1
|
Kumar R, Pandey A, Vibhuti A, Ali M, Chang CM, Pandey RP. Unlocking Mysteries: Exploring the Dynamic Interplay among Sleep, the Immune System, and Curcumin in Contemporary Research. Sleep Sci 2025. [DOI: 10.1055/s-0045-1802321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
AbstractThe scientific disciplines encompassing sleep, the immune system, and curcumin have garnered considerable interest due to their interconnectedness and potential implications for human health. Sleep is a crucial factor in maintaining optimal immune function, as it facilitates the release of cytokines, which are signaling molecules responsible for regulating immune responses. On the contrary, sleep deprivation has the potential of inhibiting immune function, thereby heightening the susceptibility to infection and disease. Curcumin, a naturally occurring polyphenol derived from the turmeric plant, has been observed to possess immunomodulatory characteristics through its ability to modulate the equilibrium between pro- and anti-inflammatory cytokines. It is worth noting that there is evidence suggesting that curcumin supplementation could enhance the quality of sleep. Scientific studies have indicated that curcumin supplementation has been associated with an increase in the duration of sleep and a decrease in wakefulness among individuals who are in good health. Additionally, curcumin supplementation has been found to enhance sleep quality and alleviate symptoms of depression in individuals diagnosed with major depressive disorder. The intricate interplay among sleep, the immune system, and curcumin is multifaceted, and scientific investigations indicate that curcumin may serve as a beneficial dietary adjunct to enhance immune function and optimize sleep quality. Nevertheless, additional investigation is required to fully comprehend the mechanisms through which curcumin alters the immune system and enhances sleep, as well as to ascertain the most effective dose and timing of curcumin supplementation.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Arpana Vibhuti
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
| | - Manzoor Ali
- Genomics and Genome Biology Unit, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Chung-Ming Chang
- Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
- Laboratory Animal Center, Chang Gung University, Guishan Dist, Taoyuan City, Taiwan
| | - Ramendra Pati Pandey
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonipat, Haryana, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Xu YH, Wu F, Yu S, Guo YN, Zhao RR, Zhang RL. Therapeutic sleep deprivation for major depressive disorder: A randomized controlled trial. J Affect Disord 2024; 361:10-16. [PMID: 38844163 DOI: 10.1016/j.jad.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/01/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is treated primarily using antidepressant drugs, but clinical effects may be delayed for weeks to months. This study investigated the efficacy of brief therapeutic sleep deprivation (TSD) for inducing rapid improvements in MDD symptoms. METHODS From November 2020 to February 2023, 54 inpatients with MDD were randomly allocated to TSD and Control groups. The TSD group (23 cases) remained awake for 36 h, while the Control group (31 cases) maintained regular sleep patterns. All participants continued regular drug therapy. Mood was assessed using the 24-item Hamilton Depression Scale (HAMD-24) at baseline and post-intervention in both groups. In the TSD group, the Visual Analogue Scale (VAS) was utilized to evaluate subjective mood during and after the intervention. Cognitive function was assessed at baseline and post-intervention using the Montreal Cognitive Assessment (MoCA). Objective sleep parameters were recorded in the TSD group by polysomnography. The follow-up period spanned one week. RESULTS HAMD-24 scores did not differ between groups at baseline or post-intervention. However, the clinical response rate was 34.8 % higher in the TSD group on day 3 post-intervention compared to the Control group (3.2 %), but not sustained by day 7. Moreover, responders demonstrated a faster improvement in the VAS score during TSD than non-responders (p = 0.047). There were no significant differences in MoCA scores or objective sleep parameters between the groups. LIMITATIONS Small sample size and notable attrition rate. CONCLUSIONS Therapeutic sleep deprivation can rapidly improve MDD symptoms without influencing sleep parameters or cognitive functions. Assessment of longer-term effects and identification of factors predictive of TSD response are warranted.
Collapse
Affiliation(s)
- Ya-Hui Xu
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China.
| | - Fang Wu
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| | - Shuai Yu
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| | - Ya-Nan Guo
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| | - Rong-Rong Zhao
- Psychiatry Department, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Rui-Ling Zhang
- Department of Sleep Medicine, Second Affiliated Hospital of Xinxiang Medical University; Henan Collaborative Innovation Center for Prevention and Treatment of Mental Disorders; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, China
| |
Collapse
|
3
|
Yang C, Biswal B, Cui Q, Jing X, Ao Y, Wang Y. Frequency-dependent alterations of global signal topography in patients with major depressive disorder. Psychol Med 2024; 54:2152-2161. [PMID: 38362834 DOI: 10.1017/s0033291724000254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated not only with disorders in multiple brain networks but also with frequency-specific brain activities. The abnormality of spatiotemporal networks in patients with MDD remains largely unclear. METHODS We investigated the alterations of the global spatiotemporal network in MDD patients using a large-sample multicenter resting-state functional magnetic resonance imaging dataset. The spatiotemporal characteristics were measured by the variability of global signal (GS) and its correlation with local signals (GSCORR) at multiple frequency bands. The association between these indicators and clinical scores was further assessed. RESULTS The GS fluctuations were reduced in patients with MDD across the full frequency range (0-0.1852 Hz). The GSCORR was also reduced in the MDD group, especially in the relatively higher frequency range (0.0728-0.1852 Hz). Interestingly, these indicators showed positive correlations with depressive scores in the MDD group and relative negative correlations in the control group. CONCLUSION The GS and its spatiotemporal effects on local signals were weakened in patients with MDD, which may impair inter-regional synchronization and related functions. Patients with severe depression may use the compensatory mechanism to make up for the functional impairments.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiujuan Jing
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yujia Ao
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
4
|
Öz P, Kamalı O, Saka HB, Gör C, Uzbay İT. Baseline prepulse inhibition dependency of orexin A and REM sleep deprivation. Psychopharmacology (Berl) 2024; 241:1213-1225. [PMID: 38427059 PMCID: PMC11106105 DOI: 10.1007/s00213-024-06555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
RATIONALE Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.
Collapse
Affiliation(s)
- Pınar Öz
- Department of Molecular Biology and Genetics, Üsküdar University, Istanbul, Turkey.
- Faculty of Engineering and Natural Sciences, Üsküdar University Central Campus Block A, Altunizade Mah. Haluk Türksoy Sk. No : 14 34362, Üsküdar, Istanbul, Turkey.
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey.
| | - Osman Kamalı
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | - Hacer Begüm Saka
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
- Department of Neuroscience, Koç University, Istanbul, Turkey
| | - Ceren Gör
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | | |
Collapse
|
5
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
6
|
Chakrabarti S, Jolly AJ, Singh P, Yadhav N. Role of adjunctive nonpharmacological strategies for treatment of rapid-cycling bipolar disorder. World J Psychiatry 2023; 13:495-510. [PMID: 37701540 PMCID: PMC10494771 DOI: 10.5498/wjp.v13.i8.495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Rapid-cycling bipolar disorder (RCBD) is a phase of bipolar disorder defined by the presence of ≥ 4 mood episodes in a year. It is a common phenomenon characterized by greater severity, a predominance of depression, higher levels of disability, and poorer overall outcomes. It is resistant to treatment by conventional pharmacotherapy. The existing literature underlines the scarcity of evi-dence and the gaps in knowledge about the optimal treatment strategies for RCBD. However, most reviews have considered only pharmacological treatment options for RCBD. Given the treatment-refractory nature of RCBD, nonpharmacological interventions could augment medications but have not been adequately examined. This review carried out an updated and comprehensive search for evidence regarding the role of nonpharmacological therapies as adjuncts to medications in RCBD. We identified 83 reviews and meta-analyses concerning the treatment of RCBD. Additionally, we found 42 reports on adjunctive nonpharmacological treatments in RCBD. Most of the evidence favoured concomitant electroconvulsive therapy as an acute and maintenance treatment. There was pre-liminary evidence to suggest that chronotherapeutic treatments can provide better outcomes when combined with medications. The research on adjunctive psychotherapy was particularly scarce but suggested that psychoeducation, cognitive behavioural therapy, family interventions, and supportive psychotherapy may be helpful. The overall quality of evidence was poor and suffered from several methodological shortcomings. There is a need for more methodologically sound research in this area, although clinicians can use the existing evidence to select and individualize nonpharmacological treatment options for better management of RCBD. Patient summaries are included to highlight some of the issues concerning the implementation of adjunctive nonpharmacological treatments.
Collapse
Affiliation(s)
- Subho Chakrabarti
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh UT, India
| | - Amal J Jolly
- Department of Psychiatry, Black Country Healthcare NHS Foundation Trust, Dudley DY2 8PS, West Midlands, United Kingdom
| | - Pranshu Singh
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur 342005, Rajasthan, India
| | - Nidhi Yadhav
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh UT, India
| |
Collapse
|
7
|
He C, Xiao L, Xu J, Cui Y, Huang Y, Li Y, Tang Y, Xu S, Wang H, Cai Y, Guo X, Su T. Effect of sleep deprivation plus existing therapies on depression: A systematic review and meta-analysis of randomized controlled trials. Int J Psychophysiol 2023; 184:1-11. [PMID: 36481460 DOI: 10.1016/j.ijpsycho.2022.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Depression is the most common mental disorder in the world. Sleep deprivation (SD) is a well-known antidepressant. Several recombination protocols (including medications, bright light treatment [BLT], cognitive-behavioral therapy, sleep phrase advance/sleep phrase delay [SPA/SPD], and repetitive transcranial magnetic stimulation [rTMS]) have been developed to improve and maintain the effect of SD. However, relapse after recovery sleep has been reported, and different recombination protocols result in different outcomes. METHODS The Embase, Cochrane, PubMed, CBM, Web of Science, and CINAHL databases were searched for clinical trials assessing depression and SD. Three independent reviewers classified forty-three abstracts. The Hamilton Depression Rating Scale was used to assess the outcomes. RESULTS Compared with existing therapy, patients receiving SD displayed a significant improvement in clinician-rated depressive symptoms (MD -1.48 [95 % CI -2.60, -0.37], p < 0.05). A significant decrease was found in the subgroups of SD plus SPA/SPD (odds ratio 3.90 [95 % CI 1.66, 9.17], p < 0.05), total sleep deprivation[TSD] plus BLT (MD -3.28 [95 % CI -5.06, -1.50], p < 0.05), and partial sleep deprivation[PSD] plus rTMS (MD -7.94 [95 % CI -11.44, -4.45], p < 0.05). No significant differences were observed in the other subgroups. CONCLUSIONS Adding SD to existing therapies showed a positive outcome in improving depression treatment, which provides evidence for the use of SD in treating depression. Further studies are needed to determine the precise effects of SD plus other interventions.
