1
|
Ying J, Zhang MW, Wei KC, Wong SH, Subramaniam M. Influential articles in autism and gut microbiota: bibliometric profile and research trends. Front Microbiol 2025; 15:1401597. [PMID: 39850141 PMCID: PMC11755156 DOI: 10.3389/fmicb.2024.1401597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Increasing evidence suggests that it is potentially related to gut microbiota, but no prior bibliometric analysis has been performed to explore the most influential works in the relationships between ASD and gut microbiota. In this study, we conducted an in-depth analysis of the most-cited articles in this field, aiming to provide insights to the existing body of research and guide future directions. Methods A search strategy was constructed and conducted in the Web of Science database to identify the 100 most-cited papers in ASD and gut microbiota. The Biblioshiny package in R was used to analyze and visualize the relevant information, including citation counts, country distributions, authors, journals, and thematic analysis. Correlation and comparison analyses were performed using SPSS software. Results The top 100 influential manuscripts were published between 2000 and 2021, with a total citation of 40,662. The average number of citations annually increased over the years and was significantly correlated to the year of publication (r = 0.481, p < 0.01, Spearman's rho test). The United States was involved in the highest number of publications (n = 42). The number of publications in the journal was not significantly related to the journal's latest impact factor (r = 0.016, p > 0.05, Spearman's rho test). Co-occurrence network and thematic analysis identified several important areas, such as microbial metabolites of short-chain fatty acids and overlaps with irritable bowel syndrome. Conclusion This bibliometric analysis provides the key information of the most influential studies in the area of ASD and gut microbiota, and suggests the hot topics and future directions. The findings of this study can serve as a valuable reference for researchers and policymakers, guiding the development and implementation of the scientific research strategies in this area.
Collapse
Affiliation(s)
- Jiangbo Ying
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | | | - Ker-Chiah Wei
- Department of Developmental Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Sunny H. Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | | |
Collapse
|
2
|
Spry JA, Siegel B, Bakermans C, Beaty DW, Bell MS, Benardini JN, Bonaccorsi R, Castro-Wallace SL, Coil DA, Coustenis A, Doran PT, Fenton L, Fidler DP, Glass B, Hoffman SJ, Karouia F, Levine JS, Lupisella ML, Martin-Torres J, Mogul R, Olsson-Francis K, Ortega-Ugalde S, Patel MR, Pearce DA, Race MS, Regberg AB, Rettberg P, Rummel JD, Sato KY, Schuerger AC, Sefton-Nash E, Sharkey M, Singh NK, Sinibaldi S, Stabekis P, Stoker CR, Venkateswaran KJ, Zimmerman RR, Zorzano-Mier MP. Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars. ASTROBIOLOGY 2024; 24:230-274. [PMID: 38507695 DOI: 10.1089/ast.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.
Collapse
Affiliation(s)
| | | | - Corien Bakermans
- Department of Biology, Penn. State University (Altoona), Altoona, Pennsylvania, USA
| | - David W Beaty
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Rosalba Bonaccorsi
- SETI Institute, Mountain View, California, USA
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - David A Coil
- School of Medicine, University of California, Davis, Davis, California, USA
| | | | - Peter T Doran
- Department of Geology & Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lori Fenton
- SETI Institute, Mountain View, California, USA
| | - David P Fidler
- Council on Foreign Relations, Washington, District of Columbia, USA
| | - Brian Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, California, USA
| | - Joel S Levine
- College of William & Mary, Williamsburg, Virginia, USA
| | | | - Javier Martin-Torres
- School of Geoscience, University of Aberdeen, Aberdeen, United Kingdom
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, Spain
| | - Rakesh Mogul
- California Polytechnic (Pomona), Pomona, California, USA
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Manish R Patel
- School of Environment, Earth and Ecosystem Sciences, Open University, Milton Keynes, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | | | | | | | - John D Rummel
- Friday Harbor Associates LLC, Friday Harbor, Washington, USA
| | | | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, Florida, USA
| | | | - Matthew Sharkey
- US Department of Health & Human Services, Washington, District of Columbia, USA
| | - Nitin K Singh
- Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California, USA
| | | | | | - Carol R Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | |
Collapse
|
3
|
Alwood JS, Mulavara AP, Iyer J, Mhatre SD, Rosi S, Shelhamer M, Davis C, Jones CW, Mao XW, Desai RI, Whitmire AM, Williams TJ. Circuits and Biomarkers of the Central Nervous System Relating to Astronaut Performance: Summary Report for a NASA-Sponsored Technical Interchange Meeting. Life (Basel) 2023; 13:1852. [PMID: 37763256 PMCID: PMC10532466 DOI: 10.3390/life13091852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.
