1
|
McCann A, Xu E, Yen FY, Joseph N, Fang Q. Creating anatomically derived, standardized, customizable, and three-dimensional printable head caps for functional neuroimaging. NEUROPHOTONICS 2025; 12:015016. [PMID: 40104430 PMCID: PMC11915464 DOI: 10.1117/1.nph.12.1.015016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
Significance Consistent and accurate probe placement is a crucial step toward enhancing the reproducibility of longitudinal and group-based functional neuroimaging studies. Although the selection of headgear is central to these efforts, there does not currently exist a standardized design that can accommodate diverse probe configurations and experimental procedures. Aim We aim to provide the community with an open-source software pipeline for conveniently creating low-cost, three-dimensional (3D) printable neuroimaging head caps with anatomically significant landmarks integrated into the structure of the cap. Approach We utilize our advanced 3D head mesh generation toolbox and 10-20 head landmark calculations to quickly convert a subject's anatomical scan or an atlas into a 3D printable head cap model. The 3D modeling environment of the open-source Blender platform permits advanced mesh processing features to customize the cap. The design process is streamlined into a Blender add-on named "NeuroCaptain." Results Using the intuitive user interface, we create various head cap models using brain atlases and share those with the community. The resulting mesh-based head cap designs are readily 3D printable using off-the-shelf printers and filaments while accurately preserving the head geometry and landmarks. Conclusions The methods developed in this work result in a widely accessible tool for community members to design, customize, and fabricate caps that incorporate anatomically derived landmarks. This not only permits personalized head cap designs to achieve improved accuracy but also offers an open platform for the community to propose standardizable head caps to facilitate multi-centered data collection and sharing.
Collapse
Affiliation(s)
- Ashlyn McCann
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Edward Xu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fan-Yu Yen
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Noah Joseph
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of EECS, Boston, Massachusetts, United States
| |
Collapse
|
2
|
McCann A, Xu E, Yen FY, Joseph N, Fang Q. Creating anatomically-derived, standardized, customizable, and three-dimensional printable head caps for functional neuroimaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610386. [PMID: 39257741 PMCID: PMC11383710 DOI: 10.1101/2024.08.30.610386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Significance Consistent and accurate probe placement is a crucial step towards enhancing the reproducibility of longitudinal and group-based functional neuroimaging studies. While the selection of headgear is central to these efforts, there does not currently exist a standardized design that can accommodate diverse probe configurations and experimental procedures. Aim We aim to provide the community with an open-source software pipeline for conveniently creating low-cost, 3-D printable neuroimaging head caps with anatomically significant landmarks integrated into the structure of the cap. Approach We utilize our advanced 3-D head mesh generation toolbox and 10-20 head landmark calculations to quickly convert a subject's anatomical scan or an atlas into a 3-D printable head cap model. The 3-D modeling environment of the open-source Blender platform permits advanced mesh processing features to customize the cap. The design process is streamlined into a Blender add-on named "NeuroCaptain". Results Using the intuitive user interface, we create various head cap models using brain atlases, and share those with the community. The resulting mesh-based head cap designs are readily 3-D printable using off-the-shelf printers and filaments while accurately preserving the head topology and landmarks. Conclusions The methods developed in this work result in a widely accessible tool for community members to design, customize and fabricate caps that incorporate anatomically derived landmarks. This not only permits personalized head cap designs to achieve improved accuracy, but also offers an open platform for the community to propose standardizable head caps to facilitate multi-centered data collection and sharing.
Collapse
Affiliation(s)
- Ashlyn McCann
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Edward Xu
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fan-Yu Yen
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Noah Joseph
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of EECS, 360 Huntington Avenue, Boston, USA, 02115
| |
Collapse
|
3
|
Mukli P, Pinto CB, Owens CD, Csipo T, Lipecz A, Szarvas Z, Peterfi A, Langley ACDCP, Hoffmeister J, Racz FS, Perry JW, Tarantini S, Nyúl‐Tóth Á, Sorond FA, Yang Y, James JA, Kirkpatrick AC, Prodan CI, Toth P, Galindo J, Gardner AW, Sonntag WE, Csiszar A, Ungvari Z, Yabluchanskiy A. Impaired Neurovascular Coupling and Increased Functional Connectivity in the Frontal Cortex Predict Age-Related Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303516. [PMID: 38155460 PMCID: PMC10962492 DOI: 10.1002/advs.202303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.2±7.0 years) and aged (n = 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n-back) paradigm, oxy- and deoxyhemoglobin concentration changes from the frontal cortex using functional near-infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2-back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p < 0.05). Both impaired NVC and increased FC correlate with age-related decline in accuracy during the 2-back task. These findings suggest that task-related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.
Collapse
|
4
|
HOLGADO DARÍAS, JOLIDON LÉO, BORRAGÁN GUILLERMO, SANABRIA DANIEL, PLACE NICOLAS. Individualized Mental Fatigue Does Not Impact Neuromuscular Function and Exercise Performance. Med Sci Sports Exerc 2023; 55:1823-1834. [PMID: 37227196 PMCID: PMC10487395 DOI: 10.1249/mss.0000000000003221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Recent studies have questioned previous empirical evidence that mental fatigue negatively impacts physical performance. The purpose of this study was to investigate the critical role of individual differences in mental fatigue susceptibility by analyzing the neurophysiological and physical responses to an individualized mental fatigue task. METHODS In a preregistered ( https://osf.io/xc8nr/ ), randomized, within-participant design experiment, 22 recreational athletes completed a time to failure test at 80% of their peak power output under mental fatigue (individual mental effort) or control (low mental effort). Before and after the cognitive tasks, subjective feeling of mental fatigue, neuromuscular function of the knee extensors, and corticospinal excitability were measured. Sequential Bayesian analysis until it reached strong evidence in favor of the alternative hypothesis (BF 10 > 6) or the null hypothesis (BF 10 < 1/6) were conducted. RESULTS The individualized mental effort task resulted in a higher subjective feeling of mental fatigue in the mental fatigue condition (0.50 (95% confidence interval (CI), 0.39-0.62)) arbitrary units compared with control (0.19 (95% CI, 0.06-0.339)) arbitrary unit. However, exercise performance was similar in both conditions (control: 410 (95% CI, 357-463) s vs mental fatigue: 422 (95% CI, 367-477) s, BF 10 = 0.15). Likewise, mental fatigue did not impair knee extensor maximal force-generating capacity (BF 10 = 0.928) and did not change the extent of fatigability or its origin after the cycling exercise. CONCLUSIONS There is no evidence that mental fatigue adversely affects neuromuscular function or physical exercise; even if mental fatigue is individualized, computerized tasks seem not to affect physical performance.
