1
|
Ulusoy-Gezer HG, Rakıcıoğlu N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr Nutr Rep 2024; 13:455-477. [PMID: 38806863 PMCID: PMC11327204 DOI: 10.1007/s13668-024-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW: The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
Collapse
Affiliation(s)
- Hande Gül Ulusoy-Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye
| | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
| |
Collapse
|
2
|
Psatha A, Al-Mahayri ZN, Mitropoulou C, Patrinos GP. Meta-analysis of genomic variants in power and endurance sports to decode the impact of genomics on athletic performance and success. Hum Genomics 2024; 18:47. [PMID: 38760851 PMCID: PMC11102131 DOI: 10.1186/s40246-024-00621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Association between genomic variants and athletic performance has seen a high degree of controversy, as there is often conflicting data as far as the association of genomic variants with endurance, speed and strength is concerned. Here, findings from a thorough meta-analysis from 4228 articles exploring the association of genomic variants with athletic performance in power and endurance sports are summarized, aiming to confirm or overrule the association of genetic variants with athletic performance of all types. From the 4228 articles, only 107 were eligible for further analysis, including 37 different genes. From these, there were 21 articles for the ACE gene, 29 articles for the ACTN3 gene and 8 articles for both the ACE and ACTN3 genes, including 54,382 subjects in total, from which 11,501 were endurance and power athletes and 42,881 control subjects. These data show that there is no statistically significant association between genomic variants and athletic performance either for endurance or power sports, underlying the fact that it is highly risky and even unethical to make such genetic testing services for athletic performance available to the general public. Overall, a strict regulatory monitoring should be exercised by health and other legislative authorities to protect the public from such services from an emerging discipline that still lacks the necessary scientific evidence and subsequent regulatory approval.
Collapse
Affiliation(s)
- Aikaterini Psatha
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04, Patras, Greece
| | | | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04, Patras, Greece.
- Clinical Bioinformatics Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Batheja S, Schopp EM, Pappas S, Ravuri S, Persky S. Characterizing Precision Nutrition Discourse on Twitter: Quantitative Content Analysis. J Med Internet Res 2023; 25:e43701. [PMID: 37824190 PMCID: PMC10603558 DOI: 10.2196/43701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND It is possible that tailoring dietary approaches to an individual's genomic profile could provide optimal dietary inputs for biological functioning and support adherence to dietary management protocols. The science required for such nutrigenetic and nutrigenomic profiling is not yet considered ready for broad application by the scientific and medical communities; however, many personalized nutrition products are available in the marketplace, creating the potential for hype and misleading information on social media. Twitter provides a unique big data source that provides real-time information. Therefore, it has the potential to disseminate evidence-based health information, as well as misinformation. OBJECTIVE We sought to characterize the landscape of precision nutrition content on Twitter, with a specific focus on nutrigenetics and nutrigenomics. We focused on tweet authors, types of content, and presence of misinformation. METHODS Twitter Archiver was used to capture tweets from September 1, 2020, to December 1, 2020, using keywords related to nutrition and genetics. A random sample of tweets was coded using quantitative content analysis by 4 trained coders. Codebook-driven, quantified information about tweet authors, content details, information quality, and engagement metrics were compiled and analyzed. RESULTS The most common categories of tweets were precision nutrition products and nutrigenomic concepts. About a quarter (132/504, 26.2%) of tweet authors presented themselves as science experts, medicine experts, or both. Nutrigenetics concepts most frequently came from authors with science and medicine expertise, and tweets about the influence of genes on weight were more likely to come from authors with neither type of expertise. A total of 14.9% (75/504) of the tweets were noted to contain untrue information; these were most likely to occur in the nutrigenomics concepts topic category. CONCLUSIONS By evaluating social media discourse on precision nutrition on Twitter, we made several observations about the content available in the information environment through which individuals can learn about related concepts and products. Tweet content was consistent with the indicators of medical hype, and the inclusion of potentially misleading and untrue information was common. We identified a contingent of users with scientific and medical expertise who were active in discussing nutrigenomics concepts and products and who may be encouraged to share credible expert advice on precision nutrition and tackle false information as this technology develops.
