1
|
Tang C, Lan R, Ma DR, Zhao M, Zhang Y, Li HY, Liu S, Li BY, Yang JL, Yang HJ, Zhang ZQ. Annexin A1: The dawn of ischemic stroke (Review). Mol Med Rep 2025; 31:62. [PMID: 39749707 PMCID: PMC11726294 DOI: 10.3892/mmr.2024.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration. Evidence indicates that ANXA1 plays a pivotal role in the pathogenesis of ischemic stroke. The present article reviews involvement of ANXA1 in anti‑atherosclerosis, inflammatory processes, blood‑brain barrier protection, platelet aggregation and anti‑apoptotic mechanisms. The potential applications of ANXA1 in treating ischemic stroke are also explored.
Collapse
Affiliation(s)
- Chen Tang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Lan
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Dong-Rui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Min Zhao
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yong Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hong-Yu Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shuang Liu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bo-Yang Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jie-Li Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Hui-Jie Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
2
|
Chen JXY, Vipin A, Sandhu GK, Leow YJ, Zailan FZ, Tanoto P, Lee ES, Lee KL, Cheung C, Kandiah N. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities. J Prev Alzheimers Dis 2025; 12:100029. [PMID: 39863325 DOI: 10.1016/j.tjpad.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD. OBJECTIVE This study explores the relationship between CRFs, BBB integrity, and WMH burden. DESIGN, SETTING, AND PARTICIPANTS The study included 155 participants from the Biomarkers and Cognition Study, Singapore (BIOCIS). CRFs were assessed through blood tests for glucose and lipid profiles, and blood pressure measurements. WMH volumes were quantified using MRI. MEASUREMENTS BBB integrity was evaluated using a Transendothelial Electrical Resistance (TEER) assay with human brain microvascular endothelial cells (hBMEC) exposed to participant plasma. RESULTS Plasma from individuals with a higher WMH burden was associated with increased BBB disruption in hBMEC. Higher systolic and diastolic blood pressure, as well as body mass index, were correlated with greater BBB disruption. Regression analyses revealed that elevated blood glucose and lipid levels were linked to increased BBB disruption. Both periventricular and subcortical WMH burdens were associated with increased BBB disruption. CONCLUSION This study highlights a relationship between CRFs, BBB disruption, and WMH burden, suggesting that CRFs may impair BBB integrity and contribute to WMH and cognitive decline in cSVD.
Collapse
Affiliation(s)
- James Xiao Yuan Chen
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ashwati Vipin
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Gurveen Kaur Sandhu
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Yi Jin Leow
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Fatin Zahra Zailan
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Pricilia Tanoto
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ee Soo Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore.
| |
Collapse
|
3
|
Yang G, Su R, Bu J, Li Y, Lin X, Jin J, Zhang Y, Zhuang P, Guo H, Yin Q. Emerging role of adaptive immunity in diabetes-induced cognitive impairment: from the periphery to the brain. Metab Brain Dis 2025; 40:102. [PMID: 39821703 DOI: 10.1007/s11011-025-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Diabetic cognitive impairment (DCI) is a central nervous system complication induced by peripheral metabolic dysfunction of diabetes mellitus. Cumulative studies have shown that neuro-immune crosstalk is involved in the pathological progression of DCI. However, current studies mostly focus on the interaction between innate immunity cells and neurons, while ignoring the role of adaptive immunity cells in DCI. Notably, recent studies have revealed adaptive immune cells are involved in cognitive development and the progression of neurodegenerative diseases. Equally important, accumulated past studies have also shown that diabetic patients experience imbalanced peripheral adaptive immune homeostasis and disrupted transmission of adaptive immune cells to the central system. Therefore, this review first updated the cognitive mechanism of adaptive immune regulation, and then summarized the contribution of adaptive immunity to DCI from the aspects of peripheral adaptive immune homeostasis, transmission pathways, and brain tissue infiltration. Furthermore, we also summarized the potential of anti-diabetic drugs to regulate adaptive immunity, and looked forward to the potential value of regulatory adaptive immunity in the prevention and treatment of DCI, to provide a new strategy for the prevention and treatment of DCI.
