1
|
Kumar SA, Negi A, Santhoshkumar P, Moses JA, Sinija VRN. Coconut: Expanding avenues in processing and an exposition on non-conventional value-added products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1522-1532. [PMID: 39073106 DOI: 10.1002/jsfa.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Coconut palm (Cocos nucifera) is a treasured tree of the tropics, with every part put to use. The edible portions are loaded with diverse nutrients and nutraceutical ingredients. While the unique mineral profile of the liquid endosperm, the low-glycemic inflorescence sap (neera) and the medium-chain triglyceride fraction of coconut oil are better recognized, other fractions such as the haustorium remain underexplored. Overall, it is evident that, globally, the present status of coconut value addition is conventional, limited to a handful of products, and novel products hold a promising scope. A massive fraction of global coconut production goes for culinary and religious purposes. In the article, value-added products from coconut are classified into conventional and non-conventional products, with the latter in focus. Based on the part from which it is collected, all products have been categorized as haustorium-based, inflorescence-based, kernel-based and water-based products. For each non-conventional product introduced, its production approach and unique application range are highlighted. Given its health-promoting capabilities, characteristic sensorial attributes, wide application range and technological advancements, coconuts are increasingly being recognized around the world, even in regions that do not cultivate them; this applies to non-food products as well. In the context of value-added products from coconuts, this decade has witnessed a surge in research and commercial interest considering the inclusion of coconut as an ingredient in several food and nutraceutical products. The future will certainly consider regulatory protocols and standards, better documentation of the health impact of coconut-based diets, and the sustainability of coconut production, processing and consumption. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarangapany Ashwin Kumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Paramasivam Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | |
Collapse
|
2
|
Rabail R, Altemimi AB, Maerescu CM, Socol CT, Criste FL, Khalid AR, Mahwish, Hussain S, Liu ZW, Aadil RM. Consumption of edible oil blended with flax, coconut, sunflower, and olive oil can significantly improve the negative health consequences of high-fat/high-cholesterol diet in Sprague Dawley rats. Front Nutr 2024; 11:1469601. [PMID: 39371945 PMCID: PMC11452909 DOI: 10.3389/fnut.2024.1469601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Background Increasing cardiac, hepatic, and metabolic diseases have raised the need to modify our contemporary lifestyles toward balancing and diversifying the nutrients in our daily diet. Objective: Dietary fats should be modified to healthier versions by blending different vegetable oils. Therefore, in this study, an oil blend with health-protective and promoting fatty acid combinations was investigated to bring down the progression of cardiac and other metabolic diseases. Methodology A bio-efficacy trial was performed to investigate the therapeutic potential of an oil blend in 30 hyperlipidemic rats. Five rats were allocated to each group (coconut, flaxseed, olive, sunflower, and blended oil) for 42 days and were compared with the initial values of hyperlipidemic rats. Methodological investigations were performed for the body weight, naso-anal length, various obesity indices, visceral fat accumulation, blood and serum, cardiovascular risk indices, and echocardiograph. Results Blended oil consumption indicated significant reductions of 53.12% in body fat content (3.98 ± 0.96), 6.82% in Lee index (289.60 ± 8.27), 16.84% in BMI (0.15 ± 0.003), 57.37% in total cholesterol (52.00 ± 9.03), 68.57% in triacylglycerides (99.00 ± 9.19), 61.16% in atherogenic index (0.88 ± 0.12), and 58.72% in coronary risk index (2.88 ± 0.12), when compared with the initial values. Conclusion Blended oil consumption has significantly reduced various obesity indices, improved lipid profile, and provided significant protection against cardiovascular risk indices. Moreover, the results of blended oil indicated significant health protective ameliorations in electrocardiographs. Its regular consumption could help to reduce the onset of obesity and metabolic diseases.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Cristina Maria Maerescu
- Department of Genetics, Department of Animal Science and Technology, University of Oradea, Oradea, Romania
| | - Claudia Terezia Socol
- Department of Genetics, Department of Animal Science and Technology, University of Oradea, Oradea, Romania
| | - Florin Leontin Criste
- Department of Genetics, Department of Animal Science and Technology, University of Oradea, Oradea, Romania
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Mahwish