Collapse
Affiliation(s)
- Sapna Batheja
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, United States
| | - Emma M Schopp
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Samantha Pappas
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA, United States
| | - Siri Ravuri
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Susan Persky
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD, United States
| |
Collapse
|
5
|
Ray SK, Mukherjee S. Nutrigenomics and Life Style Facet- A Modulatory Molecular Evidence in Progression of Breast and Colon Cancer with Emerging Importance. Curr Mol Med 2021; 22:336-348. [PMID: 33797366 DOI: 10.2174/1566524021666210331151323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Legitimate nutrition assumes a significant role in preventing diseases and, in this way, nutritional interventions establish vital strategies in the area of public health. Nutrigenomics centres on the different genes and diet in an individual and how an individual's genes influence the reaction to bioactive foodstuff. It targets considering the genetic and epigenetic interactions with nutrients to lead to a phenotypic alteration and consequently to metabolism, differentiation, or even apoptosis. Nutrigenomics and lifestyle factors play a vital role in health management and represent an exceptional prospect for the improvement of personalized diets to the individual at risk of developing diseases like cancer. Concerning cancer as a multifactorial genetic ailment, several aspects need to be investigated and analysed. Various perspectives should be researched and examined regarding the development and prognosis of breast and colon cancer. Malignant growth occurrence is anticipated to upsurge in the impending days, and an effective anticipatory strategy is required. The effect of dietary components, basically studied by nutrigenomics, looks at gene expression and molecular mechanisms. It also interrelates bioactive compounds and nutrients because of different 'omics' innovations. Several preclinical investigations demonstrate the pertinent role of nutrigenomics in breast and colon cancer, and change of dietary propensities is conceivably a successful methodology for reducing cancer risk. The connection between the genomic profile of patients with breast or colon cancer and their supplement intake, it is conceivable to imagine an idea of personalized medicine, including nutrition and medicinal services.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
6
|
Impact of the SARS-CoV-2 on the Italian Agri-Food Sector: An Analysis of the Quarter of Pandemic Lockdown and Clues for a Socio-Economic and Territorial Restart. SUSTAINABILITY 2020. [DOI: 10.3390/su12145651] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent outbreak of a new Coronavirus has developed into a global pandemic with about 10.5 million reported cases and over 500,000 deaths worldwide. Our prospective paper reports an updated analysis of the impact that this pandemic had on the Italian agri-food sector during the national lockdown and discusses why and how this unprecedented economic crisis could be a turning point to deal with the overall sustainability of food and agricultural systems in the frame of the forthcoming European Green Deal. Its introductory part includes a wide-ranging examination of the first quarter of pandemic emergency, with a specific focus on the primary production, to be understood as agriculture (i.e., crops and livestock, and their food products), fisheries, and forestry. The effect on the typical food and wine exports, and the local environment tourism segments is also taken into account in this analysis, because of their old and deep roots into the cultural and historical heritage of the country. The subsequent part of the paper is centered on strategic lines and research networks for an efficient socio-economic and territorial restart, and a faster transition to sustainability in the frame of a circular bio-economy. Particular emphasis is given to the urgent need of investments in research and development concerning agriculture, in terms of not only a fruitful penetration of the agro-tech for a next-generation agri-food era, but also a deeper attention to the natural and environmental resources, including forestry. As for the rest of Europe, Italy demands actions to expand knowledge and strengthen research applied to technology transfer for innovation activities aimed at providing solutions for a climate neutral and resilient society, in reference to primary production to ensure food security and nutrition quality. Our expectation is that science and culture return to play a central role in national society, as their main actors are capable of making a pivotal contribution to renew and restart the whole primary sector and agri-food industry, addressing also social and environmental issues, and so accelerating the transition to sustainability.
Collapse
|