1
|
Hwang HG, Park JW, Lee HJ, Ko MY, Ka M, Lee YK, Choi J, In SA, Lee YE, Lee S, Kim MS, Kim JY. Akkermansia muciniphila reverses neuronal atrophy in Negr1 knockout mice with depression-like phenotypes. Gut Microbes 2025; 17:2508424. [PMID: 40388597 PMCID: PMC12091914 DOI: 10.1080/19490976.2025.2508424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025] Open
Abstract
Genetic predispositions can shape the gut microbiome, which in turn modulates host gene expression and impacts host physiology. The complex interplay between host genetics and the gut microbiome likely contributes to the development of neuropsychiatric disorders, yet the mechanisms behind these interactions remain largely unexplored. In this study, we investigated the gut microbiota in Negr1 knockout (KO) mice, which exhibit anxiety- and depression-like behaviors, as NEGR1 (neuronal growth regulator 1) is a cell adhesion molecule linked to neuronal development and neuropsychiatric disorders. Our findings show significant early-life alterations in the gut microbiota composition of Negr1 KO mice, most notably a marked reduction in Akkermansia spp. along with reduced dendritic arborization and spine density in the nucleus accumbens (NAc) and the dentate gyrus (DG) of the hippocampus. Remarkably, daily administration of an Akkermansia strain isolated from wild-type mice reversed the neuronal structural abnormalities and ameliorated anxiety- and depression-like behaviors in Negr1 KO mice. Transcriptomic profiling revealed upregulation of mitochondrial genome-encoded genes in the NAc and hippocampus of Negr1 KO mice, along with a predisposition toward a pro-inflammatory state in the colon of Negr1 KO mice. The Akkermansia supplementation downregulated these mitochondrial genes in the NAc and hippocampus and upregulated genes involved in T cell activation and immune homeostasis in the colon. These findings demonstrate a novel gene-microbiome interaction in the pathophysiology of Negr1 KO mice, positioning Akkermansia spp. as a key mediator that improves neuronal atrophy and modulates anxiety- and depression-like behaviors. Our study provides compelling evidence for bidirectional interactions between host genetics and the gut microbiome in modulating neuropsychiatric phenotypes, offering new insights for addressing genetically influenced mental disorders.
Collapse
Affiliation(s)
- Hee-Gon Hwang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Woo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo-Jin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jaeyoon Choi
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Su-A In
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Ye-Eun Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Squassina A, Pisanu C, Menesello V, Meloni A, Congiu D, Manchia M, Paribello P, Abate M, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Treatment-Resistant Depression and Response to Electroconvulsive Therapy: A Pilot Longitudinal Study. J ECT 2025; 41:93-100. [PMID: 39178054 DOI: 10.1097/yct.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES In this study, we investigated if changes in leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNA-cn), 2 markers of cellular aging, are associated with treatment-resistant depression (TRD) and with response to electroconvulsive therapy (ECT). METHODS LTL and mtDNA-cn were measured in 31 TRD patients before (T0), 1 week (T1), and 4 weeks (T2) after the ECT course, as well as in a sample of 65 healthy controls. RESULTS TRD patients had significantly shorter LTL and higher mtDNA-cn compared with healthy controls at baseline. In the TRD sample, LTL was inversely correlated with Montgomery-Åsberg Depression Rating Scale scores at baseline. Baseline levels of LTL or mtDNA-cn were not correlated with response to ECT. Similarly, changes in LTL or mtDNA-cn were not associated with response to ECT either when considered as a dichotomous trait (responders vs nonresponders) or as a percentage change in symptoms improvements. CONCLUSIONS Ours is the first longitudinal study exploring the role of LTL and mtDNA-cn in response to ECT. Findings of this pilot investigation suggest that LTL and mtDNA-cn may constitute disease biomarkers for TRD but are not involved in response to ECT.
Collapse
Affiliation(s)
- Alessio Squassina
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anna Meloni
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara," Verona, Italy
| | | | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | | | | |
Collapse
|
3
|
Durdurak BB, Morales-Muñoz I, de Cates AN, Wiseman C, Broome MR, Marwaha S. Underlying biological mechanisms of emotion dysregulation in bipolar disorder. Front Psychiatry 2025; 16:1552992. [PMID: 40417273 PMCID: PMC12098583 DOI: 10.3389/fpsyt.2025.1552992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/28/2025] [Indexed: 05/27/2025] Open
Abstract
Difficulties with emotion regulation (ER) are a key feature of bipolar disorder (BD) contributing to poor psychosocial and functional outcomes. Abnormalities within emotion processing and regulation thus provide key targets for treatment strategies and have implications for treatment response. Although biological mechanisms and ER are typically studied independently, emergent findings in BD research suggest that there are important ties between biological mechanisms and the disturbances in ER observed in BD. Therefore, in this narrative review, we provide an overview of the literature on biological mechanisms underlying emotional dysregulation in BD including genetic and epigenetic mechanisms, neuroimaging findings, inflammation, hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroplasticity and brain-derived neurotrophic factor (BDNF), and circadian rhythm disturbances. Finally, we discuss the clinical relevance of the findings and provide future directions for research. The continued exploration of underlying biological mechanisms in ED in BD may not only elucidate fundamental neurobiological mechanisms but also foster advancements in current treatment strategies and the development of novel targeted treatments.
Collapse
Affiliation(s)
- Buse Beril Durdurak
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Isabel Morales-Muñoz
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Angharad N. de Cates
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Coventry and Warwickshire NHS Partnership Trust, Coventry, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Chantelle Wiseman
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Matthew R. Broome
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- East Birmingham Early Intervention in Psychosis Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Steven Marwaha
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Specialist Mood Disorders Clinic, The Barberry Centre for Mental Health, Birmingham and Solihull NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
4
|
Xiong S, Liao L, Chen M, Gan Q. Identification and experimental validation of biomarkers associated with mitochondrial and programmed cell death in major depressive disorder. Front Psychiatry 2025; 16:1564380. [PMID: 40370590 PMCID: PMC12075303 DOI: 10.3389/fpsyt.2025.1564380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Background Major depressive disorder (MDD) is associated with mitochondrial dysfunction and programmed cell death (PCD), though the underlying mechanisms remain unclear. This study aimed to investigate the molecular pathways involved in MDD using a transcriptomic analysis approach. Methods Transcriptomic data related to MDD were obtained from public databases. Differentially expressed genes (DEGs), PCD-related genes (PCDs), and mitochondrial-related genes (MitoGs) were analyzed to identify key gene sets: PCD-DEGs and MitoG-DEGs. Correlation analysis (|correlation coefficient| > 0.9, p < 0.05) was performed to select candidate genes. Protein-protein interaction (PPI) network analysis and intersection of four algorithms were used to identify key candidate genes. Machine learning and gene expression validation were employed, followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for further validation. A nomogram was developed to predict MDD probability based on biomarkers. Additional analyses included immune infiltration, regulatory networks, and drug predictions. Results CD63, IL17RA, and IL1R1 were identified as potential biomarkers, with significantly higher expression levels in the MDD cohort. These findings were validated by RT-qPCR. A nomogram based on these biomarkers demonstrated predictive capacity for MDD. Differential immune cell infiltration was observed, with significant differences in nine immune cell types, including activated T cells and eosinophils, between the MDD and control groups. ATF1 was identified as a common transcription factor for CD63, IL17RA, and IL1R1. Shared miRNAs for CD63 and IL1R1 included hsa-miR-490-3p and hsa-miR-125a-3p. Drug prediction analysis identified 50 potential drugs, including verteporfin, etynodiol, and histamine, targeting these biomarkers. Conclusion CD63, IL17RA, and IL1R1 are key biomarkers for MDD, providing insights for diagnostic development and targeted therapies. The predictive nomogram and drug predictions offer valuable tools for MDD management.
Collapse
Affiliation(s)
- Shengjie Xiong
- Department of Psychiatry, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lixin Liao
- Department of Psychiatry, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Qing Gan
- Department of Emergency, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Berk M, Kim JH, Williams LJ, Liu ZSJ, Siskind D, Panizzutti B, Yung AR, Walder K. A novel discovery platform for targeted drug repurposing: application for psychiatric disorders. Lancet Psychiatry 2025:S2215-0366(25)00066-5. [PMID: 40286796 DOI: 10.1016/s2215-0366(25)00066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/29/2025]
Abstract
Existing pharmacotherapies and psychotherapies are often inadequate, and discovery for new pharmacological treatments in psychiatry is slow. Existing pharmacotherapies are, however, often inadequate. Few truly novel pharmacotherapies have emerged in the past four decades, largely due to the absence of a known pathophysiology for each disorder. In this Personal View, we describe the platform we have adopted that enables targeted drug repurposing. With this approach, patient-derived stem cells are used to detect transcriptomic targets to identify existing drugs that address these targets. These drugs are then validated in non-human animal models and pharmacoepidemiological studies before being tested in clinical trials. Our targeted drug repurposing platform bypasses the absence of known pathophysiology. Validation steps bring greater scientific rigour and mechanistic insights to drug repurposing to allow only drug candidates with the strongest mechanistic evidence to be tested in clinical trials.
