1
|
Ma Y, Zhang J, Dang R, Wang N, Wang Y, Yu M, Chen M, Shen P, Wang Q, Huang J. Perception of native vs. non-native language and non-speech sounds in one-week-old neonates: An fNIRS study. Brain Res Bull 2025; 226:111370. [PMID: 40339996 DOI: 10.1016/j.brainresbull.2025.111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/07/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Early infant phonological and non-phonological perceptual abilities are crucial for future language learning. Previous studies have focused on the changes in the cerebral cortex of infants and toddlers during speech perception, while the changes in the cerebral cortex during non-speech perception remain poorly understood. OBJECTIVE This study aimed to investigate cortical activation patterns and differences in full-term healthy newborns under different speech and non-speech stimuli by functional near-infrared spectroscopy (fNIRS). METHODS The cohort included 36 full-term healthy neonates (7.4 ± 6.0 days) exposed to two types of speech stimuli (native Mandarin and non-native Spanish) and three non-speech stimuli (music, cat calls, and noise) in a block design. Brain activity was monitored across eight brain regions of interest (ROIs) were monitored using fNIRS (54 channels): frontal pole area (FPA), middle frontal gyrus (MFG), primary sensorimotor cortex, middle temporal gyrus (MTG), superior temporal gyrus (STG), fusiform gyrus (FFG), Wernicke's area, and Broca's area. RESULTS Mandarin stimulation activated all ROIs in newborns. Changes in oxygenated hemoglobin concentrations in FPA, MFG, STG, MTG, FFG, Wernicke's area, and Broca's area were significantly higher during Mandarin exposure compared to Spanish (p < 0.05). MTG activation was significantly greater during Mandarin exposure compared to cat calls (p = 0.005), music (p = 0.040), and noise (p < 0.001). Similarly, MFG and Broca's area showed significantly greater activation during music exposure compared to Spanish and noise stimuli (p < 0.05). CONCLUSIONS The newborn brain can perceive various speech and non-speech stimuli, demonstrating a preference for native language stimuli, followed by music. The ability to perceive non-native languages, animal calls, and noise appears more limited. These findings could provide some references for future research on infant and toddler language development.
Collapse
Affiliation(s)
- Yinchun Ma
- Bengbu Medical University, Bengbu, China; The First People's Hospital of Hefei, Hefei, China.
| | - Jianming Zhang
- Bengbu Medical University, Bengbu, China; The First People's Hospital of Hefei, Hefei, China.
| | - Ruochen Dang
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, China.
| | - Nan Wang
- Bengbu Medical University, Bengbu, China; The First People's Hospital of Hefei, Hefei, China.
| | - Yan Wang
- Bengbu Medical University, Bengbu, China; The First People's Hospital of Hefei, Hefei, China.
| | - Mei Yu
- The First People's Hospital of Hefei, Hefei, China.
| | | | - Peiting Shen
- The First People's Hospital of Hefei, Hefei, China.
| | - Quan Wang
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, China.
| | - Jinhua Huang
- Bengbu Medical University, Bengbu, China; The First People's Hospital of Hefei, Hefei, China.
| |
Collapse
|
2
|
Reoyo‐Serrano N, Dimakou A, Nascimben C, Bastianello T, Lucangeli D, Benavides‐Varela S. Crossing the Boundary: No Catastrophic Limits on Infants' Capacity to Represent Linguistic Sequences. Dev Sci 2025; 28:e70015. [PMID: 40195051 PMCID: PMC11976043 DOI: 10.1111/desc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
The boundary effect, namely the infants' failures to compare small and large numerosities, is well documented in studies using visual stimuli. The prevailing explanation is that the numerical system used to process sets up to 3 is incompatible with the system employed for numbers >3. This study investigates the boundary effect in 10-month-old infants presented with linguistic sequences. In Condition 1 (2 vs. 3), infants can differentiate small syllable sequences (2 vs. 3), with better performance for the 2-syllable sequence, which imposes a lower memory load. Condition 2 (2 vs. 4) revealed that infants are capable of discriminating across bounds, with relatively higher performance for the 4-syllable sequence, possibly encoded as one large ensemble. This study offers evidence that, when processing linguistic sounds, infants flexibly deal with small and large numerical representations with no boundaries or incompatibilities between them. Simultaneously encoding units of different magnitudes might aid early speech processing beyond memory limits.