Collapse
Affiliation(s)
- Chen He
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Lei Xiao
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Jingzhou Xu
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yi Cui
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yujia Huang
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yinan Li
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yunxiang Tang
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Shuyu Xu
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Hao Wang
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Yili Cai
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Xin Guo
- Department of Psychology, Naval Medical University, Shanghai, China
| | - Tong Su
- Department of Psychology, Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Ludwig VM, Münch I, Wirz-Justice A, Ritter P. [Chronotherapy of affective disorders: principles and clinical aspects]. DER NERVENARZT 2022; 93:892-900. [PMID: 35687164 DOI: 10.1007/s00115-022-01323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronobiological processes play a critical role in the initial manifestation and course of affective disorders. Chronotherapeutic agents aim to improve sleep-wake cycle disturbances and affective symptoms by modulating the chronobiological neuronal circuitry. OBJECTIVE To review the different chronotherapeutic procedures, the current evidence situation and recommendations for clinical applications. METHOD Narrative review. RESULTS Chronotherapeutic interventions for patients with affective disorders can be nonpharmacological, e.g., light therapy, sleep deprivation, sleep phase advance and dark therapy, pharmacological in the form of melatonin and psychological consisting of interpersonal and social rhythm therapy or cognitive behavioral therapy for insomnia modified for patients with bipolar disorder. Nearly all these interventions show promising data regarding their efficacy in acute depressive or manic episodes or as maintenance therapy. For melatonin, there is less evidence for improvement of affective symptoms than for stabilizing the sleep-wake cycle. Some interventions are well-suited for an outpatient setting, e.g., light therapy, dark therapy and psychotherapy, while others, such as triple chronotherapy consisting of sleep deprivation, sleep phase advance and light therapy, are more suited for in-patient treatment. CONCLUSION Chronotherapeutic interventions are versatile in their application and can be combined with each other and used concomitantly with classical psychopharmacotherapy. With a benign side effect profile and good evidence for efficacy, they could play an important role in the treatment of affective disorders; however, this potential is used too rarely in the clinical context.
Collapse
Affiliation(s)
- Vera Miriam Ludwig
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Deutschland.
| | - Ilka Münch
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Deutschland
| | - Anna Wirz-Justice
- Zentrum für Chronobiologie, Universitäre Psychiatrische Kliniken Basel, Basel, Schweiz
| | - Philipp Ritter
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Deutschland
| |
Collapse
|
9
|
Lee JS, Jaini PA, Papa F. An Epigenetic Perspective on Lifestyle Medicine for Depression: Implications for Primary Care Practice. Am J Lifestyle Med 2022; 16:76-88. [PMID: 35185430 PMCID: PMC8848122 DOI: 10.1177/1559827620954779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 06/16/2024] Open
Abstract
Depression is the most common presenting mental health disorder in primary care. It is also a major contributor to somatic complaints, worsening of chronic medical conditions, poor quality of life, and suicide. Current pharmacologic and psychotherapeutic approaches avert less than half of depression's cumulative burden on society. However, there is a growing body of research describing both how maladaptive lifestyle choices contribute to the development and worsening of depression and how lifestyle-oriented medical interventions can reduce the incidence and severity of depression. This research, largely derived from an emerging field called epigenetics, elucidates the interactions between our lifestyle choices and those epigenetic factors which mediate our tendencies toward either health, or the onset, if not worsening of disease. The present review highlights how lifestyle choices involving diet, physical activity, sleep, social relationships, and stress influence epigenetic processes positively or negatively, and thereby play a significant role in determining whether one does or does not suffer from depression. The authors propose that medical training programs consider and adopt lifestyle medicine oriented instructional initiatives that will enable tomorrow's primary care providers to more effectively identify and therapeutically intervene in the maladaptive choices contributing to their patients' depression.
Collapse
Affiliation(s)
- Jenny Sunghyun Lee
- Jenny Sunghyun Lee, Department of Preventive Medicine, Loma Linda University Medical School, 24785 Stewart Street, Loma Linda, CA 92350; e-mail:
| | - Paresh Atu Jaini
- Department of Preventive Medicine, Loma Linda University Medical School, Loma Linda, California (JSL)
- Department of Psychiatry, John Peter Smith Hospital, Fort Worth, Texas (PAJ)
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, Texas (FP)
| | - Frank Papa
- Department of Preventive Medicine, Loma Linda University Medical School, Loma Linda, California (JSL)
- Department of Psychiatry, John Peter Smith Hospital, Fort Worth, Texas (PAJ)
- Department of Medical Education, University of North Texas Health Science Center, Fort Worth, Texas (FP)
| |
Collapse
|
10
|
Klerman EB, Barbato G, Czeisler CA, Wehr TA. Can People Sleep Too Much? Effects of Extended Sleep Opportunity on Sleep Duration and Timing. Front Physiol 2021; 12:792942. [PMID: 35002775 PMCID: PMC8727775 DOI: 10.3389/fphys.2021.792942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many people are concerned about whether they are getting "enough" sleep, and if they can "sleep too much." These concerns can be approached scientifically using experiments probing long-term (i.e., multi-night) sleep homeostatic processes, since homeostatic processes move the system toward its physiological setpoint (i.e., between "not enough" and "too much"). We analyzed sleep data from two human studies with sleep opportunities much longer than people usually stay in bed (i.e., conditions in which sleep homeostatic responses could be documented): sleep opportunities were 14-16 h per day for 3-28 days. Across the nights of the extended sleep opportunities, total sleep duration, Rapid Eye Movement (REM) sleep duration and non-REM sleep durations decreased and sleep latency increased. Multiple nights were required to reach approximately steady-state values. These results suggest a multi-day homeostatic sleep process responding to self-selected insufficient sleep duration prior to the study. Once steady state-values were reached, there were large night-to-night variations in total sleep time and other sleep metrics. Our results therefore answer these concerns about sleep amount and are important for understanding the basic physiology of sleep and for two sleep-related topics: (i) the inter-individual and intra-individual variability are relevant to understanding "normal" sleep patterns and for people with insomnia and (ii) the multiple nights of sleep required for recovery from insufficient sleep from self-selected sleep loss is important for public health and other efforts for reducing the adverse effects of sleep loss on multiple areas of physiology.
Collapse
Affiliation(s)
- Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Giuseppe Barbato
- Department of Psychology, University degli Studi della Campania Luigi Vanvitelli, Campania, Italy
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Thomas A. Wehr
- Intramural Research Program, NIMH, Bethesda, MD, United States
| |
Collapse
|
11
|
Palagini L, Geoffroy PA, Riemann D. Sleep markers in psychiatry: do insomnia and disturbed sleep play as markers of disrupted neuroplasticity in mood disorders? A proposed model. Curr Med Chem 2021; 29:5595-5605. [PMID: 34906053 DOI: 10.2174/0929867328666211214164907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Since insomnia and disturbed sleep may affect neuroplasticity, we aimed at reviewing their potential role as markers of disrupted neuroplasticity involved in mood disorders. METHOD We performed a systematic review, according to PRIMA, on PubMed, PsycINFO and Embase electronic databases for literature regarding mood disorders, insomnia, sleep loss/deprivation in relation to different pathways involved in the impairment of neuroplasticity in mood disorders such as 1] alterations in neurodevelopment 2] activation of the stress system 3] neuroinflammation 4] neurodegeneration/neuroprogression, 4] deficit in neuroprotection. RESULTS Sixty-five articles were analyzed and a narrative/ theoretical review was conducted. Studies showed that insomnia, sleep loss and sleep deprivation might impair brain plasticity of those areas involved in mood regulation throughout different pathways. Insomnia and disrupted sleep may act as neurobiological stressors that by over-activating the stress and inflammatory systems may affect neural plasticity causing neuronal damage. In addition, disturbed sleep may favor a deficit in neuroprotection hence contributing to impaired neuroplasticity. CONCLUSIONS Insomnia and disturbed sleep may play a role as markers of alteration in brain plasticity in mood disorders. Assessing and targeting insomnia in the clinical practice may potentially play a neuroprotective role, contributing to "repairing" alterations in neuroplasticity or to the functional recovery of those areas involved in mood and emotion regulation.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Experimental and Clinic Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, 56100, Pisa. Italy
| | - Pierre Alexis Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, Hopital Bichat - Claude Bernard, F-75018 Paris, France; Université de Paris, NeuroDiderot, Inserm U1141, F-75019 Paris. France
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg. Germany
| |
Collapse
|
12
|
Kallestad H, Scott J. Time to put a spotlight on out-patient chronotherapy for depression. BJPsych Open 2021; 7:e219. [PMID: 34814971 PMCID: PMC8693906 DOI: 10.1192/bjo.2021.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022] Open
Abstract
The challenge of identifying efficacious out-patient treatments for depression is amplified by the increasing desire to find interventions that reduce the time to sustained improvement. One potential but underexplored option is triple chronotherapy (TCT). To date, use of TCT has been largely restricted to specialist units or in-patients. Recent research demonstrates that it may be possible to undertake sleep deprivation in out-patient settings, raising the possibility of delivering TCT to broader populations of individuals with depression. Emerging evidence suggests that out-patient TCT is a high-benefit, low-risk intervention but questions remain about how to target TCT and its mechanisms of action. Like traditional antidepressants, TCT probably acts through several pathways, especially the synchronisation of the 'master clock'. Availability of reliable and valid methods of out-patient measurement of intra-individual circadian rhythmicity and light exposure are rate-limiting steps in the wider dissemination of TCT.
Collapse
Affiliation(s)
- Havard Kallestad
- Division of Mental Health Care, St Olavs University Hospital, Trondheim, Norway; and Division of Mental Health Care, Department of Research and Development, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Scott
- Department of Academic Psychiatry, Newcastle University, UK; and Division of Mental Health Care, Department of Research and Development, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Sauvaget A, Guitteny M, Bukowski N, Duffieux V, Mezouari A, Brisson A, Raveneau C, Gohier B, Bulteau S. [Treatments for depression in consultation-liaison psychiatry: From theory to practice]. Rev Med Interne 2021; 42:694-706. [PMID: 34256970 DOI: 10.1016/j.revmed.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Treatments for depression include an adapted lifestyle, physical activity, psychotherapies, antidepressant and mood stabilizing drugs, neuromodulation, chronotherapy, spa treatments. Drug treatments used for major depressive episode are antidepressants and mood stabilizers. For a mild episode, psychotherapy is indicated. It should be combined with an antidepressant (serotonin reuptake inhibitor) for moderate and severe episodes. Suicide risk assessment is essential throughout the depressive episode. It is recommended to monitor at the start of antidepressant treatment for suicidal behavior, a change in mood suggesting an underlying bipolar disorder. The effectiveness of the treatment is evaluated after 4 to 8 weeks. The total duration of antidepressant treatment for an EDC is between 6 months and 1 year after remission, in order to prevent relapses. The use of liaison psychiatry, a real healthcare system within the general hospital, is strongly recommended for better screening and treatment of depression, thus reducing the length of hospital stays, improving the prognosis of depression. The aim of this article is to provide clinicians with a summary of validated data on the efficacy/tolerance of treatment for depression, and to suggest practical action to be taken on the main daily clinical situations: treating comorbid conditions, taking into account interactions drugs, manage the serotonin syndrome, lead to withdrawal from antidepressants, manage treatment in the elderly.