Collapse
Affiliation(s)
- Michael Berk
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jee Hyun Kim
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
| | - Lana J Williams
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Zoe S J Liu
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Dan Siskind
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Bruna Panizzutti
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alison R Yung
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia; School of Health Sciences, University of Manchester, Manchester, UK
| | - Ken Walder
- The Institute for Mental and Physical Healthand Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
6
|
Zhao H, Qiu X, Wang S, Wang Y, Xie L, Xia X, Li W. Multiple pathways through which the gut microbiota regulates neuronal mitochondria constitute another possible direction for depression. Front Microbiol 2025; 16:1578155. [PMID: 40313405 PMCID: PMC12043685 DOI: 10.3389/fmicb.2025.1578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
As a significant mental health disorder worldwide, the treatment of depression has long faced the challenges of a low treatment rate, significant drug side effects and a high relapse rate. Recent studies have revealed that the gut microbiota and neuronal mitochondrial dysfunction play central roles in the pathogenesis of depression: the gut microbiota influences the course of depression through multiple pathways, including immune regulation, HPA axis modulation and neurotransmitter metabolism. Mitochondrial function serves as a key hub that mediates mood disorders through mechanisms such as defective energy metabolism, impaired neuroplasticity and amplified neuroinflammation. Notably, a bidirectional regulatory network exists between the gut microbiota and mitochondria: the flora metabolite butyrate enhances mitochondrial biosynthesis through activation of the AMPK-PGC1α pathway, whereas reactive oxygen species produced by mitochondria counteract the flora composition by altering the intestinal epithelial microenvironment. In this study, we systematically revealed the potential pathways by which the gut microbiota improves neuronal mitochondrial function by regulating neurotransmitter synthesis, mitochondrial autophagy, and oxidative stress homeostasis and proposed the integration of probiotic supplementation, dietary fiber intervention, and fecal microbial transplantation to remodel the flora-mitochondrial axis, which provides a theoretical basis for the development of novel antidepressant therapies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Hongyi Zhao
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongfeng Qiu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyu Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wang
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xie
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuwen Xia
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weihong Li
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
7
|
Kageyama Y, Okura S, Sukigara A, Matsunaga A, Maekubo K, Oue T, Ishihara K, Deguchi Y, Inoue K. The Association Among Bipolar Disorder, Mitochondrial Dysfunction, and Reactive Oxygen Species. Biomolecules 2025; 15:383. [PMID: 40149919 PMCID: PMC11940798 DOI: 10.3390/biom15030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria, often known as the cell's powerhouses, are primarily responsible for generating energy through aerobic oxidative phosphorylation. However, their functions extend far beyond just energy production. Mitochondria play crucial roles in maintaining calcium balance, regulating apoptosis (programmed cell death), supporting cellular signaling, influencing cell metabolism, and synthesizing reactive oxygen species (ROS). Recent research has highlighted a strong link between bipolar disorder (BD) and mitochondrial dysfunction. Mitochondrial dysfunction contributes to oxidative stress, particularly through the generation of ROS, which are implicated in the pathophysiology of BD. Oxidative stress arises when there is an imbalance between the production of ROS and the cell's ability to neutralize them. In neurons, excessive ROS can damage various cellular components, including proteins in neuronal membranes and intracellular enzymes. Such damage may interfere with neurotransmitter reuptake and the function of critical enzymes, potentially affecting brain regions involved in mood regulation and emotional control, which are key aspects of BD. In this review, we will explore how various types of mitochondrial dysfunction contribute to the production of ROS. These include disruptions in energy metabolism, impaired ROS management, and defects in mitochondrial quality control mechanisms such as mitophagy (the process by which damaged mitochondria are selectively degraded). We will also examine how abnormalities in calcium signaling, which is crucial for synaptic plasticity, can lead to mitochondrial dysfunction. Additionally, we will discuss the specific mitochondrial dysfunctions observed in BD, highlighting how these defects may contribute to the disorder's pathophysiology. Finally, we will identify potential therapeutic targets to improve mitochondrial function, which could pave the way for new treatments to manage or mitigate symptoms of BD.
Collapse
|
8
|
Chesebro AG, Antal BB, Weistuch C, Mujica-Parodi LR. Challenges and Frontiers in Computational Metabolic Psychiatry. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:258-266. [PMID: 39481469 DOI: 10.1016/j.bpsc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
One of the primary challenges in metabolic psychiatry is that the disrupted brain functions that underlie psychiatric conditions arise from a complex set of downstream and feedback processes that span multiple spatiotemporal scales. Importantly, the same circuit can have multiple points of failure, each of which results in a different type of dysregulation, and thus elicits distinct cascades downstream that produce divergent signs and symptoms. Here, we illustrate this challenge by examining how subtle differences in circuit perturbations can lead to divergent clinical outcomes. We also discuss how computational models can perform the spatially heterogeneous integration and bridge in vitro and in vivo paradigms. By leveraging recent methodological advances and tools, computational models can integrate relevant processes across scales (e.g., tricarboxylic acid cycle, ion channel, neural microassembly, whole-brain macrocircuit) and across physiological systems (e.g., neural, endocrine, immune, vascular), providing a framework that can unite these mechanistic processes in a manner that goes beyond the conceptual and descriptive to the quantitative and generative. These hold the potential to sharpen our intuitions toward circuit-based models for personalized diagnostics and treatment.
Collapse
Affiliation(s)
- Anthony G Chesebro
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Botond B Antal
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering and Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, State University of New York at Stony Brook, Stony Brook, New York; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
9
|
Wu CY, Chang CC, Lin TT, Liu CS, Chen PS. Exploring the interplay between mitochondrial dysfunction, early life adversity and bipolar disorder. Int J Psychiatry Clin Pract 2025; 29:25-31. [PMID: 40083249 DOI: 10.1080/13651501.2025.2476505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Mitochondria are essential for energy production and reactive oxygen species (ROS) generation, with changes in ROS levels or energy demands affecting mitochondrial DNA (mtDNA) copy numbers, indicating mitochondrial function. Early life adversity (ELA) affects mitochondrial dynamics, influencing long-term health. Both ELA and mitochondrial abnormalities have been independently associated with bipolar disorder (BD). This study aims to explore the complex interplay between mitochondrial dysfunction, ELA, and BD. METHODS The study included 60 participants diagnosed with BD and 66 healthy controls (HCs). Data were collected using the Childhood Trauma Questionnaire (CTQ), and leukocyte mtDNA copy number (MCN) was determined from blood samples. RESULTS The results indicated the CTQ sum scores were significantly higher in the BD group, reflecting greater exposure to ELA. In HCs, a marginally significant nonlinear relationship between the square of the CTQ sum score and MCN was found. Further analysis demonstrated a significant interaction between ELA and BD on MCN (p = 0.023), highlighting a critical connection between ELA and mitochondrial dysfunction in BD and reinforcing its biological underpinnings. CONCLUSIONS Future treatments for BD might target mitochondrial dysfunctions related to chronic stress, with potential pharmaceuticals designed to address these issues and mitigate the negative effects of chronic stress.
Collapse
Affiliation(s)
- Cheng Ying Wu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Chen Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Freyberg Z, Andreazza AC, McClung CA, Phillips ML. Linking Mitochondrial Dysfunction, Neurotransmitter, and Neural Network Abnormalities and Mania: Elucidating Neurobiological Mechanisms of the Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:267-277. [PMID: 39053576 PMCID: PMC11754533 DOI: 10.1016/j.bpsc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
There is growing interest in the ketogenic diet as a treatment for bipolar disorder (BD), and there are promising anecdotal and small case study reports of efficacy. However, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states-defining features of BD. Identifying these mechanisms will provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting 2 types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction and 2) neurotransmitter and neural network functional abnormalities. We link these abnormalities to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet may have a beneficial effect in individuals with BD. We end the review by describing approaches that can be employed in future studies to elucidate the neurobiology that underlies the therapeutic effect of the ketogenic diet in BD. Doing this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
11
|
Mendes de Abreu L, Rodrigues da Silva C, Ferreira Bortoleto AL, Nunes GB, Gracia MM, Tzanno Murayama RA, Bernabé DG, Mingoti GZ. Oxidative alterations in exfoliated oral mucosa cells of patients with major depressive disorder. J Oral Biol Craniofac Res 2025; 15:256-261. [PMID: 40027854 PMCID: PMC11869024 DOI: 10.1016/j.jobcr.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Objectives This study aimed to investigate oxidative stress markers in the oral mucosal cells of individuals diagnosed with major depressive disorder (MDD). Methods A case-control design was used, including twenty patients diagnosed with MDD, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria, and twenty healthy controls. Oral exfoliated cells were collected from all participants. Intracellular levels of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), caspase-3 and -7 activity, and reduced glutathione (GSH) were measured in Arbitrary Fluorescence Units (AFU). Results The MDD group demonstrated significantly elevated intracellular ROS levels (p = 0.0012) and caspase-3 and -7 activity (p = 0.0171) in comparison to the control group. Additionally, a decrease in ΔΨm expression was observed in the oral cells of MDD patients (p = 0.0265), whereas GSH expression levels did not differ significantly between the two groups (p = 0.8908). Conclusions The findings indicate heightened oxidative stress in the oral exfoliated cells of individuals with MDD. This study supports the potential use of oral cells as a non-invasive biomarker source for assessing oxidative stress in depressive disorders.
Collapse
Affiliation(s)
- Lukas Mendes de Abreu
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Campus Araçatuba, São Paulo, Brazil
| | - Cintia Rodrigues da Silva
- São Paulo State University (UNESP), Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | - Ana Laura Ferreira Bortoleto
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Campus Araçatuba, São Paulo, Brazil
| | - Giovana Barros Nunes
- São Paulo State University (UNESP), Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | | | - Rafael Akira Tzanno Murayama
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Campus Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Campus Araçatuba, São Paulo, Brazil
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St Araçatuba, SP 16050-015, São Paulo, Brazil
| | - Gisele Zoccal Mingoti
- Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, Campus Araçatuba, São Paulo, Brazil
- São Paulo State University (UNESP), Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
- São Paulo State University (UNESP), School of Veterinary Medicine, Laboratory of Reproductive Physiology, Campus Araçatuba, São Paulo, Brazil
| |
Collapse
|
12
|
Berk M, Walder K, Kim JH. Past, present and future of research on brain energy metabolism in bipolar disorder. World Psychiatry 2025; 24:47-49. [PMID: 39810675 PMCID: PMC11733427 DOI: 10.1002/wps.21266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jee Hyun Kim
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Chaudhari M, Mendez L, Olvera RL, Seshadri S, Teixeira AL. Cardiovascular disease and bipolar disorder: A review of pathophysiology and treatment implications. Int J Psychiatry Med 2025:912174251316947. [PMID: 39848641 DOI: 10.1177/00912174251316947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
OBJECTIVE Despite the well-established increased risk of cardiovascular mortality in individuals with bipolar disorder (BD), prevention and treatment of cardiovascular risk factors and diseases have been largely overlooked in this population. This manuscript reviews the pathophysiological basis of the connection between BD and cardiovascular diseases, highlighting their shared mechanisms, reciprocal interactions, and relevant prevention and treatment strategies. METHODS For this narrative review, a search was carried out on PubMed using the keywords bipolar disorder, cardiovascular diseases, and cardiovascular risk factors. RESULTS The increased frequency of cardiovascular morbidity in BD can be attributed to overlapping biological and psychosocial mechanisms. These mechanisms are complex and involve both direct effects of BD and indirect effects mediated by lifestyle and pharmacological factors. Cardiovascular diseases also significantly exacerbate the clinical course of BD and increase morbidity and healthcare costs; thus, their effective management can improve psychiatric outcomes and vice versa. However, patients with BD frequently encounter healthcare barriers. CONCLUSION Awareness initiatives and research on integrated care are needed to determine the best strategies for improving cardiovascular and psychiatric outcomes in individuals with BD.
