1
|
Ma D, Li L, Liu W, Xu J. The impact of postoperative pain interventions on circadian rhythm disruptions: mechanisms and clinical implications. Front Neurosci 2025; 19:1543421. [PMID: 40356701 PMCID: PMC12066642 DOI: 10.3389/fnins.2025.1543421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Postoperative pain is a prevalent clinical issue that significantly impacts patient recovery, making its management crucial for rehabilitation. Recent studies have shown that postoperative pain not only affects the physiological state of patients but may also disrupt their circadian rhythms, leading to decreased sleep quality and physiological dysfunctions. This review aims to explore the effects of postoperative pain interventions on circadian rhythm disturbances, analyze the underlying mechanisms, and summarize the effective strategies currently used in clinical practice. Through a comprehensive analysis of the relevant literature, we will highlight the importance of pain management during the recovery process and emphasize its potential role in regulating circadian rhythms. Pharmacological treatments like NSAIDs and melatonin have shown efficacy in regulating circadian rhythms and improving sleep quality in postoperative patients. Multimodal analgesia combining pharmacological and non-pharmacological methods (e.g., CBT, acupuncture) can optimize pain relief while minimizing side effects. However, further research is needed to clarify the bidirectional relationship between pain perception and circadian rhythms and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Dongmei Ma
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Wei Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Liu YQ, Sun JL, Jing M, Liu GX, Shi J, Zhu XW, Wang F, Ye MH. Effects of positive psychological control intervention on sleep and psychology of officers and soldiers working at sea. World J Psychiatry 2024; 14:1538-1546. [DOI: 10.5498/wjp.v14.i10.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 09/12/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND The working environment of submarine crews is also very special. They are in a closed, high-temperature, high-noise, high-vibration and narrow working and living space for a long time, and they suffer from physical discomfort caused by seasickness, which will affect the mental health of officers and soldiers. American psychologists have achieved positive results in psychological resilience training for officers and soldiers from the perspective of positive psychology. At present, there are few reports on the correlation between psychological resilience in the field of domestic research on submarine crew psychology, and it is necessary to conduct further research.
AIM To explore the impact of active psychological regulation intervention on officers and soldiers operating in confined spaces at sea.
METHODS A total of 121 soldiers working in a confined space of a large ship were randomly divided into an experimental group and a control group. The 50 soldiers in the experimental group were given a training course intervention, while the 71 soldiers in the control group did not receive any intervention measures. The Pittsburgh Sleep Quality Index, Psychological Resilience Scale, military Psychological Stress Self-Assessment Questionnaire, and General Self-Efficacy Scale scores were compared before and 6 months after the intervention.
RESULTS Under the positive psychological control intervention, except for sleep efficiency (P = 0.05), the difference between the remaining dimensions of the Pittsburgh Sleep Quality Index scores and the total scores of the experimental group compared with the control group was statistically significant (P < 0.05); the assessment of the psychological condition showed that, in addition to the Psychological Stress Self-assessment Questionnaire for Military Personnel scores (P = 0.05), the scores of the Mental Toughness Scale (Dispositional Resilience Scale Resilience II) in the experimental group, General Self-Efficacy Scale scores were statistically significant (P < 0.05) compared to pre-intervention.
CONCLUSION Positive psychological intervention and control can improve the sleep state and psychological state of officers and soldiers working in confined space at sea.