Collapse
Affiliation(s)
| | | | - Janani Iyer
- Universities Space Research Association (USRA), Moffett Field, CA 94035, USA
| | | | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
| | - Mark Shelhamer
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Catherine Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| | - Christopher W. Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Rajeev I. Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
4
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
5
|
Yuan L, Zhang R, Li X, Gao C, Hu X, Hussain S, Zhang L, Wang M, Ma X, Pan Q, Lou X, Si S. Long-term simulated microgravity alters gut microbiota and metabolome in mice. Front Microbiol 2023; 14:1100747. [PMID: 37032862 PMCID: PMC10080065 DOI: 10.3389/fmicb.2023.1100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Spaceflight and microgravity has a significant impact on the immune, central nervous, bone, and muscle support and cardiovascular systems. However, limited studies are available on the adverse effects of long-term microgravity on the intestinal microbiota, metabolism, and its relationships. In this study, a ground-based simulated microgravity (SMG) mouse model was established to evaluate the impact of long-term microgravity on gut microbiota and metabolome. After 8 weeks of SMG, alterations of the intestinal microbiota and metabolites were detected using 16S rRNA sequencing and untargeted metabolomics. Compared to the control, no significant differences in α-diversity were observed at weeks 2, 4 and 8. Nevertheless, there were clear differences in community structures at different time points. The phylum Verrucomicrobia significantly declined from 2 to 8 weeks of SMG, yet the relative abundance of Actinobacteria and Deferribacteres expanded remarkably at weeks 8. SMG decreased the genus of Allobaculum and increased Bacteroides significantly throughout the period of 8 weeks. Besides, Genus Akkermansia, Gracilibacter, Prevotella, Odoribacter, Rothia, Sporosarcina, Gracilibacter, Clostridium, and Mucispirillum were identified as biomarkers for SMG group. Desulfovibrio_c21_c20, Akkermansia_muciniphila, and Ruminococcus_gnavus dropped at week 2, which tend to recover at week 4, except for Akkermansia_muciniphila. Bacteroides_uniformis and Faecalibacterium_prausnitzii declined significantly, while Ruminococcus_flavefaciens and Mucispirillum_schaedleri elevated at week 8. Furthermore, intestinal metabolome analysis showed that 129 were upregulated and 146 metabolites were downregulated in SMG. Long-term SMG most affected steroid hormone biosynthesis, tryptophan, cysteine, methionine, arginine, proline metabolism, and histidine metabolism. Correlated analysis suggested that the potential beneficial taxa Allobaculum, Akkermansia, and Faecalibacterium were negatively associated with tryptophan, histidine, arginine, and proline metabolism, but positively with steroid hormone biosynthesis. Yet Bacteroides, Lachnospiraceae_Clostridium, Rothia, Bilophila, and Coprococcus were positively correlated with arginine, proline, tryptophan, and histidine metabolism, while negatively associated with steroid hormone biosynthesis. These results suggest that Long-term SMG altered the community of intestinal microbiota, and then further disturbed intestinal metabolites and metabolic pathways, which have great potential to help understand and provide clues for revealing the mechanisms of long-term SMG involved diseases.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Rong Zhang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xinlou Li
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Caiyun Gao
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiangnan Hu
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Safdar Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Linlin Zhang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Moye Wang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaoyu Ma
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Qiuxia Pan
- Department of Traditional Chinese Medicine, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaotong Lou
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
- *Correspondence: Xiaotong Lou,
| | - Shaoyan Si