Collapse
Affiliation(s)
- Mayuresh Chaudhari
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Luis Mendez
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rene L Olvera
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Antonio L Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Chu H, Zhu H, Ma J, Jiang Y, Cui C, Yan X, Li Q, Zhang X, Chen D, Li X, Li R. Mitochondrial Dysfunction and Metabolic Indicators in Patients with Drug-Naive First-Episode Schizophrenia: A Case-Control Study. Neuropsychiatr Dis Treat 2024; 20:2433-2442. [PMID: 39687781 PMCID: PMC11647910 DOI: 10.2147/ndt.s501527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Objective This paper aims to explore the expression characteristics of mitochondrial function-related genes in patients with first-episode schizophrenia (SCZ)and the correlation between differentially expressed genes and clinical metabolic indicators. Methods Twenty patients with first-episode SCZ who had not taken antipsychotic drugs (patient group) and twenty healthy controls (control group) were included. Quantitative real-time PCR technology was used to detect the expression levels of genes related to mitochondrial quality control and oxidative phosphorylation in peripheral blood leukocytes, and metabolic indicators such as blood biochemistry and blood glucose were collected. Results The gene expression levels of key genes related to mitochondrial function, PGC-1a, PARK2, and LC3B, in the patient group were significantly lower than those in the control group (P < 0.05). Correlation analysis showed that the expression level of PGC-1a gene in the patient group was negatively correlated with very low-density lipoprotein levels (r =-0.451), and the expression level of PARK2 gene in the patient group was negatively correlated with uric acid levels (r =-0.447). Conclusion The expression levels of multiple key genes in the mitochondrial quality control and oxidative phosphorylation processes in patients with first-episode SCZ display a downward trend. The differentially expressed genes are correlated with the metabolic abnormalities of the patients, suggesting that mitochondrial dysfunction may be related to the high incidence of metabolic diseases in patients with SCZ.
Collapse
Affiliation(s)
- Haoran Chu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Houming Zhu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Jiashu Ma
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Yijia Jiang
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Cuicui Cui
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Xianxia Yan
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Qin Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Xinyan Zhang
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Diancai Chen
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Xianwei Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Ranran Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
15
|
Giménez-Palomo A, Andreu H, de Juan O, Olivier L, Ochandiano I, Ilzarbe L, Valentí M, Stoppa A, Llach CD, Pacenza G, Andreazza AC, Berk M, Vieta E, Pacchiarotti I. Mitochondrial Dysfunction as a Biomarker of Illness State in Bipolar Disorder: A Critical Review. Brain Sci 2024; 14:1199. [PMID: 39766398 PMCID: PMC11674880 DOI: 10.3390/brainsci14121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondria are organelles involved in different cellular functions, especially energy production. A relationship between mitochondrial dysfunction and mood disorders, especially bipolar disorder (BD), has been reported in the scientific literature, which suggests altered energy production and higher levels of oxidative stress compared to healthy controls. Specifically, in BD, the hypothesis of a biphasic pattern of energy availability has been postulated according to mood states. Current evidence highlights the presence of mitochondrial dysfunction in BD and variations between the manic, depressive, and euthymic phases. These findings need to be confirmed in future studies to identify biomarkers that may lead to individualized management of patients with BD and also to identify profiles with a higher risk of presenting an unfavorable course of illness, which would enable the design of preventive and therapeutic strategies in determined subpopulations of patients with BD. The limitations of this review include the non-systematic methodology, variety of mitochondrial-related functions associated with BD, heterogeneous study designs, preliminary evidence for specific findings, and limited recommendations regarding the use of mitochondrial modulators in BD.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Helena Andreu
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Oscar de Juan
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Luis Olivier
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Iñaki Ochandiano
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Lidia Ilzarbe
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Marc Valentí
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Aldo Stoppa
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5G 1M9, Canada;
| | - Giulio Pacenza
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
| | - Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON M5S 1A8, Canada
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| |
Collapse
|
16
|
Dóra F, Hajdu T, Renner É, Paál K, Alpár A, Palkovits M, Chinopoulos C, Dobolyi A. Reverse phase protein array-based investigation of mitochondrial genes reveals alteration of glutaminolysis in the parahippocampal cortex of people who died by suicide. Transl Psychiatry 2024; 14:479. [PMID: 39604371 PMCID: PMC11603240 DOI: 10.1038/s41398-024-03137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
A moderating hub between resting state networks (RSNs) and the medial temporal lobe (MTL) is the parahippocampal cortex (PHC). Abnormal activity has been reported in depressed patients and suicide attempters in this region. Alterations in neuronal mitochondrial function may contribute to depression and suicidal behavior. However, little is known about the underlying molecular level changes in relevant structures. Specifically, expressional changes related to suicide have not been reported in the PHC. In this study, we compared the protein expression levels of genes encoding tricarboxylic acid (TCA) cycle enzymes in the PHC of adult individuals who died by suicide by reverse phase protein array (RPPA), which was corroborated by qRT-PCR at the mRNA level. Postmortem human brain samples were collected from 12 control and 10 suicidal individuals. The entorhinal cortex, which is topographically anterior to the PHC in the parahippocampal gyrus, and some other cortical brain regions were utilized for comparison. The results of the RPPA analysis revealed that the protein levels of DLD, OGDH, SDHB, SUCLA2, and SUCLG2 subunits were significantly elevated in the PHC but not in other cortical brain regions. In accordance with these findings, the mRNA levels of the respective subunits were also increased in the PHC. The subunits with altered levels are implicated in enzyme complexes involved in the oxidative decarboxylation branch of glutamine catabolism. These data suggest a potential role of glutaminolysis in the pathophysiology of suicidal behavior in the PHC.
Collapse
Affiliation(s)
- Fanni Dóra
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tamara Hajdu
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
| | - Krisztina Paál
- Department of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Alán Alpár
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary.
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
17
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O'Donovan SM. Transcriptomic Analysis of the Amygdala in Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder Reveals Differentially Altered Metabolic Pathways. Schizophr Bull 2024:sbae193. [PMID: 39526318 DOI: 10.1093/schbul/sbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The amygdala, crucial for mood, anxiety, fear, and reward regulation, shows neuroanatomical and molecular divergence in psychiatric disorders like schizophrenia, bipolar disorder and major depression. This region is also emerging as an important regulator of metabolic and immune pathways. The goal of this study is to address the paucity of molecular studies in the human amygdala. We hypothesize that diagnosis-specific gene expression alterations contribute to the unique pathophysiological profiles of these disorders. STUDY DESIGN We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and nonpsychiatrically ill control subjects (n = 15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. STUDY RESULTS We identified altered expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. CONCLUSION Our findings suggest metabolic pathways, including downregulation of energy metabolism pathways in SCZ and upregulation of energy metabolism pathways in MDD, are uniquely altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 70112, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Mahmoud A Eladawi
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
- Promedica Neuroscience Institute, Toledo, OH 43606, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
18
|
Macur K, Roszkowska A, Czaplewska P, Miękus-Purwin N, Klejbor I, Moryś J, Bączek T. Pressure Cycling Technology Combined With MicroLC-SWATH Mass Spectrometry for the Analysis of Sex-Related Differences Between Male and Female Cerebella: A Promising Approach to Investigating Proteomics Differences in Psychiatric and Neurodegenerative Diseases. Proteomics Clin Appl 2024; 18:e202400001. [PMID: 39205462 DOI: 10.1002/prca.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Pressure cycling technology (PCT) coupled with data-independent sequential window acquisition of all theoretical mass spectra (SWATH-MS) can be a powerful tool for identifying and quantifying biomarkers (e.g., proteins) in complex biological samples. Mouse models are frequently used in brain studies, including those focusing on different neurodevelopmental and psychiatric disorders. More and more pieces of evidence have suggested that sex-related differences in the brain impact the rates, clinical manifestations, and therapy outcomes of these disorders. However, sex-based differences in the proteomic profiles of mouse cerebella have not been widely investigated. EXPERIMENTAL DESIGN In this pilot study, we evaluate the applicability of coupling PCT sample preparation with microLC-SWATH-MS analysis to map and identify differences in the proteomes of two female and two male mice cerebellum samples. RESULTS We identified and quantified 174 proteins in mice cerebella. A comparison of the proteomic profiles revealed that the levels of 11 proteins in the female and male mice cerebella varied significantly. CONCLUSIONS AND CLINICAL RELEVANCE Although this study utilizes a small sample, our results indicate that the studied male and female mice cerebella possessed differing proteome compositions, mainly with respect to energy metabolism processes.
Collapse
Affiliation(s)
- Katarzyna Macur
- Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Paulina Czaplewska
- Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Miękus-Purwin
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Janusz Moryś
- Department of Normal Anatomy, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
19
|
Halabitska I, Petakh P, Kamyshna I, Oksenych V, Kainov DE, Kamyshnyi O. The interplay of gut microbiota, obesity, and depression: insights and interventions. Cell Mol Life Sci 2024; 81:443. [PMID: 39476179 PMCID: PMC11525354 DOI: 10.1007/s00018-024-05476-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The gut microbiome, body weight, and related comorbidities are intricately linked through a complex interaction of microbial, genetic, environmental, and psychological factors. Alterations in gut microbiota can contribute to the development of weight disorders and depressive symptoms, with the potential for these relationships to be bidirectional. Effective management of these interconnected conditions often involves a combination of lifestyle modifications and psychological support. Medical interventions, including treatments for obesity, antidiabetic drugs, antidepressants, antibiotics, and probiotics, can have beneficial and detrimental effects on gut microbiota and mental health. Further research is needed to better understand their impact on gut microbiome and mental health in the context of obesity.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, Ternopil, 46001, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, 88000, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, Bergen, 5020, Norway
| | - Denis E Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, 7028, Norway.