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Chatturong U, Palang I, To-On K, Deetud W, Chaiwong S, Sakulsak N, Sonthi P, Chanasong R, Chulikorn E, Kanprakobkit W, Wittaya-Areekul S, Kielar F, Chootip K. Reduction of lauric acid content in virgin coconut oil improved plasma lipid profile in high-fat diet-induced hypercholesterolemic mice. J Food Sci 2023; 88:4305-4315. [PMID: 37602794 DOI: 10.1111/1750-3841.16741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Virgin coconut oil (VCO) is claimed to have various health benefits, but favorable effects of its major component (∼50%), lauric acid, are controversial. Therefore, we aimed to reduce lauric acid content (∼30%) in VCO and evaluate its effect compared to VCO and medium-chain triglycerides (MCT), on food intake, bodyweight (BW), lipid profiles, and hepatic histology. Female C57BL/6 mice were treated with different diets for 3 months: control (normal diet), high-fat diet (HF), HF + VCO, HF + MCT, HF + low lauric acid VCO (LLA), and normal diet + LLA (C + LLA). LLA was prepared by enzymatic interesterification of VCO with methyl octanoate (methyl caprylate) and methyl decanoate (methyl caprate). Plasma and liver lipids, including total cholesterol (TC), high-density lipoprotein (HDL), and triglyceride, were measured by colorimetric assay, and hepatic fat accumulation was examined by oil-red-O staining. HF mice exhibited high plasma and liver TC and low-density lipoprotein (LDL). VCO or MCT treatment lowered liver TC and LDL, whereas LLA increased plasma HDL and markedly improved TC:HDL ratio. The HF-induced hepatic fat accumulation was attenuated by all treatments, of which VCO was the most effective. Control mice administered with LLA demonstrated lower liver TC and LDL, but higher plasma TC and HDL compared to controls. Lowest BW gain and food intake were found in mice treated with LLA. In conclusion, VCO, MCT, and LLA ameliorated hepatic histopathology caused by HF. VCO and MCT improved liver lipid profiles, whereas LLA has more beneficial effect on plasma lipids via a better TC:HDL ratio and showed promise for BW control.
Collapse
Affiliation(s)
- Usana Chatturong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Iyapa Palang
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kittiwoot To-On
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Watcharakorn Deetud
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Suriya Chaiwong
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi Rangsit Centre, Pathum Thani, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Phattarapon Sonthi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rachanee Chanasong
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ekarin Chulikorn
- Department of Biochemistry, Faculty of Medical Science and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Winranath Kanprakobkit
- Department of Chemistry, Faculty of Science and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Sakchai Wittaya-Areekul
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
4
|
Anuar NS, Shafie SA, Maznan MAF, Zin NSNM, Azmi NAS, Raoof RA, Myrzakozha D, Samsulrizal N. Lauric acid improves hormonal profiles, antioxidant properties, sperm quality and histomorphometric changes in testis and epididymis of streptozotocin-induced diabetic infertility rats. Toxicol Appl Pharmacol 2023; 470:116558. [PMID: 37211320 DOI: 10.1016/j.taap.2023.116558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/29/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Lauric acid, a 12‑carbon atom medium chain fatty acid (MCFA) has strong antioxidant and antidiabetic activities. However, whether lauric acid can ameliorate hyperglycaemia-induced male reproductive damage remains unclear. The study aimed to determine the optimal dose of lauric acid with glucose-lowering activity, antioxidant potential and tissue-protective effects on the testis and epididymis of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemia was induced in Sprague Dawley rats by an intravenous injection of STZ at a dose of 40 mg/kg body weight (bwt). Lauric acid (25, 50 and 100 mg/kg bwt) was administered orally for eight weeks. Weekly fasting blood glucose (FBG), glucose tolerance and insulin sensitivity were examined. Hormonal profiles (insulin and testosterone), lipid peroxidation (MDA) and antioxidant enzyme (SOD and CAT) activities were measured in the serum, testis and epididymis. The reproductive analyses were evaluated based on sperm quality and histomorphometry. Lauric acid administration significantly improved FBG levels, glucose tolerance, hormones-related fertility and oxidant-antioxidant balance in the serum, testis and epididymis compared to untreated diabetic rats. Treatment with lauric acid preserved the testicular and epididymal histomorphometry, along with the significant improvements in sperm characteristics. It is shown for the first time that lauric acid treatment at 50 mg/kg bwt is the optimal dose for ameliorating hyperglycaemia-induced male reproductive complications. We conclude that lauric acid reduced hyperglycaemia by restoring insulin and glucose homeostasis, which attributes to the regeneration of tissue damage and sperm quality in STZ-induced diabetic rats. These findings support the correlation between oxidative stress and hyperglycaemia-induced male reproductive dysfunctions.
