1
|
Tiwari S, Paramanik V. Role of Probiotics in Depression: Connecting Dots of Gut-Brain-Axis Through Hypothalamic-Pituitary Adrenal Axis and Tryptophan/Kynurenic Pathway involving Indoleamine-2,3-dioxygenase. Mol Neurobiol 2025; 62:7230-7241. [PMID: 39875781 DOI: 10.1007/s12035-025-04708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives. Furthermore, over the decades, researchers have focused on understanding communication between the human microbiome, especially gut microbiota, and mental health, called gut-brain-axis (GBA), particularly through Trp metabolism. Supplementation of probiotics in depression has gained attention from researchers and clinicians. However, there is limited information about probiotics supplementation on depression involving enzyme IDO and kynurenine pathway metabolites. This review discussed the potential role of probiotics in depression through the tryptophan/kynurenine pathway.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
| |
Collapse
|
2
|
Tiwari S, Paramanik V. Lactobacillus fermentum ATCC 9338 Supplementation Prevents Depressive-Like Behaviors Through Glucocorticoid Receptor and N-Methyl-D-aspartate2b in Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025; 62:7927-7944. [PMID: 39956887 DOI: 10.1007/s12035-025-04738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Depression is a long-term, related to stress neuropsychiatric disorder, leading to psychological health issues including worthlessness, anhedonia, sleep and appetite disturbances, dysregulated HPA axis, neuronal cell death, and alterations in the gut microbiota (GM). Dysregulated HPA axis increases level of glucocorticoids that induce proinflammatory response with activation of abnormal kynurenine pathway via metabolizing indoleamine-2,3-dioxygenase (IDO). Kynurenine pathway leads to excitotoxicity of N-methyl-D-aspartate (NMDA) receptor responsible for neuronal cell death. Further, probiotics supplementation gained attention from researchers and clinicians to treat neuropsychiatric diseases. GM alteration remains a key reason for depression; however, there is limited information about the role of probiotics on depression involving glucocorticoid receptor and NMDA excitotoxicity through IDO. Chronic unpredictable mild stress (CUMS) model was prepared to check the role of Lactobacillus fermentum ATCC 9338 (LF) and 1-methyl-D-tryptophan (1-MT) in depression. Herein, mice were placed into experimental groups: control, CUMS stressed, CUMS vehicle, CUMS LF, CUMS 1-MT, and CUMS UT (untreated). Results showed that peroral administration of 1 × 108 CFU/day/mouse LF and intraperitoneal dose of 1-MT (15 mg/kg BW/day) alleviate depressive-like behavior and improve motor coordination and walking patterns. Mice supplemented with LF and 1-MT exhibited a decreased expression of GR and NMDAR2b in the cortex, hippocampus, and medulla. Acetylcholinesterase, SOD, and CAT activities were improved in CUMS mice with supplementation of LF and 1-MT. The GM abundance in LF mice was similar to that in control mice. Such study suggests the roles of LF and 1-MT in depression and oxidative stress, and helpful to understand their therapeutic potential through the HPA axis and IDO.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India.
