1
|
Mosadegh M, Noori Goodarzi N, Erfani Y. A Comprehensive Insight into Apoptosis: Molecular Mechanisms, Signaling Pathways, and Modulating Therapeutics. Cancer Invest 2025; 43:33-58. [PMID: 39760426 DOI: 10.1080/07357907.2024.2445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Apoptosis, or programmed cell death, is a fundamental biological process essential for maintaining tissue homeostasis. Dysregulation of apoptosis is implicated in a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions. This review provides an in-depth insight into the molecular mechanisms and signaling pathways that regulate apoptosis, highlighting both intrinsic and extrinsic pathways. Additionally, the review explains the tumor microenvironment's influence on apoptosis and its implications for cancer therapy resistance. Understanding the complex interplay between apoptotic signaling and cellular responses is crucial for developing targeted therapies that can effectively manage diseases associated with apoptosis dysregulation. The effects of conventional therapeutics and alternative substances with natural sources such as herbal compounds, alongside vitamins, minerals, and trace elements on cellular homeostasis and disease pathogenesis have been thoroughly investigated. Moreover, recent advances in therapeutic strategies aimed at modulating apoptosis are discussed, with a focus on novel interventions such as nutrition bio shield dietary supplement. These emerging approaches offer potential benefits beyond conventional treatments by selectively targeting apoptotic pathways to inhibit cancer progression and metastasis. By integrating insights from recent studies, this review aims to enhance our understanding of apoptosis and guide future research in developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ajibare AJ, Odetayo AF, Akintoye OO, Oladotun AJ, Hamed MA. Zinc abates sodium benzoate -induced testicular dysfunction via upregulation of Nrf2/ HO-1/ Nf-κB signaling and androgen receptor gene. J Trace Elem Med Biol 2024; 86:127505. [PMID: 39106537 DOI: 10.1016/j.jtemb.2024.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Sodium Benzoate (SB) is used in daily products such as drinks, juices, sauces, oils, ketchup, toothpaste, mouthwashes, cosmetics, dentifrices, and pharmaceutical products. However, SB has been implicated in gonadotoxicity even at a dosage within the safe limit. Zinc (Zn), on the other hand, has been shown to improve various fertility indices. Hence, this study was designed to explore the possible ameliorative effect of Zn on SB-induced testicular toxicity. METHODS Animals were randomly divided into control, SB, Zn, and SB+Zn. All treatment lasted for 28 days. RESULTS SB treatment caused a derangement in reproductive hormone levels, sperm function, and kinematics and a down-regulation of the Androgen receptor (ANDR). Also, a decrease in testicular levels of SOD, CAT, GSH, Nrf2, and HO- 1 activity and an increase in IL-1β, TNF-α, Nf-κB, and Caspase 3 were observed. These SB-induced distortions were ameliorated in SB-treated rats exposed to Zn. CONCLUSION Our study suggests that zinc abates SB-induced testicular toxicity by modulating Nrf2/HO-1/ Nf-κB signaling and ANDR upregulation.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, College of Medicine, Lead City University, Ibadan, Oyo-State, Nigeria
| | - Adeyemi Fatai Odetayo
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Ila Orangun, Nigeria.