Collapse
Affiliation(s)
- A Sauvaget
- Nantes Université, CHU Nantes, Movement, Interactions, Performance (MIP), EA 4334,University of Nantes, Nantes, France.
| | - M Guitteny
- CHU Nantes, Department of Addictology and Liaison Psychiatry, Nantes, France
| | - N Bukowski
- CHU Nantes, Department of Addictology and Liaison Psychiatry, Nantes, France
| | - V Duffieux
- CHU Nantes, Department of Addictology and Liaison Psychiatry, Nantes, France; Centre Hospitalier Loire Vendée Océan (CHLVO), Psychiatrie de liaison, boulevard Guérin, 85300 Challans, France
| | - A Mezouari
- Centre Hospitalier Loire Vendée Océan (CHLVO), Psychiatrie de liaison, boulevard Guérin, 85300 Challans, France
| | - A Brisson
- CHU Nantes, Department of Addictology and Liaison Psychiatry, Nantes, France
| | - C Raveneau
- UPRES, EA 4638, département de psychiatrie et d'addictologie, université d'Angers, CHU d'Angers, Angers, France
| | - B Gohier
- UPRES, EA 4638, département de psychiatrie et d'addictologie, université d'Angers, CHU d'Angers, Angers, France
| | - S Bulteau
- CHU Nantes, Department of Addictology and Liaison Psychiatry, Nantes, France; Inserm-U1246 SPHERE University of Nantes and University of Tours, Nantes, France
| |
Collapse
|
14
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
15
|
Geoffroy PA, Palagini L. Biological rhythms and chronotherapeutics in depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110158. [PMID: 33152388 DOI: 10.1016/j.pnpbp.2020.110158] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
Depressive syndromes are frequent and heterogeneous brain conditions with more than 90% of patients suffering from sleep complaints. Better characterizing this "sleep" domain may allow to both better treat acute episodes with existing chronotherapeutics, but also to prevent the manifestation or recurrences of mood disorders. This work aims to i) review theoretical and fundamental data of chronotherapeutics, and ii) provide practical recommendations. Light therapy (LT) can be used as a first-line monotherapy of moderate to severe depression of all subtypes. LT can be also used as a combination with antidepressant to maximize patients' response rates, which has a clear superiority to antidepressant alone. Sleep deprivation (SD) is a rapid and powerful chronotherapeutic with antidepressant responses within hours in 45-60% of patients with unipolar or bipolar depression. Different strategies should be combined to stabilize the SD antidepressant effect, including concomitant medications, repeated SD, combination with sleep phase advance and/or LT (triple chronotherapy). Melatonin treatment is of interest in remitted patients with mood disorder to prevent relapses or recurrences, if a complaint of insomnia, poor sleep quality or phase delay syndrome is associated. During the acute phase, melatonin could be used as an adjuvant treatment for symptoms of insomnia associated with depression. The cognitive behavioral therapy for insomnia (CBT-I) can be recommend to treat insomnia during euthymic phases. The Interpersonal and social rhythm therapy (IPSRT) is indicated for the acute treatment of bipolar depression and for the prevention of mood episodes. Chronotherapeutics should always be associated with behavioral measures for healthy sleep.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018 Paris, France; GHU Paris - Psychiatry & Neurosciences, 1 rue Cabanis, 75014 Paris, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, Psychiatric Section, University of Pisa; Azienda Ospedaliera Universitaria Pisana (AUOP), Pisa, Italy
| |
Collapse
|
16
|
Huntley ED, Swanson LM, Kolenic GE, Bertram H, Mooney A, Dopp R, Arnedt JT. Associations between Self-Reported Daily Affect Ratings and Sleep Duration during the First Two Weeks of Antidepressant Therapy. Behav Sleep Med 2021; 19:1-11. [PMID: 31760780 PMCID: PMC7244362 DOI: 10.1080/15402002.2019.1695617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: In the context of a randomized controlled trial evaluating the efficacy of augmenting fluoxetine treatment in young adults with major depressive disorder (MDD) using a modified repeated partial sleep deprivation protocol contrasting 2 weeks of restricted time in bed (i.e., 6 h TIB) to no time in bed restriction (i.e., 8 h TIB) the study examines whether sleep duration and the timing of repeated partial sleep deprivation predicts patient-reported affect ratings. Participants: Participants included 58 young adults with DSM-IV-diagnosed MDD. Methods: Daily ratings of affect and sleep were collected during the first 2 weeks of initiating fluoxetine treatment, yielding 630 person-days. Actigraphy monitoring was employed to assess compliance with time in bed condition. Results: Negative affect ratings and positivity ratios in the morning were more improved among participants assigned to the 6 h TIB condition compared to the 8 h TIB group. Participants whose bedtime was delayed by 2-h nightly demonstrated the most significant improvement in negative affect and positivity ratio during the first 2 weeks of fluoxetine therapy. Moreover, the trajectory of morning negative affect ratings in the first 2 weeks was predictive of remission after 4 weeks of fluoxetine therapy. Conclusions: These findings suggest that monitoring changes in daily affect may be a valuable marker of early treatment response in young adults with MDD.
Collapse
Affiliation(s)
| | | | - Giselle E. Kolenic
- Program on Women’s Health Care Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan
| | | | - Ann Mooney
- Department of Psychiatry, University of Michigan
| | - Richard Dopp
- Department of Psychiatry, University of Michigan
| | | |
Collapse
|
17
|
Melloni EMT, Poletti S, Dallaspezia S, Bollettini I, Vai B, Barbini B, Zanardi R, Colombo C, Benedetti F. Changes of white matter microstructure after successful treatment of bipolar depression. J Affect Disord 2020; 274:1049-1056. [PMID: 32663931 DOI: 10.1016/j.jad.2020.05.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with bipolar disorder (BD). The chronotherapeutic combination of repeated total sleep deprivation and morning light therapy (TSD+LT) can acutely reverse depressive symptoms in approximately 60% of patients, and it has been confirmed as a model antidepressant treatment to investigate the neurobiological correlates of rapid antidepressant response. METHODS We tested if changes in DTI measures of WM microstructure could parallel antidepressant response in a sample of 44 patients with a major depressive episode in course of BD, treated with chronoterapeutics for one week. We used both a tract-wise and a voxel-wise approach for the whole-brain extraction of DTI measures of WM microstructure: axial (AD), radial (RD), and mean diffusivity (MD), and fractional anisotropy (FA). RESULTS Compared to baseline level, at one-week follow up we observed a significant increase in average FA measures paralleled by a significant decrease in MD measures of several WM tracts including cingulum, corpus callosum, corona radiata, cortico-spinal tract, internal capsule, fornix and uncinate fasciculus. The degree of change was associated to clinical response. CONCLUSIONS This is the first study to show changes of individual DTI measures of WM microstructure in response to antidepressant treatment in BD. Our results add new evidence to warrant a role for chronotherapeutics as a first-line treatment for bipolar depression and contribute identifying generalizable neuroimaging-based biomarkers of antidepressant response.
Collapse
Affiliation(s)
- Elisa M T Melloni
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy.
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Fondazione Centro San Raffaele, Milano, Italy
| | - Barbara Barbini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
18
|
Rosenthal SJ, Josephs T, Kovtun O, McCarty R. Seasonal effects on bipolar disorder: A closer look. Neurosci Biobehav Rev 2020; 115:199-219. [DOI: 10.1016/j.neubiorev.2020.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
|
19
|
Maity K, Nagarathna R, Anand A, Patil SS, Singh A, Rajesh SK, Ramesh L, Sridhar P, Thakur UK, Nagendra HR. Sleep Disorders in Individuals With High Risk for Diabetes in Indian Population. Ann Neurosci 2020; 27:183-189. [PMID: 34556958 PMCID: PMC8455005 DOI: 10.1177/0972753121998470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Sleep restores physiology and neurochemical components of our body and is essential for physical and mental health. Sleep disorders (SDs) are associated with insulin resistance and metabolic disorders. The association between SDs and diabetes needs to be understood in the Indian population. Purpose: The purpose was to investigate the association between SD and diabetes in the Indian population. Methods: As a part of nationwide Niyantrita Madhumeha Bharata Abhiyaan-2017 (NMB-2017), a cross-sectional study was conducted and data was collected from seven zones of India, after screening through the Indian Diabetes Risk Score (IDRS). The sleep quality was assessed on a scale of 1 to 4 (very good = 1, very bad = 4). The time taken to fall asleep (sleep latency) was assessed on a scale of 0 to 5 (“0” = nil and “5” = >1.5 h). Stress was assessed by the perceived stress scale. Results: Bad sleep quality was positively (odds ratio 1.055, CI [1.001, 1.113], and P < .01) associated with self-reported known diabetes. Increased time taken to fall in sleep (sleep latency) was associated significantly with IDRS high risk (odds ratio 1.085, CI [1.008, 1.168], and P = .01), with an average sleep latency /time takes to fall in sleep (maximum range 5 [>1.5 h], mode 2 [10 to 30 min]) minutes. Moderate stress was significantly associated with bad sleep quality (odds ratio 1.659). Conclusion: A positive association of bad sleep quality and stress with diabetes, and an increased sleep latency in the IDRS high-risk population point to the role of modifiable risk factors. Behavioral modification and stress reduction by using yoga may be beneficial in the better management of diabetes.
Collapse
Affiliation(s)
- Kalyan Maity
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India.,Department of Neurology, Neuroscience Research Lab, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Raghuram Nagarathna
- Arogyadhama, Vivekananda Yoga Anusandhana Samsthana (VYASA), Bengaluru, Karnataka, India
| | - Akshay Anand
- Department of Neurology, Neuroscience Research Lab, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Centre for Mind Body Medicine, PGIMER, Chandigarh, India.,Centre of Phenomenology and Cognitive Sciences, Panjab University, Chandigarh, India
| | - Suchitra S Patil
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - Amit Singh
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - S K Rajesh
- Division of Yoga and Physical Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - Latha Ramesh
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - P Sridhar
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, India
| | - Uttam Kumar Thakur
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
20
|
Sonmez AI, Kucuker MU, Lewis CP, Kolla BP, Camsari DD, Vande Voort JL, Schak KM, Kung S, Croarkin PE. Improvement in hypersomnia with high frequency repetitive transcranial magnetic stimulation in depressed adolescents: Preliminary evidence from an open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109763. [PMID: 31634515 PMCID: PMC6904948 DOI: 10.1016/j.pnpbp.2019.109763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/01/2023]
Abstract
STUDY OBJECTIVES Sleep disruption is a significant symptom of major depressive disorder (MDD). To our knowledge, no prior work has examined the impact of repetitive transcranial magnetic stimulation (rTMS) on sleep disturbances in adolescents with MDD. METHODS Seventeen adolescents with treatment-resistant depression received 30 daily sessions of 10-Hz rTMS applied to the left dorsolateral prefrontal cortex (L-DLPFC). Clinical symptoms were assessed at baseline; after 10, 20, and 30 treatments; and at a 6-month follow-up visit. Insomnia was measured with a 3-item subscale of the Quick Inventory of Depressive Symptomatology-Adolescent (17 Item)-Self Report (QIDS-A17-SR). Hypersomnia was measured with a single QIDS-A17-SR item. Depression severity was rated with the Children's Depression Rating Scale, Revised (CDRS-R). The effect of rTMS on sleep was examined via linear mixed model analyses, with fixed effects of time (as a proxy of treatment), depression severity, age, and hypnotic medication use. RESULTS No significant main effect of time was observed on the insomnia subscale (F4,43.442 = 1.078, p = 0 .379). However, there was a significant main effect of time on the QIDS-A17-SR hypersomnia score (F4,46.124 = 2.733, p = 0 .040), with significant improvement from baseline to treatment 10 (padj = 0.019) and from baseline to 6-month follow-up (padj = 0.044). In exploratory sensitivity analyses, response/nonresponse to rTMS for overall depressive symptoms had no significant effect on sleep outcomes. CONCLUSIONS rTMS may have intrinsic effects on hypersomnia apart from its antidepressant effects in depressed adolescents. Future work should utilize sham controls and objective, quantitative measurements of sleep architecture to assess effects of rTMS in depressed adolescents. CLINICAL TRIAL REGISTRY Clinicaltrials.gov identifiers are NCT00587639, NCT01502033, NCT01804270.