Collapse
Affiliation(s)
- Yu-Qing Liu
- Department of Emergency Medicine, Naval Specialty Medical Center, Shanghai 200052, China
| | - Jian-Liang Sun
- Department of Emergency Medicine, Naval Specialty Medical Center, Shanghai 200052, China
| | - Mei Jing
- Department of Emergency Medicine, Naval Specialty Medical Center, Shanghai 200052, China
| | - Guo-Xiang Liu
- Department of Nursing, Naval Medical University, Shanghai 200052, China
| | - Jie Shi
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Xue-Wei Zhu
- Department of Emergency Medicine, Naval Specialty Medical Center, Shanghai 200052, China
| | - Fei Wang
- Department of Emergency Medicine, Naval Specialty Medical Center, Shanghai 200052, China
| | - Mei-Hua Ye
- Department of Emergency Medicine, Naval Specialty Medical Center, Shanghai 200052, China
| |
Collapse
|
3
|
Barone M, Martucci M, Sciara G, Conte M, Medina LSJ, Iattoni L, Miele F, Fonti C, Franceschi C, Brigidi P, Salvioli S, Provini F, Turroni S, Santoro A. Towards a personalized prediction, prevention and therapy of insomnia: gut microbiota profile can discriminate between paradoxical and objective insomnia in post-menopausal women. EPMA J 2024; 15:471-489. [PMID: 39239112 PMCID: PMC11371979 DOI: 10.1007/s13167-024-00369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Background Insomnia persists as a prevalent sleep disorder among middle-aged and older adults, significantly impacting quality of life and increasing susceptibility to age-related diseases. It is classified into objective insomnia (O-IN) and paradoxical insomnia (P-IN), where subjective and objective sleep assessments diverge. Current treatment regimens for both patient groups yield unsatisfactory outcomes. Consequently, investigating the neurophysiological distinctions between P-IN and O-IN is imperative for devising novel precision interventions aligned with primary prediction, targeted prevention, and personalized medicine (PPPM) principles.Working hypothesis and methodology.Given the emerging influence of gut microbiota (GM) on sleep physiology via the gut-brain axis, our study focused on characterizing the GM profiles of a well-characterized cohort of 96 Italian postmenopausal women, comprising 54 insomniac patients (18 O-IN and 36 P-IN) and 42 controls, through 16S rRNA amplicon sequencing. Associations were explored with general and clinical history, sleep patterns, stress, hematobiochemical parameters, and nutritional patterns. Results Distinctive GM profiles were unveiled between O-IN and P-IN patients. O-IN patients exhibited prominence in the Coriobacteriaceae family, including Collinsella and Adlercreutzia, along with Erysipelotrichaceae, Clostridium, and Pediococcus. Conversely, P-IN patients were mainly discriminated by Bacteroides, Staphylococcus, Carnobacterium, Pseudomonas, and respective families, along with Odoribacter. Conclusions These findings provide valuable insights into the microbiota-mediated mechanism of O-IN versus P-IN onset. GM profiling may thus serve as a tailored stratification criterion, enabling the identification of women at risk for specific insomnia subtypes and facilitating the development of integrated microbiota-based predictive diagnostics, targeted prevention, and personalized therapies, ultimately enhancing clinical effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00369-1.
Collapse
Affiliation(s)
- Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Giuseppe Sciara
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Lorenzo Iattoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Filomena Miele
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Fonti
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Pandi-Perumal SR, Saravanan KM, Paul S, Namasivayam GP, Chidambaram SB. Waking Up the Sleep Field: An Overview on the Implications of Genetics and Bioinformatics of Sleep. Mol Biotechnol 2024; 66:919-931. [PMID: 38198051 DOI: 10.1007/s12033-023-01009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Sleep genetics is an intriguing, as yet less understood, understudied, emerging area of biological and medical discipline. A generalist may not be aware of the current status of the field given the variety of journals that have published studies on the genetics of sleep and the circadian clock over the years. For researchers venturing into this fascinating area, this review thus includes fundamental features of circadian rhythm and genetic variables impacting sleep-wake cycles. Sleep/wake pathway medication exposure and susceptibility are influenced by genetic variations, and the responsiveness of sleep-related medicines is influenced by several functional polymorphisms. This review highlights the features of the circadian timing system and then a genetic perspective on wakefulness and sleep, as well as the relationship between sleep genetics and sleep disorders. Neurotransmission genes, as well as circadian and sleep/wake receptors, exhibit functional variability. Experiments on animals and humans have shown that these genetic variants impact clock systems, signaling pathways, nature, amount, duration, type, intensity, quality, and quantity of sleep. In this regard, the overview covers research on sleep genetics, the genomic properties of several popular model species used in sleep studies, homologs of mammalian genes, sleep disorders, and related genes. In addition, the study includes a brief discussion of sleep, narcolepsy, and restless legs syndrome from the viewpoint of a model organism. It is suggested that the understanding of genetic clues on sleep function and sleep disorders may, in future, result in an evidence-based, personalized treatment of sleep disorders.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Ganesh Pandian Namasivayam