Collapse
Affiliation(s)
- Nursarah Syamimi Anuar
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; TuAH Industrial Research Lab with Bio Fluid Sdn Bhd, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Syahirah Ain Shafie
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; TuAH Industrial Research Lab with Bio Fluid Sdn Bhd, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Aiman Faris Maznan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; TuAH Industrial Research Lab with Bio Fluid Sdn Bhd, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Noor Syaffinaz Noor Mohamad Zin
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; TuAH Industrial Research Lab with Bio Fluid Sdn Bhd, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nur Ain Sabrina Azmi
- TuAH Industrial Research Lab with Bio Fluid Sdn Bhd, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Bio Fluid Sdn Bhd, 70, Jalan Bulan U5/172, Subang 2, 40150 Shah Alam, Selangor, Malaysia
| | - Rohaizad Abdul Raoof
- Bio Fluid Sdn Bhd, 70, Jalan Bulan U5/172, Subang 2, 40150 Shah Alam, Selangor, Malaysia.
| | - Diyas Myrzakozha
- Chemistry Department, School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.
| | - Nurdiana Samsulrizal
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; TuAH Industrial Research Lab with Bio Fluid Sdn Bhd, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
5
|
Effects of Omega-3-Rich Pork Lard on Serum Lipid Profile and Gut Microbiome in C57BL/6NJ Mice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9269968. [DOI: 10.1155/2022/9269968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Background and Aims. Hyperlipidemia is a risk factor for cardiovascular diseases. This study is aimed at investigating the effects of consuming omega-3-rich pork lard on the serum lipid profile and gut microbiome of the mice model. Methods and Results. We divided 23 C57BL/6NJ males (16-week-old) into 3 groups, and each group received either a control diet, a high-fat diet of coconut oil (coconut oil), or a high-fat diet of omega-3-rich pork lard (omega lard) for 28 days. Thereafter, fasting serum lipids and fecal microbiomes were analyzed. The serum cholesterol, triglyceride, and LDL levels of the omega lard-treated group were significantly reduced compared to the coconut oil-treated group (
). However, the microbiome analysis revealed a significant increase in the abundance of Lachnospiraceae in the omega lard-treated group compared to the coconut oil-treated group (
). Furthermore, Spearman’s correlation analysis revealed that the increased serum lipid content was positively correlated with the abundance of Bacteroidaceae (
) and negatively correlated with the abundance of Lachnospiraceae (
). Conclusions. These findings suggested that omega-3-rich pork lard altered the serum lipid profile and gut microbiome in the mice model. Practical Application. The excellent protection offered by omega-3-rich pork lard against hyperlipidemia indicated that pork lard could be used as alternative cooking oil for health-conscious individuals. It could also be introduced as a functional ingredient for patients with hyperlipidemia.