Collapse
Affiliation(s)
- Genhui Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Runtao Su
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Bu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xueling Lin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiahui Jin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanjun Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Pengwei Zhuang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Hong Guo
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qingsheng Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Devraj K, Kulkarni O, Liebner S. Regulation of the blood-brain barrier function by peripheral cues in health and disease. Metab Brain Dis 2024; 40:61. [PMID: 39671124 PMCID: PMC11645320 DOI: 10.1007/s11011-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
The blood-brain barrier (BBB) is formed by microvascular endothelial cells which are ensembled with pericytes, astrocytes, microglia and neurons in the neurovascular unit (NVU) that is crucial for neuronal function. Given that the NVU and the BBB are highly dynamic and regulated structures, their integrity is continuously challenged by intrinsic and extrinsic factors. Herein, factors from peripheral organs such as gonadal and adrenal hormones may influence vascular function also in CNS endothelial cells in a sex- and age-dependent manner. The communication between the periphery and the CNS likely takes place in specific areas of the brain among which the circumventricular organs have a central position due to their neurosensory or neurosecretory function, owing to physiologically leaky blood vessels. In acute and chronic pathological conditions like liver, kidney, pulmonary disease, toxins and metabolites are generated that reach the brain via the circulation and may directly or indirectly affect BBB functionality via the activation of the immunes system. For example, chronic kidney disease (CKD) currently affects more than 840 million people worldwide and is likely to increase along with western world comorbidities of the cardio-vascular system in continuously ageing societies. Toxins leading to the uremic syndrome, may further lead to neurological complications such as cognitive impairment and uremic encephalopathy. Here we summarize the effects of hormones, toxins and inflammatory reactions on the brain vasculature, highlighting the urgent demand for mechanistically exploring the communication between the periphery and the CNS, focusing on the BBB as a last line of defense for brain protection.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India.
| | - Onkar Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
5
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Lv K, Du X, Chen C, Yu Y. Research hotspots and trend of glioblastoma immunotherapy: a bibliometric and visual analysis. Front Oncol 2024; 14:1361530. [PMID: 39175478 PMCID: PMC11339877 DOI: 10.3389/fonc.2024.1361530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Background Glioblastoma (GBM) is one of the common malignant tumors of the central nervous system (CNS), characterized by rapid proliferation, heterogeneity, aggressiveness, proneness to recurrence after surgery, and poor prognosis. There is increasing evidence that tumorigenesis is inextricably linked to immune escape, and immunotherapy is undoubtedly an important complement to clinical treatment options for GBM, and will be a focus and hot topic in GBM treatment research. The purpose of this study was to visualize and analyze the scientific results and research trends of immunotherapy for GBM. Methods Publications concerning immunotherapy for GBM were retrieved from the Web of Science Core Collection (WOScc) database. Bibliometric and visual analysis was performed mainly using CiteSpace and R software, and the Online Analysis Platform of Literature Metrology (https://bibliometric.com/app) for countries/regions, authors, journals, references and keywords related to publications in the field. Results Among totally 3491 publications retrieved in this field, 1613 publications were finally obtained according to the screening criteria, including 1007 articles (62.43%) and 606 reviews (37.57%). The number of publications increased year by year, with an average growth rate (AGR) of 17.41%. Such a number was the largest in the USA (717, 44.45%), followed by China (283, 17.55%), and the USA showed the strongest international collaboration. Among the research institutions, Duke Univ (94, 5.83%) was the largest publisher in the field, followed by Harvard Med Sch (70, 4.34%). In addition, the most prolific authors in this field were OHN H SAMPSON (51) and MICHAEL LIM (43), and the degree of collaboration (DC) between authors was 98.26%. Among the co-cited authors, STUPP R (805) was the most cited author, followed by REARDON DA (448). The journal with the most published publications was FRONTIERS IN IMMUNOLOGY (75), and the most cited journal in terms of co-citation was CLIN CANCER RES (1322), followed by CANCER RES (1230). The high-frequency keyword included glioblastoma (672) and immunotherapy (377). Cluster analysis was performed on the basis of keyword co-occurrence analysis, yielding 17 clusters, based on which the current research status and future trends in the field of immunotherapy for GBM were identified. Conclusion Immunotherapy is currently a novel treatment strategy for GBM that has attracted much attention. In the future, it is necessary to strengthen cooperation and exchanges between countries and institutions towards relevant research to promote the development of this field. Immunotherapy is expected to be an important part of the future treatment strategy for GBM, and it has already become a hot spot of current research and will be the key focus of future research.