Collapse
Affiliation(s)
- A. Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - M. Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles P. Lewis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bhanu Prakash Kolla
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA,Center for Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kathryn M. Schak
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA,Reprints: Paul E. Croarkin, DO, MSCS, Department of Psychiatry and Psychology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, , Telephone: (507) 293-2557, Fax: (507) 293-3933
| |
Collapse
|
21
|
Daniels S, Horman T, Lapointe T, Melanson B, Storace A, Kennedy SH, Frey BN, Rizvi SJ, Hassel S, Mueller DJ, Parikh SV, Lam RW, Blier P, Farzan F, Giacobbe P, Milev R, Placenza F, Soares CN, Turecki G, Uher R, Leri F. Reverse translation of major depressive disorder symptoms: A framework for the behavioural phenotyping of putative biomarkers. J Affect Disord 2020; 263:353-366. [PMID: 31969265 DOI: 10.1016/j.jad.2019.11.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Reverse translating putative biomarkers of depression from patients to animals is complex because Major Depressive Disorder (MDD) is a highly heterogenous condition. This review proposes an approach to reverse translation based on relating relevant bio-behavioural functions in laboratory rodents to MDD symptoms. METHODS This systematic review outlines symptom clusters assessed by psychometric tests of MDD and antidepressant treatment response including the Montgomery-Åsberg Depression Rating Scale, the Hamilton Depression Rating Scale, and the Beck Depression Inventory. Symptoms were related to relevant behavioural assays in laboratory rodents. RESULTS The resulting battery of tests includes passive coping, anxiety-like behaviours, sleep, caloric intake, cognition, psychomotor functions, hedonic reactivity and aversive learning. These assays are discussed alongside relevant clinical symptoms of MDD, providing a framework through which reverse translation of a biomarker can be interpreted. LIMITATIONS Certain aspects of MDD may not be quantified by tests in laboratory rodents, and their biological significance may not always be of clinical relevance. CONCLUSIONS Using this reverse translation approach, it is possible to clarify the functional significance of a putative biomarker in rodents and hence translate its contribution to specific clinical symptoms, or clusters of symptoms.
Collapse
Affiliation(s)
- Stephen Daniels
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Thomas Lapointe
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Brett Melanson
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Alexandra Storace
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Sidney H Kennedy
- University of Toronto Health Network, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Sakina J Rizvi
- University of Toronto Health Network, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Daniel J Mueller
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Raymond W Lam
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Blier
- The Royal Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Faranak Farzan
- Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter Giacobbe
- University of Toronto Health Network, Toronto, Ontario, Canada
| | | | - Franca Placenza
- University of Toronto Health Network, Toronto, Ontario, Canada
| | | | | | - Rudolf Uher
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| |
Collapse
|
22
|
Ramirez-Mahaluf JP, Rozas-Serri E, Ivanovic-Zuvic F, Risco L, Vöhringer PA. Effectiveness of Sleep Deprivation in Treating Acute Bipolar Depression as Augmentation Strategy: A Systematic Review and Meta-Analysis. Front Psychiatry 2020; 11:70. [PMID: 32161557 PMCID: PMC7052359 DOI: 10.3389/fpsyt.2020.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bipolar disorder is a disabling disease characterized by the recurrence of mood episodes. Successful strategies for the acute treatment of bipolar depression are still a matter of controversy. Total sleep deprivation (TSD) has shown acute antidepressant effect; however, the prompt relapse of depressive symptoms after sleep recovery has been reported. Taking this into consideration, we aimed to address a twofold research question: what are the acute effects of adding TSD to pharmacological treatment and what are the acute and chronic effects of adding medications to TSD. METHODS MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases were searched for clinical trials assessing bipolar depression and TSD. Two independent reviewers selected and classified 90 abstracts. The outcomes we assessed were change in Hamilton Depression Rating Scale (HDRS) or Montgomery-Asberg Depression Rating Scale (MADRS), sustained long-term response rate, treatment-emergent mania or hypomania, and tolerability (using dropout rates as a proxy). The compared groups were: TSD alone versus TSD plus medications and medications alone versus medications plus TSD. Data was analyzed using Stata 16.0. RESULTS Patients treated with TSD plus medications compared with medications alone showed a significant decrease in depressive symptomatology after one week (SMD -0.584 [95% CI -1.126 to -0.042], p = 0.03. Also, a significant decrease in depressive symptomatology (SMD -0.894 [95% CI -1.388 to -0.399], p < 0.001) was found in the group with TSD plus medications compared with TSD alone, at the 10th day of treatment. We meta-analyzed the long-term effect of the TSD. It showed a sustained antidepressant effect (log OR = 2.365 (95% CI 0.95 to 3.779, p < 0.001) in the group where TSD was combined with medication when compared with patients treated only with TSD. Finally, no differences in tolerability (log OR = 0.234 (95% CI -1.164 to 1.632, p = 0.74) or affective switch were found. CONCLUSION Adding TSD to medications to bipolar depression treatment resulted in an augmentation in acute response. We also found that medications have a positive impact in acute response when added to TSD. Furthermore, this higher response rate was maintained after 3 months while keeping Lithium therapy.
Collapse
Affiliation(s)
- Juan P Ramirez-Mahaluf
- Department of Psychiatry, Hospital Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Rozas-Serri
- Department of Psychiatry, Hospital Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando Ivanovic-Zuvic
- Department of Psychiatry, Hospital Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Risco
- Department of Psychiatry, Hospital Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul A Vöhringer
- Department of Psychiatry, Hospital Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Tufts Medical Center, Mood Disorders Program, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
23
|
Foo JC, Sirignano L, Trautmann N, Kim J, Witt SH, Streit F, Frank J, Zillich L, Meyer-Lindenberg A, Ebner-Priemer U, Schilling C, Schredl M, Yamamoto Y, Gilles M, Deuschle M, Rietschel M. Association of Locomotor Activity During Sleep Deprivation Treatment With Response. Front Psychiatry 2020; 11:688. [PMID: 32792995 PMCID: PMC7385277 DOI: 10.3389/fpsyt.2020.00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/30/2020] [Indexed: 11/13/2022] Open
Abstract
Disrupted circadian rhythms and sleep patterns are frequently observed features of psychiatric disorders, and especially mood disorders. Sleep deprivation treatment (SD) exerts rapid but transient antidepressant effects in depressed patients and has gained recognition as a model to study quick-acting antidepressant effects. It is of interest how locomotor activity patterns during SD might be associated with and potentially predict treatment response. The present study is an analysis of locomotor activity data, previously collected over a 24 h period, to examine the night of SD (Trautmann et al. 2018) as mood disorder patients suffering from a depressive episode (n = 78; after exclusions n = 59) underwent SD. In this exploratory analysis, the associations between response to SD, locomotor activity, and subjective mood during the 24 h period of SD were explored. Higher levels of activity overall were observed in non-responders (n = 18); in particular, non-responders moved more during the evening of SD until midnight and remained high thereafter. In contrast, activity in responders (n = 41) decreased during the evening and increased in the morning. Subjective mood was not found to be associated with locomotor activity. The window of data available in this analysis being limited, additional data from before and after the intervention are required to fully characterize the results observed. The present results hint at the possible utility of locomotor activity as a predictor and early indicator of treatment response, and suggest that the relationship between SD and locomotor activity patterns should be further investigated.
Collapse
Affiliation(s)
- Jerome Clifford Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nina Trautmann
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jinhyuk Kim
- Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Ebner-Priemer
- Department of Sport and Sport Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Claudia Schilling
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Schredl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yoshiharu Yamamoto
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
Longitudinal transcriptome-wide gene expression analysis of sleep deprivation treatment shows involvement of circadian genes and immune pathways. Transl Psychiatry 2019; 9:343. [PMID: 31852885 PMCID: PMC6920477 DOI: 10.1038/s41398-019-0671-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
Therapeutic sleep deprivation (SD) rapidly induces robust, transient antidepressant effects in a large proportion of major mood disorder patients suffering from a depressive episode, but underlying biological factors remain poorly understood. Research suggests that these patients may have altered circadian molecular genetic 'clocks' and that SD functions through 'resetting' dysregulated genes; additional factors may be involved, warranting further investigation. Leveraging advances in microarray technology enabling the transcriptome-wide assessment of gene expression, this study aimed to examine gene expression changes accompanying SD and recovery sleep in patients suffering from an episode of depression. Patients (N = 78) and controls (N = 15) underwent SD, with blood taken at the same time of day before SD, after one night of SD and after recovery sleep. A transcriptome-wide gene-by-gene approach was used, with a targeted look also taken at circadian genes. Furthermore, gene set enrichment, and longitudinal gene set analyses including the time point after recovery sleep, were conducted. Circadian genes were significantly affected by SD, with patterns suggesting that molecular clocks of responders and non-responders, as well as patients and controls respond differently to chronobiologic stimuli. Notably, gene set analyses revealed a strong widespread effect of SD on pathways involved in immune function and inflammatory response, such as those involved in cytokine and especially in interleukin signalling. Longitudinal gene set analyses showed that in responders these pathways were upregulated after SD; in non-responders, little response was observed. Our findings emphasize the close relationship between circadian, immune and sleep systems and their link to etiology of depression at the transcriptomic level.
Collapse
|
25
|
Danilenko KV, Lebedinskaia MY, Gadetskaia EV, Markov AA, Ivanova YA, Aftanas LI. A 6-day combined wake and light therapy trial for unipolar depression. J Affect Disord 2019; 259:355-361. [PMID: 31472393 DOI: 10.1016/j.jad.2019.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/06/2019] [Accepted: 08/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND There are a dozen studies on double or triple chronotherapy in depression (sleep deprivation [wake therapy] + light therapy + sleep advance/stabilization). We investigated efficacy and feasibility of a modified triple chronotherapy protocol. METHODS Thirty-five hospitalized patients with moderately severe non-seasonal depressive disorder, mostly free from antidepressants, underwent a 6-day protocol consisting of partial sleep deprivation late in the second half of the night (from 4:00 to 8:00) in a light therapy room (blue-enhanced white light increased hourly from 600→1300→2200→2800 lx) alternating with recovery nights with morning light treatment from 7:00 to 8:00. Patients were randomized to wear glasses with no filter (clear, N = 19) or filtering blue wavelength (orange-appearance, light intensity diminution by ∼70%, N = 16) during the treatments. Sleep was targeted to be shifted at least 1 h earlier. Depression was scored using HDRS-17 (Hamilton Depression Rating Scale) and BDI-II (Beck Depression Inventory-II) - before and after the 6-days treatment, HDRS-6-SR - daily, and visual analogue scales (VAS) for mood and energy - several times every day. RESULTS Depression levels significantly declined following the first night and after 6-days treatment, with no difference between white and orange lights. Nevertheless, some superiority of white light emerged with respect to response rate (mood VAS), immediate effect during the 4-h treatment sessions (energy VAS), and expected treatment outcomes. All patients successfully advanced bedtime/wake-up (by 30-40 minutes) and resisted naps during daytime. LIMITATIONS Relatively small sample size. CONCLUSIONS The modified triple chronotherapy was well tolerated and improved depression. Light spectrum/intensity plays some role in the response.