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine
| |
Collapse
|
20
|
Longhitano C, Finlay S, Peachey I, Swift JL, Fayet-Moore F, Bartle T, Vos G, Rudd D, Shareef O, Gordon S, Azghadi MR, Campbell I, Sethi S, Palmer C, Sarnyai Z. The effects of ketogenic metabolic therapy on mental health and metabolic outcomes in schizophrenia and bipolar disorder: a randomized controlled clinical trial protocol. Front Nutr 2024; 11:1444483. [PMID: 39234289 PMCID: PMC11371693 DOI: 10.3389/fnut.2024.1444483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Background Schizophrenia, schizoaffective disorder, and bipolar affective disorder are debilitating psychiatric conditions characterized by a chronic pattern of emotional, behavioral, and cognitive disturbances. Shared psychopathology includes the pre-eminence of altered affective states, disorders of thoughts, and behavioral control. Additionally, those conditions share epidemiological traits, including significant cardiovascular, metabolic, infectious, and respiratory co-morbidities, resulting in reduced life expectancy of up to 25 years. Nutritional ketosis has been successfully used to treat a range of neurological disorders and preclinical data have convincingly shown potential for its use in animal models of psychotic disorders. More recent data from open clinical trials have pointed toward a dramatic reduction in psychotic, affective, and metabolic symptoms in both schizophrenia and bipolar affective disorder. Objectives to investigate the effects of nutritional ketosis via a modified ketogenic diet (MKD) over 14 weeks in stable community patients with bipolar disorder, schizoaffective disorder, or schizophrenia. Design A randomized placebo-controlled clinical trial of 100 non-hospitalized adult participants with a diagnosis of bipolar disorder, schizoaffective disorder, or schizophrenia who are capable of consenting and willing to change their diets. Intervention Dietitian-led and medically supervised ketogenic diet compared to a diet following the Australian Guide to Healthy Eating for 14 weeks. Outcomes The primary outcomes include psychiatric and cognitive measures, reported as symptom improvement and functional changes in the Positive and Negative Symptoms Scale (PANSS), Young Mania Rating Scale (YMS), Beck Depression Inventory (BDI), WHO Disability Schedule, Affect Lability Scale and the Cambridge Cognitive Battery. The secondary metabolic outcomes include changes in body weight, blood pressure, liver and kidney function tests, lipid profiles, and markers of insulin resistance. Ketone and glucose levels will be used to study the correlation between primary and secondary outcomes. Optional hair cortisol analysis will assess long-term stress and variations in fecal microbiome composition. Autonomic nervous system activity will be measured via wearable devices (OURA ring and EMBRACE wristband) in the form of skin conductance, oximetry, continuous pulse monitoring, respiratory rate, movement tracking, and sleep quality. Based on the encouraging results from established preclinical research, clinical data from other neurodevelopment disorders, and open trials in bipolar disorder and schizophrenia, we predict that the ketogenic metabolic therapy will be well tolerated and result in improved psychiatric and metabolic outcomes as well as global measures of social and community functioning. We additionally predict that a correlation may exist between the level of ketosis achieved and the metabolic, cognitive, and psychiatric outcomes in the intervention group.
Collapse
Affiliation(s)
- Calogero Longhitano
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Sabine Finlay
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Isabella Peachey
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Jaymee-Leigh Swift
- Mater Hospital, Aurora Healthcare and James Cook University, Townsville, QLD, Australia
| | - Flavia Fayet-Moore
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- FoodiQ Global, Sydney, NSW, Australia
| | - Toby Bartle
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Gideon Vos
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Omer Shareef
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Shaileigh Gordon
- Townsville University Hospital and Health Service, Mental Health Service Group, Queensland Health, Townsville, QLD, Australia
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - Mostafa Rahimi Azghadi
- Electrical and Electronics Engineering, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Iain Campbell
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Zoltan Sarnyai
- Laboratory of Psychiatric Neurosciences, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
21
|
Sahay S, Pulvender P, Rami Reddy MVSR, McCullumsmith RE, O’Donovan SM. Metabolic Insights into Neuropsychiatric Illnesses and Ketogenic Therapies: A Transcriptomic View. Int J Mol Sci 2024; 25:8266. [PMID: 39125835 PMCID: PMC11312282 DOI: 10.3390/ijms25158266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The disruption of brain energy metabolism, leading to alterations in synaptic signaling, neural circuitry, and neuroplasticity, has been implicated in severe mental illnesses such as schizophrenia, bipolar disorder, and major depressive disorder. The therapeutic potential of ketogenic interventions in these disorders suggests a link between metabolic disturbances and disease pathology; however, the precise mechanisms underlying these metabolic disturbances, and the therapeutic effects of metabolic ketogenic therapy, remain poorly understood. In this study, we conducted an in silico analysis of transcriptomic data to investigate perturbations in metabolic pathways in the brain across severe mental illnesses via gene expression profiling. We also examined dysregulation of the same pathways in rodent or cell culture models of ketosis, comparing these expression profiles to those observed in the disease states. Our analysis revealed significant perturbations across all metabolic pathways, with the greatest perturbations in glycolysis, the tricarboxylic acid (TCA) cycle, and the electron transport chain (ETC) across all three disorders. Additionally, we observed some discordant gene expression patterns between disease states and ketogenic intervention studies, suggesting a potential role for ketone bodies in modulating pathogenic metabolic changes. Our findings highlight the importance of understanding metabolic dysregulation in severe mental illnesses and the potential therapeutic benefits of ketogenic interventions in restoring metabolic homeostasis. This study provides insights into the complex relationship between metabolism and neuropsychiatric disorders and lays the foundation for further experimental investigations aimed at appreciating the implications of the present transcriptomic findings as well as developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Priyanka Pulvender
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | | | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Neuroscience Institute, ProMedica, Toledo, OH 43614, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
22
|
Wu-Chung EL, Medina LD, Paoletti-Hatcher J, Lai V, Stinson JM, Mahant I, Schulz PE, Heijnen CJ, Fagundes CP. Mitochondrial Health, Physical Functioning, and Daily Affect: Bioenergetic Mechanisms of Dementia Caregiver Well-Being. Psychosom Med 2024; 86:512-522. [PMID: 38666654 PMCID: PMC11230842 DOI: 10.1097/psy.0000000000001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Chronic stress adversely affects mental and physical well-being. However, health outcomes vary among people experiencing the same stressor. Individual differences in physical and emotional well-being may depend on mitochondrial biology, as energy production is crucial for stress regulation. This study investigated whether mitochondrial respiratory capacity corresponds to individual differences in dementia spousal caregivers' mental and physical health. METHODS Spousal caregivers of individuals with Alzheimer's disease and related dementias ( N = 102, mean age = 71, 78% female, 83% White) provided peripheral blood samples and completed self-report questionnaires on quality of life, caregiver burden, and a 7-day affect scale. Multiple and mixed linear regressions were used to test the relationship between mitochondrial biology and well-being. RESULTS Spare respiratory capacity ( b = 12.76, confidence interval [CI] = 5.23-20.28, p = .001), maximum respiratory capacity ( b = 8.45, CI = 4.54-12.35, p < .0001), and ATP-linked respiration ( b = 10.11, CI = 5.05-15.18, p = .0001) were positively associated with physical functioning. At average ( b = -2.23, CI = -3.64 to -0.82, p = .002) and below average ( b = -4.96, CI = -7.22 to 2.70, p < .0001) levels of spare respiratory capacity, caregiver burden was negatively associated with daily positive affect. At above average levels of spare respiratory capacity, caregiver burden was not associated with positive affect ( p = .65). CONCLUSIONS Findings suggest that higher mitochondrial respiratory capacity is associated with better psychological and physical health-a pattern consistent with related research. These findings provide some of the earliest evidence that cellular bioenergetics are related to well-being.
Collapse
Affiliation(s)
| | | | | | - Vincent Lai
- Department of Psychological Sciences, Rice University
| | | | - Itee Mahant
- Department of Psychological Sciences, Rice University
| | - Paul E. Schulz
- Neurocognitive Disorders Center, University of Texas Health Science Center at Houston
| | | | - Christopher P. Fagundes
- Department of Psychological Sciences, Rice University
- Department of Psychology, University of Houston
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center
- Department of Psychiatry, Baylor College of Medicine
| |
Collapse
|
23
|
Shao S, Zou Y, Kennedy KG, Dimick MK, Andreazza AC, Young LT, Goncalves VF, MacIntosh BJ, Goldstein BI. Pilot study of circulating cell-free mitochondrial DNA in relation to brain structure in youth bipolar disorder. Int J Bipolar Disord 2024; 12:21. [PMID: 38874862 PMCID: PMC11178693 DOI: 10.1186/s40345-024-00334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the neuropathology of bipolar disorder (BD). Higher circulating cell-free mitochondrial DNA (ccf-mtDNA), generally reflecting poorer mitochondrial health, has been associated with greater symptoms severity in BD. The current study examines the association of serum ccf-mtDNA and brain structure in relation to youth BD. We hypothesized that higher ccf-mtDNA will be associated with measures of lower brain structure, particularly in the BD group. METHODS Participants included 40 youth (BD, n = 19; Control group [CG], n = 21; aged 13-20 years). Serum ccf-mtDNA levels were assayed. T1-weighted brain images were acquired using 3T-MRI. Region of interest (ROI) analyses examined prefrontal cortex (PFC) and whole brain gray matter, alongside exploratory vertex-wise analyses. Analyses examined ccf-mtDNA main-effects and ccf-mtDNA-by-diagnosis interaction effects controlling for age, sex, and intracranial volume. RESULTS There was no significant difference in ccf-mtDNA levels between BD and CG. In ROI analyses, higher ccf-mtDNA was associated with higher PFC surface area (SA) (β = 0.32 p < 0.001) and PFC volume (β = 0.32 p = 0.002) in the overall sample. In stratified analyses, higher ccf-mtDNA was associated with higher PFC SA within both subgroups (BD: β = 0.39 p = 0.02; CG: β = 0.24 p = 0.045). Higher ccf-mtDNA was associated with higher PFC volume within the BD group (β = 0.39 p = 0.046). In vertex-wise analyses, higher ccf-mtDNA was associated with higher SA and volume in frontal clusters within the overall sample and within the BD group. There were significant ccf-mtDNA-by-diagnosis interactions in three frontal and parietal clusters, whereby higher ccf-mtDNA was associated with higher neurostructural metrics in the BD group but lower neurostructural metrics in CG. CONCLUSIONS Contrasting our hypothesis, higher ccf-mtDNA was consistently associated with higher, rather than lower, regional neuralstructural metrics among youth with BD. While this finding may reflect a compensatory mechanism, future repeated-measures prospective studies evaluating the inter-relationship among ccf-mtDNA, mood, and brain structure across developmental epochs and illness stages are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Goncalves
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Bao H, Wang C, Xue X, Hu B, Guo Q. CB1 receptor mediates anesthetic drug ketamine‑induced neuroprotection against glutamate in HT22 cells. Exp Ther Med 2024; 27:268. [PMID: 38756904 PMCID: PMC11097274 DOI: 10.3892/etm.2024.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The anesthetic drug, ketamine (KTM) has been shown to induce therapeutic effects against major depressive disorder (MDD), however the related underlying mechanisms remain unclear. In the present study, HT22 neuronal cells were treated with glutamate to imitate oxidative stress injury in MDD, and it was hypothesized that the cannabinoid type 1 (CB1) receptor mediates KTM-induced neuroprotection via ameliorating mitochondrial function in glutamate-treated neuronal cells. Compared with the control, glutamate decreased cell viability and intracellular antioxidants, including glutathione (GSH), catalase and superoxide dismutase 2 levels, and inhibited mitochondrial function simultaneously. Moreover, glutamate increased lactate dehydrogenase release, cellular apoptosis level, cleaved caspase-3 expression and intracellular oxidants, such as reactive oxygen species, oxidized GSH and mitochondrial superoxide in the cells. The presence of KTM, however, significantly decreased the glutamate-induced oxidative stress injury, ameliorated the antioxidant/oxidant levels in the cells, enhanced mitochondrial function and upregulated CB1 receptor expression (P<0.05). Co-administration of the CB1 receptor antagonist AM251 markedly abolished the KTM-induced cytoprotective effects and ameliorations of antioxidant/oxidant levels and mitochondrial function, and also reversed CB1 upregulation (P<0.05). These observations indicated that KTM decreases the oxidative stress injury caused by glutamate in HT22 neuronal cells, and the neuroprotective effects may be mediated by the CB1 receptor.
