1
|
Perlova K, Schmidt CC, Fink GR, Weiss PH. The role of the left primary motor cortex in apraxia. Neurol Res Pract 2025; 7:2. [PMID: 39780250 PMCID: PMC11716253 DOI: 10.1186/s42466-024-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Apraxia is a motor-cognitive disorder that primary sensorimotor deficits cannot solely explain. Previous research in stroke patients has focused on damage to the fronto-parietal praxis networks in the left hemisphere (LH) as the cause of apraxic deficits. In contrast, the potential role of the (left) primary motor cortex (M1) has largely been neglected. However, recent brain stimulation and lesion-mapping studies suggest an involvement of left M1 in motor cognitive processes-over and above its role in motor execution. Therefore, this study explored whether the left M1 plays a specific role in apraxia. METHODS We identified 157 right-handed patients with first-ever unilateral LH stroke in the sub-acute phase (< 90 days post-stroke), for whom apraxia assessments performed with the ipsilesional left hand and lesion maps were available. Utilizing the maximum probability map of Brodmann area 4 (representing M1) provided by the JuBrain Anatomy Toolbox in SPM, patients were subdivided into two groups depending on whether their lesions involved (n = 40) or spared (n = 117) left M1. We applied a mixed model ANCOVA with repeated measures to compare apraxic deficits between the two patient groups, considering the factors "body part" and "gesture meaning". Furthermore, we explored potential differential effects of the anterior (4a) and posterior (4p) parts of Brodmann area 4 by correlation analyses. RESULTS Patients with and without M1 involvement did not differ in age and time post-stroke but in lesion size. When controlling for lesion size, the total apraxia scores did not differ significantly between groups. However, the mixed model ANCOVA showed that LH stroke patients with lesions involving left M1 performed differentially worse when imitating meaningless finger gestures. This effect was primarily driven by lesions affecting Brodmann area 4p. CONCLUSIONS Even though many current definitions of apraxia disregard a relevant role of (left) M1, the observed differential effect of M1 lesions, specifically involving subarea 4p, on the imitation of meaningless finger gestures in the current sample of LH stroke patients suggests a specific role of left M1 in imitation when high amounts of (motor) attention and sensorimotor integration are required.
Collapse
Affiliation(s)
- Ksenia Perlova
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Claudia C Schmidt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Peter H Weiss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| |
Collapse
|
2
|
Reibelt A, Quandt F, Schulz R. Posterior parietal cortical areas and recovery after motor stroke: a scoping review. Brain Commun 2023; 5:fcad250. [PMID: 37810465 PMCID: PMC10551853 DOI: 10.1093/braincomms/fcad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Brain imaging and electrophysiology have significantly enhanced our current understanding of stroke-related changes in brain structure and function and their implications for recovery processes. In the motor domain, most studies have focused on key motor areas of the frontal lobe including the primary and secondary motor cortices. Time- and recovery-dependent alterations in regional anatomy, brain activity and inter-regional connectivity have been related to recovery. In contrast, the involvement of posterior parietal cortical areas in stroke recovery is poorly understood although these regions are similarly important for important aspects of motor functioning in the healthy brain. Just in recent years, the field has increasingly started to explore to what extent posterior parietal cortical areas might undergo equivalent changes in task-related activation, regional brain structure and inter-regional functional and structural connectivity after stroke. The aim of this scoping review is to give an update on available data covering these aspects and thereby providing novel insights into parieto-frontal interactions for systems neuroscience stroke recovery research in the upper limb motor domain.