Collapse
Affiliation(s)
- Natalia Reoyo‐Serrano
- Department of Developmental Psychology and SocialisationUniversity of PadovaPadovaItaly
| | | | - Chiara Nascimben
- Department of Developmental Psychology and SocialisationUniversity of PadovaPadovaItaly
| | - Tamara Bastianello
- Department of Developmental Psychology and SocialisationUniversity of PadovaPadovaItaly
| | - Daniela Lucangeli
- Department of Developmental Psychology and SocialisationUniversity of PadovaPadovaItaly
| | - Silvia Benavides‐Varela
- Department of Developmental Psychology and SocialisationUniversity of PadovaPadovaItaly
- Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
3
|
Bartha‐Doering L, Giordano V, Mandl S, Benavides‐Varela S, Weiskopf A, Mader J, Andrejevic J, Adrian N, Ashmawy LE, Appel P, Seidl R, Doering S, Berger A, Alexopoulos J. Lateralization of Neural Speech Discrimination at Birth Is a Predictor for Later Language Development. Dev Sci 2025; 28:e13609. [PMID: 39807603 PMCID: PMC11730390 DOI: 10.1111/desc.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025]
Abstract
Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits. This investigation also holds clinical importance, as differences in neonatal speech discrimination and its functional networks may serve as predictors of later language outcomes. We therefore investigated neural speech discrimination using functional near-infrared spectroscopy in 92 preterm- and term-born neonates and its predictive value for language development in 45 of them. Three to five years later, preterm-born and term-born children did not significantly differ in language comprehension, sentence production, the use of morphological rules, or phonological short-term memory. In addition, the gestational age at birth was not a significant predictor of language development. Neural speech discrimination, in contrast, was strongly correlated with later phonological short-term memory. However, not the extent of speech discrimination, but rather its lateralization, was a predictor of language development. Children with less right hemisphere involvement-and therefore more left-lateralized speech discrimination at birth-showed better development of phonological short-term memory three to five years later. These findings suggest that the ability of fetuses to form memory traces is reflected by neonatal abilities to neurally discriminate speech, which in turn is a predictor for later phonological short-term memory.
Collapse
Affiliation(s)
- Lisa Bartha‐Doering
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Vito Giordano
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Sophie Mandl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | | | - Anna Weiskopf
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Johannes Mader
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
- Austrian Institute of TechnologyViennaAustria
| | - Julia Andrejevic
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Nadine Adrian
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Lisa Emilia Ashmawy
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Patrick Appel
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Stephan Doering
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
- Department of Psychoanalysis and PsychotherapyMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Paillereau N, Chládková K. Infants' reliance on rhythm to distinguish languages: A critical review. INFANCY 2024; 29:842-876. [PMID: 39215603 DOI: 10.1111/infa.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 09/04/2024]
Abstract
This article reviews empirical methods and findings on early language discrimination, questioning rhythm-class based hypotheses on language discrimination in infancy, as well as the assumption that early language discrimination is driven primarily (or solely) by temporal prosodic cues. The present work argues that within-rhythm class discrimination which - according to the rhythmic hypothesis - is not applicable very early in life, has not been sufficiently tested with infants under 4 months of age, that familiarity with a language is not a prerequisite for its discrimination from another rhythmically similar language, and that the temporal rhythm properties may not universally be the primary cues to language discrimination. Although rhythm taxonomy is now by many understood as outdated, some developmental literature still draws on the assumption that rhythm classification determines infants' language discrimination; other studies consider rhythm along a continuous scale and only a few account for cues to language discrimination other than temporal ones. It is proposed that studies on early language discrimination systematically test the contribution of other than temporal rhythm cues, similarly to recent work on multidimensional psychoacoustic salience in the acquisition of segmental categories.
Collapse
Affiliation(s)
- Nikola Paillereau
- Institute of Psychology, Czech Academy of Sciences, Praha, Czech Republic
| | - Kateřina Chládková
- Institute of Psychology, Czech Academy of Sciences, Praha, Czech Republic
- Institute of Czech Language and Theory of Communication, Faculty of Arts, Charles University, Praha, Czech Republic
| |
Collapse
|
5
|
Tan J, Hou QM, Zhang F, Duan X, Zhang YL, Lee YJ, Yan H. Brain networks in newborns and infants with and without sensorineural hearing loss: A functional near-infrared spectroscopy study. World J Psychiatry 2024; 14:1547-1557. [DOI: 10.5498/wjp.v14.i10.1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Understanding the impact of early sensory deficits on brain development is essential for understanding developmental processes and developing potential interventions. While previous studies have looked into the impact of prenatal experiences on language development, there is a lack of research on how these experiences affect early language and brain function development in individuals with sensorineural hearing loss (SNHL).
AIM To investigate SNHL effects on early brain development and connectivity in 4-month-olds vs healthy newborns and controls.
METHODS The research involved analyzing the functional brain networks of 65 infants, categorized into three groups: 28 healthy newborns, 22 4-month-old participants with SNHL, and 15 age-matched healthy participants. The resting-state functional connectivity was measured and compared between the groups using functional near-infrared spectroscopy and graph theory to assess the brain network properties.