Collapse
Affiliation(s)
- Keren Lv
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xue Du
- Yaan People’s Hospital, Sichuan University West China Hospital Yaan Hospital, Yaan, Sichuan, China
| | - Chunbao Chen
- Chengdu Pidu District People's Hospital, the 3rd Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yina Yu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
8
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
9
|
Broering MF, Oseliero Filho PL, Borges PP, da Silva LCC, Knirsch MC, Xavier LF, Scharf P, Sandri S, Stephano MA, de Oliveira FA, Sayed IM, Gamarra LF, Das S, Fantini MCA, Farsky SHP. Development of Ac2-26 Mesoporous Microparticle System as a Potential Therapeutic Agent for Inflammatory Bowel Diseases. Int J Nanomedicine 2024; 19:3537-3554. [PMID: 38638365 PMCID: PMC11024051 DOI: 10.2147/ijn.s451589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) disrupt the intestinal epithelium, leading to severe chronic inflammation. Current therapies cause adverse effects and are expensive, invasive, and ineffective for most patients. Annexin A1 (AnxA1) is a pivotal endogenous anti-inflammatory and tissue repair protein in IBD. Nanostructured compounds loading AnxA1 or its active N-terminal mimetic peptides improve IBD symptomatology. Methods To further explore their potential as a therapeutic candidate, the AnxA1 N-terminal mimetic peptide Ac2-26 was incorporated into SBA-15 ordered mesoporous silica and covered with EL30D-55 to deliver it by oral treatment into the inflamed gut. Results The systems SBA-Ac2-26 developed measurements revealed self-assembled rod-shaped particles, likely on the external surface of SBA-15, and 88% of peptide incorporation. SBA-15 carried the peptide Ac2-26 into cultured Raw 264.7 macrophages and Caco-2 epithelial cells. Moreover, oral administration of Eudragit-SBA-15-Ac2-26 (200 μg; once a day; for 4 days) reduced colitis clinical symptoms, inflammation, and improved epithelium recovery in mice under dextran-sodium sulfate-induced colitis. Discussion The absorption of SBA-15 in gut epithelial cells is typically low; however, the permeable inflamed barrier can enable microparticles to cross, being phagocyted by macrophages. These findings suggest that Ac2-26 is successfully delivered and binds to its receptors in both epithelial and immune cells, aligning with the clinical results. Conclusion Our findings demonstrate a simple and cost-effective approach to delivering Ac2-26 orally into the inflamed gut, highlighting its potential as non-invasive IBD therapy.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Pedro Leonidas Oseliero Filho
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
- Materials Innovation Factory, University of Liverpool, Liverpool, MSY, UK
| | - Pâmela Pacassa Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marcos Camargo Knirsch
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marco Antonio Stephano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Anselmo de Oliveira
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Ibrahim M Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Lionel Fernel Gamarra
- Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa, Sociedade Beneficente Israelita Brasileira Hospital Albert Einstein, São Paulo, SP, Brazil
| | - Soumita Das
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Márcia C A Fantini
- Department of Applied Physics, Physics Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Stolp HB, Solito E. Developmental priming of early cerebrovascular ageing: Implications across a lifetime. Int J Geriatr Psychiatry 2024; 39:e6090. [PMID: 38629845 DOI: 10.1002/gps.6090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Neurological conditions such as Alzheimer's disease and stroke represent a substantial health burden to the world's ageing population. Cerebrovascular dysfunction is a key contributor to these conditions, affecting an individual's risk profile, age of onset, and severity of neurological disease. Recent data shows that early-life events, such as maternal health during pregnancy, birth weight and exposure to environmental toxins can 'prime' the vascular system for later changes. With age, blood vessels can become less flexible and more prone to damage. This can lead to reduced blood flow to the brain, which is associated with cognitive decline and an increased risk of stroke and other cerebrovascular diseases. These in turn increase the risk of vascular dementia and Alzheimer's disease. OBJECTIVES We aim to explore how early life factors influence cerebrovascular health, ageing and disease. METHODS We have reviewed recently published literature from epidemiological studies, clinical cases and basic research which explore mechanisms that contribute to cerebrovascular and blood-brain barrier dysfunction, with a particularly focus on those that assess contribution of early-life events or vascular priming to subsequent injury. RESULTS Perinatal events have been linked to acute cerebrovascular dysfunction and long-term structural reorganisation. Systemic disease throughout the lifetime that produce inflammatory or oxidative stress may further sensitise the cerebrovasculature to disease and contribute to neurodegeneration. CONCLUSIONS By identifying these early-life determinants and understanding their mechanisms, scientists aim to develop strategies for preventing or mitigating cerebrovascular ageing-related issues.