| |
Collapse
|
3
|
Wang FX, Dai SY, Mu G, Yu ZH, Chen Y, Zhou J. Beyond organ isolation: The bidirectional crosstalk between cerebral and intestinal ischemia-reperfusion injury via microbiota-gut-brain axis. Biochem Biophys Res Commun 2025; 763:151804. [PMID: 40239544 DOI: 10.1016/j.bbrc.2025.151804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Ischemia-reperfusion injury (IRI) represents a pathophysiological phenomenon of profound clinical relevance that poses considerable threats to patient safety. IRI may manifest in a variety of clinical contexts including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Critically, IRI exhibits complex interactions across different organs, with effects that surpass mere localized tissue damage. These impacts can amplify damage to both adjacent and remote organs through pathways such as the gut-brain axis and the gut-lung axis, facilitated by intricate signaling mechanisms. Noteworthy is the interaction between gut IRI and brain IRI, which involves sophisticated neuroendocrine, systemic, and immune mechanisms coordinated through the microbiome-gut-brain axis. This review seeks to delve into the intricate interactions between gut and brain IRI, viewed through the lens of the microbiota-gut-brain axis. It aims to assess its translational potential in clinical settings, provide a theoretical foundation for developing relevant therapeutic strategies, and pinpoint novel directions for research.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shi-Yu Dai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan, 643200, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Sălcudean A, Cîmpian DM, Popovici RA, Forna N, Corodan-Comiati DM, Sasu AB, Cozma MM, Bodo CR, Enache EC, Păcurar M, Crăciun RE, Blidaru A, Jinga V, Pașca MD, Lukacs EE, Tilinca MC, Strete EG, Crișan AI, Osz BE, Muntean DL. Dietary Habits and Their Influence on the Microbiome and Mental Health in Adolescents. Nutrients 2025; 17:1496. [PMID: 40362805 PMCID: PMC12073491 DOI: 10.3390/nu17091496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Adolescence represents a critical developmental stage where diet, gut microorganisms, and mental health are strongly interconnected. The current literature evidences the bidirectional role between dietary habits and psychological well-being, which is mediated by the gut-brain axis. The purpose of this review is to highlight the importance of dietary habits in adolescence period and the impact of different food choices on microbiota and secondary on mental health. Gut microbiota plays a vital role in the synthesis of neurotransmitters such as serotonin, dopamine, noradrenaline, and metabolites like short-chain fatty acids (SCFAs). The disruption in the composition of microbiota is called dysbiosis, which has been associated with a systemic inflammation state and chronic stress. They contribute to the onset of psychiatric disorders including MDD, anxiety, ADHD, and autism. Diets with a high quantity of sugar and low fiber contribute to alteration of microbiota and poor mental health. Additionally, early-life stress, antibiotic usage, and chronic inflammation may alter bacterial communities, with long-term implications for adolescents mental health. Dietary interventions, including the intake of prebiotics, probiotics, SCFAs, and micronutrients could restore microbial balance and improve psychiatric symptoms. This literature review highlights the critical role of diet and gut microbiota for adolescent mental health and emphasizes the need for integrative strategies to promote psychological resilience through microbiome regulation.
Collapse
Affiliation(s)
- Andreea Sălcudean
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; (A.S.); (M.-M.C.); (C.-R.B.); (M.-D.P.)
| | - Dora-Mihaela Cîmpian
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; (A.S.); (M.-M.C.); (C.-R.B.); (M.-D.P.)
| | - Ramona-Amina Popovici
- Department of Management and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Norina Forna
- Department of Implantology and Prosthetic Implant Rehabilitation, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700946 Iași, Romania;
| | | | - Andreea-Bianca Sasu
- Psychiatry Clinic 1, County Clinical Hospital Mureș, 540136 Târgu Mureș, Romania; (D.-M.C.-C.); (A.-B.S.)
| | - Melania-Maria Cozma
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; (A.S.); (M.-M.C.); (C.-R.B.); (M.-D.P.)
| | - Cristina-Raluca Bodo
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; (A.S.); (M.-M.C.); (C.-R.B.); (M.-D.P.)
| | - Eduard-Cristian Enache
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania;
| | - Mariana Păcurar
- Orthodontic Department, Faculty of Dental Medicine, George Emil Palade University of Medicine Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | | | - Alexandru Blidaru
- Surgical Oncology Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania;
| | - Maria-Dorina Pașca
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; (A.S.); (M.-M.C.); (C.-R.B.); (M.-D.P.)
| | - Emese-Erika Lukacs
- Department of Psychiatry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureș, Romania; (E.-E.L.); (E.-G.S.)
| | - Mariana-Cornelia Tilinca
- Department of Internal Medicine I, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureș, Romania;
| | - Elena-Gabriela Strete
- Department of Psychiatry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, 540142 Târgu Mureș, Romania; (E.-E.L.); (E.-G.S.)