Collapse
Affiliation(s)
- Antonia Reibelt
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Fanny Quandt
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Robert Schulz
- Experimental Electrophysiology and Neuroimaging Lab, Department of Neurology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Kleineberg NN, Schmidt CC, Richter MK, Bolte K, Schloss N, Fink GR, Weiss PH. Gesture meaning modulates the neural correlates of effector-specific imitation deficits in left hemisphere stroke. Neuroimage Clin 2023; 37:103331. [PMID: 36716655 PMCID: PMC9900453 DOI: 10.1016/j.nicl.2023.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
BACKGROUND Previous studies on left hemisphere (LH) stroke patients reported effector-specific (hand, fingers, bucco-facial) differences in imitation performance. Furthermore, imitation performance differed between meaningless (ML) and meaningful (MF) gestures. Recent work suggests that a gesture's meaning impacts the body-part specificity of gesture imitation. METHODS We tested the hypothesis that the gesture's meaning (ML vs MF) affects the lesion correlates of effector-specific imitation deficits (here: bucco-facial vs arm/hand gestures) using behavioural data and support vector regression-based lesion-symptom mapping (SVR-LSM) in a large sample of 194 sub-acute LH stroke patients. RESULTS Behavioural data revealed a significant interaction between the effector used for imitation and the meaning of the imitated gesture. SVR-LSM analyses revealed shared lesion correlates for impaired imitation independent of effector or gesture meaning in the left supramarginal (SMG) and superior temporal gyri (STG). Besides, within the territory of the left middle cerebral artery, impaired imitation of bucco-facial gestures was associated with more anterior lesions, while arm/hand imitation deficits were associated with more posterior lesions. MF gestures were specifically associated with lesions in the left inferior frontal gyrus and the left insular region. Notably, an interaction of effector-specificity and gesture meaning was also present at the lesion level: A more pronounced difference in imitation performance between the effectors for ML (versus MF) gestures was associated with left-hemispheric lesions in the STG, SMG, putamen, precentral gyrus and white matter tracts. CONCLUSION The current behavioural data show that ML gestures are particularly sensitive in assessing effector-specific imitation deficits in LH stroke patients. Moreover, a gesture's meaning modulated the effector-specific lesion correlates of bucco-facial and arm/hand gesture imitation. Hence, it is crucial to consider gesture meaning in apraxia assessments.
Collapse
Affiliation(s)
- Nina N Kleineberg
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany
| | - Monika K Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Katharina Bolte
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Natalie Schloss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
4
|
Rounis E, Binkofski F. Limb Apraxias: The Influence of Higher Order Perceptual and Semantic Deficits in Motor Recovery After Stroke. Stroke 2023; 54:30-43. [PMID: 36542070 DOI: 10.1161/strokeaha.122.037948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stroke is a leading cause of disability worldwide. Limb apraxia is a group of higher order motor disorders associated with greater disability and dependence after stroke. Original neuropsychology studies distinguished separate brain pathways involved in perception and action, known as the dual stream hypothesis. This framework has allowed a better understanding of the deficits identified in Limb Apraxia. In this review, we propose a hierarchical organization of this disorder, in which a distinction can be made between several visuomotor pathways that lead to purposeful actions. Based on this, executive apraxias (such as limb kinetic apraxia) cause deficits in executing fine motor hand skills, and intermediate apraxias (such as optic ataxia and tactile apraxia) cause deficits in reaching to grasp and manipulating objects in space. These disorders usually affect the contralesional limb. A further set of disorders collectively known as limb apraxias include deficits in gesture imitation, pantomime, gesture recognition, and object use. These deficits are due to deficits in integrating perceptual and semantic information to generate complex movements. Limb apraxias are usually caused by left-hemisphere lesions in right-handed stroke patients, affecting both limbs. The anterior- to posterior-axis of brain areas are disrupted depending on the increasing involvement of perceptual and semantic processes with each condition. Lower-level executive apraxias are linked to lesions in the frontal lobe and the basal ganglia, while intermediate apraxias are linked to lesions in dorso-dorsal subdivisions of the dorsal fronto-parietal networks. Limb apraxias can be caused by lesions in both dorsal and ventral subdivisions including the ventro-dorsal stream and a third visuomotor pathway, involved in body schema and social cognition. Rehabilitation of these disorders with behavioral therapies has aimed to either restore perceptuo-semantic deficits or compensate to overcome these deficits. Further studies are required to better stratify patients, using modern neurophysiology and neuroimaging techniques, to provide targeted and personalized therapies for these disorders in the future.
Collapse
Affiliation(s)
- Elisabeth Rounis
- Chelsea and Westminster NHS Foundation Trust, West Middlesex University Hospital, Isleworth, United Kingdom (E.R.).,MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom (E.R.).,Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom (E.R.)