Collapse
Affiliation(s)
- Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Liu S, Li D, Yu T, Zhu J, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation improves insulin therapy in diabetic microglial reactivity and the brain drainage system. Commun Biol 2023; 6:1239. [PMID: 38066234 PMCID: PMC10709608 DOI: 10.1038/s42003-023-05630-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The dysfunction of microglia in the development of diabetes is associated with various diabetic complications, while traditional insulin therapy is insufficient to rapidly restore the function of microglia. Therefore, the search for new alternative methods of treating diabetes-related dysfunction of microglia is urgently needed. Here, we evaluate the effects of transcranial photobiomodulation (tPBM) on microglial function in diabetic mice and investigate its mechanism. We find tPBM treatment effectively improves insulin therapy on microglial morphology and reactivity. We also show that tPBM stimulates brain drainage system through activation of meningeal lymphatics, which contributes to the removal of inflammatory factor, and increase of microglial purinergic receptor P2RY12. Besides, the energy expenditure and locomotor activity of diabetic mice are also improved by tPBM. Our results demonstrate that tPBM can be an efficient, non-invasive method for the treatment of microglial dysfunction caused by diabetes, and also has the potential to prevent diabetic physiological disorders.
Collapse
Affiliation(s)
- Shaojun Liu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Dongyu Li
- School of Optical Electronic Information-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya Str. 83, 410012, Saratov, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Ebrahimi M, Thompson P, Lauer AK, Sivaprasad S, Perry G. The retina-brain axis and diabetic retinopathy. Eur J Ophthalmol 2023; 33:2079-2095. [PMID: 37259525 DOI: 10.1177/11206721231172229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diabetic retinopathy (DR) is a major contributor to permanent vision loss and blindness. Changes in retinal neurons, glia, and microvasculature have been the focus of intensive study in the quest to better understand DR. However, the impact of diabetes on the rest of the visual system has received less attention. There are reports of associations of changes in the visual system with preclinical and clinical manifestations of diabetes. Simultaneous investigation of the retina and the brain may shed light on the mechanisms underlying neurodegeneration in diabetics. Additionally, investigating the links between DR and other neurodegenerative disorders of the brain including Alzheimer's and Parkinson's disease may reveal shared mechanisms for neurodegeneration and potential therapy options.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas K Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Sobha Sivaprasad
- National Institute of Health and Care Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas and San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Zhang RH, Cao SS, Shi Y, Wang X, Shi LL, Zhang YH, Han CJ, Wang B, Feng L, Liu JP. Astragaloside IV-mediated inhibition of oxidative stress by upregulation of ghrelin in type 2 diabetes-induced cognitive impairment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2637-2650. [PMID: 37097336 DOI: 10.1007/s00210-023-02486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
This study is to observe the upregulation effect of astragaloside IV on ghrelin in diabetic cognitive impairment (DCI) rats and to investigate the pathway in prevention and treatment by reducing oxidative stress. The DCI model was induced with streptozotocin (STZ) in conjunction with a high-fat and high-sugar diet and divided into three groups: model, low-dose (40 mg/kg), and high-dose (80 mg/kg) astragaloside IV. After 30 days of gavage, the learning and memory abilities of rats, as well as their body weight and blood glucose levels, were tested using the Morris water maze and then detection of insulin resistance, SOD activity, and serum MDA levels. The whole brain of rats was sampled for hematoxylin-eosin and Nissl staining to observe pathological changes in the hippocampal CA1 region. Immunohistochemistry was used to detect ghrelin expression in the hippocampal CA1 region. A Western blot was used to determine changes in GHS-R1α/AMPK/PGC-1α/UCP2. RT-qPCR was used to determine the levels of ghrelin mRNA. Astragaloside IV reduced nerve damage, increased superoxide dismutase (SOD) activity, decreased MDA levels, and improved insulin resistance. Ghrelin levels and expression increased in serum and hippocampal tissues, and ghrelin mRNA levels increased in rat stomach tissues. According to Western blot, it increased the expression of the ghrelin receptor GHS-R1α and upregulated the mitochondrial function associated-protein AMPK-PGC-1α-UCP2. Astragaloside IV increases ghrelin expression in the brain to reduce oxidative stress and delay diabetes-induced cognitive impairment. It may be related to the promotion of ghrelin mRNA levels.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Shan-Shan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yong Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Lei-Lei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Yu-Han Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China
| | - Liang Feng
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, China Pharmaceutical University, 639# Longmian Road, Jiangsu, Nanjing, 210009, People's Republic of China.