Collapse
Affiliation(s)
- He Bao
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaorong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Bin Hu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Qi Guo
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
25
|
Triebelhorn J, Cardon I, Kuffner K, Bader S, Jahner T, Meindl K, Rothhammer-Hampl T, Riemenschneider MJ, Drexler K, Berneburg M, Nothdurfter C, Manook A, Brochhausen C, Baghai TC, Hilbert S, Rupprecht R, Milenkovic VM, Wetzel CH. Induced neural progenitor cells and iPS-neurons from major depressive disorder patients show altered bioenergetics and electrophysiological properties. Mol Psychiatry 2024; 29:1217-1227. [PMID: 35732695 PMCID: PMC11189806 DOI: 10.1038/s41380-022-01660-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder.
Collapse
Affiliation(s)
- Julian Triebelhorn
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Kerstin Kuffner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Katrin Meindl
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | | | - Konstantin Drexler
- Department of Dermatology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - André Manook
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
- Central Biobank of the University of Regensburg and the Regensburg University Hospital, 93053, Regensburg, Germany
| | - Thomas C Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Sven Hilbert
- Institute of Educational Research, Faculty of Human Sciences, University of Regensburg, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
26
|
Campbell IH, Campbell H. The metabolic overdrive hypothesis: hyperglycolysis and glutaminolysis in bipolar mania. Mol Psychiatry 2024; 29:1521-1527. [PMID: 38273108 PMCID: PMC11189810 DOI: 10.1038/s41380-024-02431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Evidence from diverse areas of research including chronobiology, metabolomics and magnetic resonance spectroscopy indicate that energy dysregulation is a central feature of bipolar disorder pathophysiology. In this paper, we propose that mania represents a condition of heightened cerebral energy metabolism facilitated by hyperglycolysis and glutaminolysis. When oxidative glucose metabolism becomes impaired in the brain, neurons can utilize glutamate as an alternative substrate to generate energy through oxidative phosphorylation. Glycolysis in astrocytes fuels the formation of denovo glutamate, which can be used as a mitochondrial fuel source in neurons via transamination to alpha-ketoglutarate and subsequent reductive carboxylation to replenish tricarboxylic acid cycle intermediates. Upregulation of glycolysis and glutaminolysis in this manner causes the brain to enter a state of heightened metabolism and excitatory activity which we propose to underlie the subjective experience of mania. Under normal conditions, this mechanism serves an adaptive function to transiently upregulate brain metabolism in response to acute energy demand. However, when recruited in the long term to counteract impaired oxidative metabolism it may become a pathological process. In this article, we develop these ideas in detail, present supporting evidence and propose this as a novel avenue of investigation to understand the biological basis for mania.
Collapse
Affiliation(s)
- Iain H Campbell
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK.
| | - Harry Campbell
- Usher Institute, Centre for Global Health Research, University of Edinburgh, Craigour House, 450 Old Dalkeith Rd, Edinburgh, EH16 4SS, UK
| |
Collapse
|
27
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
28
|
Giménez-Palomo A, Guitart-Mampel M, Roqué G, Sánchez E, Borràs R, Meseguer A, García-García FJ, Tobías E, Valls-Roca L, Anmella G, Valentí M, Olivier L, de Juan O, Ochandiano I, Andreu H, Radua J, Verdolini N, Berk M, Vieta E, Garrabou G, Roca J, Alsina-Restoy X, Pacchiarotti I. Aerobic capacity and mitochondrial function in bipolar disorder: a longitudinal study during acute phases and after clinical remission. Front Psychiatry 2024; 15:1386286. [PMID: 38596629 PMCID: PMC11002204 DOI: 10.3389/fpsyt.2024.1386286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Aerobic capacity has shown to predict physical and mental health-related quality of life in bipolar disorder (BD). However, the correlation between exercise respiratory capacity and mitochondrial function remains understudied. We aimed to assess longitudinally intra-individual differences in these factors during mood episodes and remission in BD. Methods This study included eight BD patients admitted to an acute psychiatric unit. Incremental cardiopulmonary exercise test (CPET) was conducted during acute episodes (T0), followed by constant work rate cycle ergometry (CWRCE) to evaluate endurance time, oxygen uptake at peak exercise (VO2peak) and at the anaerobic threshold. The second test was repeated during remission (T1). Mitochondrial respiration rates were assessed at T0 and T1 in peripheral blood mononuclear cells. Results Endurance time, VO2peak, and anaerobic threshold oxygen consumption showed no significant variations between T0 and T1. Basal oxygen consumption at T1 tended to inversely correlate with maximal mitochondrial respiratory capacity (r=-0.690, p=0.058), and VO2peak during exercise at T1 inversely correlated with basal and minimum mitochondrial respiration (r=-0.810, p=0.015; r=-0.786, p=0.021, respectively). Conclusions Our preliminary data showed that lower basal oxygen consumption may be linked to greater mitochondrial respiratory capacity, and maximum oxygen uptake during the exercise task was associated with lower basal mitochondrial respiration, suggesting that lower oxygen requirements could be associated with greater mitochondrial capacity. These findings should be replicated in larger samples stratified for manic and depressive states.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and Centro de Investigación en Red de Enfermedades Raras (CIBERER), Catalonia, Spain
| | - Gemma Roqué
- Pneumology Department (ICR), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Catalonia, Spain
| | - Ester Sánchez
- Pneumology Department (ICR), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Catalonia, Spain
| | - Roger Borràs
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Institute, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Meseguer
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and Centro de Investigación en Red de Enfermedades Raras (CIBERER), Catalonia, Spain
| | - Esther Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and Centro de Investigación en Red de Enfermedades Raras (CIBERER), Catalonia, Spain
| | - Laura Valls-Roca
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and Centro de Investigación en Red de Enfermedades Raras (CIBERER), Catalonia, Spain
| | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Marc Valentí
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Luis Olivier
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Oscar de Juan
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Iñaki Ochandiano
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Helena Andreu
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Joaquim Radua
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Norma Verdolini
- Local Health Unit Umbria 1, Department of Mental Health, Mental Health Center of Perugia, Perugia, Italy
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, Orygen, The University of Melbourne, Melbourne, Australia
| | - Eduard Vieta
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and Centro de Investigación en Red de Enfermedades Raras (CIBERER), Catalonia, Spain
| | - Josep Roca
- Pneumology Department (ICR), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Catalonia, Spain
| | - Xavier Alsina-Restoy
- Pneumology Department (ICR), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Catalonia, Spain
| | - Isabella Pacchiarotti
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Bipolar and Depressive Disorders Unit, Institut d’Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Vesala L, Basikhina Y, Tuomela T, Nurminen A, Siukola E, Vale PF, Salminen TS. Mitochondrial perturbation in immune cells enhances cell-mediated innate immunity in Drosophila. BMC Biol 2024; 22:60. [PMID: 38475850 DOI: 10.1186/s12915-024-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.
Collapse
Affiliation(s)
- Laura Vesala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yuliya Basikhina
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emilia Siukola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
30
|
Tripathi K, Ben-Shachar D. Mitochondria in the Central Nervous System in Health and Disease: The Puzzle of the Therapeutic Potential of Mitochondrial Transplantation. Cells 2024; 13:410. [PMID: 38474374 PMCID: PMC10930936 DOI: 10.3390/cells13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria, the energy suppliers of the cells, play a central role in a variety of cellular processes essential for survival or leading to cell death. Consequently, mitochondrial dysfunction is implicated in numerous general and CNS disorders. The clinical manifestations of mitochondrial dysfunction include metabolic disorders, dysfunction of the immune system, tumorigenesis, and neuronal and behavioral abnormalities. In this review, we focus on the mitochondrial role in the CNS, which has unique characteristics and is therefore highly dependent on the mitochondria. First, we review the role of mitochondria in neuronal development, synaptogenesis, plasticity, and behavior as well as their adaptation to the intricate connections between the different cell types in the brain. Then, we review the sparse knowledge of the mechanisms of exogenous mitochondrial uptake and describe attempts to determine their half-life and transplantation long-term effects on neuronal sprouting, cellular proteome, and behavior. We further discuss the potential of mitochondrial transplantation to serve as a tool to study the causal link between mitochondria and neuronal activity and behavior. Next, we describe mitochondrial transplantation's therapeutic potential in various CNS disorders. Finally, we discuss the basic and reverse-translation challenges of this approach that currently hinder the clinical use of mitochondrial transplantation.