RESULTS Significant differences were found in resting-state functional connectivity between participants with SNHL and age-matched controls, indicating a developmental lag in brain connectivity for those with SNHL. Surprisingly, SNHL participants showed better connectivity development compared to healthy newborns, with connectivity strengths of 0.13 ± 0.04 for SNHL, 0.16 ± 0.08 for controls, and 0.098 ± 0.04 for newborns. Graph theory analysis revealed enhanced global brain network properties for the SNHL group, suggesting higher communication efficiency at 4 months. No significant differences were noted in network properties between 4-month-old SNHL participants and neonates. A unique pattern of central hubs was observed in the SNHL group, with 2 hubs in the left hemisphere compared to 6 in controls.
CONCLUSION 4-month-old infants with SNHL have a distinct brain network pattern with efficient long-distance information transmission but less effective local communication compared to age-matched controls.
Collapse
Affiliation(s)
- Juan Tan
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qian-Mei Hou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Fen Zhang
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent 9000, Province of East Flanders, Belgium
| | - Xu Duan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi’an International Studies University, Xi’an 710128, Shaanxi Province, China
| | - Yan-Long Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi’an International Studies University, Xi’an 710128, Shaanxi Province, China
| | - Yu-Jun Lee
- Department of English, North Sichuan Medical College, Nanchong 637100, Sichuan Province, China
- School of Graduate, Xi’an International Studies University, Xi’an 710128, Shaanxi Province, China
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi’an International Studies University, Xi’an 710128, Shaanxi Province, China
| |
Collapse
|
6
|
杨 骞, 刘 云. [Research progress on brain functional near-infrared spectroscopy technology in the field of neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:86-91. [PMID: 38269465 PMCID: PMC10817743 DOI: 10.7499/j.issn.1008-8830.2309002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
Functional near infrared spectroscopy (fNIRS) is an emerging neuroimaging tool that reflects the activity and function of brain neurons by monitoring changes in brain oxygen metabolism based on the neurovascular coupling mechanism. It is non-invasive and convenient, especially suitable for monitoring neonatal brain function. This article provides a comprehensive review of research related to the developmental patterns of brain networks concerning language, music, and emotions in neonates using fNIRS. It also covers brain network imaging in neonatal care, resting-state brain network connectivity patterns, and characteristics of brain functional imaging in disease states of neonates using fNIRS.
Collapse
|
7
|
Kujala T, Partanen E, Virtala P, Winkler I. Prerequisites of language acquisition in the newborn brain. Trends Neurosci 2023; 46:726-737. [PMID: 37344237 DOI: 10.1016/j.tins.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Learning to decode and produce speech is one of the most demanding tasks faced by infants. Nevertheless, infants typically utter their first words within a year, and phrases soon follow. Here we review cognitive abilities of newborn infants that promote language acquisition, focusing primarily on studies tapping neural activity. The results of these studies indicate that infants possess core adult auditory abilities already at birth, including statistical learning and rule extraction from variable speech input. Thus, the neonatal brain is ready to categorize sounds, detect word boundaries, learn words, and separate speech streams: in short, to acquire language quickly and efficiently from everyday linguistic input.
Collapse
Affiliation(s)
- Teija Kujala
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Eino Partanen
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Paula Virtala
- Cognitive Brain Research Unit, Centre of Excellence in Music, Mind, Body and Brain, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
8
|
de la Cruz-Pavía I, Gervain J. Six-month-old infants' perception of structural regularities in speech. Cognition 2023; 238:105526. [PMID: 37379798 DOI: 10.1016/j.cognition.2023.105526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In order to acquire grammar, infants need to extract regularities from the linguistic input. From birth, infants can detect regularities in speech based on identity relations, and show strong neural activation to syllable sequences containing adjacent repetitions of identical syllables (e.g. ABB: mubaba). Meanwhile, newborns' neural responses to sequences of different syllables (e.g. ABC: mubage, i.e. diversity-based relations) do not differ from baseline. However, this latter ability needs to emerge during development, as most linguistic units, such as words, are composed of highly variable sequences. As infants begin to learn their first word forms at 6 months, we hypothesize that the ability to represent sequences of different syllables might become important for them at this age. Using near-infrared spectroscopy (NIRS), we measured 6-month-old infants' brain responses to repetition- and diversity-based sequences in the bilateral temporal, parietal and frontal areas. We found that 6-month-olds discriminated the repetition- and diversity-based structures in frontal and parietal regions, and exhibited equally strong activation to both grammars as compared to baseline. These results show that by 6 months of age, infants encode sequences with diversity-based structures. They thus provide the earliest evidence that prelexical infants represent difference in speech stimuli, which behavioral studies first attest at 11 months of age.
Collapse
Affiliation(s)
- Irene de la Cruz-Pavía
- Faculty of Social and Human Sciences, University of Deusto, Bilbao, Spain; Basque Foundation for Science Ikerbasque, Bilbao, Spain; Integrative Neuroscience and Cognition Center, CNRS & Université Paris Cité, Paris, France.
| | - Judit Gervain
- Integrative Neuroscience and Cognition Center, CNRS & Université Paris Cité, Paris, France; Department of Social and Developmental Psychology, University of Padua, Padua, Italy; Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|