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China.
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China.
| |
Collapse
|
15
|
Jo D, Yoon G, Lim Y, Kim Y, Song J. Profiling and Cellular Analyses of Obesity-Related circRNAs in Neurons and Glia under Obesity-like In Vitro Conditions. Int J Mol Sci 2023; 24:ijms24076235. [PMID: 37047207 PMCID: PMC10094513 DOI: 10.3390/ijms24076235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid, linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed according to cell types with many of these circRNAs conserved in humans. After suppressing the expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto that may play important roles in metabolic disorders associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yeonghwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Youngkook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| |
Collapse
|
16
|
Park HY, van Bruggen VLE, Peutz-Kootstra CJ, Ophelders DRMG, Jellema RK, Reutelingsperger CPM, Rutten BPF, Wolfs TGAM. Time Dependent Changes in the Ovine Neurovascular Unit; A Potential Neuroprotective Role of Annexin A1 in Neonatal Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2023; 24:ijms24065929. [PMID: 36983004 PMCID: PMC10054605 DOI: 10.3390/ijms24065929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Perinatal brain injury following hypoxia-ischemia (HI) is characterized by high mortality rates and long-term disabilities. Previously, we demonstrated that depletion of Annexin A1, an essential mediator in BBB integrity, was associated with a temporal loss of blood-brain barrier (BBB) integrity after HI. Since the molecular and cellular mechanisms mediating the impact of HI are not fully scrutinized, we aimed to gain mechanistic insight into the dynamics of essential BBB structures following global HI in relation to ANXA1 expression. Global HI was induced in instrumented preterm ovine fetuses by transient umbilical cord occlusion (UCO) or sham occlusion (control). BBB structures were assessed at 1, 3, or 7 days post-UCO by immunohistochemical analyses of ANXA1, laminin, collagen type IV, and PDGFRβ for pericytes. Our study revealed that within 24 h after HI, cerebrovascular ANXA1 was depleted, which was followed by depletion of laminin and collagen type IV 3 days after HI. Seven days post-HI, increased pericyte coverage, laminin and collagen type IV expression were detected, indicating vascular remodeling. Our data demonstrate novel mechanistic insights into the loss of BBB integrity after HI, and effective strategies to restore BBB integrity should potentially be applied within 48 h after HI. ANXA1 has great therapeutic potential to target HI-driven brain injury.
Collapse
Affiliation(s)
- Hyun Young Park
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Valéry L E van Bruggen
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | | | - Daan R M G Ophelders
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K Jellema
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Pediatrics, Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, School of Oncology and Reproduction (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
17
|
MacPherson KP, Eidson LN, Houser MC, Weiss BE, Gollihue JL, Herrick MK, de Sousa Rodrigues ME, Sniffen L, Weekman EM, Hamilton AM, Kelly SD, Oliver DL, Yang Y, Chang J, Sampson TR, Norris CM, Tansey MG. Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:895017. [PMID: 37006470 PMCID: PMC10052573 DOI: 10.3389/fncel.2023.895017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/20/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.