Collapse
Affiliation(s)
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel;
| |
Collapse
|
31
|
Głombik K, Kukla-Bartoszek M, Curzytek K, Basta-Kaim A, Budziszewska B. Contribution of changes in the orexin system and energy sensors in the brain in depressive disorder - a study in an animal model. Pharmacol Rep 2024; 76:51-71. [PMID: 38194217 PMCID: PMC10830606 DOI: 10.1007/s43440-023-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression. MATERIALS The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.1 mg/kg, days 14-21). We evaluated the effects of prenatal DEX treatment on the cognition and bioenergetic signaling pathways in the brain of adult male rats, in the frontal cortex and hippocampus, and in response to stress in adulthood, using behavioral and biochemical test batteries. RESULTS We revealed cognitive deficits in rats prenatally treated with DEX. At the molecular level, a decrease in the orexin A and orexin B levels and downregulation of the AMPK-SIRT1-PGC1α transduction pathway in the frontal cortex of these animals were observed. In the hippocampus, a decreased expression of orexin B was found and changes in the MR/GR ratio were demonstrated. Furthermore, an increase in HDAC5 level triggered by the prenatal DEX treatment in both brain structures and a decrease in MeCP2 level in the hippocampus were reported. CONCLUSIONS Our study demonstrated that prenatal DEX treatment is associated with cognitive dysfunction and alterations in various proteins leading to metabolic changes in the frontal cortex, while in the hippocampus adaptation mechanisms were activated. The presented results imply that different pathophysiological metabolic processes may be involved in depression development, which may be useful in the search for novel therapies.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
32
|
Chu H, Cui C, Su X, Zhang H, Ma J, Zhu H, Bai L, Li R. Research progress in mitochondrial quality control in schizophrenia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:128-134. [PMID: 38615174 PMCID: PMC11017019 DOI: 10.11817/j.issn.1672-7347.2024.230398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 04/15/2024]
Abstract
Mitochondria are the main site of energy metabolism within cells, generating a substantial amount of ATP to supply energy to the human body. Research has shown that alterations in mitochondrial structure and function exist in individuals with schizophrenia, suggesting their potential impact on the onset of psychiatric disorders and clinical treatment efficacy. Therefore, understanding the research progress on the genetic mechanisms, pathological processes, image manifestations of schizophrenia and mitochondrial quality control, and summarizing the relevant evidence of mitochondrial-related targets as potential therapeutic targets for schizophrenia, can provide references for further research.
Collapse
Affiliation(s)
- Haoran Chu
- School of Mental Health, Jining Medical University, Jining Shandong 272067.
| | - Cuicui Cui
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Xianbiao Su
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Hongchang Zhang
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Jiashu Ma
- School of Mental Health, Jining Medical University, Jining Shandong 272067
| | - Houming Zhu
- School of Mental Health, Jining Medical University, Jining Shandong 272067
| | - Ludong Bai
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Ranran Li
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China.
| |
Collapse
|
33
|
Bgatova N, Obanina N, Taskaeva I, Makarova V, Rakhmetova A, Shatskaya S, Khotskin N, Zavjalov E. Accumulation and neuroprotective effects of lithium on hepatocellular carcinoma mice model. Behav Brain Res 2024; 456:114679. [PMID: 37739227 DOI: 10.1016/j.bbr.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM The peripheral tumor growth is accompanied by the accumulation of inflammatory mediators in the blood that can negatively influence blood-brain barrier function and neuronal structure and develop the cancer-associated depression. The aim of the study was to evaluate the neurobiological effects of lithium on hepatocellular carcinoma mice model. METHODS In this study we analyzed the locomotor activity of lithium-treated tumor-bearing mice using the Phenomaster instrument. Inductively coupled plasma mass-spectral analysis was used to determine lithium levels in blood, brain, liver, kidneys, tumors and muscle tissues. The prefrontal cortex neurons ultrastructure was assessed by transmission electron microscopy. Expression of BDNF, GRP78, EEA1, LAMP1, and LC3 beta in neurons was determined by immunohistochemical analysis. RESULTS A decrease in locomotor activity was found in animals with tumors. At the same time, the low expression levels of the neurotrophic factor BDNF and early endosomal marker EEA1 were revealed, as well as the decreased amount of synaptic vesicles and synapses was shown. Signs of endoplasmic reticulum stress and autophagy development in neurons of animals with tumors were noted. Lithium carbonate administration had a corrective effect on animal's behavior and the prefrontal cortex neurons structure. CONCLUSIONS In summary, lithium can restore the neuronal homeostasis in tumor-bearing mice.
Collapse
Affiliation(s)
- Nataliya Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Obanina
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Iuliia Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Viktoriia Makarova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Svetlana Shatskaya
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita Khotskin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
34
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
35
|
Giménez-Palomo A, Guitart-Mampel M, Meseguer A, Borràs R, García-García FJ, Tobías E, Valls L, Alsina-Restoy X, Roqué G, Sánchez E, Roca J, Anmella G, Valentí M, Bracco L, Andreu H, Salmerón S, Colomer L, Radua J, Verdolini N, Berk M, Vieta E, Garrabou G, Pacchiarotti I. Reduced mitochondrial respiratory capacity in patients with acute episodes of bipolar disorder: Could bipolar disorder be a state-dependent mitochondrial disease? Acta Psychiatr Scand 2024; 149:52-64. [PMID: 38030136 DOI: 10.1111/acps.13635] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic and recurrent disease characterized by acute mood episodes and periods of euthymia. The available literature postulates that a biphasic dysregulation of mitochondrial bioenergetics might underpin the neurobiology of BD. However, most studies focused on inter-subject differences rather than intra-subject variations between different mood states. To test this hypothesis, in this preliminary proof-of-concept study, we measured in vivo mitochondrial respiration in patients with BD during a mood episode and investigated differences compared to healthy controls (HC) and to the same patients upon clinical remission. METHODS This longitudinal study recruited 20 patients with BD admitted to our acute psychiatric ward with a manic (n = 15) or depressive (n = 5) episode, and 10 matched HC. We assessed manic and depressive symptoms using standardized psychometric scales. Different mitochondrial oxygen consumption rates (OCRs: Routine, Leak, electron transport chain [ETC], Rox) were assessed during the acute episode (T0) and after clinical remission (T1) using high-resolution respirometry at 37°C by polarographic oxygen sensors in a two-chamber Oxygraph-2k system in one million of peripheral blood mononuclear cells (PMBC). Specific OCRs were expressed as mean ± SD in picomoles of oxygen per million cells. Significant results were adjusted for age, sex, and body mass index. RESULTS The longitudinal analysis showed a significant increase in the maximal oxygen consumption capacity (ETC) in clinical remission (25.7 ± 16.7) compared to the acute episodes (19.1 ± 11.8, p = 0.025), and was observed separately for patients admitted with a manic episode (29.2 ± 18.9 in T1, 22.3 ± 11.9 in T0, p = 0.076), and at a trend-level for patients admitted with a depressive episode (15.4 ± 3.9 in T1 compared to 9.4 ± 3.2 in T0, p = 0.107). Compared to HC, significant differences were observed in ETC in patients with a bipolar mood episode (H = 11.7; p = 0.003). Individuals with bipolar depression showed lower ETC than those with a manic episode (t = -3.7, p = 0.001). Also, significant differences were observed in ETC rates between HC and bipolar depression (Z = 1.000, p = 0.005). CONCLUSIONS Bioenergetic and mitochondrial dysregulation could be present in both manic and depressive phases in BD and, importantly, they may restore after clinical remission. These preliminary results suggest that mitochondrial respiratory capacity could be a biomarker of illness activity and clinical response in BD. Further studies with larger samples and similar approaches are needed to confirm these results and identify potential biomarkers in different phases of the disease.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Ana Meseguer
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Roger Borràs
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Institute, Hospital Clínic, IDIBAPS, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Esther Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Laura Valls
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | | | - Gemma Roqué
- Pneumology Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Ester Sánchez
- Pneumology Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Josep Roca
- Pneumology Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Marc Valentí
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Lorenzo Bracco
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Helena Andreu
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Sergi Salmerón
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Lluc Colomer
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Joaquim Radua
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Norma Verdolini
- Local Health Unit Umbria 1, Department of Mental Health, Mental Health Center of Perugia, Perugia, Italy
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Eduard Vieta
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Isabella Pacchiarotti
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
36
|
Yang Y, Chen L, Zhang N, Zhao Y, Che H, Wang Y, Zhang T, Wen M. DHA and EPA Alleviate Epileptic Depression in PTZ-Treated Young Mice Model by Inhibiting Neuroinflammation through Regulating Microglial M2 Polarization and Improving Mitochondrial Metabolism. Antioxidants (Basel) 2023; 12:2079. [PMID: 38136199 PMCID: PMC10740521 DOI: 10.3390/antiox12122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Depression is the most common complication of childhood epilepsy, leading to a poor prognosis for seizure control and poor quality of life. However, the molecular mechanisms underlying epileptic depression have not been completely elucidated. Increasing evidence suggests that oxidative stress and neuroinflammation are major contributors to depression. The positive effects of dietary supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on depression have been previously reported. However, knowledge regarding the effects of EPA and DHA in managing depressive symptoms in pediatric patients with epilepsy is limited. Therefore, this study aims to investigate the effects of EPA and DHA on epileptic depression in a pentylenetetrazole (PTZ)-treated young mouse model. Three-week-old mice were fed a DHA- or EPA-enriched diet for 21 days and treated with PTZ (35 mg/kg, i.p.) every other day for a total of 10 times. EPA was more effective than DHA at alleviating PTZ-induced depressive symptoms. Pathological results revealed that DHA and EPA significantly improved neuronal degeneration in the hippocampus. Analysis of the mechanism revealed that DHA and EPA mitigated PTZ-induced myelin damage by increasing the protein levels of CNPase, Olig2, and MBP. Furthermore, both DHA and EPA reduced neuroinflammation by promoting microglial M2 polarization and suppressing the LCN2-NLRP3 inflammasome pathway. Notably, EPA polarized microglia towards the M2 phenotype. In addition, DHA and EPA decreased oxidative stress by inhibiting NOX2 and enhancing mitochondrial metabolism through the increased expression of mitochondrial respiratory chain complex I-V proteins. These findings suggest that DHA and EPA can be used as effective interventions to improve depression in children with epilepsy, with EPA being a particularly favorable option.
Collapse
Affiliation(s)
- Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Lu Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
| | - Yingcai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (Y.Z.); (Y.W.); (T.Z.)
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (Y.Y.); (L.C.); (N.Z.)