| | - Andrada-Ioana Crișan
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Bianca-Eugenia Osz
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Daniela-Lucia Muntean
- Department of Analytical Chemistry and Drug, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
5
|
Zhao J, Zhang J, Yang C, Yin L, Hou L, Jiang L. Sodium butyrate aids brain injury repair in neonatal rats. Open Life Sci 2025; 20:20221046. [PMID: 40291783 PMCID: PMC12032984 DOI: 10.1515/biol-2022-1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 04/30/2025] Open
Abstract
The aim of this study is to investigate the effects and mechanism of action of sodium butyrate (SB) on brain injury repair in neonatal rats. 126 neonatal SD rats were randomly allocated to 7 groups, and necrotizing enterocolitis (NEC) and hypoxic-ischemic brain injury (HIBI) rat models were established. Hematoxylin and eosin staining showed that SB intervention alleviated intestinal and brain injuries in the HIBI + SB, NEC + SB, and NEC + HIBI + SB groups. Compared to the NEC and NEC + HIBI groups, the NEC + SB and NEC + HIBI + SB groups had significantly higher interleukin (IL)-10 and lower IL-17 levels (P < 0.05). Immunohistochemistry revealed increased Bcl-2 expression and decreased Bax expression in the NEC + SB and NEC + HIBI + SB groups compared to the NEC and NEC + HIBI groups in intestinal and brain tissues (P < 0.05). Compared to the control group (CG), gut microbiota diversity decreased in the HIBI, NEC, and NEC + HIBI groups, and increased significantly in the HIBI + SB, NEC + SB, and NEC + HIBI + SB groups. SB may alleviate brain injury by modulating gut microbiota, affecting IL-10 and IL-17 levels, and regulating Bcl-2 and Bax expression in intestinal and brain tissues.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1, Mao Yuan South Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Jun Zhang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Can Yang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
6
|
Saniotis A, Henneberg M, Mohammadi K. Evolutionary medicine and bioastronautics: an innovative approach in addressing adverse mental health effects to astronauts during long term space missions. Front Physiol 2025; 16:1558625. [PMID: 40342860 PMCID: PMC12058484 DOI: 10.3389/fphys.2025.1558625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Although evolutionary medicine has produced several novel insights for explaining prevalent health issues, it has yet to sufficiently address possible adverse mental health effects of humans during long-term space missions While evolutionary applications to medicine have increased over the past 20 years, there is scope for the integration of evolutionary applications in the new branch of space medicine called bioastronautics, which analyses the effects on human bodies when in outer space. Evolutionary principles may explain what kinds of space environments increase mental health risks to astronauts, both in the short and long term; secondly, evolutionary principles may provide a more informed understanding of the evolutionary mismatch between terrestrial and space environments in which astronauts exist. This information may assist in developing frameworks for improving mental health of astronauts and future space colonists. Consequently, this paper will focus on some of the major evolutionary mismatches currently confronting astronauts' mental health, with an aim to improve medical knowledge. It will also provide possible therapeutic countermeasures based on evolutionary principles for reducing adverse mental effects on astronauts.
