1
|
Kamath J, Leon Barriera R, Jain N, Keisari E, Wang B. Digital phenotyping in depression diagnostics: Integrating psychiatric and engineering perspectives. World J Psychiatry 2022; 12:393-409. [PMID: 35433319 PMCID: PMC8968499 DOI: 10.5498/wjp.v12.i3.393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Depression is a serious medical condition and is a leading cause of disability worldwide. Current depression diagnostics and assessment has significant limitations due to heterogeneity of clinical presentations, lack of objective assessments, and assessments that rely on patients' perceptions, memory, and recall. Digital phenotyping (DP), especially assessments conducted using mobile health technologies, has the potential to greatly improve accuracy of depression diagnostics by generating objectively measurable endophenotypes. DP includes two primary sources of digital data generated using ecological momentary assessments (EMA), assessments conducted in real-time, in subjects' natural environment. This includes active EMA, data that require active input by the subject, and passive EMA or passive sensing, data passively and automatically collected from subjects' personal digital devices. The raw data is then analyzed using machine learning algorithms to identify behavioral patterns that correlate with patients' clinical status. Preliminary investigations have also shown that linguistic and behavioral clues from social media data and data extracted from the electronic medical records can be used to predict depression status. These other sources of data and recent advances in telepsychiatry can further enhance DP of the depressed patients. Success of DP endeavors depends on critical contributions from both psychiatric and engineering disciplines. The current review integrates important perspectives from both disciplines and discusses parameters for successful interdisciplinary collaborations. A clinically-relevant model for incorporating DP in clinical setting is presented. This model, based on investigations conducted by our group, delineates development of a depression prediction system and its integration in clinical setting to enhance depression diagnostics and inform the clinical decision making process. Benefits, challenges, and opportunities pertaining to clinical integration of DP of depression diagnostics are discussed from interdisciplinary perspectives.
Collapse
Affiliation(s)
- Jayesh Kamath
- Department of Psychiatry and Immunology, University of Connecticut School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut Health Center, Farmington, CT 06032, United States
| | - Roberto Leon Barriera
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut Health Center, Farmington, CT 06032, United States
| | - Neha Jain
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut Health Center, Farmington, CT 06032, United States
| | - Efraim Keisari
- Department of Psychiatry, University of Connecticut School of Medicine, University of Connecticut Health Center, Farmington, CT 06032, United States
| | - Bing Wang
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|
2
|
Leong QY, Sridhar S, Blasiak A, Tadeo X, Yeo G, Remus A, Ho D. Characteristics of Mobile Health Platforms for Depression and Anxiety: Content Analysis Through a Systematic Review of the Literature and Systematic Search of Two App Stores. J Med Internet Res 2022; 24:e27388. [PMID: 35119370 PMCID: PMC8857696 DOI: 10.2196/27388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/05/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Mobile health (mHealth) platforms show promise in the management of mental health conditions such as anxiety and depression. This has resulted in an abundance of mHealth platforms available for research or commercial use. Objective The objective of this review is to characterize the current state of mHealth platforms designed for anxiety or depression that are available for research, commercial use, or both. Methods A systematic review was conducted using a two-pronged approach: searching relevant literature with prespecified search terms to identify platforms in published research and simultaneously searching 2 major app stores—Google Play Store and Apple App Store—to identify commercially available platforms. Key characteristics of the mHealth platforms were synthesized, such as platform name, targeted condition, targeted group, purpose, technology type, intervention type, commercial availability, and regulatory information. Results The literature and app store searches yielded 169 and 179 mHealth platforms, respectively. Most platforms developed for research purposes were designed for depression (116/169, 68.6%), whereas the app store search reported a higher number of platforms developed for anxiety (Android: 58/179, 32.4%; iOS: 27/179, 15.1%). The most common purpose of platforms in both searches was treatment (literature search: 122/169, 72.2%; app store search: 129/179, 72.1%). With regard to the types of intervention, cognitive behavioral therapy and referral to care or counseling emerged as the most popular options offered by the platforms identified in the literature and app store searches, respectively. Most platforms from both searches did not have a specific target age group. In addition, most platforms found in app stores lacked clinical and real-world evidence, and a small number of platforms found in the published research were available commercially. Conclusions A considerable number of mHealth platforms designed for anxiety or depression are available for research, commercial use, or both. The characteristics of these mHealth platforms greatly vary. Future efforts should focus on assessing the quality—utility, safety, and effectiveness—of the existing platforms and providing developers, from both commercial and research sectors, a reporting guideline for their platform description and a regulatory framework to facilitate the development, validation, and deployment of effective mHealth platforms.
Collapse
Affiliation(s)
- Qiao Ying Leong
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shreya Sridhar
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Agata Blasiak
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xavier Tadeo
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - GeckHong Yeo
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alexandria Remus
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore, Singapore
| | - Dean Ho
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Health District @ Queenstown, Singapore, Singapore
| |
Collapse
|