Collapse
Affiliation(s)
- Kathryn P. MacPherson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lori N. Eidson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Madelyn C. Houser
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Blaine E. Weiss
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jenna L. Gollihue
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mary K. Herrick
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, United States
| | - Maria Elizabeth de Sousa Rodrigues
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lindsey Sniffen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Erica M. Weekman
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam M. Hamilton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean D. Kelly
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Danielle L. Oliver
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yuan Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R. Sampson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Malú Gámez Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
18
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
19
|
Exercise-induced responses in matrix metalloproteinases and osteopontin are not moderated by exercise format in males with overweight or obesity. Eur J Appl Physiol 2023; 123:1115-1124. [PMID: 36648516 PMCID: PMC10119240 DOI: 10.1007/s00421-023-05133-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Matrix metalloproteinase-2 (MMP-2) and -3 (MMP-3), and osteopontin (OPN) are associated with adipose-tissue expansion and development of metabolic disease. The purpose of the current study was to assess the circulating concentration of these markers, along with adiponectin and glucose concentrations, in response to acute exercise in individuals with overweight or obesity. METHODS Fourteen sedentary males with overweight or obesity (29.0 ± 3.1 kg/m2) completed two separate, 3-day trials in randomised and counterbalanced order. An oral glucose tolerance test (OGTT) was performed on each day of the trial. Day two of each trial consisted of a single 30 min workload-matched bout of either high-intensity interval exercise (HIIE; alternating 100% and 50% of peak pulmonary oxygen uptake, [Formula: see text]O2peak) or continuous moderate intensity (CME; 60% [Formula: see text]O2peak) cycling completed 1 h prior to the OGTT. Glucose and physical activity were continuously monitored, while MMP-2, MMP-3, OPN and adiponectin were measured pre-, 0 h post-, 1 h post- and 25 h post-exercise. RESULTS Exercise transiently increased MMP-3 and decreased OPN (both p < 0.01), but not MMP-2 or adiponectin. There were no differences in the response of inflammatory markers to the different exercise formats. Exercise increased mean daily glucose concentration and area under the glucose curve during the OGTT on Day 2 and Day 3 (main effect of time; p < 0.05). CONCLUSION Acute cycling exercise decreased OPN, which is consistent with longer term improvements in cardiometabolic health and increased MMP-3, which is consistent with its role in tissue remodelling. Interestingly, exercise performed prior to the morning OGTT augmented the glucose concentrations in males. TRIAL REGISTRATION ACTRN12613001086752.
Collapse
|
20
|
Henn RE, Elzinga SE, Glass E, Parent R, Guo K, Allouch AM, Mendelson FE, Hayes J, Webber-Davis I, Murphy GG, Hur J, Feldman EL. Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice. Immun Ageing 2022; 19:67. [PMID: 36550567 PMCID: PMC9773607 DOI: 10.1186/s12979-022-00323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging (e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role of age in obesity-induced neuroinflammation and cognitive impairment is unclear. To further define this putative relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using a high-fat diet (HFD) mouse model of obesity. RESULTS First, HFD promoted age-related changes in hippocampal gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young adult and middle-aged mice to determine the effect of age on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, with a bi-directional regulation of hippocampal inflammatory gene expression. CONCLUSIONS Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.
Collapse
Affiliation(s)
- Rosemary E Henn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emily Glass
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel Parent
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Adam M Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffery G Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Bonetto V, Pasetto L, Lisi I, Carbonara M, Zangari R, Ferrari E, Punzi V, Luotti S, Bottino N, Biagianti B, Moglia C, Fuda G, Gualtierotti R, Blasi F, Canetta C, Montano N, Tettamanti M, Camera G, Grimoldi M, Negro G, Rifino N, Calvo A, Brambilla P, Biroli F, Bandera A, Nobili A, Stocchetti N, Sessa M, Zanier ER. Markers of blood-brain barrier disruption increase early and persistently in COVID-19 patients with neurological manifestations. Front Immunol 2022; 13:1070379. [PMID: 36591311 PMCID: PMC9798841 DOI: 10.3389/fimmu.2022.1070379] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is associated with disorders affecting the peripheral and the central nervous system. A high number of patients develop post-COVID-19 syndrome with the persistence of a large spectrum of symptoms, including neurological, beyond 4 weeks after infection. Several potential mechanisms in the acute phase have been hypothesized, including damage of the blood-brain-barrier (BBB). We tested weather markers of BBB damage in association with markers of brain injury and systemic inflammation may help in identifying a blood signature for disease severity and neurological complications. Methods Blood biomarkers of BBB disruption (MMP-9, GFAP), neuronal damage (NFL) and systemic inflammation (PPIA, IL-10, TNFα) were measured in two COVID-19 patient cohorts with high disease severity (ICUCovid; n=79) and with neurological complications (NeuroCovid; n=78), and in two control groups free from COVID-19 history, healthy subjects (n=20) and patients with amyotrophic lateral sclerosis (ALS; n=51). Samples from COVID-19 patients were collected during the first and the second wave of COVID-19 pandemic in Lombardy, Italy. Evaluations were done at acute and chronic phases of the COVID-19 infection. Results Blood biomarkers of BBB disruption and neuronal damage are high in COVID-19 patients with levels similar to or higher than ALS. NeuroCovid patients display lower levels of the cytokine storm inducer PPIA but higher levels of MMP-9 than ICUCovid patients. There was evidence of different temporal dynamics in ICUCovid compared to NeuroCovid patients with PPIA and IL-10 showing the highest levels in ICUCovid patients at acute phase. On the contrary, MMP-9 was higher at acute phase in NeuroCovid patients, with a severity dependency in the long-term. We also found a clear severity dependency of NFL and GFAP levels, with deceased patients showing the highest levels. Discussion The overall picture points to an increased risk for neurological complications in association with high levels of biomarkers of BBB disruption. Our observations may provide hints for therapeutic approaches mitigating BBB disruption to reduce the neurological damage in the acute phase and potential dysfunction in the long-term.