Collapse
Affiliation(s)
- DARÍAS HOLGADO
- Mind, Brain & Behavior Research Center, University of Granada, SPAIN
- Department of Experimental Psychology, University of Granada, SPAIN
- Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Bâtiment Synathlon, Lausanne, SWITZERLAND
| | - LÉO JOLIDON
- Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Bâtiment Synathlon, Lausanne, SWITZERLAND
| | - GUILLERMO BORRAGÁN
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN, Centre de Recherches en Cognition et Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Belgium, Brussels, BELGIUM
| | - DANIEL SANABRIA
- Mind, Brain & Behavior Research Center, University of Granada, SPAIN
- Department of Experimental Psychology, University of Granada, SPAIN
| | - NICOLAS PLACE
- Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Bâtiment Synathlon, Lausanne, SWITZERLAND
| |
Collapse
|
5
|
Wang H, Zhang X, Li J, Li B, Gao X, Hao Z, Fu J, Zhou Z, Atia M. Driving risk cognition of passengers in highly automated driving based on the prefrontal cortex activity via fNIRS. Sci Rep 2023; 13:15839. [PMID: 37739947 PMCID: PMC10516872 DOI: 10.1038/s41598-023-41549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
For high-level automated vehicles, the human being acts as the passenger instead of the driver and does not need to operate vehicles, it makes the brain-computer interface system of high-level automated vehicles depend on the brain state of passengers rather than that of drivers. Particularly when confronting challenging driving situations, how to implement the mental states of passengers into safe driving is a vital choice in the future. Quantifying the cognition of the driving risk of the passenger is a basic step in achieving this goal. In this paper, the passengers' mental activities in low-risk episode and high-risk episode were compared, the influences on passengers' mental activities caused by driving scenario risk was first explored via fNIRS. The results showed that the mental activities of passengers caused by driving scenario risk in the Brodmann area 10 are very active, which was verified by examining the real-driving data collected in corresponding challenging experiments, and there is a positive correlation between the cerebral oxygen and the driving risk field. This initial finding provides a possible solution to design a human-centred intelligent system to promise safe driving for high-level automated vehicles using passengers' driving risk cognition.
Collapse
Affiliation(s)
- Hong Wang
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Zhang
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China.
| | - Jun Li
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Bowen Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaorong Gao
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Zhenmao Hao
- School of Computer Science, Carleton University, Ottawa, ON, K1S5B6, Canada
| | - Junwen Fu
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, K1S5B6, Canada
| | - Ziyuan Zhou
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Mohamed Atia
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, K1S5B6, Canada
| |
Collapse
|
6
|
Mei X, Zou CJ, Hu J, Liu XL, Zheng CY, Zhou DS. Functional near-infrared spectroscopy in elderly patients with four types of dementia. World J Psychiatry 2023; 13:203-214. [PMID: 37303929 PMCID: PMC10251357 DOI: 10.5498/wjp.v13.i5.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Functional near-infrared spectroscopy (fNIRS) is commonly used to study human brain function by measuring the hemodynamic signals originating from cortical activation and provides a new noninvasive detection method for identifying dementia.
AIM To investigate the fNIRS imaging technique and its clinical application in differential diagnosis of subtype dementias including frontotemporal lobe dementia, Lewy body dementia, Parkinson’s disease dementia (PDD) and Alzheimer’s disease (AD).
METHODS Four patients with different types of dementia were examined with fNIRS during two tasks and a resting state. We adopted the verbal fluency task, working memory task and resting state task. Each patient was compared on the same task. We conducted and analyzed the fNIRS data using a general linear model and Pearson’s correlation analysis.
RESULTS Compared with other types of dementias, fNIRS showed the left frontotemporal and prefrontal lobes to be poorly activated during the verbal fluency task in frontotemporal dementia. In Lewy body dementia, severe asymmetry of prefrontal lobes appeared during both verbal fluency and working memory tasks, and the patient had low functional connectivity during a resting state. In PDD, the patient’s prefrontal cortex showed lower excitability than the temporal lobe during the verbal fluency task, while the prefrontal cortex showed higher excitability during the working memory task. The patient with AD showed poor prefrontal and temporal activation during the working memory task, and more activation of frontopolar instead of the dorsolateral prefrontal cortex.
CONCLUSION Different hemodynamic characteristics of four types of dementia (as seen by fNIRS imaging) provides evidence that fNIRS can serve as a potential tool for the diagnosis between dementia subtypes.