| | - Olabode Oluwadare Akintoye
- Department of Physiology, College of Medicine, Lead City University, Ibadan, Oyo-State, Nigeria; Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria; The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| |
Collapse
|
3
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:156-171. [PMID: 37676925 DOI: 10.1002/tox.23966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Heavy metals (HM) are believed to be injurious to humans. Man is exposed to them on daily basis unknowingly, with no acceptable protocol to manage its deleterious effects. These metals occur as mixture of chemicals with varying concentrations in our atmosphere. There are growing calls for the use of essential metals in mitigating the injurious effects induced by heavy metals exposure to man; therefore, the aim of this study was to evaluate the protective effects of essential metals (Zinc and Selenium) in a mixture of heavy metal toxicity. In this study, except for negative controls, all other groups were treated with lead (PbCl2 , 20 mg kg-1 ); cadmium (CdCl2 , 1.61 mg kg-1 ); mercury (HgCl2 , 0.40 mg kg-1 ), and arsenic (NaAsO3, 10 mg kg-1 ) that were formed in distilled water. Pb, Cd, As, and Hg were administered as mixtures to 35, 6 weeks old rats weighing between 80 to 100 g for 60 days. Group I served as normal control without treatment, group II positive control received HM mixture, while groups III to V received HMM with Zn, Se, and Zn + Se respectively. Animal and liver weights, HM accumulation in the liver, food intake (FI), water intake (WI), liver function test, malondialdehyde (MDA), and inflammatory/transcription factor/apoptosis markers were checked. Also, antioxidant enzymes, and histological studies were carried out. Metal mixture accumulated in the liver and caused toxicities which were ameliorated by Zn and Se administration. HM caused significant decrease in FI, WI and distorted the level of liver enzymes, lipid peroxidation, inflammatory markers, antioxidants and architecture of the liver. Co administration with Zn or Se or both reversed the distortions. This study lays credence to the evolving research on the public health implications of low dose metal mixtures and the possible ameliorative properties of Zn and Se.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Toxicology Division, Provictoire Research Institute, Port Harcourt, Nigeria
| |
Collapse
|
4
|
Guzmán DC, Brizuela NO, Herrera MO, Peraza AV, Garcia EH, Mejía GB, Olguin HJ. Assessment of the Roles of Magnesium and Zinc in Clinical Disorders. Curr Neurovasc Res 2023; 20:505-513. [PMID: 38037909 DOI: 10.2174/0115672026275688231108184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023]
Abstract
The ability and facility of magnesium (Mg2+) and zinc (Zn2+) to interact with phosphate ions confer them the characteristics of essential trace elements. Trace elements are extremely necessary for the basic nucleic acid chemistry of cells of all known living organisms. More than 300 enzymes require zinc and magnesium ions for their catalytic actions, including all the enzymes involved in the synthesis of ATP. In addition, enzymes such as isomerases, oxidoreductases, lyases, transferases, ligases and hydrolases that use other nucleotides to synthesize DNA and RNA require magnesium and zinc. These nucleotides may trigger oxidative damage or important changes against free radicals. In the same way, nucleotides may play an important role in the pathophysiology of degenerative diseases, including in some clinical disorders, where vascular risk factors, oxidative stress and inflammation work to destabilize the patients` homeostatic equilibrium. Indeed, reduced levels of zinc and magnesium may lead to inadequate amount of antioxidant enzymes, and thus, acts as an important contributing factor for the induction of oxidative stress leading to cellular or tissue dysfunction. Hence, the development of zinc or magnesium enzyme inhibitors could be a novel opportunity for the treatment of some human disorders. Therefore, the objective of the present work was to assess the clinical benefits of zinc and magnesium in human health and their effects in some clinical disorders.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP). Mexico City, CP 04530, Mexico
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP). Mexico City, CP 04530, Mexico
| | | | | | | | | | | |
Collapse
|
5
|
Zhou Y, Liu X, Ma S, Zhang N, Yang D, Wang L, Ye S, Zhang Q, Ruan J, Ma J, Wang S, Jiang N, Zhao Z, Zhao S, Zheng C, Fan X, Gong Y, Abdoul Razak MY, Hu W, Pan J, Wang X, Fan J, Li J, Liu R, Shentu Y. ChK1 activation induces reactive astrogliosis through CIP2A/PP2A/STAT3 pathway in Alzheimer's disease. FASEB J 2022; 36:e22209. [PMID: 35195302 DOI: 10.1096/fj.202101625r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Cancerous Inhibitor of PP2A (CIP2A), an endogenous PP2A inhibitor, is upregulated and causes reactive astrogliosis, synaptic degeneration, and cognitive deficits in Alzheimer's disease (AD). However, the mechanism underlying the increased CIP2A expression in AD brains remains unclear. We here demonstrated that the DNA damage-related Checkpoint kinase 1 (ChK1) is activated in AD human brains and 3xTg-AD mice. ChK1-mediated CIP2A overexpression drives inhibition of PP2A and activates STAT3, then leads to reactive astrogliosis and neurodegeneration in vitro. Infection of mouse brain with GFAP-ChK1-AAV induced AD-like cognitive deficits and exacerbated AD pathologies in vivo. In conclusion, we showed that ChK1 activation induces reactive astrogliosis, degeneration of neurons, and exacerbation of AD through the CIP2A-PP2A-STAT3 pathway, and inhibiting ChK1 may be a potential therapeutic approach for AD treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Shuqing Ma