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
- Shaoyan Si,
| |
Collapse
|
6
|
Suman S, Moon BH, Datta K, Kallakury BVS, Fornace AJ. Heavy-ion radiation-induced colitis and colorectal carcinogenesis in Il10-/- mice display co-activation of β-catenin and NF-κB signaling. PLoS One 2022; 17:e0279771. [PMID: 36584137 PMCID: PMC9803147 DOI: 10.1371/journal.pone.0279771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Space radiation-induced gastrointestinal (GI) cancer risk models for future interplanetary astronauts are being developed that primarily rely on quantitative animal model studies to assess radiation-quality effects of heavy-ion space radiation exposure in relation to γ-rays. While current GI-cancer risk estimation efforts are focused on sporadic GI-cancer mouse models, emerging in-vivo data on heavy-ion radiation-induced long-term GI-inflammation are indicative of a higher but undetermined risk of GI-inflammation associated cancers, such as colitis-associated cancer (CAC). Therefore, we aimed to assess radiation quality effects on colonic inflammation, colon cancer incidence, and associated signaling events using an in-vivo CAC model i.e., Il10-/- mice. Male Il10-/- mice (8-10 weeks, n = 12/group) were irradiated with either sham, γ-rays or heavy-ions (28Si or 56Fe), and histopathological assessments for colitis and CAC were conducted at 2.5 months post-exposure. qPCR analysis for inflammation associated gene transcripts (Ptges and Tgfb1), and in-situ staining for markers of cell-proliferation (phospho-histone H3), oncogenesis (active-β-catenin, and cyclin D1), and inflammation (phospho-p65NF-κB, iNOS, and COX2) were performed. Significantly higher colitis and CAC frequency were noted after heavy-ion exposure, relative to γ and control mice. Higher CAC incidence after heavy-ion exposure was associated with greater activation of β-catenin and NF-κB signaling marked by induced expression of common downstream inflammatory (iNOS and COX2) and pro-proliferative (Cyclin D1) targets. In summary, IR-induced colitis and CAC incidence in Il10-/- mice depends on radiation quality and display co-activation of β-catenin and NF-κB signaling.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- * E-mail:
| | - Bo-Hyun Moon
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kamal Datta
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bhaskar V. S. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Albert J. Fornace
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
7
|
Seoane-Viaño I, Ong JJ, Basit AW, Goyanes A. To infinity and beyond: Strategies for fabricating medicines in outer space. Int J Pharm X 2022; 4:100121. [PMID: 35782363 PMCID: PMC9240807 DOI: 10.1016/j.ijpx.2022.100121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in next generation spacecrafts have reignited public excitement over life beyond Earth. However, to safeguard the health and safety of humans in the hostile environment of space, innovation in pharmaceutical manufacturing and drug delivery deserves urgent attention. In this review/commentary, the current state of medicines provision in space is explored, accompanied by a forward look on the future of pharmaceutical manufacturing in outer space. The hazards associated with spaceflight, and their corresponding medical problems, are first briefly discussed. Subsequently, the infeasibility of present-day medicines provision systems for supporting deep space exploration is examined. The existing knowledge gaps on the altered clinical effects of medicines in space are evaluated, and suggestions are provided on how clinical trials in space might be conducted. An envisioned model of on-site production and delivery of medicines in space is proposed, referencing emerging technologies (e.g. Chemputing, synthetic biology, and 3D printing) being developed on Earth that may be adapted for extra-terrestrial use. This review concludes with a critical analysis on the regulatory considerations necessary to facilitate the adoption of these technologies and proposes a framework by which these may be enforced. In doing so, this commentary aims to instigate discussions on the pharmaceutical needs of deep space exploration, and strategies on how these may be met.