Collapse
|
6
|
Shen Z, Li S, Wu J, Wang F, Li X, Yu J, Liu Y, Ma X. Effect of different oil incorporation on gelling properties, flavor and advanced glycation end-products of silver carp surimi sausages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Rabail R, Shabbir MA, Sahar A, Miecznikowski A, Kieliszek M, Aadil RM. An Intricate Review on Nutritional and Analytical Profiling of Coconut, Flaxseed, Olive, and Sunflower Oil Blends. Molecules 2021; 26:7187. [PMID: 34885769 PMCID: PMC8659046 DOI: 10.3390/molecules26237187] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Vegetable oils (VOs), being our major dietary fat source, play a vital role in nourishment. Different VOs have highly contrasting fatty acid (FA) profiles and hence possess varying levels of health protectiveness. Consumption of a single VO cannot meet the recommended allowances of various FA either from saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA), Ω-3 PUFAs, and medium-chain triglycerides (MCTs). Coconut oil (CO), flaxseed oil (FO), olive oil (OO), and sunflower oil (SFO) are among the top listed contrast VOs that are highly appreciated based on their rich contents of SFAs, Ω-3 PUFAs, MUFAs, and Ω-6 PUFA, respectively. Besides being protective against various disease biomarkers, these contrasting VOs are still inappropriate when consumed alone in 100% of daily fat recommendations. This review compiles the available data on blending of such contrasting VOs into single tailored blended oil (BO) with suitable FA composition to meet the recommended levels of SFA, MUFA, PUFA, MCTs, and Ω-3 to Ω-6 PUFA ratios which could ultimately serve as a cost-effective dietary intervention towards the health protectiveness and improvement of the whole population in general. The blending of any two or more VOs from CO, FO, OO, and SFO in the form of binary, ternary, or another type of blending was found to be very conclusive towards balancing FA composition; enhancing physiochemical and stability properties; and promising the therapeutic protectiveness of the resultant BOs.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
- Department Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Antoni Miecznikowski
- Department of Fermentation Technology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, 02-532 Warsaw, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (M.A.S.); (A.S.)
| |
Collapse
|
8
|
Alatawi KA, Alshubaily FA. Coconut products alleviate hyperglycaemic, hyperlipidimic and nephropathy indices in streptozotocin-induced diabetic wistar rats. Saudi J Biol Sci 2021; 28:4224-4231. [PMID: 34354403 PMCID: PMC8324991 DOI: 10.1016/j.sjbs.2021.06.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/14/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and one of the most common metabolic diseases affecting large proportion of world population. Diabetes-induced changes in lipid and renal parameters are major risk factors contributing to diabetic complications such as diabetic nephropathy and cardiovascular diseases. Due to adverse effects associated with pharmacological intervention in the T2DM treatment, there is an increased interest in the research focussing on identifying novel plant based therapeutic agents. Here we report the effects of various coconut products on diabetic, lipid and renal parameters in streptozotocin (STZ)-induced diabetic rat model. Diabetic rats demonstrated a significant increase in serum glucose, and glycated haemoglobin levels (HbA1c). Lipid parameters including triglycerides, total cholesterol, low density lipoprotein cholesterol (LDL-cholesterol) and very low density lipoprotein cholesterol (VLDL-cholesterol) were found to be significantly increased, while high density lipoprotein cholesterol (HDL-cholesterol) was significantly declined in diabetic rats. Diabetic rats also displayed increased serum and kidney creatinine, urea, and total protein levels and increased urine glucose, urea, albumin and creatinine levels. Contrastingly, treatment with virgin and filtered coconut oils, coconut water and coconut milk resulted in a significant reversal in the levels of above studied parameters in diabetic rats. Further, these coconut products markedly prevented diabetes induced histopathological changes in kidney tissue. Collectively, the data demonstrate the antidiabetic, hypolipidemic and renal protective properties of various coconut products and underscore the importance of regular consumption of plant based medicinal products in the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Karemah A. Alatawi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21533, Saudi Arabia
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21533, Saudi Arabia
| |
Collapse
|