Collapse
Affiliation(s)
- Xi Mei
- Key Lab, Ningbo Kangning Hospital, Ningbo 315201, Zhejiang Province, China
| | - Chen-Jun Zou
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo 315201, Zhejiang Province, China
| | - Jun Hu
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo 315201, Zhejiang Province, China
| | - Xiao-Li Liu
- Key Lab, Ningbo Kangning Hospital, Ningbo 315201, Zhejiang Province, China
| | - Cheng-Ying Zheng
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo 315201, Zhejiang Province, China
| | - Dong-Sheng Zhou
- Key Lab, Ningbo Kangning Hospital, Ningbo 315201, Zhejiang Province, China
| |
Collapse
|
7
|
Hancock AS, Warren CM, Barrett TS, Bolton DAE, Gillam RB. Functional near-infrared spectroscopy measures of neural activity in children with and without developmental language disorder during a working memory task. Brain Behav 2023; 13:e2895. [PMID: 36706040 PMCID: PMC9927862 DOI: 10.1002/brb3.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Children with developmental language disorder (DLD) exhibit cognitive deficits that interfere with their ability to learn language. Little is known about the functional neuroanatomical differences between children developing typically (TD) and children with DLD. METHODS Using functional near-infrared spectroscopy, we recorded oxygenated hemoglobin (O2 hb) concentration values associated with neural activity in children with and without DLD during an auditory N-back task that included 0-back, 1-back, and 2-back conditions. Analyses focused on the left dorsolateral prefrontal cortex (DLPFC) and left inferior parietal lobule (IPL). Multilevel models were constructed with accuracy, response time, and O2 hb as outcome measures, with 0-back outcomes as fixed effects to control for sustained attention. RESULTS Children with DLD were significantly less accurate than their TD peers at both the 1-back and 2-back tasks, and they demonstrated slower response times during 2-back. In addition, children in the TD group demonstrated significantly greater sensitivity to increased task difficulty, showing increased O2 hb to the IPL during 1-back and to the DLPFC during the 2-back, whereas the DLD group did not. A secondary analysis revealed that higher O2 hb in the DLPFC predicted better task accuracy across groups. CONCLUSION When task difficulty increased, children with DLD failed to recruit the DLPFC for monitoring information and the IPL for processing information. Reduced memory capacity and reduced engagement likely contribute to the language learning difficulties of children with DLD.
Collapse
Affiliation(s)
| | | | | | - David A. E. Bolton
- Department of Kinesiology and Health SciencesUtah State UniversityLoganUtahUSA
| | - Ronald B. Gillam
- Department of Communicative Disorders and Deaf EducationUtah State UniversityLoganUtahUSA
| |
Collapse
|
8
|
An fNIRS Study of Applicability of the Unity-Diversity Model of Executive Functions in Preschoolers. Brain Sci 2022; 12:brainsci12121722. [PMID: 36552181 PMCID: PMC9776044 DOI: 10.3390/brainsci12121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Executive function (EF) includes a set of higher-order abilities that control one's actions and thoughts consciously and has a protracted developmental trajectory that parallels the maturation of the frontal lobes, which develop speedily over the preschool period. To fully understand the development of EF in preschoolers, this study examined the relationship among the three domains of executive function (cognitive shifting, inhibitory control, and working memory) to test the applicability of the unity-diversity model in preschoolers using both behavioral and fNIRS approaches. Altogether, 58 Chinese preschoolers (34 boys, 24 girls, Mage = 5.86 years, SD = 0.53, age range = 4.83-6.67 years) were administered the Dimensional Card Change Sort (DCCS), go/no-go, and missing scan task. Their brain activations in the prefrontal cortex during the tasks were examined using fNIRS. First, the behavioral results indicated that the missing scan task scores (working memory) correlated with the DCCS (cognitive shifting) and go/no-go tasks (inhibitory control). However, the latter two did not correlate with each other. Second, the fNIRS results demonstrated that the prefrontal activations during the working memory task correlated with those in the same regions during the cognitive shifting and inhibitory control tasks. However, the latter two still did not correlate. The behavioral and neuroimaging evidence jointly indicates that the unity-diversity model of EF does apply to Chinese preschoolers.
Collapse
|
9
|
Wong CHY, Liu J, Tao J, Chen LD, Yuan HL, Wong MNK, Xu YW, Lee TMC, Chan CCH. Causal influences of salience/cerebellar networks on dorsal attention network subserved age-related cognitive slowing. GeroScience 2022; 45:889-899. [PMID: 36401740 PMCID: PMC9886783 DOI: 10.1007/s11357-022-00686-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Age-related cognitive slowing is a prominent precursor of cognitive decline. Functional neuroimaging studies found that cognitive processing speed is associated with activation and coupling among frontal, parietal and cerebellar brain networks. However, how the reciprocal influences of inter- and intra-network coupling mediate age-related decline in processing speed remains insufficiently studied. This study examined how inter- and intra-brain network influences mediate age-related slowing. We were interested in the fronto-insular salience network (SN), frontoparietal dorsal attention network (DAN), cerebellar network (CN) and default mode network (DMN). Reaction time (RT) and functional MRI data from 84 participants (aged 18-75) were collected while they were performing the Arrow Task in visual or audial forms. At the subject level, effective connectivities (ECs) were estimated with regression dynamic causal modelling. At the group level, structural equation models (SEMs) were used to model latent speed based on age and the EC mediators. Age was associated with decreased speed and increased inter-network effective connectivity. The CN exerting influence on the DAN (CN → DAN EC) mediated, while the SN → DAN EC suppressed age-related slowing. The DMN and intra-network ECs did not seem to play significant roles in slowing due to ageing. Inter-network connectivity from the CN and SN to the DAN contributes to age-related slowing. The seemingly antagonizing influences of the CN and SN indicate that increased task-related automaticity and decreased effortful control on top-down attention would promote greater speed in older individuals.