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Germany (F.B.).,Institute for Neuroscience and Medicine (INM-4), Research Center Juelich GmbH, Germany (F.B.).,Juelich Aachen Research Alliance - JARA, Germany (F.B.)
| |
Collapse
|
5
|
Pastore-Wapp M, Gyurkó DM, Vanbellingen T, Lehnick D, Cazzoli D, Pflugshaupt T, Pflugi S, Nyffeler T, Walther S, Bohlhalter S. Improved gesturing in left-hemispheric stroke by right inferior parietal theta burst stimulation. Front Neurosci 2022; 16:998729. [PMID: 36590287 PMCID: PMC9800932 DOI: 10.3389/fnins.2022.998729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Apraxia is a common syndrome of left hemispheric stroke. A parieto-premotor-prefrontal network has been associated with apraxia, in which the left inferior parietal lobe (IPL-L) plays a major role. We hypothesized that transcranial continuous theta burst stimulation (cTBS) over the right inferior parietal lobe (IPL-R) improves gesturing by reducing its inhibition on the contralateral IPL in left hemispheric stroke patients. It was assumed that this effect is independent of lesion volume and that transcallosal connectivity is predictive for gestural effect after stimulation. Materials and methods Nineteen stroke patients were recruited. Lesion volume and fractional anisotropy of the corpus callosum were acquired with structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Each patient had pseudorandomised sessions with sham or with stimulation over the IPL-R or over the right inferior frontal gyrus IFG-R. Gesturing was assessed in a double-blinded manner before and after each session. We tested the effects of stimulation on gesture performance using a linear mixed-effects model. Results Pairwise treatment contrasts showed, that, compared to sham, the behavioral effect was higher after stimulation over IPL-R (12.08, 95% CI 6.04 - 18.13, p < 0.001). This treatment effect was approximately twice as high as the contrasts for IFG-R vs. sham (6.25, 95% CI -0.20 - 12.70, p = 0.058) and IPL-R vs. IFG-R vs. sham (5.83, 95% CI -0.49 - 12.15, p = 0.071). Furthermore, higher fractional anisotropy in the splenium (connecting the left and right IPL) were associated with higher behavioral effect. Relative lesion volume did not affect the changes after sham or stimulation over IPL-R or IFG-R. Conclusion One single session of cTBS over the IPL-R improved gesturing after left hemispheric stroke. Denser microstructure in the corpus callosum correlated with favorable gestural response. We therefore propose the indirect transcallosal modulation of the IPL-L as a promising model of restoring interhemispheric balance, which may be useful in rehabilitation of apraxia.
Collapse
Affiliation(s)
- Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | | | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - Dirk Lehnick
- Biostatistics and Methodology, Clinical Trials Unit Central Switzerland, Lucerne, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | | | | | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
- Biostatistics and Methodology, Clinical Trials Unit Central Switzerland, Lucerne, Switzerland
- Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy of Bern, Bern, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Schmidt CC, Achilles EIS, Fink GR, Weiss PH. Distinct cognitive components and their neural substrates underlying praxis and language deficits following left hemisphere stroke. Cortex 2021; 146:200-215. [PMID: 34896806 DOI: 10.1016/j.cortex.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Apraxia is characterised by multiple deficits of higher motor functions, primarily caused by left hemisphere (LH) lesions to parietal-frontal praxis networks. While previous neuropsychological and lesion studies tried to relate the various apraxic deficits to specific lesion sites, a comprehensive analysis of the different apraxia profiles and the related (impaired) motor-cognitive processes as well as their differential neural substrates in LH stroke is lacking. To reveal the cognitive mechanisms that underlie the different patterns of praxis and (related) language deficits, we applied principal component analysis (PCA) to the scores of sub-acute LH stroke patients (n = 91) in several tests of apraxia and aphasia. Voxel-based lesion-symptom mapping (VLSM) analyses were then used to investigate the neural substrates of the identified components. The PCA yielded a first component related to language functions and three components related to praxis functions, with each component associated with specific lesion patterns. Regarding praxis functions, performance in imitating arm/hand gestures was accounted for by a second component related to the left precentral gyrus and the inferior parietal lobule. Imitating finger configurations, pantomiming the use of objects related to the face, and actually using objects loaded on component 3, related to the left anterior intraparietal sulcus and angular gyrus. The last component represented the imitation of bucco-facial gestures and was linked to the basal ganglia and LH white matter tracts. The results further revealed that pantomime of (limb-related) object use depended on both the component 2 and 3, which were shared with gesture imitation and actual object use. Data support and extend the notion that apraxia represents a multi-componential syndrome comprising different (impaired) motor-cognitive processes, which dissociate - at least partially - from language processes. The distinct components might be disturbed to a varying degree following LH stroke since they are associated with specific lesion patterns within the LH.