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), A210, Kyoto University Institute for Advanced Study, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Saravana Babu Chidambaram
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Special Interest Group - Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
5
|
Franzago M, Borrelli P, Cavallo P, Di Tizio L, Gazzolo D, Di Nicola M, Stuppia L, Vitacolonna E. Circadian Gene Variants: Effects in Overweight and Obese Pregnant Women. Int J Mol Sci 2024; 25:3838. [PMID: 38612648 PMCID: PMC11011577 DOI: 10.3390/ijms25073838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and overweight are common and complex conditions influenced by multiple genetic and environmental factors. Several genetic variants located in the genes involved in clock systems and fat taste perception can affect metabolic health. In particular, the polymorphisms in CLOCK and BMAL1 genes were reported to be significantly related to cardiovascular disease, metabolic syndrome, sleep reduction, and evening preference. Moreover, genetic variants in the CD36 gene have been shown to be involved in lipid metabolism, regulation of fat intake, and body weight regulation. The aim of this study is to evaluate, for the first time, the association between variants in some candidate genes (namely, BMAL1 rs7950226 (G>A), CLOCK rs1801260 (A>G), CLOCK rs4864548 (G>A), CLOCK rs3736544 (G>A), CD36 rs1984112 (A>G), CD36 rs1761667 (G>A)) and overweight/obesity (OB) in pregnant women. A total of 163 normal-weight (NW) and 128 OB participants were included. A significant correlation was observed between A-allele in CLOCK rs4864548 and an increased risk of obesity (OR: 1.97; 95% CI 1.22-3.10, p = 0.005). In addition, we found that subjects carrying the haplotype of rs1801260-A, rs4864548-A, and rs3736544-G are likely to be overweight or obese (OR 1.47, 95% CI 1.03-2.09, p = 0.030), compared with those with other haplotypes. Moreover, a significant relation was observed between third-trimester lipid parameters and genetic variants-namely, CD36 rs1984112, CD36 rs1761667, BMAL1 rs7950226, and CLOCK rs1801260. A multivariate logistic regression model revealed that CLOCK rs4864548 A-allele carriage was a strong risk factor for obesity (OR 2.05, 95% CI 1.07-3.93, p = 0.029); on the other hand, greater adherence to Mediterranean diet (OR 0.80, 95% CI 0.65-0.98, p = 0.038) and higher HDL levels (OR 0.96, 95% CI 0.94-0.99, p = 0.021) were related to a reduced risk of obesity. Interestingly, an association between maternal CLOCK rs4864548 and neonatal birthweight was detected (p = 0.025). These data suggest a potential role of the polymorphisms in clock systems and in fat taste perception in both susceptibility to overweight/obesity and influencing the related metabolic traits in pregnant women.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Pierluigi Cavallo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
| | - Luciano Di Tizio
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Diego Gazzolo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
- Neonatal Intensive Care Unit, “G. D’Annunzio” University, 66100 Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (P.C.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
6
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
7
|
Xu W, Mu R, Gegen T, Ran T, Wu Q, Wen D, Wang F, Chen Z. Transcriptome analysis of hypothalamus and pituitary tissues reveals genetic mechanisms associated with high egg production rates in Changshun green-shell laying hens. BMC Genomics 2023; 24:792. [PMID: 38124055 PMCID: PMC10734086 DOI: 10.1186/s12864-023-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Changshun green-shell laying hens are unique to the Guizhou Province, China, and have high egg quality but relatively low yield. Egg production traits are regulated by the hypothalamus-pituitary-ovary axis. However, the underlying mechanism remains unclear. Thus, we conducted RNA sequencing of hypothalamic and pituitary tissues from low- and high-yielding Changshun green-shell laying hens to identify critical pathways and candidate genes involved in controlling the egg production rate. RESULTS More than 39 million clean reads per sample were obtained, and more than 82% were mapped to the Gallus gallus genome. Further analysis identified 1,817 and 1,171 differentially expressed genes (DEGs) in the hypothalamus and pituitary, respectively. Nineteen DEGs were upregulated in both the hypothalamus and pituitary of high-yielding chickens. The functions of these DEGs were mainly associated with ion transport or signal transduction. Gene set enrichment analysis revealed that the pathways enriched in the hypothalamus were mainly associated with gonadotropin-releasing hormone (GnRH) secretion, neurotransmitter release, and circadian rhythms. The pathways enriched in the pituitary were mainly associated with GnRH secretion, energy metabolism, and signal transduction. Five and four DEGs in the hypothalamus and pituitary, respectively, were selected randomly for qRT-PCR analysis. The expression trends determined via qRT-PCR were consistent with the RNA-seq results. CONCLUSIONS The current study identified 19 DEGs upregulated in both the hypothalamus and pituitary gland, which could provide an important reference for further studies on the molecular mechanisms underlying egg production in Changshun green-shell laying hens. In addition, enrichment analysis showed that GnRH secretion and signal transduction, especially neurotransmitter release, play crucial roles in the regulation of egg production.