Collapse
Affiliation(s)
- Arthur Saniotis
- Department of Medical Microbiology, Cihan University-Erbil, Erbil, Iraq
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maciej Henneberg
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Kazhaleh Mohammadi
- Department of Medical Microbiology, College of Science, Knowledge University, Erbil, Iraq
| |
Collapse
|
7
|
Jeong S, Davis CK, Chokkalla AK, Kim B, Park S, Vemuganti R. Fecal microbiota transplantation fails to impart the benefits of circadian-dependent intermittent fasting following ischemic stroke. J Cereb Blood Flow Metab 2025; 45:779-789. [PMID: 39917846 PMCID: PMC11806450 DOI: 10.1177/0271678x251319636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Intermittent fasting (IF) is known to induce significant ischemic tolerance. Diet is a major proponent of gut microbiota, and gut microbial dysbiosis plays a role in post-stroke brain damage. Hence, we currently evaluated whether IF-mediated ischemic tolerance is mediated by gut microbiota. Additionally, circadian cycle is known to modulate post-ischemic outcomes, and thus we further evaluated if gut microbiota would be influenced by prophylactic IF during the inactive phase (fasting during daytime; IIF) or active phase (fasting during nighttime; AIF). The AIF, but not IIF, cohort showed a significantly decreased fecal Firmicutes/Bacteroidetes ratio compared with the ad libitum (AL) cohort. Moreover, the levels of gut microbiota-derived metabolites butyrate and propionate decreased in AL cohort following focal ischemia, whereas they increased in AIF cohort. However, fecal microbiota transplantation (FMT) from IIF or AIF cohort had no significant effects on post-ischemic motor and cognitive function recovery, anxiety-, and depression-like behaviors compared with FMT from AL cohort. Furthermore, FMT from IIF or AIF cohort did not influence the post-ischemic infarct volume, atrophy volume or white matter damage. Overall, the current findings indicate that the beneficial effects of IF after focal ischemia are not mediated by the gut microbiota.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bori Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sena Park
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
8
|
Dacaya P, Sarapis K, Moschonis G. The Role and Mechanisms of Probiotic Supplementation on Depressive Symptoms: A Narrative Review. Curr Nutr Rep 2025; 14:53. [PMID: 40153103 PMCID: PMC11953144 DOI: 10.1007/s13668-025-00644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE OF REVIEW The microbiota-gut-brain-axis (MGBA) plays a role in the aetiology of mental disorders. Depression, a leading cause of disability worldwide, may be improved by probiotics. The aim of this narrative review is to investigate and synthesize the current evidence linking probiotic food supplementation with depressive symptomology. RECENT FINDINGS The gut and the brain communicate and interact via the MGBA through inflammation and the immune system, short chain fatty acid production, neuronal innervation and activation as well as endocrine and neurotransmitter modulation. Dysregulation of gut-brain pathways are caused by gut dysbiosis and implicated in the onset, persistence and exacerbation of depression related symptoms. Modulation of the gut microbiota via administration of probiotics has shown to reduce depressive symptom severity with Bifidobacterium and Lactobacillus strains being the most reported. Probiotics may produce greater benefits in mild depression rather than in chronic, treatment resistant depression. Probiotic supplementation is a promising and safe approach for the prevention of severe depressive disorders in high-risk individuals such as people with subthreshold depression. However, the mechanistic pathways of the MGBA require further investigation and additional human clinical trials are necessary to evaluate the role of probiotics on depression.
Collapse
Affiliation(s)
- Pauline Dacaya
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Katerina Sarapis
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia
| | - George Moschonis
- Discipline of Food, Nutrition and Dietetics, Department of Sport, Exercise and Nutrition Sciences, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
9
|