Collapse
Affiliation(s)
- Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Elisabeth I S Achilles
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
7
|
Farnad L, Ghasemian-Shirvan E, Mosayebi-Samani M, Kuo MF, Nitsche MA. Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimul 2021; 14:622-634. [PMID: 33798763 DOI: 10.1016/j.brs.2021.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND tDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults. METHODS 32 healthy, volunteers from two different age groups of Young-Old (50-65 years, n = 16) and Old-Old (66-80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation. RESULTS All active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min). CONCLUSIONS Our study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas.
Collapse
Affiliation(s)
- Leila Farnad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Ensiyeh Ghasemian-Shirvan
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany.
| |
Collapse
|
8
|
Kleineberg NN, Richter MK, Becker I, Weiss PH, Fink GR. Verum versus sham tDCS in the treatment of stroke-induced apraxia: study protocol of the randomized controlled trial RAdiCS -"Rehabilitating (stroke-induced) Apraxia with direct Current Stimulation". Neurol Res Pract 2020; 2:7. [PMID: 33324913 PMCID: PMC7650086 DOI: 10.1186/s42466-020-0052-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Stroke is the leading cause of acquired disability in western societies. (Motor) cognitive deficits like apraxia significantly contribute to disability after stroke, harming activities of daily living and rehabilitation outcome. To date, efficient therapeutic options for apraxia remain sparse. Thus, randomized controlled trials (RCTs) are warranted. METHODS Based on promising results of a pilot study, the on-going RAdiCS (Rehabilitating stroke-induced Apraxia with direct Current Stimulation) study is a randomized controlled trial, which follows a double-blinded (investigator and patient), two-arm parallel interventional model. It is designed to include 110 apraxic patients (as diagnosed by the Cologne Apraxia Screening, KAS) in the subacute phase after a left hemisphere (LH) stroke. The University of Cologne initiated the trial, which is conducted in two German Neurorehabilitation Centers.The study aims to evaluate the effect of anodal (versus sham) transcranial direct current stimulation (tDCS) applied over the left posterior parietal cortex (PPC) with an intensity of 2 mA for 10 min on five consecutive days on apraxic deficits. In addition to anodal or sham tDCS, all LH stroke patients undergo a motor (cognitive) training that is performed before and after the stimulation (off-line stimulation).The primary outcome measure is the (differential) change in the overall KAS score after five daily sessions of anodal versus sham tDCS when compared to the baseline assessment before tDCS. Secondary study outcomes include further apraxia scores, aphasia severity, and measures of motor performance and disability after stroke. All outcome measures are obtained in the post-stimulation assessment as well as during follow-up (3-4 months after tDCS). PERSPECTIVE The RCT RAdiCS shall evaluate in a large number of LH stroke patients whether anodal tDCS (compared to sham tDCS) expedites the rehabilitation of apraxia - over and above additional motor (cognitive) training and standard care. A positive study outcome would provide a new strategy for the treatment of apraxia, which hopefully ameliorates the negative impact of apraxia on daily living and long-term outcome. TRIAL REGISTRATION Clinical Trials Gov: NCT03185234, registered 14 June 2017 ; Deutsches Register für Klinische Studien: DRKS00012292, registered 01 June 2017. TRIAL STATUS Participant enrollment began on 22 June 2017. The trial is expected to be completed on 30 June 2022.
Collapse
Affiliation(s)
- Nina N. Kleineberg
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Monika K. Richter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Ingrid Becker
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter H. Weiss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| |
Collapse
|