Collapse
Affiliation(s)
- Clive H. Y. Wong
- grid.419993.f0000 0004 1799 6254Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam Hong Kong, China ,grid.194645.b0000000121742757Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Jiao Liu
- grid.411504.50000 0004 1790 1622National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian China ,grid.411504.50000 0004 1790 1622Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Jing Tao
- grid.411504.50000 0004 1790 1622National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, Fujian China
| | - Li-dian Chen
- grid.411504.50000 0004 1790 1622National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, Fujian China
| | - Huan-ling Yuan
- grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom Hong Kong, China
| | - Mabel N. K. Wong
- grid.419993.f0000 0004 1799 6254Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong China ,grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom Hong Kong, China
| | - Yan-wen Xu
- grid.263761.70000 0001 0198 0694Department of Rehabilitation Medicine, Affiliated Hospital of Soochow University, Wuxi, Jiangsu, China
| | - Tatia M. C. Lee
- grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam Hong Kong, China ,grid.194645.b0000000121742757Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Chetwyn C. H. Chan
- grid.419993.f0000 0004 1799 6254Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong China
| |
Collapse
|
10
|
Pitsik EN, Frolov NS, Shusharina N, Hramov AE. Age-Related Changes in Functional Connectivity during the Sensorimotor Integration Detected by Artificial Neural Network. SENSORS 2022; 22:s22072537. [PMID: 35408153 PMCID: PMC9003057 DOI: 10.3390/s22072537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023]
Abstract
Large-scale functional connectivity is an important indicator of the brain’s normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task. Twenty subjects of two age groups performed repetitive motor tasks on command, while the whole-scalp EEG was recorded. We applied the model based on the feed-forward multilayer perceptron to detect functional relationships between five groups of sensors located over the frontal, parietal, left, right, and middle motor cortex. Functional dependence was evaluated with the predicted and original time series coefficient of determination. Then, we applied statistical analysis to highlight the significant features of the functional connectivity network assessed by our model. Our findings revealed the connectivity pattern is consistent with modern ideas of the healthy aging effect on neural activation. Elderly adults demonstrate a pronounced activation of the whole-brain theta-band network and decreased activation of frontal–parietal and motor areas of the mu-band. Between-subject analysis revealed a strengthening of inter-areal task-relevant links in elderly adults. These findings can be interpreted as an increased cognitive demand in elderly adults to perform simple motor tasks with the dominant hand, induced by age-related working memory decline.
Collapse
Affiliation(s)
- Elena N. Pitsik
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
| | - Nikita S. Frolov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
| | - Natalia Shusharina
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
| | - Alexander E. Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia; (E.N.P.); (N.S.F.); (N.S.)
- Neuroscience and Cognitive Technology Laboratory, Innopolis University, Kazan 420500, Russia
- Correspondence:
| |
Collapse
|
11
|
Tung H, Lin WH, Hsieh PF, Lan TH, Chiang MC, Lin YY, Peng SJ. Left Frontotemporal Region Plays a Key Role in Letter Fluency Task-Evoked Activation and Functional Connectivity in Normal Subjects: A Functional Near-Infrared Spectroscopy Study. Front Psychiatry 2022; 13:810685. [PMID: 35722586 PMCID: PMC9205401 DOI: 10.3389/fpsyt.2022.810685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Letter fluency task (LFT) is a tool that measures memory, executive function, and language function but lacks a definite cutoff value to define abnormalities. We used the optical signals of functional near-infrared spectroscopy (fNIRS) to study the differences in power and connectivity between the high-functioning and low-functioning participants while performing three successive LFTs, as well as the relationships between the brain network/power and LFT performance. We found that the most differentiating factor between these two groups was network topology rather than activation power. The high-functional group (7 men and 10 women) displayed higher left intra-hemispheric global efficiency, nodal strength, and shorter characteristic path length in the first section. They then demonstrated a higher power over the left Broca's area than the right corresponding area in the latter two sections. The low-LFT group (9 men and 11 women) displayed less left-lateralized connectivity and activation power. LFT performance was only related to the network topology rather than the power values, which was only presented in the low-functioning group in the second section. The direct correlation between power and connectivity primarily existed in the inter-hemispheric network, with the timing relationship also seeming to be present. In conclusion, the high-functioning group presented more prominent left-lateralized intra-hemispheric network connectivity and power activation, particularly in the Broca's area. The low-functioning group seemed to prefer using other networks, like the inter-hemispheric, rather than having a single focus on left intra-hemispheric connectivity. The network topology seemed to better reflect the LFT performance than did the power values.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Hao Lin
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Peiyuan F Hsieh
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Mayseless N, Reiss AL. The neurodevelopmental basis of humor appreciation: A fNIRS study of young children. PLoS One 2021; 16:e0259422. [PMID: 34879055 PMCID: PMC8654164 DOI: 10.1371/journal.pone.0259422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Humor is crucial for social development. Despite this, very few studies have examined the neurodevelopment of humor in very young children, and none to date have used functional near-infrared spectroscopy (fNIRS) to study this important cognitive construct. The main aim of the current study was to characterize the neural basis of humor processing in young children between the ages of 6–8 years. Thirty-five healthy children (6–8 years old) watched funny and neutral video clips while undergoing fNIRS imaging. We observed activation increases in left temporo-occipito-parietal junction (TOPJ), inferior-parietal lobe (IPL), dorsolateral-prefrontal cortex (DLPFC) and right inferior frontal gyrus (IFG) and superior parietal lobe (SPL) regions. Activation in left TOPJ was positively correlated with age. In addition, we found that coherence increased in humor viewing compared to neutral content, mainly between remote regions. This effect was different for boys and girls, as boys showed a more pronounced increase in coherence for funny compared to neutral videos, more so in frontoparietal networks. These results expand our understanding of the neurodevelopment of humor by highlighting the effect of age on the neural basis of humor appreciation as well as emphasizing different developmental trajectories of boys and girls.