Collapse
Affiliation(s)
| | - Maria Y Lebedinskaia
- Institute of Physiology and Basic Medicine, Timakova, 4, Novosibirsk 630117, Russia
| | - Evgenia V Gadetskaia
- Institute of Physiology and Basic Medicine, Timakova, 4, Novosibirsk 630117, Russia
| | - Alexei A Markov
- Institute of Physiology and Basic Medicine, Timakova, 4, Novosibirsk 630117, Russia
| | - Yana A Ivanova
- Institute of Physiology and Basic Medicine, Timakova, 4, Novosibirsk 630117, Russia
| | - Lyubomir I Aftanas
- Institute of Physiology and Basic Medicine, Timakova, 4, Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
26
|
Gottlieb JF, Benedetti F, Geoffroy PA, Henriksen TEG, Lam RW, Murray G, Phelps J, Sit D, Swartz HA, Crowe M, Etain B, Frank E, Goel N, Haarman BCM, Inder M, Kallestad H, Jae Kim S, Martiny K, Meesters Y, Porter R, Riemersma-van der Lek RF, Ritter PS, Schulte PFJ, Scott J, Wu JC, Yu X, Chen S. The chronotherapeutic treatment of bipolar disorders: A systematic review and practice recommendations from the ISBD task force on chronotherapy and chronobiology. Bipolar Disord 2019; 21:741-773. [PMID: 31609530 DOI: 10.1111/bdi.12847] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS To systematically review the literature on the efficacy and tolerability of the major chronotherapeutic treatments of bipolar disorders (BD)-bright light therapy (LT), dark therapy (DT), treatments utilizing sleep deprivation (SD), melatonergic agonists (MA), interpersonal social rhythm therapy (IPSRT), and cognitive behavioral therapy adapted for BD (CBTI-BP)-and propose treatment recommendations based on a synthesis of the evidence. METHODS PRISMA-based systematic review of the literature. RESULTS The acute antidepressant (AD) efficacy of LT was supported by several open-label studies, three randomized controlled trials (RCTs), and one pseudorandomized controlled trial. SD showed rapid, acute AD response rates of 43.9%, 59.3%, and 59.4% in eight case series, 11 uncontrolled, studies, and one RCT, respectively. Adjunctive DT obtained significant, rapid anti-manic results in one RCT and one controlled study. The seven studies on MA yielded very limited data on acute antidepressant activity, conflicting evidence of both antimanic and maintenance efficacy, and support from two case series of improved sleep in both acute and euthymic states. IPSRT monotherapy for bipolar II depression had acute response rates of 41%, 67%, and 67.4% in two open studies and one RCT, respectively; as adjunctive therapy for bipolar depression in one RCT, and efficacy in reducing relapse in two RCTs. Among euthymic BD subjects with insomnia, a single RCT found CBTI-BP effective in delaying manic relapse and improving sleep. Chronotherapies were generally safe and well-tolerated. CONCLUSIONS The outcome literature on the adjunctive use of chronotherapeutic treatments for BP is variable, with evidence bases that differ in size, study quality, level of evidence, and non-standardized treatment protocols. Evidence-informed practice recommendations are offered.
Collapse
Affiliation(s)
- John F Gottlieb
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Chicago Psychiatry Associates, Chicago, IL, USA
| | | | - Pierre A Geoffroy
- Department of Psychiatry and Addictive Medicine, University Hospital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Paris Diderot University - Paris VII, Paris, France
| | - Tone E G Henriksen
- Faculty of Medicine, Section for Psychiatry, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Faculty of Psychology, Bergen Stress and Sleep Group, University of Bergen, Bergen, Norway.,Valen Hospital, Fonna Health Authority, Division of Mental Health Care, Valen, Norway
| | - Raymond W Lam
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Greg Murray
- Swinburne University of Technology, Hawthorn, VIC, Australia
| | | | - Dorothy Sit
- Asher Center for the Study and Treatment of Depressive Disorders, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Holly A Swartz
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie Crowe
- Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Bruno Etain
- Department of Psychological Medicine, Universite Paris Diderot UFR de Medecine, Paris, France
| | - Ellen Frank
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namni Goel
- Department of Psychiatry Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bartholomeus C M Haarman
- Department of Psychiatry Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maree Inder
- Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Håvard Kallestad
- Faculty of Medicine and Health Sciences, Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Psychiatry, Department of Research and Development, St. Olavs University Hospital, Trondheim, Norway
| | - Seong Jae Kim
- Department of Psychiatry, Doeun Hospital, Jincheon, Korea
| | - Klaus Martiny
- Department of Clinical Medicine, University of Copenhagen, Kobenhavns, Denmark
| | - Ybe Meesters
- Department of Psychiatry Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard Porter
- Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand.,Canterbury District Health Board, Christchurch, New Zealand
| | - Rixt F Riemersma-van der Lek
- Department of Psychiatry Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Philipp S Ritter
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitatsklinikum Carl Gustav Carus, Dresden, Germany
| | | | - Jan Scott
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph C Wu
- Department of Psychiatry & Human Behavior, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Xin Yu
- Department of Public Mental Health, Peking University Institute of Mental Health, Beijing, China
| | - Shenghao Chen
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
27
|
Serchov T, Schwarz I, Theiss A, Sun L, Holz A, Döbrössy MD, Schwarz MK, Normann C, Biber K, van Calker D. Enhanced adenosine A 1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology 2019; 162:107834. [PMID: 31682853 DOI: 10.1016/j.neuropharm.2019.107834] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Resilience to stress is critical for the development of depression. Enhanced adenosine A1 receptor (A1R) signaling mediates the antidepressant effects of acute sleep deprivation (SD). However, chronic SD causes long-lasting upregulation of brain A1R and increases the risk of depression. To investigate the effects of A1R on mood, we utilized two transgenic mouse lines with inducible A1R overexpression in forebrain neurons. These two lines have identical levels of A1R increase in the cortex, but differ in the transgenic A1R expression in the hippocampus. Switching on the transgene promotes robust antidepressant and anxiolytic effects in both lines. The mice of the line without transgenic A1R overexpression in the hippocampus (A1Hipp-) show very strong resistance towards development of stress-induced chronic depression-like behavior. In contrast, the mice of the line in which A1R upregulation extends to the hippocampus (A1Hipp+), exhibit decreased resilience to depression as compared to A1Hipp-. Similarly, automatic analysis of reward behavior of the two lines reveals that depression resistant A1Hipp-transgenic mice exhibit high sucrose preference, while mice of the vulnerable A1Hipp + line developed stress-induced anhedonic phenotype. The A1Hipp + mice have increased Homer1a expression in hippocampus, correlating with impaired long-term potentiation in the CA1 region, mimicking the stressed mice. Furthermore, virus-mediated overexpression of Homer1a in the hippocampus decreases stress resilience. Taken together our data indicate for first time that increased expression of A1R and Homer1a in the hippocampus modulates the resilience to stress-induced depression and thus might potentially mediate the detrimental effects of chronic sleep restriction on mood.
Collapse
Affiliation(s)
- Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Inna Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Alice Theiss
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Lu Sun
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Amrei Holz
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Mate D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Martin K Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Claus Normann
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Knut Biber
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Dietrich van Calker
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| |
Collapse
|
28
|
Hui J, Tremblay S, Daskalakis ZJ. The Current and Future Potential of Transcranial Magnetic Stimulation With Electroencephalography in Psychiatry. Clin Pharmacol Ther 2019; 106:734-746. [DOI: 10.1002/cpt.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jeanette Hui
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Sara Tremblay
- Royal's Institute of Mental Health Research Ottawa Ontario Canada
- School of Psychology University of Ottawa Ottawa Ontario Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| |
Collapse
|
29
|
Kordestani Moghadam P, Nasehi M, Khodagholi F, Zarrindast MR. Vulnerability of Left Amygdala to Total Sleep Deprivation and Reversed Circadian Rhythm in Molecular Level: Glut1 as a Metabolic Biomarker. Galen Med J 2019; 8:e970. [PMID: 34466456 PMCID: PMC8343873 DOI: 10.31661/gmj.v8i0.970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/21/2017] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Sleep deprivation (SD) in the long term can cause multi-organ dysfunction as well as neurocognitive disorders. Daytime sleep or napping is a biological compensate due to insomnia or sleep deprivation. Metabolic responses to this biological rhythm may being as a biological indicator or biomarker to compare the effect of them. Glucose transporter type 1 (Glut1) is one of the metabolic biomarkers that is affected by several conditions such as stress, seizure, malignancy, and neurocognitive disorders. We studied the effect of SD, circadian reversed (R) and napping models on the Glut-1 expression level in the right and left amygdala. Materials and Methods: Sixty-four Wistar rats were divided into eight groups as follow: Intact group that rats were placed in a cage without any intervention. In the sham group, rats were on the stable pedal of the SD apparatus (turn off). Experimental groups include total SD48, total SD48- (plus short nap), total SD48+ (plus long nap), R48, R48- (plus short nap), and R48+ (plus long nap). The Glut-1 expression level in the right and left amygdala were measured by western blotting. Results: Our findings demonstrated the significant effect of both SD for 48 hours and reversed circadian on the expression of Glut-1 from sham and intact groups. The long nap plus them could decrease the elevation of Glut-1 in the left amygdala. However, the short nap could not reduce this elevation of Glut-1. Conclusion: Left amygdala is vulnerable to the fluctuation of hypothalamic-pituitary-adrenal axis and stress. In other words, sleep disorders are affecting by Glut-1 as a metabolic biomarker in left amygdala alone.
Collapse
Affiliation(s)
| | - Mohamad Nasehi
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Correspondence to: Mohamad Nasehi, Cognitive and Neuroscience Research Center, CNRC, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Telephone Number: +9821-99881118-20 Email Address:
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Dorrian J, Centofanti S, Smith A, McDermott KD. Self-regulation and social behavior during sleep deprivation. PROGRESS IN BRAIN RESEARCH 2019; 246:73-110. [PMID: 31072564 DOI: 10.1016/bs.pbr.2019.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An emerging literature is specifically focusing on the effects of sleep deprivation on aspects of social functioning and underlying neural changes. Two critical facets of social behavior emerge that are negatively impacted by sleep deprivation-self-regulation, which includes behavioral and emotional regulation, and social monitoring, which includes perceiving and interpreting cues relating to self and others. Sleep deprived individuals performing tasks with social components show altered brain activity in areas of the prefrontal cortex implicated in self-control, inhibition, evaluation, and decision-making, in proximity to mesocorticolimbic pathways to reward and emotional processing areas. These cognitive changes lead to increased reward seeking and behaviors that promote negative health outcomes (such as increased consumption of indulgence foods). These changes also lead to emotional disinhibition and increased responses to negative stimuli, leading to reductions in trust, empathy, and humor. Concomitant attentional instability leads to impaired social information processing, impairing individual and team performance and increasing likelihood of error, incident, and injury. Together, changes to reward seeking, the foundational components of social interaction, and interpretation of social cues, can result in unpleasant or deviant behavior. These behaviors are perceived and negatively responded to by others, leading to a cycle of conflict and withdrawal. Further studies are necessary and timely. Educational and behavioral interventions are required to reduce health-damaging behaviors, and to reduce emotionally-laden negative interpretation of sleep-deprived exchanges. This may assist with health, and with team cohesion (and improved performance and safety) in the workplace and the home.