- Pet Nutrition Research and Development Center Gambol Pet Group Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
37
|
Nakagami Y, Nishi M. MA-5 ameliorates autism-like behavior in mice prenatally exposed to valproic acid. Behav Pharmacol 2023; 34:488-493. [PMID: 37917568 DOI: 10.1097/fbp.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Indole-3-acetic acid is a common naturally occurring auxin in plants. A synthesized derivative of this compound, 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid also called mitochonic acid 5 (MA-5), has shown to increase the survival ratio of fibroblasts from patients with mitochondrial disease under stress-induced conditions. Further studies verified its efficacy in pathological models, such as an ischemia-reperfusion model, possibly by increasing ATP production. However, the efficacy of MA-5 in mental disorders, such as anxiety, schizophrenia, and autism spectrum disorders (ASD), has not been investigated. Our study focused on examining the effect of MA-5 in a mouse model of ASD induced by prenatal exposure to valproic acid (VPA). VPA exposure significantly deteriorated the level of anxiety and exploratory behavior in an open field test. We fed mice an MA-5-containing diet for 5 weeks and observed an improvement in the above behavior in the MA-5-fed groups. The efficacy of MA-5 was also observed in the elevated plus maze and three-chambered tests. These findings suggest that MA-5 could potentially be used to treat ASD, especially in patients with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Specialty Medicine Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
38
|
Singh N, MacNicol E, DiPasquale O, Randall K, Lythgoe D, Mazibuko N, Simmons C, Selvaggi P, Stephenson S, Turkheimer FE, Cash D, Zelaya F, Colasanti A. The effects of acute Methylene Blue administration on cerebral blood flow and metabolism in humans and rats. J Cereb Blood Flow Metab 2023; 43:95-105. [PMID: 36803299 PMCID: PMC10638993 DOI: 10.1177/0271678x231157958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/09/2022] [Accepted: 12/26/2022] [Indexed: 02/23/2023]
Abstract
Methylene Blue (MB) is a brain-penetrating drug with putative neuroprotective, antioxidant and metabolic enhancing effects. In vitro studies suggest that MB enhances mitochondrial complexes activity. However, no study has directly assessed the metabolic effects of MB in the human brain. We used in vivo neuroimaging to measure the effect of MB on cerebral blood flow (CBF) and brain metabolism in humans and in rats. Two doses of MB (0.5 and 1 mg/kg in humans; 2 and 4 mg/kg in rats; iv) induced reductions in global cerebral blood flow (CBF) in humans (F(1.74, 12.17)5.82, p = 0.02) and rats (F(1,5)26.04, p = 0.0038). Human cerebral metabolic rate of oxygen (CMRO2) was also significantly reduced (F(1.26, 8.84)8.01, p = 0.016), as was the rat cerebral metabolic rate of glucose (CMRglu) (t = 2.6(16) p = 0.018). This was contrary to our hypothesis that MB will increase CBF and energy metrics. Nevertheless, our results were reproducible across species and dose dependent. One possible explanation is that the concentrations used, although clinically relevant, reflect MB's hormetic effects, i.e., higher concentrations produce inhibitory rather than augmentation effects on metabolism. Additionally, here we used healthy volunteers and healthy rats with normal cerebral metabolism where MB's ability to enhance cerebral metabolism might be limited.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ottavia DiPasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ndabezinhle Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephanie Stephenson
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandro Colasanti
- Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
Larrea A, Elexpe A, Díez-Martín E, Torrecilla M, Astigarraga E, Barreda-Gómez G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Curr Issues Mol Biol 2023; 45:8552-8585. [PMID: 37998716 PMCID: PMC10670324 DOI: 10.3390/cimb45110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation has a significant impact on different pathologies, such as stroke or spinal cord injury, intervening in their pathophysiology: expansion, progression, and resolution. Neuroinflammation involves oxidative stress, damage, and cell death, playing an important role in neuroplasticity and motor dysfunction by affecting the neuronal connection responsible for motor control. The diagnosis of this pathology is performed using neuroimaging techniques and molecular diagnostics based on identifying and measuring signaling molecules or specific markers. In parallel, new therapeutic targets are being investigated via the use of bionanomaterials and electrostimulation to modulate the neuroinflammatory response. These novel diagnostic and therapeutic strategies have the potential to facilitate the development of anticipatory patterns and deliver the most beneficial treatment to improve patients' quality of life and directly impact their motor skills. However, important challenges remain to be solved. Hence, the goal of this study was to review the implication of neuroinflammation in the evolution of motor function in stroke and trauma patients, with a particular focus on novel methods and potential biomarkers to aid clinicians in diagnosis, treatment, and therapy. A specific analysis of the strengths, weaknesses, threats, and opportunities was conducted, highlighting the key challenges to be faced in the coming years.
Collapse
Affiliation(s)
- Ane Larrea
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Eguzkiñe Díez-Martín
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| |
Collapse
|
40
|
Koning E, McDonald A, Bambokian A, Gomes FA, Vorstman J, Berk M, Fabe J, McIntyre RS, Milev R, Mansur RB, Brietzke E. The concept of "metabolic jet lag" in the pathophysiology of bipolar disorder: implications for research and clinical care. CNS Spectr 2023; 28:571-580. [PMID: 36503605 DOI: 10.1017/s1092852922001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar disorder (BD) is a potentially chronic mental disorder marked by recurrent depressive and manic episodes, circadian rhythm disruption, and changes in energetic metabolism. "Metabolic jet lag" refers to a state of shift in circadian patterns of energy homeostasis, affecting neuroendocrine, immune, and adipose tissue function, expressed through behavioral changes such as irregularities in sleep and appetite. Risk factors include genetic variation, mitochondrial dysfunction, lifestyle factors, poor gut microbiome health and abnormalities in hunger, satiety, and hedonistic function. Evidence suggests metabolic jet lag is a core component of BD pathophysiology, as individuals with BD frequently exhibit irregular eating rhythms and circadian desynchronization of their energetic metabolism, which is associated with unfavorable clinical outcomes. Although current diagnostic criteria lack any assessment of eating rhythms, technological advancements including mobile phone applications and ecological momentary assessment allow for the reliable tracking of biological rhythms. Overall, methodological refinement of metabolic jet lag assessment will increase knowledge in this field and stimulate the development of interventions targeting metabolic rhythms, such as time-restricted eating.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alexandra McDonald
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alexander Bambokian
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Fabiano A Gomes
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jacob Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Jennifer Fabe
- Department of Neurology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Roger S McIntyre
- Department of Psychiatry and Pharmacology, University of Toronto, The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Roumen Milev
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
- Department of Psychiatry, Providence Care Hospital, Kingston, ON, Canada
| | - Rodrigo B Mansur
- Department of Psychiatry and Pharmacology, University of Toronto, The Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Elisa Brietzke
- Centre for Neurosciences Studies (CNS), Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
41
|
Berk M, Köhler-Forsberg O, Turner M, Penninx BWJH, Wrobel A, Firth J, Loughman A, Reavley NJ, McGrath JJ, Momen NC, Plana-Ripoll O, O'Neil A, Siskind D, Williams LJ, Carvalho AF, Schmaal L, Walker AJ, Dean O, Walder K, Berk L, Dodd S, Yung AR, Marx W. Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023; 22:366-387. [PMID: 37713568 PMCID: PMC10503929 DOI: 10.1002/wps.21110] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Populations with common physical diseases - such as cardiovascular diseases, cancer and neurodegenerative disorders - experience substantially higher rates of major depressive disorder (MDD) than the general population. On the other hand, people living with MDD have a greater risk for many physical diseases. This high level of comorbidity is associated with worse outcomes, reduced adherence to treatment, increased mortality, and greater health care utilization and costs. Comorbidity can also result in a range of clinical challenges, such as a more complicated therapeutic alliance, issues pertaining to adaptive health behaviors, drug-drug interactions and adverse events induced by medications used for physical and mental disorders. Potential explanations for the high prevalence of the above comorbidity involve shared genetic and biological pathways. These latter include inflammation, the gut microbiome, mitochondrial function and energy metabolism, hypothalamic-pituitary-adrenal axis dysregulation, and brain structure and function. Furthermore, MDD and physical diseases have in common several antecedents related to social factors (e.g., socioeconomic status), lifestyle variables (e.g., physical activity, diet, sleep), and stressful live events (e.g., childhood trauma). Pharmacotherapies and psychotherapies are effective treatments for comorbid MDD, and the introduction of lifestyle interventions as well as collaborative care models and digital technologies provide promising strategies for improving management. This paper aims to provide a detailed overview of the epidemiology of the comorbidity of MDD and specific physical diseases, including prevalence and bidirectional risk; of shared biological pathways potentially implicated in the pathogenesis of MDD and common physical diseases; of socio-environmental factors that serve as both shared risk and protective factors; and of management of MDD and physical diseases, including prevention and treatment. We conclude with future directions and emerging research related to optimal care of people with comorbid MDD and physical diseases.
Collapse
Affiliation(s)
- Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Megan Turner
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Wrobel
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Amy Loughman
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola J Reavley
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Natalie C Momen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Adrienne O'Neil
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lana J Williams
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Adam J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lesley Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Seetal Dodd
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alison R Yung
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
42
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
43
|
Brivio P, Audano M, Gallo MT, Miceli E, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Mitro N, Calabrese F. Venlafaxine's effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization. Neuropsychopharmacology 2023; 48:1475-1483. [PMID: 37380799 PMCID: PMC10425382 DOI: 10.1038/s41386-023-01633-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Eleonora Miceli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
44
|
Nuñez NA, Coombes BJ, Melhuish Beaupre L, Romo-Nava F, Gardea-Resendez M, Ozerdem A, Veldic M, Singh B, Sanchez Ruiz JA, Cuellar-Barboza A, Leung JG, Prieto ML, McElroy SL, Biernacka JM, Frye MA. Antidepressant-Associated Treatment Emergent Mania: A Meta-Analysis to Guide Risk Modeling Pharmacogenomic Targets of Potential Clinical Value. J Clin Psychopharmacol 2023; 43:428-433. [PMID: 37683232 PMCID: PMC10476595 DOI: 10.1097/jcp.0000000000001747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/09/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND The purpose of this study was to review the association between the SLC6A4 5-HTTLPR polymorphism and antidepressant (AD)-associated treatment emergent mania (TEM) in bipolar disorder alongside starting a discussion on the merits of developing risk stratification models to guide when not to provide AD treatment for bipolar depression. METHODS Studies that examined the association between clinical and genetic risk factors, specifically monoaminergic transporter genetic variation, and TEM were identified. A meta-analysis was performed using the odds ratio to estimate the effect size under the Der-Simonian and Laird model. RESULTS Seven studies, referencing the SLC6A4 5-HTTLPR polymorphism and TEM (total N = 1578; TEM+ =594, TEM- = 984), of 142 identified articles were included. The time duration between the start of the AD to emergence of TEM ranged from 4 to 12 weeks. There was a nominally significant association between the s allele of the 5-HTTLPR polymorphism and TEM (odds ratio, 1.434; 95% confidence interval, 1.001-2.055; P = 0.0493; I2 = 52%). No studies have investigated norepinephrine or dopamine transporters. CONCLUSION Although the serotonin transporter genetic variation is commercially available in pharmacogenomic decision support tools, greater efforts, more broadly, should focus on complete genome-wide approaches to determine genetic variants that may contribute to TEM. Moreover, these data are exemplary to the merits of developing risk stratification models, which include both clinical and biological risk factors, to guide when not to use ADs in bipolar disorder. Future studies will need to validate new risk models that best inform the development of personalized medicine best practices treating bipolar depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marin Veldic
- From the Departments of Psychiatry and Psychology
| | | | | | | | | | - Miguel L. Prieto
- Department of Psychiatry, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Susan L. McElroy
- Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Joanna M. Biernacka
- From the Departments of Psychiatry and Psychology
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Mark A. Frye
- From the Departments of Psychiatry and Psychology
| |
Collapse
|
45
|
Karnecki K, Świerczyński J, Steiner J, Krzyżanowska M, Kaliszan M, Gos T. The left-lateralisation of citrate synthase activity in the anterior cingulate cortex of male violent suicide victims. Eur Arch Psychiatry Clin Neurosci 2023; 273:1225-1232. [PMID: 36350374 PMCID: PMC10449962 DOI: 10.1007/s00406-022-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The anterior cingulate cortex (AC) as a part of prefrontal cortex plays a crucial role in behavioural regulation, which is profoundly disturbed in suicide. Citrate synthase (CS) is a key enzyme of tricarboxylic acid cycle fundamental for brain energetics and neurotransmitter synthesis, which are deteriorated in suicidal behaviour. However, CS activity has not been yet studied in brain structures of suicide victims. CS activity assay was performed bilaterally on frozen samples of the rostral part of the AC of 24 violent suicide completers (21 males and 3 females) with unknown psychiatric diagnosis and 24 non-suicidal controls (20 males and 4 females). Compared to controls, suicide victims revealed decreased CS activity in the right AC, however, insignificant. Further statistical analysis of laterality index revealed the left-lateralisation of CS activity in the AC in male suicides compared to male controls (U-test P = 0.0003, corrected for multiple comparisons). The results were not confounded by postmortem interval, blood alcohol concentration, age, and brain weight. Our findings suggest that disturbed CS activity in the AC plays a role in suicide pathogenesis and correspond with our previous morphological and molecular studies of prefrontal regions in suicide.