Młynarska E, Barszcz E, Budny E, Gajewska A, Kopeć K, Wasiak J, Rysz J, Franczyk B. The Gut-Brain-Microbiota Connection and Its Role in Autism Spectrum Disorders. Nutrients 2025; 17:1135. [PMID: 40218893 PMCID: PMC11990867 DOI: 10.3390/nu17071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions with a heterogeneous and multifactorial etiology that is not yet fully understood. Among the various factors that may contribute to ASD development, alterations in the gut microbiota have been increasingly recognized. Microorganisms in the gastrointestinal tract play a crucial role in the gut-brain axis (GBA), affecting nervous system development and behavior. Dysbiosis, or an imbalance in the microbiota, has been linked to both behavioral and gastrointestinal (GI) symptoms in individuals with ASD. The microbiota interacts with the central nervous system through mechanisms such as the production of short-chain fatty acids (SCFAs), the regulation of neurotransmitters, and immune system modulation. Alterations in its composition, including reduced diversity or an overabundance of specific bacterial taxa, have been associated with the severity of ASD symptoms. Dietary modifications, such as gluten-free or antioxidant-rich diets, have shown potential for improving gut health and alleviating behavioral symptoms. Probiotics, with their anti-inflammatory properties, may support neural health and reduce neuroinflammation. Fecal microbiota transplantation (FMT) is being considered, particularly for individuals with persistent GI symptoms. It has shown promising outcomes in enhancing microbial diversity and mitigating GI and behavioral symptoms. However, its limitations should be considered, as discussed in this narrative review. Further research is essential to better understand the long-term effects and safety of these therapies. Emphasizing the importance of patient stratification and phenotype characterization is crucial for developing personalized treatment strategies that account for individual microbiota profiles, genetic predispositions, and coexisting conditions. This approach could lead to more effective interventions for individuals with ASD. Recent findings suggest that gut microbiota may play a key role in innovative therapeutic approaches to ASD management.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Barszcz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Kacper Kopeć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
10
|
Xu CC, Zhao WX, Sheng Y, Yun YJ, Ma T, Fan N, Song JQ, Wang J, Zhang Q. Serum homocysteine showed potential association with cognition and abnormal gut microbiome in major depressive disorder. World J Psychiatry 2025; 15:102567. [PMID: 40109991 PMCID: PMC11886347 DOI: 10.5498/wjp.v15.i3.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Cognitive impairment is one of the common clinical manifestations of depression, causing negative distress to patients. Elevated homocysteine (Hcy) concentrations and gut microbiome dysfunction may be observed in patients with depression. AIM To investigate the relationship between Hcy, microbiome, and cognition in depressive patients. METHODS We recruited 67 patients with major depressive disorder (MDD) (MDD group) and 94 healthy controls (HCs) individuals (HCs group). Serum Hcy levels were determined using the enzyme circulation method. 16s rRNA sequencing was used to classify and identify the fecal bacteria. 17 Hamilton depression rating scale and MATRICS consensus cognitive battery were used to evaluate mood states and cognition in patients with MDD. Correlation analysis was performed to explore the correlation between fecal flora, Hcy, and depressive cognitive function. RESULTS Elevated serum levels of Hcy were seen in patients with MDD compared to healthy individuals. Patients with MDD indicated significant decreases in cognitive scores (P < 0.001) in six modules: Speed of processing, working memory, visual learning, reasoning and problem-solving, social cognition, and total scores. Hcy levels showed a negative correlation with processing speed, social cognition, and total MDD scores (P < 0.05). Hcy was also significantly negatively correlated with Alistipes, Ruminococcae, Tenericides, and Porphyromonas (P < 0.05). CONCLUSION Our results highlight that Hcy was correlated with cognition and gut microbiome in MDD. This interaction may be related to the physiological and pathological mechanisms underlying cognitive deficits in depression.