Collapse
Affiliation(s)
- Jillian Dorrian
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work, and Social Policy, University of South Australia, Adelaide, SA, Australia.
| | - Stephanie Centofanti
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work, and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Ashleigh Smith
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work, and Social Policy, University of South Australia, Adelaide, SA, Australia; Alliance for Research in Exercise Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Kathryn Demos McDermott
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University and The Miriam Hospital, Weight Control and Diabetes Research Center, Providence, RI, United States
| |
Collapse
|
31
|
Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 2019; 51:346-365. [PMID: 30702783 DOI: 10.1111/ejn.14362] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Mood disorders are often characterised by alterations in circadian rhythms, sleep disturbances and seasonal exacerbation. Conversely, chronobiological treatments utilise zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and manipulations of sleep timing and duration as rapid antidepressant modalities. Although sleep deprivation ("wake therapy") can act within hours, and its mood-elevating effects be maintained by regular morning light administration/medication/earlier sleep, it has not entered the regular guidelines for treating affective disorders as a first-line treatment. The hindrances to using chronotherapeutics may lie in their lack of patentability, few sponsors to carry out large multi-centre trials, non-reimbursement by medical insurance and their perceived difficulty or exotic "alternative" nature. Future use can be promoted by new technology (single-sample phase measurements, phone apps, movement and sleep trackers) that provides ambulatory documentation over long periods and feedback to therapist and patient. Light combinations with cognitive behavioural therapy and sleep hygiene practice may speed up and also maintain response. The urgent need for new antidepressants should hopefully lead to reconsideration and implementation of these non-pharmacological methods, as well as further clinical trials. We review the putative neurochemical mechanisms underlying the antidepressant effect of sleep deprivation and light therapy, and current knowledge linking clocks and sleep with affective disorders: neurotransmitter switching, stress and cortico-limbic reactivity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. Despite the complexity of multi-system mechanisms, more insight will lead to fine tuning and better application of circadian and sleep-related treatments of depression.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milano, Italy.,Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
32
|
Response to therapeutic sleep deprivation: a naturalistic study of clinical and genetic factors and post-treatment depressive symptom trajectory. Neuropsychopharmacology 2018; 43:2572-2577. [PMID: 29872112 PMCID: PMC6224527 DOI: 10.1038/s41386-018-0092-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Research has shown that therapeutic sleep deprivation (SD) has rapid antidepressant effects in the majority of depressed patients. Investigation of factors preceding and accompanying these effects may facilitate the identification of the underlying biological mechanisms. This exploratory study aimed to examine clinical and genetic factors predicting response to SD and determine the impact of SD on illness course. Mood during SD was also assessed via visual analogue scale. Depressed inpatients (n = 78) and healthy controls (n = 15) underwent ~36 h of SD. Response to SD was defined as a score of ≤ 2 on the Clinical Global Impression Scale for Global Improvement. Depressive symptom trajectories were evaluated for up to a month using self/expert ratings. Impact of genetic burden was calculated using polygenic risk scores for major depressive disorder. In total, 72% of patients responded to SD. Responders and non-responders did not differ in baseline self/expert depression symptom ratings, but mood differed. Response was associated with lower age (p = 0.007) and later age at life-time disease onset (p = 0.003). Higher genetic burden of depression was observed in non-responders than healthy controls. Up to a month post SD, depressive symptoms decreased in both patients groups, but more in responders, in whom effects were sustained. The present findings suggest that re-examining SD with a greater focus on biological mechanisms will lead to better understanding of mechanisms of depression.
Collapse
|
33
|
Elvsåshagen T, Mutsaerts HJ, Zak N, Norbom LB, Quraishi SH, Pedersen PØ, Malt UF, Westlye LT, van Someren EJ, Bjørnerud A, Groote IR. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation. Neuroimage 2018; 186:497-509. [PMID: 30471387 DOI: 10.1016/j.neuroimage.2018.11.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022] Open
Abstract
Elucidating the neurobiological effects of sleep and wake is an important goal of the neurosciences. Whether and how human cerebral blood flow (CBF) changes during the sleep-wake cycle remain to be clarified. Based on the synaptic homeostasis hypothesis of sleep and wake, we hypothesized that a day of wake and a night of sleep deprivation would be associated with gray matter resting CBF (rCBF) increases and that sleep would be associated with rCBF decreases. Thirty-eight healthy adult males (age 22.1 ± 2.5 years) underwent arterial spin labeling perfusion magnetic resonance imaging at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (n = 19) or a night of sleep (n = 19). All analyses were adjusted for hematocrit and head motion. rCBF increased from morning to evening and decreased after a night of sleep. These effects were most prominent in bilateral hippocampus, amygdala, thalamus, and in the occipital and sensorimotor cortices. Group × time interaction analyses for evening versus next morning revealed significant interaction in bilateral lateral and medial occipital cortices and in bilateral insula, driven by rCBF increases in the sleep deprived individuals and decreases in the sleepers, respectively. Furthermore, group × time interaction analyses for first morning versus next morning showed significant effects in medial and lateral occipital cortices, in anterior cingulate gyrus, and in the insula, in both hemispheres. These effects were mainly driven by CBF increases from TP1 to TP3 in the sleep deprived individuals. There were no associations between the rCBF changes and sleep characteristics, vigilant attention, or subjective sleepiness that remained significant after adjustments for multiple analyses. Altogether, these results encourage future studies to clarify mechanisms underlying sleep-related rCBF changes.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway; Department of Neurology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Henri Jmm Mutsaerts
- Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Radiology, Amsterdam University Medical Center, the Netherlands
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway
| | - Linn B Norbom
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway
| | | | - Per Ø Pedersen
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Research and Education, Oslo University Hospital, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Norway; Department of Psychology, University of Oslo, Norway
| | - Eus Jw van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Center, the Netherlands; Department of Integrative Neurophysiology, Amsterdam University Medical Center, the Netherlands
| | - Atle Bjørnerud
- Department of Psychology, University of Oslo, Norway; Department of Physics, University of Oslo, Norway; The Intervention Center, Oslo University Hospital, Norway
| | | |
Collapse
|
34
|
The effect of sleep deprivation on emotional memory consolidation in participants reporting depressive symptoms. Neurobiol Learn Mem 2018; 152:10-19. [PMID: 29709569 DOI: 10.1016/j.nlm.2018.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/04/2018] [Accepted: 04/19/2018] [Indexed: 11/22/2022]
|
35
|
Suzuki M, Dallaspezia S, Locatelli C, Uchiyama M, Colombo C, Benedetti F. Does early response predict subsequent remission in bipolar depression treated with repeated sleep deprivation combined with light therapy and lithium? J Affect Disord 2018; 229:371-376. [PMID: 29331696 DOI: 10.1016/j.jad.2017.12.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/07/2017] [Accepted: 12/31/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The combination of three cycles of sleep deprivation (SD), light therapy (LT), and lithium has recently been proposed as a possible first-line treatment for bipolar depression. However, it is unclear whether early improvement predicts final response/remission in bipolar depression treated with this regimen. METHOD We studied 220 consecutively admitted inpatients with a major depressive episode in the course of bipolar disorder. The relation between response to first SD and response/remission at the end of the treatment (day 6) was analyzed using logistic regression analysis. Severity of depression was rated using the Hamilton Depression Rating Scale (HDRS). Clinical response was defined as a ≥50% reduction in HDRS scores, and remission was defined as an HDRS score of ≤7. RESULTS Among the 217 completers, 67.7% showed response and 54.4% reached remission at the end of the treatment. Multiple logistic regression analysis revealed that response after first recovery sleep (day 2) predicted final response and remission at the end of the treatment with high odds ratios (10.9 for response and 8.2 for remission); however, response immediately after the first SD (day 1) did not predict final response or remission. LIMITATIONS Whether our results can be generalized to unipolar depression remains uncertain. CONCLUSION Clinical status after first recovery sleep is a strong predictor of successful final outcome in patients with bipolar depression treated with the combination of repeated SD, LT, and lithium. Recovery sleep may play a role in inducing the antidepressant effect associated with the success of treatment.
Collapse
Affiliation(s)
- Masahiro Suzuki
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy; Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan.
| | - Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
36
|
Benedetti F. Rate of switch from bipolar depression into mania after morning light therapy: A historical review. Psychiatry Res 2018; 261:351-356. [PMID: 29348073 DOI: 10.1016/j.psychres.2018.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Light therapy (LT) is efficacious for bipolar depression with effect sizes equivalent to those in antidepressant pharmacotherapy trials. Patients with bipolar disorder (BD) show a 15-40% rate of manic switches during antidepressant drug treatment. The rate of manic switches during LT has never been estimated. We searched all the literature studies reporting effects of antidepressant LT in BD. 41 studies described 799 patients with BD treated with antidepressant LT, from among which 7 (0.9%) switched into mania and 11 (1.4%) switched into hypomania. The method of assessment of treatment-emergent symptoms significantly influenced the detection of switches into mania: 0% when no method was reported, 0.8% with clinical mental state examination, and 3% with rating scales (χ2 = 14.805, d.f. 4, p = 0.005). The rate of switch increased to 18.8% when considering the 16 patients with rapid-cycling BD. Switches occurred independent of treatment modality (light intensity, duration, and circadian timing of administration). The available literature shows that the highest reported rate of switch from bipolar depression into mania after LT is closely similar to the 4% switch rate expected during the placebo treatment of BD, thus not justifying specific concerns when using this treatment option.
Collapse
Affiliation(s)
- Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Scientific Institute Ospedale San Raffaele, Via Stamira d'Ancona 20, 20127 Milano, Italy.
| |
Collapse
|
37
|
Harrington MO, Johnson JM, Croom HE, Pennington K, Durrant SJ. The influence of REM sleep and SWS on emotional memory consolidation in participants reporting depressive symptoms. Cortex 2018; 99:281-295. [DOI: 10.1016/j.cortex.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/25/2017] [Accepted: 12/05/2017] [Indexed: 01/16/2023]
|
38
|
Geoffroy PA, Hoertel N, Etain B, Bellivier F, Delorme R, Limosin F, Peyre H. Insomnia and hypersomnia in major depressive episode: Prevalence, sociodemographic characteristics and psychiatric comorbidity in a population-based study. J Affect Disord 2018; 226:132-141. [PMID: 28972930 DOI: 10.1016/j.jad.2017.09.032] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/15/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To examine (i) the frequency of different sleep complaints (early wake-up, trouble falling asleep, hypersomnia) and their co-occurrence and (ii) the sociodemographic characteristics and psychiatric comorbidity associated with each type of sleep profiles. METHODS Data were drawn from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions, a nationally representative survey of the US adult population (wave 1, 2001-2002; wave 2, 2004-2005). The primary analyses were limited to 3573 participants who had a DSM-IV-TR diagnosis of major depressive episode (MDE) between the two waves. We used a multiple regression model to estimate the strength of independent associations between self-reported sleep complaints, sociodemographic characteristics and lifetime psychiatric comorbidity. RESULTS Most of participants with MDE (92%) reported significant sleep complaints, from whom 85.2% had insomnia and 47.5% hypersomnia symptoms. The prevalence rates were for insomnia "only" of 48.5%, hypersomnia "only" of 13.7%, and their co-occurrence of 30.2%. We found that several sociodemographic characteristics (gender, age, education, individual and familial income, marital status) and psychiatric disorders (bipolar disorders, post-traumatic disorders and panic disorder) were significantly and independently associated with different sleep profiles. The co-occurrence of insomnia (especially early wake-up) and hypersomnia presented with a two-/three- fold increase risk of bipolar disorders. LIMITATIONS Definitions of sleep complaints were qualitative and subjective. CONCLUSION Sleep complaints are prevalent and heterogeneous in expression during MDE. Sleep disturbance profiles are associated with specific patterns of comorbidity. Our findings highlight the importance of continued research on sleep complaints during MDE while taking into account psychiatric comorbidity.