Collapse
Affiliation(s)
| | - Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Lisi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Carbonara
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosalia Zangari
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Erica Ferrari
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Veronica Punzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicola Bottino
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bruno Biagianti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina Moglia
- “Rita Levi Montalcini”, Department of Neuroscience, University of Turin, Turin, Italy,AOU Città della Salute e della Scienza Hospital, Turin, Italy
| | - Giuseppe Fuda
- “Rita Levi Montalcini”, Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Francesco Blasi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ciro Canetta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Tettamanti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giorgia Camera
- Department of Neurology, Papa Giovanni XXIII Hospital, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Grimoldi
- Department of Neurology, Papa Giovanni XXIII Hospital, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giulia Negro
- Neurology Section, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicola Rifino
- Division of Neurology, University of Milano-Bicocca, Milan, Italy
| | - Andrea Calvo
- “Rita Levi Montalcini”, Department of Neuroscience, University of Turin, Turin, Italy,AOU Città della Salute e della Scienza Hospital, Turin, Italy
| | - Paolo Brambilla
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Biroli
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandra Bandera
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Nino Stocchetti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,*Correspondence: Nino Stocchetti, ; Maria Sessa, ; Elisa R. Zanier,
| | - Maria Sessa
- Department of Neurology, Papa Giovanni XXIII Hospital, ASST Papa Giovanni XXIII, Bergamo, Italy,*Correspondence: Nino Stocchetti, ; Maria Sessa, ; Elisa R. Zanier,
| | - Elisa R. Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy,*Correspondence: Nino Stocchetti, ; Maria Sessa, ; Elisa R. Zanier,
| |
Collapse
|
22
|
Russo C, Valle MS, Russo A, Malaguarnera L. The Interplay between Ghrelin and Microglia in Neuroinflammation: Implications for Obesity and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232113432. [PMID: 36362220 PMCID: PMC9654207 DOI: 10.3390/ijms232113432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that microglia are capable of producing a wide range of chemokines to promote inflammatory processes within the central nervous system (CNS). These cells share many phenotypical and functional characteristics with macrophages, suggesting that microglia participate in innate immune responses in the brain. Neuroinflammation induces neurometabolic alterations and increases in energy consumption. Microglia may constitute an important therapeutic target in neuroinflammation. Recent research has attempted to clarify the role of Ghre signaling in microglia on the regulation of energy balance, obesity, neuroinflammation and the occurrence of neurodegenerative diseases. These studies strongly suggest that Ghre modulates microglia activity and thus affects the pathophysiology of neurodegenerative diseases. This review aims to summarize what is known from the current literature on the way in which Ghre modulates microglial activity during neuroinflammation and their impact on neurometabolic alterations in neurodegenerative diseases. Understanding the role of Ghre in microglial activation/inhibition regulation could provide promising strategies for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Antonella Russo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
23
|
Robbins JP, Solito E. Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions? Front Neurosci 2022; 16:854050. [PMID: 35620671 PMCID: PMC9127342 DOI: 10.3389/fnins.2022.854050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.
Collapse
Affiliation(s)
- Jacqueline P. Robbins
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|