Collapse
Affiliation(s)
- Naama Mayseless
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Departments of Radiology and Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
13
|
Chenot Q, Lepron E, De Boissezon X, Scannella S. Functional Connectivity Within the Fronto-Parietal Network Predicts Complex Task Performance: A fNIRS Study. FRONTIERS IN NEUROERGONOMICS 2021; 2:718176. [PMID: 38235214 PMCID: PMC10790952 DOI: 10.3389/fnrgo.2021.718176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2024]
Abstract
Performance in complex tasks is essential for many high risk operators. The achievement of such tasks is supported by high-level cognitive functions arguably involving functional activity and connectivity in a large ensemble of brain areas that form the fronto-parietal network. Here we aimed at determining whether the functional connectivity at rest within this network could predict performance in a complex task: the Space Fortress video game. Functional Near Infrared Spectroscopy (fNIRS) data from 32 participants were recorded during a Resting-State period, the completion of a simple version of Space Fortress (monotask) and the original version (multitask). The intrinsic functional connectivity within the fronto-parietal network (i.e., during the Resting-State) was a significant predictor of performance at Space Fortress multitask but not at its monotask version. The same pattern was observed for the functional connectivity during the task. Our overall results suggest that Resting-State functional connectivity within the fronto-parietal network could be used as an intrinsic brain marker for performance prediction of a complex task achievement, but not for simple task performance.
Collapse
Affiliation(s)
| | | | - Xavier De Boissezon
- Toulouse NeuroImaging Center (ToNIC), Université de Toulouse, INSERM, Toulouse, France
| | | |
Collapse
|
14
|
Saikia MJ, Besio WG, Mankodiya K. The Validation of a Portable Functional NIRS System for Assessing Mental Workload. SENSORS 2021; 21:s21113810. [PMID: 34072895 PMCID: PMC8199260 DOI: 10.3390/s21113810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Portable functional near-infrared spectroscopy (fNIRS) systems have the potential to image the brain in naturalistic settings. Experimental studies are essential to validate such fNIRS systems. Working memory (WM) is a short-term active memory that is associated with the temporary storage and manipulation of information. The prefrontal cortex (PFC) brain area is involved in the processing of WM. We assessed the PFC brain during n-back WM tasks in a group of 25 college students using our laboratory-developed portable fNIRS system, WearLight. We designed an experimental protocol with 32 n-back WM task blocks with four different pseudo-randomized task difficulty levels. The hemodynamic response of the brain was computed from the experimental data and the evaluated brain responses due to these tasks. We observed the incremental mean hemodynamic activation induced by the increasing WM load. The left-PFC area was more activated in the WM task compared to the right-PFC. The task performance was seen to be related to the hemodynamic responses. The experimental results proved the functioning of the WearLight system in cognitive load imaging. Since the portable fNIRS system was wearable and operated wirelessly, it was possible to measure the cognitive load in the naturalistic environment, which could also lead to the development of a user-friendly brain–computer interface system.
Collapse
Affiliation(s)
- Manob Jyoti Saikia
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Walter G Besio
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Kunal Mankodiya
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
15
|
The Role of Visual Features in Text-Based CAPTCHAs: An fNIRS Study for Usable Security. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8842420. [PMID: 34054941 PMCID: PMC8112922 DOI: 10.1155/2021/8842420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
To mitigate dictionary attacks or similar undesirable automated attacks to information systems, developers mostly prefer using CAPTCHA challenges as Human Interactive Proofs (HIPs) to distinguish between human users and scripts. Appropriate use of CAPTCHA requires a setup that balances between robustness and usability during the design of a challenge. The previous research reveals that most usability studies have used accuracy and response time as measurement criteria for quantitative analysis. The present study aims at applying optical neuroimaging techniques for the analysis of CAPTCHA design. The functional Near-Infrared Spectroscopy technique was used to explore the hemodynamic responses in the prefrontal cortex elicited by CAPTCHA stimulus of varying types. The findings suggest that regions in the left and right dorsolateral and right dorsomedial prefrontal cortex respond to the degrees of line occlusion, rotation, and wave distortions present in a CAPTCHA. The systematic addition of the visual effects introduced nonlinear effects on the behavioral and prefrontal oxygenation measures, indicative of the emergence of Gestalt effects that might have influenced the perception of the overall CAPTCHA figure.
Collapse
|
16
|
Ano Y, Kita M, Kobayashi K, Koikeda T, Kawashima R. Effects of β-Lactolin on Regional Cerebral Blood Flow within the Dorsolateral Prefrontal Cortex during Working Memory Task in Healthy Adults: A Randomized Controlled Trial. J Clin Med 2021; 10:jcm10030480. [PMID: 33525551 PMCID: PMC7865841 DOI: 10.3390/jcm10030480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies have reported that consumption of dairy products rich in β-lactolin is beneficial for cognitive decline among elderly individuals. Although previous studies have shown that β-lactolin supplementation improves memory function and attention in healthy adults, the mechanism through which β-lactolin affects human brain function has yet to be elucidated. This placebo-controlled randomized double-blind study therefore examined the effects of β-lactolin on human regional cerebral blood flow (rCBF) using near-infrared spectroscopy (NIRS) according to the Consolidated Standards of Reporting Trials guidelines. A total of 114 healthy participants aged between 50 and 75 years with relatively low cognition were randomly allocated into the β-lactolin or placebo groups (n = 57 for both groups) and received supplementation for 6 weeks. After the 6 weeks of supplementation, total hemoglobin during cognitive tasks (Kraepelin and 2-back tasks) was measured using two-channel NIRS to determine rCBF. Accordingly, the β-lactolin group had significantly higher changes in total hemoglobin at the left dorsolateral prefrontal cortex (DLPFC) area measured using the left-side channel during the 2-back tasks (p = 0.027) compared to the placebo group. The present study suggests that β-lactolin supplementation increases rCBF and DLPFC activity during working memory tasks.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa Kanagawa 251-8555, Japan; (M.K.); (K.K.)