Collapse
Affiliation(s)
- Wenbin Xu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| | - Tuya Gegen
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- Library, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Tiantian Ran
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Qi Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| |
Collapse
|
8
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
9
|
Shirakawa Y, Ohno SN, Yamagata KA, Kuramoto E, Oda Y, Nakamura TJ, Nakamura W, Sugimura M. Circadian rhythm of PERIOD2::LUCIFERASE expression in the trigeminal ganglion of mice. Front Neurosci 2023; 17:1142785. [PMID: 37056311 PMCID: PMC10086191 DOI: 10.3389/fnins.2023.1142785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionThe trigeminal nerve conveys delicate sensations such as warmth, pain, and tactile pressure in the oral and facial regions, and most trigeminal afferent cell bodies are located in the trigeminal ganglion. Our previous study has shown that sensations in trigeminal nerve innervated areas, specifically in the maxillofacial region, exhibit diurnal variation and that sensitivity changes time-dependently. In this study, we aimed to clarify the rhythm of expression of clock gene in the trigeminal ganglion of mice to elucidate the mechanism of circadian regulation in the same area.MethodsImmunohistochemistry examined the expression of the PER2 protein in the suprachiasmatic nucleus and trigeminal ganglion of wild-type mice. To measure gene expression as bioluminescence, PERIOD2::LUCIFERASE knock-in (PER2::LUC) mice were used. Unilateral trigeminal ganglion and brain sections including the suprachiasmatic nucleus were incubated ex vivo. Bioluminescence levels were then measured using a highly sensitive photodetector. The same experiments were then conducted with Cry1 gene-deficient (Cry1−/−) or Cry2 gene-deficient (Cry2−/−) mice.ResultsIn the trigeminal ganglion, immunohistochemistry localized PER2 protein expression within the neuronal cell body. Mouse trigeminal ganglion ex vivo tissues showed distinct circadian oscillations in PER2::LUC levels in all genotypes, wild-type, Cry1−/−, and Cry2−/−. The period was shorter in the trigeminal ganglion than in the suprachiasmatic nucleus; it was shorter in Cry1−/− and longer in Cry2−/− mice than in the wild-type mice.ConclusionThe expression of Per2 in neurons of the trigeminal ganglion in ex vivo culture and the oscillation in a distinct circadian rhythm suggests that the trigeminal ganglion is responsible for the relay of sensory inputs and temporal gating through autonomous circadian oscillations.
Collapse
Affiliation(s)
- Yukie Shirakawa
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi N. Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- *Correspondence: Sachi N. Ohno,
| | - Kanae A. Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiaki Oda
- Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro J. Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Wataru Nakamura
- Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Mitsutaka Sugimura,
| |
Collapse
|
10
|
Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
11
|
Liu C, Liu Y, Xin Y, Wang Y. Circadian secretion rhythm of GLP-1 and its influencing factors. Front Endocrinol (Lausanne) 2022; 13:991397. [PMID: 36531506 PMCID: PMC9755352 DOI: 10.3389/fendo.2022.991397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian rhythm is an inherent endogenous biological rhythm in living organisms. However, with the improvement of modern living standards, many factors such as prolonged artificial lighting, sedentarism, short sleep duration, intestinal flora and high-calorie food intake have disturbed circadian rhythm regulation on various metabolic processes, including GLP-1 secretion, which plays an essential role in the development of various metabolic diseases. Herein, we focused on GLP-1 and its circadian rhythm to explore the factors affecting GLP-1 circadian rhythm and its potential mechanisms and propose some feasible suggestions to improve GLP-1 secretion.
Collapse
|