- Wenzhou Medical University, Wenzhou, China
| | - Nan Zhang
- Wenzhou Medical University, Wenzhou, China
| | | | - Ling Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Simin Ye
- Wenzhou Medical University, Wenzhou, China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Ruan
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Ma
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiyi Wang
- Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- Wenzhou Medical University, Wenzhou, China
| | | | | | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mahaman Yacoubou Abdoul Razak
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Hu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingye Pan
- Key Laboratory of Critical Emergency and Artificial Intelligence of Zhejiang Province, Wenzhou, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Critical Emergency and Artificial Intelligence of Zhejiang Province, Wenzhou, China
| |
Collapse
|
6
|
Hollings AL, Lam V, Takechi R, Mamo JCL, Reinhardt J, de Jonge MD, Kappen P, Hackett MJ. Revealing differences in the chemical form of zinc in brain tissue using K-edge X-ray absorption near-edge structure spectroscopy. Metallomics 2020; 12:2134-2144. [PMID: 33300524 DOI: 10.1039/d0mt00198h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zinc is a prominent trace metal required for normal memory function. Memory loss and cognitive decline during natural ageing and neurodegenerative disease have been associated with altered brain-Zn homeostasis. Yet, the exact chemical pathways through which Zn influences memory function during health, natural ageing, or neurodegenerative disease remain unknown. The gap in the literature may in part be due to the difficulty to simultaneously image, and therefore, study the different chemical forms of Zn within the brain (or biological samples in general). To this extent, we have begun developing and optimising protocols that incorporate X-ray absorption near-edge structure (XANES) spectroscopic analysis of tissue at the Zn K-edge as an analytical tool to study Zn speciation in the brain. XANES is ideally suited for this task as all chemical forms of Zn are detected, the technique requires minimal sample preparation that may otherwise redistribute or alter the chemical form of Zn, and the Zn K-edge has known sensitivity to coordination geometry and ligand type. Herein, we report our initial results where we fit K-edge spectra collected from micro-dissected flash-frozen brain tissue, to a spectral library prepared from standard solutions, to demonstrate differences in the chemical form of Zn that exist between two brain regions, the hippocampus and cerebellum. Lastly, we have used an X-ray microprobe to demonstrate differences in Zn speciation within sub-regions of thin air-dried sections of the murine hippocampus; but, the corresponding results highlight that the chemical form of Zn is easily perturbed by sample preparation such as tissue sectioning or air-drying, which must be a critical consideration for future work.
Collapse
Affiliation(s)
- Ashley L Hollings
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener 2020; 9:10. [PMID: 32266063 PMCID: PMC7119290 DOI: 10.1186/s40035-020-00189-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background The homeostasis of metal ions, such as iron, copper, zinc and calcium, in the brain is crucial for maintaining normal physiological functions. Studies have shown that imbalance of these metal ions in the brain is closely related to the onset and progression of Alzheimer's disease (AD), the most common neurodegenerative disorder in the elderly. Main body Erroneous deposition/distribution of the metal ions in different brain regions induces oxidative stress. The metal ions imbalance and oxidative stress together or independently promote amyloid-β (Aβ) overproduction by activating β- or γ-secretases and inhibiting α-secretase, it also causes tau hyperphosphorylation by activating protein kinases, such as glycogen synthase kinase-3β (GSK-3β), cyclin-dependent protein kinase-5 (CDK5), mitogen-activated protein kinases (MAPKs), etc., and inhibiting protein phosphatase 2A (PP2A). The metal ions imbalances can also directly or indirectly disrupt organelles, causing endoplasmic reticulum (ER) stress; mitochondrial and autophagic dysfunctions, which can cause or aggravate Aβ and tau aggregation/accumulation, and impair synaptic functions. Even worse, the metal ions imbalance-induced alterations can reversely exacerbate metal ions misdistribution and deposition. The vicious cycles between metal ions imbalances and Aβ/tau abnormalities will eventually lead to a chronic neurodegeneration and cognitive deficits, such as seen in AD patients. Conclusion The metal ions imbalance induces Aβ and tau pathologies by directly or indirectly affecting multiple cellular/subcellular pathways, and the disrupted homeostasis can reversely aggravate the abnormalities of metal ions transportation/deposition. Therefore, adjusting metal balance by supplementing or chelating the metal ions may be potential in ameliorating AD pathologies, which provides new research directions for AD treatment.