- Correspondence:
| | - Masahiro Kita
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa Kanagawa 251-8555, Japan; (M.K.); (K.K.)
| | - Keiko Kobayashi
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1, Muraoka-Higashi 2, Fujisawa Kanagawa 251-8555, Japan; (M.K.); (K.K.)
| | - Takashi Koikeda
- Shiba Palace Clinic, Daiwa A Hamamatsucho 6F, 1-9-10, Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan;
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
17
|
Baker JM, Bruno JL, Piccirilli A, Gundran A, Harbott LK, Sirkin DM, Marzelli M, Hosseini SMH, Reiss AL. Evaluation of smartphone interactions on drivers' brain function and vehicle control in an immersive simulated environment. Sci Rep 2021; 11:1998. [PMID: 33479322 PMCID: PMC7820246 DOI: 10.1038/s41598-021-81208-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/31/2020] [Indexed: 01/29/2023] Open
Abstract
Smartphones and other modern technologies have introduced multiple new forms of distraction that color the modern driving experience. While many smartphone functions aim to improve driving by providing the driver with real-time navigation and traffic updates, others, such as texting, are not compatible with driving and are often the cause of accidents. Because both functions elicit driver attention, an outstanding question is the degree to which drivers' naturalistic interactions with navigation and texting applications differ in regard to brain and behavioral indices of distracted driving. Here, we employed functional near-infrared spectroscopy to examine the cortical activity that occurs under parametrically increasing levels of smartphone distraction during naturalistic driving. Our results highlight a significant increase in bilateral prefrontal and parietal cortical activity that occurs in response to increasingly greater levels of smartphone distraction that, in turn, predicts changes in common indices of vehicle control.
Collapse
Affiliation(s)
- Joseph M Baker
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Jennifer L Bruno
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Aaron Piccirilli
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Andrew Gundran
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Lene K Harbott
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - David M Sirkin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew Marzelli
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - S M Hadi Hosseini
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
| | - Allan L Reiss
- Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Rd., Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Fan S, Blanco‐Davis E, Zhang J, Bury A, Warren J, Yang Z, Yan X, Wang J, Fairclough S. The Role of the Prefrontal Cortex and Functional Connectivity during Maritime Operations: An fNIRS study. Brain Behav 2021; 11:e01910. [PMID: 33151030 PMCID: PMC7821565 DOI: 10.1002/brb3.1910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/08/2020] [Accepted: 10/04/2020] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Watchkeeping is a significant activity during maritime operations, and failures of sustained attention and decision-making can increase the likelihood of a collision. METHODS A study was conducted in a ship bridge simulator where 40 participants (20 experienced/20 inexperienced) performed: (1) a 20-min period of sustained attention to locate a target vessel and (2) a 10-min period of decision-making/action selection to perform an evasive maneuver. Half of the participants also performed an additional task of verbally reporting the position of their vessel. Activation of the prefrontal cortex (PFC) was captured via a 15-channel functional near-infrared spectroscopy (fNIRS) montage, and measures of functional connectivity were calculated frontal using graph-theoretic measures. RESULTS Neurovascular activation of right lateral area of the PFC decreased during sustained attention and increased during decision-making. The graph-theoretic analysis revealed that density declined during decision-making in comparison with the previous period of sustained attention, while local clustering declined during sustained attention and increased when participants prepared their evasive maneuver. A regression analysis revealed an association between network measures and behavioral outcomes, with respect to spotting the target vessel and making an evasive maneuver. CONCLUSIONS The right lateral area of the PFC is sensitive to watchkeeping and decision-making during operational performance. Graph-theoretic measures allow us to quantify patterns of functional connectivity and were predictive of safety-critical performance.
Collapse
Affiliation(s)
- Shiqi Fan
- Intelligent Transport Systems Research CentreWuhan University of TechnologyWuhanChina
- National Engineering Research Centre for Water Transport Safety (WTSC)MOSTWuhanChina
- Liverpool LogisticsOffshore and Marine (LOOM) Research InstituteLiverpool John Moores UniversityLiverpoolUK
| | - Eduardo Blanco‐Davis
- Liverpool LogisticsOffshore and Marine (LOOM) Research InstituteLiverpool John Moores UniversityLiverpoolUK
| | - Jinfen Zhang
- Intelligent Transport Systems Research CentreWuhan University of TechnologyWuhanChina
- National Engineering Research Centre for Water Transport Safety (WTSC)MOSTWuhanChina
| | - Alan Bury
- Liverpool LogisticsOffshore and Marine (LOOM) Research InstituteLiverpool John Moores UniversityLiverpoolUK
| | - Jonathan Warren
- Liverpool LogisticsOffshore and Marine (LOOM) Research InstituteLiverpool John Moores UniversityLiverpoolUK
| | - Zaili Yang
- Liverpool LogisticsOffshore and Marine (LOOM) Research InstituteLiverpool John Moores UniversityLiverpoolUK
| | - Xinping Yan
- Intelligent Transport Systems Research CentreWuhan University of TechnologyWuhanChina
- National Engineering Research Centre for Water Transport Safety (WTSC)MOSTWuhanChina
| | - Jin Wang
- Liverpool LogisticsOffshore and Marine (LOOM) Research InstituteLiverpool John Moores UniversityLiverpoolUK
| | | |
Collapse
|
19
|
fNIRS-based functional connectivity estimation using semi-metric analysis to study decision making by nursing students and registered nurses. Sci Rep 2020; 10:22041. [PMID: 33328535 PMCID: PMC7745044 DOI: 10.1038/s41598-020-79053-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023] Open
Abstract
This study aims to investigate the generalizability of the semi-metric analysis of the functional connectivity (FC) for functional near-infrared spectroscopy (fNIRS) by applying it to detect the dichotomy in differential FC under affective and neutral emotional states in nursing students and registered nurses during decision making. The proposed method employs wavelet transform coherence to construct FC networks and explores semi-metric analysis to extract network redundancy features, which has not been considered in conventional fNIRS-based FC analyses. The trials of the proposed method were performed on 19 nursing students and 19 registered nurses via a decision-making task under different emotional states induced by affective and neutral emotional stimuli. The cognitive activities were recorded using fNIRS, and the emotional stimuli were adopted from the International Affective Digitized Sound System (IADS). The induction of emotional effects was validated by heart rate variability (HRV) analysis. The experimental results by the proposed method showed significant difference (FDR-adjusted p = 0.004) in the nursing students’ cognitive FC network under the two different emotional conditions, and the semi-metric percentage (SMP) of the right prefrontal cortex (PFC) was found to be significantly higher than the left PFC (FDR-adjusted p = 0.036). The benchmark method (a typical weighted graph theory analysis) gave no significant results. In essence, the results support that the semi-metric analysis can be generalized and extended to fNIRS-based functional connectivity estimation.