Collapse
Affiliation(s)
- Pierre A Geoffroy
- Inserm, U1144, Paris F-75006, France; Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris F-75013, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil 94000, France.
| | - Nicolas Hoertel
- Assistance Publique-Hôpitaux de Paris (APHP), Corentin Celton Hospital, Department of Psychiatry, 92130 Issy-les-Moulineaux, France; INSERM UMR 894, Psychiatry and Neurosciences Center; Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France; Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Bruno Etain
- Inserm, U1144, Paris F-75006, France; Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris F-75013, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil 94000, France
| | - Frank Bellivier
- Inserm, U1144, Paris F-75006, France; Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris F-75013, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil 94000, France
| | - Richard Delorme
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris, France
| | - Frédéric Limosin
- Assistance Publique-Hôpitaux de Paris (APHP), Corentin Celton Hospital, Department of Psychiatry, 92130 Issy-les-Moulineaux, France; INSERM UMR 894, Psychiatry and Neurosciences Center; Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France; Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Hugo Peyre
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris, France; Cognitive Sciences and Psycholinguistic Laboratory, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
39
|
Duncan WC, Slonena EE, Hejazi NS, Brutsche N, Park LT, Henter ID, Ballard ED, Zarate CA. Are 24-hour motor activity patterns associated with continued rapid response to ketamine? Neuropsychiatr Dis Treat 2018; 14:2739-2748. [PMID: 30410340 PMCID: PMC6200084 DOI: 10.2147/ndt.s172089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE This study examined the links between 24-hour activity patterns (specifically, amplitude and timing of wrist activity) and the persisting qualities of clinical antidepressant response to the glutamatergic modulator ketamine. METHODS Twenty-four-hour activity patterns were compared across 5 days of 24-hour activity rhythms in patients with major depressive disorder who displayed either a brief antidepressant response (24-48 hours), a continued antidepressant response (>72 hours), or no antidepressant response to ketamine. These postinfusion-response profiles were then used retrospectively to examine cohort-specific fitted parameters at baseline, postinfusion day 1 (D1), and postinfusion D3. RESULTS Relative to the nonresponders, the cohort experiencing a brief antidepressant response had blunted 24-hour amplitude that extended from baseline through D3 and postketamine phase advance of activity on D1 that reverted to baseline on D3. Relative to the nonresponders, the cohort experiencing a continued antidepressant response to ketamine had phase-advanced activity at both baseline and D1, as well as increased amplitude on D1 and D3. CONCLUSION Taken together, the results suggest that the time course of antidepressant response to ketamine is influenced by underlying biological differences in motor activity timekeeping. These differences may provide clues that link durable mood response with the molecular machinery of the circadian system, thus leading to more effective interventions. In addition, biomarkers of preinfusion motor activity (eg, amplitude, timing) may be useful for recommending future individualized treatment interventions, to the extent that they help identify patients who may relapse quickly after treatment.
Collapse
Affiliation(s)
- Wallace C Duncan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Elizabeth E Slonena
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Nadia S Hejazi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Nancy Brutsche
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| |
Collapse
|
40
|
Soehner AM, Kaplan KA, Saletin JM, Talbot LS, Hairston IS, Gruber J, Eidelman P, Walker MP, Harvey AG. You'll feel better in the morning: slow wave activity and overnight mood regulation in interepisode bipolar disorder. Psychol Med 2018; 48:249-260. [PMID: 28625231 PMCID: PMC5736461 DOI: 10.1017/s0033291717001581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sleep disturbances are prominent correlates of acute mood episodes and inadequate recovery in bipolar disorder (BD), yet the mechanistic relationship between sleep physiology and mood remains poorly understood. Using a series of pre-sleep mood inductions and overnight sleep recording, this study examined the relationship between overnight mood regulation and a marker of sleep intensity (non-rapid eye movement sleep slow wave activity; NREM SWA) during the interepisode phase of BD. METHODS Adults with interepisode BD type 1 (BD; n = 20) and healthy adult controls (CTL; n = 23) slept in the laboratory for a screening night, a neutral mood induction night (baseline), a happy mood induction night, and a sad mood induction night. NREM SWA (0.75-4.75 Hz) was derived from overnight sleep EEG recordings. Overnight mood regulation was evaluated using an affect grid pleasantness rating post-mood induction (pre-sleep) and the next morning. RESULTS Overnight mood regulation did not differ between groups following the sad or happy inductions. SWA did not significantly change for either group on the sad induction night compared with baseline. In BD only, SWA on the sad night was related to impaired overnight negative mood regulation. On the happy induction night, SWA increased relative to baseline in both groups, though SWA was not related to overnight mood regulation for either group. CONCLUSIONS These findings indicate that SWA disruption may play a role in sustaining negative mood state from the previous night in interepisode BD. However, positive mood state could enhance SWA in bipolar patients and healthy adults.
Collapse
Affiliation(s)
- A M Soehner
- Department of Psychiatry,University of Pittsburgh School of Medicine,Pittsburgh, PA,USA
| | - K A Kaplan
- Department of Psychiatry,Stanford University School of Medicine,Stanford, CA,USA
| | - J M Saletin
- Department of Psychiatry and Human Behavior,Alpert Medical School of Brown University,Providence, RI,USA
| | - L S Talbot
- San Francisco Veterans Affairs Medical Center,San Francisco, CA,USA
| | - I S Hairston
- School of Behavioral Sciences, Academic College of Tel Aviv - Jaffa,Jaffa,Israel
| | - J Gruber
- Department of Psychology,University of Colorado,Boulder, Boulder, CO,USA
| | - P Eidelman
- Cognitive Behavior Therapy and Science Center,Oakland, CA,USA
| | - M P Walker
- Department of Psychology,University of California,Berkeley, Berkeley, CA,USA
| | - A G Harvey
- Department of Psychology,University of California,Berkeley, Berkeley, CA,USA
| |
Collapse
|
41
|
Kirschbaum I, Straub J, Gest S, Holtmann M, Legenbauer T. Short-term effects of wake- and bright light therapy on sleep in depressed youth. Chronobiol Int 2017; 35:101-110. [PMID: 29111784 DOI: 10.1080/07420528.2017.1388251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronotherapeutics are well established for the treatment of depression and associated sleeping problems in adults. However, effects are still understudied in adolescents. Two pilot studies highlighted the crucial role of sleep when it comes to the treatment of depression, by means of chronotherapeutics, in adolescents. The aim of the present study was to investigate the role of adjunctive wake therapy (WT) in addition to bright light therapy (BLT) with respect to sleep behaviors. In the present study, 62 depressed inpatients (aged 13-18 years; diagnosed with Beck Depression Inventory Revision) were randomly assigned to two groups: BLT only (BLT-group) and a combination of BLT and WT (COMB-group). After one night of WT adolescents in the COMB-group revealed longer sleep durations, time in bed, advanced sleep onset, less wakes during night and an improved sleep efficiency. However, one night of WT plus BLT had no additional effect on sleep parameters compared with BLT-group in the long run. Therefore, future studies should assess whether more nights of WT might lead to more sustainable effects.
Collapse
Affiliation(s)
- Inken Kirschbaum
- a LWL-University Hospital for Child and Adolescent Psychiatry and Psychotherapy, Heithofer Allee 64, Hamm , Ruhr-University Bochum , Germany
| | - Joana Straub
- b Department of Child and Adolescent Psychiatry and Psychotherapy , University Hospital , Ulm , Germany
| | - Stephanie Gest
- a LWL-University Hospital for Child and Adolescent Psychiatry and Psychotherapy, Heithofer Allee 64, Hamm , Ruhr-University Bochum , Germany
| | - Martin Holtmann
- a LWL-University Hospital for Child and Adolescent Psychiatry and Psychotherapy, Heithofer Allee 64, Hamm , Ruhr-University Bochum , Germany
| | - Tanja Legenbauer
- a LWL-University Hospital for Child and Adolescent Psychiatry and Psychotherapy, Heithofer Allee 64, Hamm , Ruhr-University Bochum , Germany
| |
Collapse
|
42
|
Santangeli O, Porkka-Heiskanen T, Virkkala J, Castaneda AE, Marttunen M, Paunio T, Urrila AS. Sleep and slow-wave activity in depressed adolescent boys: a preliminary study. Sleep Med 2017; 38:24-30. [PMID: 29031752 DOI: 10.1016/j.sleep.2017.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Adolescence is a vulnerable period of life that is characterized by increasing incidence of depression. Sleep disturbance is one of the diagnostic symptoms of depressive disorder. Adolescence is also characterized by dramatic maturational changes in sleep and its regulation. The goal of this study was to assess sleep macroarchitecture and slow-wave activity (SWA) in depressed adolescent boys. METHODS Eight non-medicated adolescent boys meeting the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria for depressive disorder and 10 age-matched healthy controls (average age 16.0 years) underwent polysomnography in their home environment for two consecutive nights. Sleep macroarchitecture, SWA, and SWA dissipation were assessed in all subjects. RESULTS Depressed boys showed a flattened pattern of SWA dissipation through the night. SWA power was lower during the first non-rapid eye movement (NREM) episode in the frontal derivation and higher during the third NREM episode in the central derivation in the group of depressed boys as compared to healthy boys. The SWA dissipation pattern correlated with the severity of depressive symptoms, and the correlation was strongest in the frontal derivation. In addition, total sleep time was shorter in patients as compared to the control group, but no other differences were found in the macroarchitecture of sleep. CONCLUSION Depression in adolescent boys is characterized by more evenly distributed SWA through the night as compared to healthy subjects, and we showed for the first time that this pattern of SWA distribution is associated with severity of depressive symptoms. These findings suggest that homeostatic regulation of sleep may be impaired in adolescent depression.
Collapse
Affiliation(s)
- Olena Santangeli
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Tarja Porkka-Heiskanen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Virkkala
- Finnish Institute for Occupational Health, Helsinki, Finland
| | - Anu E Castaneda
- Equality and Inclusion Unit, Department of Welfare, National Institute for Health and Welfare, Helsinki, Finland
| | - Mauri Marttunen
- Unit of Mental Health, Department of Health, National Institute for Health and Welfare, Helsinki, Finland; Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Paunio
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland; Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna S Urrila
- Unit of Mental Health, Department of Health, National Institute for Health and Welfare, Helsinki, Finland; Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
43
|
Elvsåshagen T, Zak N, Norbom LB, Pedersen PØ, Quraishi SH, Bjørnerud A, Alnæs D, Doan NT, Malt UF, Groote IR, Westlye LT. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation. Neuroimage 2017; 156:214-223. [PMID: 28526620 DOI: 10.1016/j.neuroimage.2017.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/29/2022] Open
Abstract
Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with MRI. Further studies are needed to clarify whether cortical thinning is one neural substrate of sleepiness after sleep deprivation.