Collapse
Affiliation(s)
- Lu Wang
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Ya-Ling Yin
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Zi Liu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Peng Shen
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Yan-Ge Zheng
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Xin-Rui Lan
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Cheng-Biao Lu
- 1Key Laboratory of Brain Research of Henan Province, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003 China
| | - Jian-Zhi Wang
- 2Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
8
|
Calderón Guzmán D, Juárez Olguín H, Osnaya Brizuela N, Hernández Garcia E, Lindoro Silva M. The Use of Trace and Essential Elements in Common Clinical Disorders: Roles in Assessment of Health and Oxidative Stress Status. Nutr Cancer 2019; 71:13-20. [PMID: 30663392 DOI: 10.1080/01635581.2018.1557214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the early life, the diet of infants is mainly dominated by milk. Milk is a natural food rich in trace elements focus on essential elements. These elements are very necessary for human metabolism and since they cannot be synthesized by the body, the only source available for the humans to obtain them is by ingestion of natural food. This mini-review aims at updating the knowledge on trace elements, outlining their natural food sources, and their possible implications in common clinical disorders in early and adult life. However, it was found that consumption of food with micronutrients and trace elements may release intracellular compounds and offer oxidative protection or exacerbate oxidative damage to metabolically compromised cells.
Collapse
Affiliation(s)
- David Calderón Guzmán
- a Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Hugo Juárez Olguín
- b Laboratorio de Farmacología, INP and Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Norma Osnaya Brizuela
- a Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Ernestina Hernández Garcia
- b Laboratorio de Farmacología, INP and Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Miroslava Lindoro Silva
- b Laboratorio de Farmacología, INP and Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
9
|
Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn 2+ allows tracking of lysosomal Zn 2+ pools. Sci Rep 2018; 8:15034. [PMID: 30302024 PMCID: PMC6177427 DOI: 10.1038/s41598-018-33102-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Small-molecule fluorescent probes are powerful and ubiquitous tools for measuring the concentration and distribution of analytes in living cells. However, accurate characterization of these analytes requires rigorous evaluation of cell-to-cell heterogeneity in fluorescence intensities and intracellular distribution of probes. In this study, we perform a parallel and systematic comparison of two small-molecule fluorescent vesicular Zn2+ probes, FluoZin-3 AM and SpiroZin2, to evaluate each probe for measurement of vesicular Zn2+ pools. Our results reveal that SpiroZin2 is a specific lysosomal vesicular Zn2+ probe and affords uniform measurement of resting Zn2+ levels at the single cell level with proper calibration. In contrast, FluoZin-3 AM produces highly variable fluorescence intensities and non-specifically localizes in the cytosol and multiple vesicular compartments. We further applied SpiroZin2 to lactating mouse mammary epithelial cells and detected a transient increase of lysosomal free Zn2+ at 24-hour after lactation hormone treatment, which implies that lysosomes play a role in the regulation of Zn2+ homeostasis during lactation. This study demonstrates the need for critical characterization of small-molecule fluorescent probes to define the concentration and localization of analytes in different cell populations, and reveals SpiroZin2 to be capable of reporting diverse perturbations to lysosomal Zn2+.
Collapse
|