Collapse
Affiliation(s)
- Chen-Chen Xu
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
| | - Wen-Xuan Zhao
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Yu Sheng
- Department of Psychiatry, Chinese People’s Liberation Army Unit 94710, Wuxi 214141, Jiangsu Province, China
| | - Ya-Jun Yun
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Ting Ma
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Ning Fan
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Jia-Qi Song
- Department of Psychiatry, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Jun Wang
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| | - Qi Zhang
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi 214151, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi 214151, Jiangsu Province, China
| |
Collapse
|
11
|
Wang ZH, Kang YF. Gut microbiota and male fertility: A two-sample Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41542. [PMID: 39993105 PMCID: PMC11857013 DOI: 10.1097/md.0000000000041542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Previous studies have reported that alterations in gut microbiota composition are associated with male fertility. However, it is unclear and difficult to establish whether these associations reflect a causal relationship. We assessed genome-wide association study summary statistics for gut microbiota and male fertility to perform MR analysis. Independent single nucleotide polymorphisms closely associated with 211 gut bacterial taxa (N = 122,110) were identified as instrumental variables. The summary statistic data for male infertility (N = 733,479), abnormal spermatozoa (N = 209,921) and erectile dysfunction (N = 223,805) were obtained from the latest release from the FinnGen consortium as the outcome of interest. Two-sample MR was performed to evaluate the causal effect of gut microbiota on male fertility, including inverse-variance-weighted (IVW) method, weighted median method, MR-Egger, mode-based estimation and MR-PRESSO. A series of sensitivity analyses was performed to validate the robustness of the results. The robustness of the estimation was tested by a series of sensitivity analyses including Cochran's Q test, MR-Egger intercept analysis, leave-one-out analysis and funnel plot were used to assess the causal association. Combining the results from the discovery and replication stages, we identified 3 causal bacterial genus. Ruminiclostridm6 (OR = 0.537, 95%CI = 0.292-0.987, P = .045, PFDR = 0.234) was found to be closely associated with male infertility, and the decrease in its quantity increased the risk of male infertility. Decreased Prevotella9 (OR = 0.670, 95% CI = 0.452-0.992, P = .046, PFDR = 0.175) was found to be closely related to abnormal sperm. Lachnospiraceae NC2004 group (OR = 1.173, 95% CI = 1.008-1.366, P = .078, PFDR = 0.530) was found to be closely related to male erectile dysfunction, and there was a positive correlation between them. No heterogeneity and pleiotropy were detected. This study implied a causal relationship between the Ruminiclostridm6 genus, Prevotella9 genus, Lachnospiraceae NC2004 group genus and male fertility, thus providing novel insights into the gut microbiota-mediated development mechanism of ADs. Nevertheless, future studies are warranted to dissect the underlying mechanisms of specific bacterial taxa's role in the pathophysiology of male fertility.
Collapse
Affiliation(s)
- Zhi-hong Wang
- Department of Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi-fan Kang
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
12
|
Cai X, Ren F, Yao Y. Gut microbiota and their metabolites in the immune response of rheumatoid arthritis: Therapeutic potential and future directions. Int Immunopharmacol 2025; 147:114034. [PMID: 39805176 DOI: 10.1016/j.intimp.2025.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation, damage, and loss of function. In recent years, the role of gut microbiota and its metabolites in immune regulation has attracted increasing attention. The gut microbiota influences the host immune system's homeostasis through various mechanisms, regulating the differentiation, function, and immune tolerance of immune cells. Dysbiosis of the gut microbiota in RA patients is closely associated with abnormal activation of immune cells and excessive secretion of inflammatory cytokines. Metabolites produced by the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan metabolites, bile acids, and amino acid metabolites, play a critical role in immune responses, regulating the functions of immune cells like T cells, B cells, and macrophages, and inhibiting the release of pro-inflammatory cytokines. Restoring the balance of the gut microbiota and optimizing the production of metabolic products may become a new strategy for RA treatment. This review discusses the role of gut microbiota and its metabolites in the immune response of RA, exploring how they influence the immunopathological process of RA through the regulation of immune cells and key immune factors. It also provides a theoretical basis for future therapeutic strategies based on gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Department of Pharmacy Hangzhou First People's Hospital Hangzhou China.
| | - Fujia Ren
- Department of Pharmacy Hangzhou Women's Hospital Hangzhou China
| | - Yao Yao
- Department of Pharmacy Women's Hospital School of Medicine Zhejiang University Hangzhou China
| |
Collapse
|
13
|
Gasmi M, Silvia Hardiany N, van der Merwe M, Martins IJ, Sharma A, Williams-Hooker R. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. Nutr Neurosci 2025; 28:156-170. [PMID: 38953237 DOI: 10.1080/1028415x.2024.2359868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar said, Tunis, Tunisia
| | - Novi Silvia Hardiany
- Department of Biochemistry & Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Marie van der Merwe
- Center for Nutraceuticals and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, TN, USA
| | - Ian J Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Aastha Sharma
- Department of Basic and Applied Science. School of Engineering and Science, University - GD Goenka University Gurugram, India
| | | |
Collapse
|
14
|
Jiao F, Zhou L, Wu Z. The microbiota-gut-brain axis: a potential target in the small-molecule compounds and gene therapeutic strategies for Parkinson's disease. Neurol Sci 2025; 46:561-578. [PMID: 39546084 PMCID: PMC11772541 DOI: 10.1007/s10072-024-07878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUNDS Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. OBJECTIVES In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. CONCLUSIONS Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, No. 45, Jianshe South Road, Jining City, Shandong Province, 272067, P. R. China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, P. R. China.