Collapse
Affiliation(s)
- Torbjørn Elvsåshagen
- Department of Neurology, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Per Ø Pedersen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Inge R Groote
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway; The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Harrington MO, Pennington K, Durrant SJ. The 'affect tagging and consolidation' (ATaC) model of depression vulnerability. Neurobiol Learn Mem 2017; 140:43-51. [PMID: 28232148 DOI: 10.1016/j.nlm.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 11/24/2022]
Abstract
Since the 1960's polysomnographic sleep research has demonstrated that depressive episodes are associated with REM sleep alterations. Some of these alterations, such as increased REM sleep density, have also been observed in first-degree relatives of patients and remitted patients, suggesting that they may be vulnerability markers of major depressive disorder (MDD), rather than mere epiphenomena of the disorder. Neuroimaging studies have revealed that depression is also associated with heightened amygdala reactivity to negative emotional stimuli, which may also be a vulnerability marker for MDD. Several models have been developed to explain the respective roles of REM sleep alterations and negatively-biased amygdala activity in the pathology of MDD, however the possible interaction between these two potential risk-factors remains uncharted. This paper reviews the roles of the amygdala and REM sleep in the encoding and consolidation of negative emotional memories, respectively. We present our 'affect tagging and consolidation' (ATaC) model, which argues that increased REM sleep density and negatively-biased amygdala activity are two separate, genetically influenced risk-factors for depression which interact to promote the development of negative memory bias - a well-known cognitive vulnerability marker for depression. Predictions of the ATaC model may motivate research aimed at improving our understanding of sleep dependent memory consolidation in depression aetiology.
Collapse
Affiliation(s)
- Marcus O Harrington
- School of Psychology, College of Social Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| | - Kyla Pennington
- School of Psychology, College of Social Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| | - Simon J Durrant
- School of Psychology, College of Social Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
45
|
Duncan WC, Ballard ED, Zarate CA. Ketamine-Induced Glutamatergic Mechanisms of Sleep and Wakefulness: Insights for Developing Novel Treatments for Disturbed Sleep and Mood. Handb Exp Pharmacol 2017; 253:337-358. [PMID: 28939975 DOI: 10.1007/164_2017_51] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ketamine, a drug with rapid antidepressant effects and well-described effects on slow wave sleep (SWS), is a useful intervention for investigating sleep-wake mechanisms involved in novel therapeutics. The drug rapidly (within minutes to hours) reduces depressive symptoms in individuals with major depressive disorder (MDD) or bipolar disorder (BD), including those with treatment-resistant depression. Ketamine treatment elevates extracellular glutamate in the prefrontal cortex. Glutamate, in turn, plays a critical role as a proximal element in a ketamine-initiated molecular cascade that increases synaptic strength and plasticity, which ultimately results in rapidly improved mood. In MDD, rapid antidepressant response to ketamine is related to decreased waking as well as increased total sleep, SWS, slow wave activity (SWA), and rapid eye movement (REM) sleep. Ketamine also increases brain-derived neurotrophic factor (BDNF) levels. In individuals with MDD, clinical response to ketamine is predicted by low baseline delta sleep ratio, a measure of deficient early night production of SWS. Notably, there are important differences between MDD and BD that may be related to the effects of diagnosis or of mood stabilizers. Consistent with its effects on clock-associated molecules, ketamine alters the timing and amplitude of circadian activity patterns in rapid responders versus non-responders with MDD, suggesting that it affects mood-dependent central neural circuits. Molecular interactions between sleep homeostasis and clock genes may mediate the rapid and durable elements of clinical response to ketamine and its active metabolite.
Collapse
Affiliation(s)
- Wallace C Duncan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institute of Health, Bethesda, MD, 20892, USA.
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institute of Health, Bethesda, MD, 20892, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institute of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
Sander C, Hensch T, Wittekind DA, Böttger D, Hegerl U. Assessment of Wakefulness and Brain Arousal Regulation in Psychiatric Research. Neuropsychobiology 2016; 72:195-205. [PMID: 26901462 DOI: 10.1159/000439384] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022]
Abstract
During the last few decades, much knowledge has been gained about sleep being a heterogeneous condition with several distinct sleep stages that represent fundamentally different physiological states. The same applies for the wake state which also comprises distinct global functional states (called vigilance stages). However, various terms and concepts have been introduced describing different aspects of wakefulness, and accordingly several methods of assessment exist, e.g. sleep laboratory assessments (Multiple Sleep Latency Test, Maintenance of Wakefulness Test), questionnaires (Epworth Sleepiness Scale, Karolinska Sleepiness Scale), behavioural tasks (Psychomotor Vigilance Test) or electroencephalography (EEG)-based assessments (Alpha Attenuation Test, Karolinska Drowsiness Test). Furthermore, several theoretical concepts about the regulation of sleep and wakefulness have been put forward, and physiological correlates have been identified. Most relevant for healthy functioning is the regulation of brain arousal and the adaption of wakefulness to the environmental and situational needs so that the optimal balance between energy conservation and responsiveness can be obtained. Since one approach to the assessment of brain arousal regulation is the classification of EEG vigilance stages, a computer-based algorithm (Vigilance Algorithm Leipzig) has been introduced, allowing classification of EEG vigilance stages in EEG recordings under resting conditions. The time course of EEG vigilance stages in EEGs of 15-20 min duration allows estimation of the individual arousal regulation (hyperstable, adaptive, or unstable vigilance pattern). The vigilance model of affective disorders and attention-deficit/hyperactivity disorder links a disturbed arousal regulation to the pathogenesis of psychiatric disorders and accordingly helps to explain and possibly also predict treatment effects of pharmacological and non-pharmacological interventions for these conditions.
Collapse
|
47
|
Suzuki M, Dallaspezia S, Locatelli C, Uchiyama M, Colombo C, Benedetti F. Discrepancy between subjective and objective severity as a predictor of response to chronotherapeutics in bipolar depression. J Affect Disord 2016; 204:48-53. [PMID: 27322769 DOI: 10.1016/j.jad.2016.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chronotherapeutic techniques (sleep deprivation and light therapy) are effective treatments for bipolar depression, but viable predictors of response for the daily clinical practice have not yet been established. The discrepancy between subjective and objective severity of the depressive syndrome has been proposed as a possible predictor of treatment outcome in depression. This study examined whether this discrepancy could predict response to chronotherapeutics in bipolar depression. METHOD We studied 149 consecutively admitted inpatients with a major depressive episode in course of bipolar disorder. Patients were treated with the combination of repeated sleep deprivation and bright light therapy. Severity of depression was evaluated using self-rated (Beck Depression Inventory: BDI) and observer-rated (Hamilton Depression Rating Scale: HDRS) measures. BDI-HDRS discrepancy score at baseline was calculated, and its associations with clinical response and with depressive cognitive distortions, as measured on the Cognitions Questionnaire, were examined. RESULTS Among the 147 completers, 66% responded to treatment (50% reduction of HDRS score). The response rate in patients with low discrepancy scores and in patients with high discrepancy scores were 80.2% and 48.5%, respectively. High BDI-HDRS discrepancy predicted negative response to treatment with odds ratio of 3.79 (95%CI: 1.61-8.93). BDI-HDRS discrepancy was positively associated with depressive cognitive distortions. LIMITATIONS Potential factors affecting the discrepancy and outcome other than cognitive distortion were not examined in this study. CONCLUSION Higher BDI-HDRS discrepancy can predict poorer response to chronotherapeutics in bipolar depression. The tendency to generalize hopelessness may be a factor influencing the link between the discrepancy and outcome.
Collapse
Affiliation(s)
- Masahiro Suzuki
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy; Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan.
| | - Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
48
|
Muzio L, Brambilla V, Calcaterra L, D’Adamo P, Martino G, Benedetti F. Increased neuroplasticity and hippocampal microglia activation in a mice model of rapid antidepressant treatment. Behav Brain Res 2016; 311:392-402. [DOI: 10.1016/j.bbr.2016.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
|
49
|
Wittekind DA, Spada J, Gross A, Hensch T, Jawinski P, Ulke C, Sander C, Hegerl U. Early report on brain arousal regulation in manic vs depressive episodes in bipolar disorder. Bipolar Disord 2016; 18:502-510. [PMID: 27759213 DOI: 10.1111/bdi.12440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The arousal regulation model of affective disorders attributes an important role in the pathophysiology of affective disorders to dysregulation of brain arousal regulation. According to this model, sensation avoidance and withdrawal in depression and sensation seeking and hyperactivity in mania can be explained as auto-regulatory attempts to counteract a tonically high (depression) or unstable (mania) arousal. The aim of this study was to compare brain arousal regulation between manic and depressive bipolar patients and healthy controls. We hypothesized that currently depressed patients with bipolar disorder show hyperstable arousal regulation, while currently manic patients show unstable arousal regulation. METHODS Twenty-eight patients with bipolar disorder received a 15-min resting electroencephalogram (EEG) during a depressive episode and 19 patients received the same during a manic/hypomanic episode. Twenty-eight healthy control subjects were matched for age and sex. The Vigilance Algorithm Leipzig (VIGALL), which classifies 1-s EEG segments as one of seven EEG-vigilance substages, was used to measure brain arousal regulation. RESULTS Manic patients showed more unstable EEG-vigilance regulation as compared to the control sample (P = .004) and to patients with a depressive episode (P ≤ .001). Depressive patients had significantly higher mean vigilance levels (P = .045) than controls. CONCLUSIONS A clear difference was found in the regulation of brain arousal of manic patients vs depressive patients and controls. These data suggest that brain arousal might depend on the current mood state, which would support the arousal regulation model of affective disorders.
Collapse
Affiliation(s)
| | - Janek Spada
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Alexander Gross
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany
| | - Philippe Jawinski
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Christine Ulke
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, Universität Leipzig, Leipzig, Germany.,Research Centre of the German Depression Foundation, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Dallaspezia S, van Jaarsveld A. Antidepressant chronotherapeutics in a group of drug free outpatients. Psychiatry Res 2016; 241:118-21. [PMID: 27173655 DOI: 10.1016/j.psychres.2016.04.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 03/14/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The combination of Total Sleep Deprivation (TSD) and Light Therapy (LT) has been shown to prevent the early relapses characterizing response to TSD. Despite their proved efficacy, TSD and LT are still far from being considered standard therapy in the inpatient units and no study has assessed their efficacy and feasibility in outpatient settings. We studied 27 drug-free out-patients affected by Major Depression, divided in 7 groups according to the date of the wake night. Patients were administered one night of TSD and received LT during consecutive mornings following a predictive algorithm based on Morningness-Eveningness Questionnaire scores. Severity of depression was rated on Back Depression Inventory Scale (BDI) at baseline, one week and three months after the end of treatment. BDI scores significantly decreased during treatment with no difference between the seven consecutively treated groups of patients. Significant differences in BDI scores were confirmed between the baseline and both one week and three months after the end of treatment. TSD and LT caused a significant amelioration of depressive symptoms in an outpatient setting. Similar effects were observed in seven independent groups, suggesting that there is repeatability in findings. Chronotherapeutics confirmed their efficacy in the treatment of depression.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Department of Neuropsychiatric Sciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| | | |
Collapse
|