Unidad Mixta de Patología Molecular, Centro Investigación Príncipe Felipe/Universidad Católica de Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Nicole M Avena
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health. Research Unit, Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research(IATA-CSIC), Valencia, Spain.
| |
Collapse
|
48
|
Vachha BA, Gohel S, Root JC, Kryza-Lacombe M, Hensley ML, Correa DD. Altered regional homogeneity in patients with ovarian cancer treated with chemotherapy: a resting state fMRI study. Brain Imaging Behav 2021; 16:539-546. [PMID: 34409561 DOI: 10.1007/s11682-021-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Many patients treated with chemotherapy for non-central nervous system (CNS) cancers experience cognitive dysfunction. However, few studies have investigated treatment-related neurotoxicity in women with ovarian cancer. The goal of this study was to assess regional brain function in patients with ovarian cancer after first-line chemotherapy. Seventeen patients with ovarian cancer and seventeen healthy controls matched for gender, age and education participated in the study. The patients were evaluated 1-4 months after completion of first line taxane/platinum chemotherapy. All participants underwent resting state functional MRI (rsfMRI) and regional homogeneity (ReHo) indices were calculated. The results showed that patients had significantly decreased average ReHo values in the left middle frontal gyrus, medial prefrontal cortex, and right superior parietal lobule, compared to healthy controls. This is the first rsfMRI study showing ReHo alterations in frontal and parietal regions in patients with ovarian cancer treated with first-line chemotherapy. The findings are overall congruent with prior studies in non-CNS cancer populations and provide supporting evidence for the prevailing notion that frontal areas are particularly vulnerable to the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Behroze A Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.,Department of Radiology, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY, 10065, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ, 07107, USA
| | - James C Root
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Kryza-Lacombe
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Martee L Hensley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Denise D Correa
- Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY, 10065, USA.
| |
Collapse
|
49
|
Pretzsch CM, Floris DL, Voinescu B, Elsahib M, Mendez MA, Wichers R, Ajram L, Ivin G, Heasman M, Pretzsch E, Williams S, Murphy DGM, Daly E, McAlonan GM. Modulation of striatal functional connectivity differences in adults with and without autism spectrum disorder in a single-dose randomized trial of cannabidivarin. Mol Autism 2021; 12:49. [PMID: 34210360 PMCID: PMC8252312 DOI: 10.1186/s13229-021-00454-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has a high cost to affected individuals and society, but treatments for core symptoms are lacking. To expand intervention options, it is crucial to gain a better understanding of potential treatment targets, and their engagement, in the brain. For instance, the striatum (caudate, putamen, and nucleus accumbens) plays a central role during development and its (atypical) functional connectivity (FC) may contribute to multiple ASD symptoms. We have previously shown, in the adult autistic and neurotypical brain, the non-intoxicating cannabinoid cannabidivarin (CBDV) alters the balance of striatal 'excitatory-inhibitory' metabolites, which help regulate FC, but the effects of CBDV on (atypical) striatal FC are unknown. METHODS To examine this in a small pilot study, we acquired resting state functional magnetic resonance imaging data from 28 men (15 neurotypicals, 13 ASD) on two occasions in a repeated-measures, double-blind, placebo-controlled study. We then used a seed-based approach to (1) compare striatal FC between groups and (2) examine the effect of pharmacological probing (600 mg CBDV/matched placebo) on atypical striatal FC in ASD. Visits were separated by at least 13 days to allow for drug washout. RESULTS Compared to the neurotypicals, ASD individuals had lower FC between the ventral striatum and frontal and pericentral regions (which have been associated with emotion, motor, and vision processing). Further, they had higher intra-striatal FC and higher putamenal FC with temporal regions involved in speech and language. In ASD, CBDV reduced hyperconnectivity to the neurotypical level. LIMITATIONS Our findings should be considered in light of several methodological aspects, in particular our participant group (restricted to male adults), which limits the generalizability of our findings to the wider and heterogeneous ASD population. CONCLUSION In conclusion, here we show atypical striatal FC with regions commonly associated with ASD symptoms. We further provide preliminary proof of concept that, in the adult autistic brain, acute CBDV administration can modulate atypical striatal circuitry towards neurotypical function. Future studies are required to determine whether modulation of striatal FC is associated with a change in ASD symptoms. TRIAL REGISTRATION clinicaltrials.gov, Identifier: NCT03537950. Registered May 25th, 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03537950?term=NCT03537950&draw=2&rank=1 .
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Dorothea L. Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bogdan Voinescu
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Department of Liaison Psychiatry, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Malka Elsahib
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Maria A. Mendez
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Robert Wichers
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Department of Psychiatry GGZ Geest, Amsterdam, The Netherlands
| | - Laura Ajram
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, SK10 4TG Cheshire UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Martin Heasman
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steven Williams
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Gráinne M. McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| |
Collapse
|
50
|
Durazzo TC, Meyerhoff DJ. GABA concentrations in the anterior cingulate and dorsolateral prefrontal cortices: Associations with chronic cigarette smoking, neurocognition, and decision making. Addict Biol 2021; 26:e12948. [PMID: 33860602 DOI: 10.1111/adb.12948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/27/2022]
Abstract
Chronic cigarette smoking is associated with regional metabolite abnormalities in choline-containing compounds, creatine-containing compounds, glutamate, and N-acetylaspartate. The effects of cigarette smoking on anterior frontal cortical gamma-aminobutyric acid (GABA) concentration are unknown. This study compared chronic smokers (n = 33) and nonsmokers (n = 31) on anterior cingulate cortex (ACC) and right dorsolateral prefrontal cortex (DLPFC) GABA+ (the sum of GABA and coedited macromolecules) concentrations and associations of GABA+ levels in these regions with seven neurocognitive domains of functioning, decision making, and impulsivity measures. Smokers had significantly lower right DLPFC GABA+ concentration than nonsmokers, but groups were equivalent on ACC GABA+ level. Across groups, greater number of days since end of menstrual cycle was related to higher GABA+ level in the ACC but not right DLPFC GABA+ concentration. In exploratory correlation analyses, higher ACC and right DLPFC GABA+ levels were associated with faster processing speed and better auditory-verbal memory, respectively, in the combined group of smokers and nonsmokers; in smokers only, higher ACC GABA+ was related to better decision making and auditory-verbal learning. This study contributes additional novel data on the adverse effects of chronic cigarette smoking on the adult human brain and demonstrated ACC and DLPFC GABA+ concentrations were associated with neurocognition and decision making/impulsivity in active cigarette smokers. Longitudinal studies on the effects of smoking cessation on regional brain GABA levels, with a greater number of female participants, are required to determine if the observed metabolite abnormalities are persistent or normalize with smoking cessation.
Collapse
Affiliation(s)
- Timothy C. Durazzo
- Mental Illness Research and Education Clinical Centers VA Palo Alto Health Care System Palo Alto California USA
- Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Stanford California USA
| | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND) San Francisco VA Medical Center San Francisco California USA
- Department of Radiology and Biomedical Imaging University of California San Francisco California USA
| |
Collapse
|