Space is a hostile environment that threatens human health and drug stability. Data on the behaviour of medicines in space is critical but lacking. Novel drug manufacturing and delivery strategies are needed to safeguard crewmembers’ safety. Chemputing, synthetic biology, and 3D printing are examples of such emerging technologies. A regulatory framework for space medicines must be implemented to assure quality.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, The Institute of Materials (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
8
|
Passive limitation of surface contamination by perFluoroDecylTrichloroSilane coatings in the ISS during the MATISS experiments. NPJ Microgravity 2022; 8:31. [PMID: 35927552 PMCID: PMC9352769 DOI: 10.1038/s41526-022-00218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Future long-duration human spaceflight will require developments to limit biocontamination of surface habitats. The MATISS (Microbial Aerosol Tethering on Innovative Surfaces in the international Space Station) experiments allowed for exposing surface treatments in the ISS (International Space Station) using a sample-holder developed to this end. Three campaigns of FDTS (perFluoroDecylTrichloroSilane) surface exposures were performed over monthly durations during distinct periods. Tile scanning optical microscopy (×3 and ×30 magnifications) showed a relatively clean environment with a few particles on the surface (0.8 to 7 particles per mm2). The varied densities and shapes in the coarse area fraction (50-1500 µm2) indicated different sources of contamination in the long term, while the bacteriomorph shapes of the fine area fraction (0.5-15 µm2) were consistent with microbial contamination. The surface contamination rates correlate to astronauts' occupancy rates on board. Asymmetric particles density profiles formed throughout time along the air-flow. The higher density values were located near the flow entry for the coarse particles, while the opposite was the case for the fine particles, probably indicating the hydrophobic interaction of particles with the FDTS surface.
Collapse
|
9
|
Dello Russo C, Bandiera T, Monici M, Surdo L, Yip VLM, Wotring V, Morbidelli L. Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature. Br J Pharmacol 2022; 179:2538-2557. [PMID: 35170019 PMCID: PMC9314132 DOI: 10.1111/bph.15822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
As human spaceflight progresses with extended mission durations, the demand for effective and safe drugs will necessarily increase. To date, the accepted medications used during missions (for space motion sickness, sleep disturbances, allergies, pain, and sinus congestion) are administered under the assumption that they act as safely and efficaciously as on Earth. However, physiological changes have been documented in human subjects in spaceflight involving fluid shifts, muscle and bone loss, immune system dysregulation, and adjustments in the gastrointestinal tract and metabolism. These alterations may change the pharmacokinetics (PK) and pharmacodynamics of commonly used medications. Frustratingly, the information gained from bed rest studies and from in-flight observations is incomplete and also demonstrates a high variability in drug PK. Therefore, the objectives of this review are to report (i) the impact of the space environmental stressors on human physiology in relation to PK; (ii) the state-of-the-art on experimental data in space and/or in ground-based models; (iii) the validation of ground-based models for PK studies; and (iv) the identification of research gaps.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of PharmacologyUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB)University of LiverpoolLiverpoolUK
| | - Tiziano Bandiera
- D3‐PharmaChemistry LineIstituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div. & Dept. of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space AgencyNoordwijkThe Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB)University of LiverpoolLiverpoolUK
| | | | | |
Collapse
|
10
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
11
|
Costa F, Ambesi-Impiombato FS, Beccari T, Conte C, Cataldi S, Curcio F, Albi E. Spaceflight Induced Disorders: Potential Nutritional Countermeasures. Front Bioeng Biotechnol 2021; 9:666683. [PMID: 33968917 PMCID: PMC8096993 DOI: 10.3389/fbioe.2021.666683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Space travel is an extreme experience even for the astronaut who has received extensive basic training in various fields, from aeronautics to engineering, from medicine to physics and biology. Microgravity puts a strain on members of space crews, both physically and mentally: short-term or long-term travel in orbit the International Space Station may have serious repercussions on the human body, which may undergo physiological changes affecting almost all organs and systems, particularly at the muscular, cardiovascular and bone compartments. This review aims to highlight recent studies describing damages of human body induced by the space environment for microgravity, and radiation. All novel conditions, to ally unknown to the Darwinian selection strategies on Earth, to which we should add the psychological stress that astronauts suffer due to the inevitable forced cohabitation in claustrophobic environments, the deprivation from their affections and the need to adapt to a new lifestyle with molecular changes due to the confinement. In this context, significant nutritional deficiencies with consequent molecular mechanism changes in the cells that induce to the onset of physiological and cognitive impairment have been considered.
Collapse
Affiliation(s)
- Fabio Costa
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|