Collapse
|
20
|
Baker JM, Gillam RB, Jordan KE. Children's neural activity during number line estimations assessed by functional near-infrared spectroscopy (fNIRS). Brain Cogn 2020; 144:105601. [PMID: 32739744 PMCID: PMC7855273 DOI: 10.1016/j.bandc.2020.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Number line estimation (NLE) is an educational task in which children estimate the location of a value (e.g., 25) on a blank line that represents a numerical range (e.g., 0-100). NLE performance is a strong predictor of success in mathematics, and error patterns on this task help provide a glimpse into how children may represent number internally. However, a missing and fundamental element of this puzzle is the identification of neural correlates of NLE in children. That is, understanding possible neural signatures related to NLE performance will provide valuable insight into the cognitive processes that underlie children's development of NLE ability. Using functional near-infrared spectroscopy (fNIRS), we provide the first investigation of concurrent behavioral and cortical signatures of NLE performance in children. Specifically, our results highlight significant fronto-parietal changes in cortical activation in response to increases in NLE scale (e.g., 0-100 vs. 0-100,000). Furthermore, our results demonstrate that NLE performance feedback (auditory, visual, or audiovisual), as well as children's grade (2nd vs. 3rd) influence cortical responding during an NLE task.
Collapse
Affiliation(s)
- Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, United States.
| | - Ronald B Gillam
- Department of Communicative Disorders and Deaf Education, Utah State University, United States
| | - Kerry E Jordan
- Department of Psychology, Utah State University, United States
| |
Collapse
|
21
|
Ano Y, Kobayashi K, Hanyuda M, Kawashima R. β-lactolin increases cerebral blood flow in dorsolateral prefrontal cortex in healthy adults: a randomized controlled trial. Aging (Albany NY) 2020; 12:18660-18675. [PMID: 32989176 PMCID: PMC7585116 DOI: 10.18632/aging.103951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/08/2020] [Indexed: 01/24/2023]
Abstract
The number of elderly individuals with age-related cognitive decline or dementia is rapidly increasing. Dairy product consumption, including β-lactolin, is beneficial for their cognitive function. The underlying mechanism of β-lactolin's effects on human brain activity is yet to be investigated. We examined the β-lactolin effects on human cerebral blood flow (CBF) using near-infrared spectroscopy (NIRS) in a placebo-controlled randomized double-blind study, which reported according to the CONSORT guidelines. Fifty healthy participants (aged 45-60 years) were randomly allocated into the β-lactolin or the placebo group (n = 25 each) and supplemented for 6 weeks. During the 6th week, oxy-hemoglobin during the working memory tasks was measured using 34-channels (CHs) NIRS. The changes of oxy-hemoglobin, which represents the CBF, in CH 23 located at the left dorsolateral prefrontal cortex (DLPFC) during the spatial working memory task showed higher statistical significance (false discovery rate (q) = 0.045) in the β-lactolin than in the placebo group. The oxy-Hb changes in CH23 have a co-relationship with the working memory task reaction time. This clinical trial showed an increase in the CBF in the left DLPFC area during the 6-week β-lactolin supplementation. This study contributes to elucidating the underlying mechanisms of β-lactolin on cognitive performance.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., Kanazawa-ku, Yokohama 236-0004, Japan
| | - Keiko Kobayashi
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., Kanazawa-ku, Yokohama 236-0004, Japan
| | | | - Ryuta Kawashima
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, Aoba-ku, Sendai 980-0872, Japan,NeU Corporation, Chiyoda-ku, Tokyo 101-0048, Japan
| |
Collapse
|
22
|
Mutlu MC, Erdoğan SB, Öztürk OC, Canbeyli R, Saybaşιlι H. Functional Near-Infrared Spectroscopy Indicates That Asymmetric Right Hemispheric Activation in Mental Rotation of a Jigsaw Puzzle Decreases With Task Difficulty. Front Hum Neurosci 2020; 14:252. [PMID: 32694987 PMCID: PMC7339288 DOI: 10.3389/fnhum.2020.00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022] Open
Abstract
Mental rotation (MR) is a cognitive skill whose neural dynamics are still a matter of debate as previous neuroimaging studies have produced controversial results. In order to investigate the underlying neurophysiology of MR, hemodynamic responses from the prefrontal cortex of 14 healthy subjects were recorded with functional near-infrared spectroscopy (fNIRS) during a novel MR task that had three categorical difficulty levels. Hemodynamic activity strength (HAS) parameter, which reflects the ratio of brain activation during the task to the baseline activation level, was used to assess the prefrontal cortex activation localization and strength. Behavioral data indicated that the MR requiring conditions are more difficult than the condition that did not require MR. The right dorsolateral prefrontal cortex (DLPFC) was found to be active in all conditions and to be the dominant region in the easiest task while more complex tasks showed widespread bilateral prefrontal activation. A significant increase in left DLPFC activation was observed with increasing task difficulty. Significantly higher right DLPFC activation was observed when the incongruent trials were contrasted against the congruent trials, which implied the possibility of a robust error or conflict-monitoring process during the incongruent trials. Our results showed that the right DLPFC is a core region for the processing of MR tasks regardless of the task complexity and that the left DLPFC is involved to a greater extent with increasing task complexity, which is consistent with the previous neuroimaging literature.