Collapse
Affiliation(s)
- Karol Karnecki
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | | | - Johann Steiner
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland.
| |
Collapse
|
46
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
47
|
Khanra S, Reddy P, Giménez-Palomo A, Park CHJ, Panizzutti B, McCallum M, Arumugham SS, Umesh S, Debnath M, Das B, Venkatasubramanian G, Ashton M, Turner A, Dean OM, Walder K, Vieta E, Yatham LN, Pacchiarotti I, Reddy YCJ, Goyal N, Kesavan M, Colomer L, Berk M, Kim JH. Metabolic regulation to treat bipolar depression: mechanisms and targeting by trimetazidine. Mol Psychiatry 2023; 28:3231-3242. [PMID: 37386057 PMCID: PMC10618096 DOI: 10.1038/s41380-023-02134-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Bipolar disorder's core feature is the pathological disturbances in mood, often accompanied by disrupted thinking and behavior. Its complex and heterogeneous etiology implies that a range of inherited and environmental factors are involved. This heterogeneity and poorly understood neurobiology pose significant challenges to existing drug development paradigms, resulting in scarce treatment options, especially for bipolar depression. Therefore, novel approaches are needed to discover new treatment options. In this review, we first highlight the main molecular mechanisms known to be associated with bipolar depression-mitochondrial dysfunction, inflammation and oxidative stress. We then examine the available literature for the effects of trimetazidine in said alterations. Trimetazidine was identified without a priori hypothesis using a gene-expression signature for the effects of a combination of drugs used to treat bipolar disorder and screening a library of off-patent drugs in cultured human neuronal-like cells. Trimetazidine is used to treat angina pectoris for its cytoprotective and metabolic effects (improved glucose utilization for energy production). The preclinical and clinical literature strongly support trimetazidine's potential to treat bipolar depression, having anti-inflammatory and antioxidant properties while normalizing mitochondrial function only when it is compromised. Further, trimetazidine's demonstrated safety and tolerability provide a strong rationale for clinical trials to test its efficacy to treat bipolar depression that could fast-track its repurposing to address such an unmet need as bipolar depression.
Collapse
Affiliation(s)
- Sourav Khanra
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Preethi Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Chun Hui J Park
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Madeleine McCallum
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Shreekantiah Umesh
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Monojit Debnath
- Department of Human Genetics, NIMHANS, Bengaluru, Karnataka, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Melanie Ashton
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alyna Turner
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia M Dean
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Y C Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | - Muralidharan Kesavan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Lluc Colomer
- Bipolar and Depressive Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Biomedical Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Jee Hyun Kim
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
48
|
Dragasek J, Minar M, Valkovic P, Pallayova M. Factors associated with psychiatric and physical comorbidities in bipolar disorder: a nationwide multicenter cross-sectional observational study. Front Psychiatry 2023; 14:1208551. [PMID: 37559916 PMCID: PMC10407573 DOI: 10.3389/fpsyt.2023.1208551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic and disabling affective disorder with significant morbidity and mortality. Despite the high rate of psychiatric and physical health comorbidity, little is known about the complex interrelationships between clinical features of bipolar illness and comorbid conditions. The present study sought to examine, quantify and characterize the cross-sectional associations of psychiatric and physical comorbidities with selected demographic and clinical characteristics of adults with BD. METHODS A nationwide multicenter cross-sectional observational epidemiological study conducted from October 2015 to March 2017 in Slovakia. RESULTS Out of 179 study participants [median age 49 years (interquartile range IQR 38-58); 57.5% females], 22.4% were free of comorbidity, 42.5% had both psychiatric and physical comorbidities, 53.6% at least one psychiatric comorbidity, and 66.5% at least one physical comorbidity. The most prevalent were the essential hypertension (33.5%), various psychoactive substance-related disorders (21.2%), specific personality disorders (14.6%), obesity (14.5%), and disorders of lipoprotein metabolism (14%). The presence of an at least one physical comorbidity, atypical symptoms of BD, and unemployed status were each associated with an at least one psychiatric comorbidity independent of sex, early onset of BD (age of onset <35 years), BD duration and pattern of BD illness progression (p < 0.001). The presence of various psychoactive substance-related disorders, BD duration, atypical symptoms of BD, unemployed status, pension, female sex, and not using antipsychotics were each associated with an at least one physical comorbidity independent of the pattern of BD illness progression (p < 0.001). In several other multiple regression models, the use of antipsychotics (in particular, olanzapine) was associated with a decreased probability of the essential hypertension and predicted the clinical phenotype of comorbidity-free BD (p < 0.05). CONCLUSION This cross-national study has reported novel estimates and clinical correlates related to both the comorbidity-free phenotype and the factors associated with psychiatric and physical comorbidities in adults with BD in Slovakia. The findings provide new insights into understanding of the clinical presentation of BD that can inform clinical practice and further research to continue to investigate potential mechanisms of BD adverse outcomes and disease complications onset.
Collapse
Affiliation(s)
- Jozef Dragasek
- 1st Department of Psychiatry, University Hospital of Louis Pasteur and Pavol Jozef Safarik University Faculty of Medicine, Kosice, Slovakia
| | - Michal Minar
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia
| | - Peter Valkovic
- 2nd Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, University Hospital Bratislava, Bratislava, Slovakia
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Pallayova
- 1st Department of Psychiatry, University Hospital of Louis Pasteur and Pavol Jozef Safarik University Faculty of Medicine, Kosice, Slovakia
- Department of Human Physiology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| |
Collapse
|
49
|
Tachi R, Ohi K, Nishizawa D, Soda M, Fujikane D, Hasegawa J, Kuramitsu A, Takai K, Muto Y, Sugiyama S, Kitaichi K, Hashimoto R, Ikeda K, Shioiri T. Mitochondrial genetic variants associated with bipolar disorder and Schizophrenia in a Japanese population. Int J Bipolar Disord 2023; 11:26. [PMID: 37477801 PMCID: PMC10361950 DOI: 10.1186/s40345-023-00307-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) are complex psychotic disorders (PSY), with both environmental and genetic factors including possible maternal inheritance playing a role. Some studies have investigated whether genetic variants in the mitochondrial chromosome are associated with BD and SZ. However, the genetic variants identified as being associated are not identical among studies, and the participants were limited to individuals of European ancestry. Here, we investigate associations of genome-wide genetic variants in the mitochondrial chromosome with BD, SZ, and PSY in a Japanese population. METHODS After performing quality control for individuals and genetic variants, we investigated whether mitochondrial genetic variants [minor allele frequency (MAF) > 0.01, n = 45 variants) are associated with BD, SZ, and PSY in 420 Japanese individuals consisting of patients with BD (n = 51), patients with SZ (n = 172), and healthy controls (HCs, n = 197). RESULTS Of mitochondrial genetic variants, three (rs200478835, rs200044200 and rs28359178 on or near NADH dehydrogenase) and one (rs200478835) were significantly associated with BD and PSY, respectively, even after correcting for multiple comparisons (PGC=0.045-4.9 × 10- 3). In particular, individuals with the minor G-allele of rs200044200, a missense variant, were only observed among patients with BD (MAF = 0.059) but not HCs (MAF = 0) (odds ratio=∞). Three patients commonly had neuropsychiatric family histories. CONCLUSIONS We suggest that mitochondrial genetic variants in NADH dehydrogenase-related genes may contribute to the pathogenesis of BD and PSY in the Japanese population through dysfunction of energy production.
Collapse
Affiliation(s)
- Ryobu Tachi
- School of Medicine, Gifu University, Gifu, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan.
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Midori Soda
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
50
|
Liebers DT, Ebina W, Iosifescu DV. Sodium-Glucose Cotransporter-2 Inhibitors in Depression. Harv Rev Psychiatry 2023; 31:214-221. [PMID: 37437254 DOI: 10.1097/hrp.0000000000000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
ABSTRACT Novel treatment strategies that refract existing treatment algorithms for depressive disorders are being sought. Abnormal brain bioenergetic metabolism may represent an alternative, therapeutically targetable neurobiological basis for depression. A growing body of research points to endogenous ketones as candidate neuroprotective metabolites with the potential to enhance brain bioenergetics and improve mood. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for the treatment of diabetes, induce ketogenesis and are associated with mood improvement in population-based studies. In this column, we highlight the rationale for the hypothesis that ketogenesis induced by SGLT2 inhibitors may be an effective treatment for depressive disorders.
Collapse
Affiliation(s)
- David T Liebers
- From Department of Psychiatry, New York University Grossman School of Medicine (Drs. Liebers and Iosifescu); Division of Hematology and Medical Oncology, New York University Grossman School of Medicine (Dr. Ebina); Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY (Dr. Iosifescu)
| | | | | |
Collapse
|