Collapse
Affiliation(s)
- Murat Can Mutlu
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Sinem Burcu Erdoğan
- Department of Medical Engineering, Acιbadem Mehmet Ali Aydιnlar University, Istanbul, Turkey
| | - Ozan Cem Öztürk
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Reşit Canbeyli
- Department of Psychology, Boğaziçi University, Istanbul, Turkey
| | - Hale Saybaşιlι
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
23
|
Zhu Y, Rodriguez-Paras C, Rhee J, Mehta RK. Methodological Approaches and Recommendations for Functional Near-Infrared Spectroscopy Applications in HF/E Research. HUMAN FACTORS 2020; 62:613-642. [PMID: 31107601 DOI: 10.1177/0018720819845275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The objective of this study was to systematically document current methods and protocols employed when using functional near-infrared spectroscopy (fNIRS) techniques in human factors and ergonomics (HF/E) research and generate recommendations for conducting and reporting fNIRS findings in HF/E applications. METHOD A total of 1,687 articles were identified through Ovid-MEDLINE, PubMed, Web of Science, and Scopus databases, of which 37 articles were included in the review based on review inclusion/exclusion criteria. RESULTS A majority of the HF/E fNIRS investigations were found in transportation, both ground and aviation, and in assessing cognitive (e.g., workload, working memory) over physical constructs. There were large variations pertaining to data cleaning, processing, and analysis approaches across the studies that warrant standardization of methodological approaches. The review identified major challenges in transparency and reporting of important fNIRS data collection and analyses specifications that diminishes study replicability, introduces potential biases, and increases likelihood of inaccurate results. As such, results reported in existing fNIRS studies need to be cautiously approached. CONCLUSION To improve the quality of fNIRS investigations and/or to facilitate its adoption and integration in different HF/E applications, such as occupational ergonomics and rehabilitation, recommendations for fNIRS data collection, processing, analysis, and reporting are provided.
Collapse
Affiliation(s)
- Yibo Zhu
- 14736 Texas A&M University, College Station, USA
| | | | - Joohyun Rhee
- 14736 Texas A&M University, College Station, USA
| | | |
Collapse
|
24
|
Modeling and classification of voluntary and imagery movements for brain-computer interface from fNIR and EEG signals through convolutional neural network. Health Inf Sci Syst 2019; 7:22. [PMID: 31656595 DOI: 10.1007/s13755-019-0081-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Practical brain-computer interface (BCI) demands the learning-based adaptive model that can handle diverse problems. To implement a BCI, usually functional near-infrared spectroscopy (fNIR) is used for measuring functional changes in brain oxygenation and electroencephalography (EEG) for evaluating the neuronal electric potential regarding the psychophysiological activity. Since the fNIR modality has an issue of temporal resolution, fNIR alone is not enough to achieve satisfactory classification accuracy as multiple neural stimuli are produced by voluntary and imagery movements. This leads us to make a combination of fNIR and EEG with a view to developing a BCI model for the classification of the brain signals of the voluntary and imagery movements. This work proposes a novel approach to prepare functional neuroimages from the fNIR and EEG using eight different movement-related stimuli. The neuroimages are used to train a convolutional neural network (CNN) to formulate a predictive model for classifying the combined fNIR-EEG data. The results reveal that the combined fNIR-EEG modality approach along with a CNN provides improved classification accuracy compared to a single modality and conventional classifiers. So, the outcomes of the proposed research work will be very helpful in the implementation of the finer BCI system.
Collapse
|
25
|
Sagiv SK, Bruno JL, Baker JM, Palzes V, Kogut K, Rauch S, Gunier R, Mora AM, Reiss AL, Eskenazi B. Prenatal exposure to organophosphate pesticides and functional neuroimaging in adolescents living in proximity to pesticide application. Proc Natl Acad Sci U S A 2019; 116:18347-18356. [PMID: 31451641 PMCID: PMC6744848 DOI: 10.1073/pnas.1903940116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have reported consistent associations of prenatal organophosphate pesticide (OP) exposure with poorer cognitive function and behavior problems in our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a birth cohort of Mexican American youth in California's agricultural Salinas Valley. However, there is little evidence on how OPs affect neural dynamics underlying associations. We used functional near-infrared spectroscopy (fNIRS) to measure cortical activation during tasks of executive function, attention, social cognition, and language comprehension in 95 adolescent CHAMACOS participants. We estimated associations of residential proximity to OP use during pregnancy with cortical activation in frontal, temporal, and parietal regions using multiple regression models, adjusting for sociodemographic characteristics. OP exposure was associated with altered brain activation during tasks of executive function. For example, with a 10-fold increase in total OP pesticide use within 1 km of maternal residence during pregnancy, there was a bilateral decrease in brain activation in the prefrontal cortex during a cognitive flexibility task (β = -4.74; 95% CI: -8.18, -1.31 and β = -4.40; 95% CI: -7.96, -0.84 for the left and right hemispheres, respectively). We also found that prenatal OP exposure was associated with sex differences in brain activation during a language comprehension task. This first functional neuroimaging study of prenatal OP exposure suggests that pesticides may impact cortical brain activation, which could underlie previously reported OP-related associations with cognitive and behavioral function. Use of fNIRS in environmental epidemiology offers a practical alternative to neuroimaging technologies and enhances our efforts to assess the impact of chemical exposures on neurodevelopment.
Collapse
Affiliation(s)
- Sharon K Sagiv
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720;
| | - Jennifer L Bruno
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305
| | - Vanessa Palzes
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720
| | - Katherine Kogut
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720
| | - Stephen Rauch
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720
| | - Robert Gunier
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720
| | - Ana M Mora
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
26
|
Correction: fNIRS measurement of cortical activation and functional connectivity during a visuospatial working memory task. PLoS One 2018; 13:e0203233. [PMID: 30142212 PMCID: PMC6108524 DOI: 10.1371/journal.pone.0203233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|