| | - Lincong Zhou
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Zaixin Wu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| |
Collapse
|
15
|
Sun Z, Nie Y, Pei J, Gao M, Luan Z, Zhao Y, Li Z, Fu S. Associations Between Complement C4, Habitual Constipation, and Sleep Disturbance in Oldest-Old and Centenarian Chinese Adults. J Inflamm Res 2025; 18:565-572. [PMID: 39831198 PMCID: PMC11742091 DOI: 10.2147/jir.s491451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Background Sleep disturbance is an immune-related disease, and the gut-brain axis is an important regulatory pathway. This cross-sectional study was designed to address these associations between complement C4, habitual constipation, and sleep disturbance and presents a reference for prevention and treatment of sleep disturbance. Methods Based on the China Hainan Centenarian Cohort Study, Pittsburgh Sleep Quality Index (PSQI) was used to evaluate sleep disturbance following standard procedure. Complement C4 and habitual constipation were assessed between groups with sleep disturbance and without sleep disturbance by enzyme colorimetry and Intestinal Health Questionnaire, respectively. Results A total of 1621 participants were included with the prevalence of sleep disturbance being 30.41%. Complement C4 was significantly lower (24 mg/dL versus 25 mg/dL, P < 0.05) and habitual constipation was significantly higher (19.88% versus 14.27%, P < 0.05) in the group with sleep disturbance than in the group without sleep disturbance. Multiple linear regression models detected a negative association between complement C4 and PSQI (β: -0.030, 95% confidence interval [CI]: -0.052--0.008, P < 0.05) and a positive association between habitual constipation and PSQI (β: 0.610, 95% CI: 0.145-1.074, P < 0.05). In the multiple logistic regression models, complement C4 was negatively associated with sleep disturbance (odds ratio: 0.978, 95% CI: 0.963-0.993, P < 0.05), and habitual constipation was positively associated with sleep disturbance (odds ratio: 1.609, 95% CI: 1.194-2.168, P < 0.05). Conclusion The present study provides epidemiological evidence that sleep disturbance is negatively associated with complement C4 and positively associated with habitual constipation in oldest-old and centenarian Chinese adults, which expands the knowledge for the associations between complement C4, habitual constipation, and sleep disturbance in the elderly population and provides new insights and pathways on the treatment of sleep disturbance by regulating immune factors and intestinal function.
Collapse
Affiliation(s)
- Zhigao Sun
- Traditional Chinese Medicine Department, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, People’s Republic of China
| | - Yan Nie
- Department of Gastroenterology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, People’s Republic of China
| | - Jianqiu Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Ming Gao
- School of Engineering Medicine, Beihang University, Beijing, People’s Republic of China
| | - Zhe Luan
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, People’s Republic of China
| | - Zhaoxing Li
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Sanya, People’s Republic of China
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Zharikova AA, Andrianova NV, Silachev DN, Nebogatikov VO, Pevzner IB, Makievskaya CI, Zorova LD, Maleev GV, Baydakova GV, Chistyakov DV, Goriainov SV, Sergeeva MG, Burakova IY, Gureev AP, Popkov VA, Ustyugov AA, Plotnikov EY. Analysis of the brain transcriptome, microbiome and metabolome in ketogenic diet and experimental stroke. Brain Behav Immun 2025; 123:571-585. [PMID: 39378970 DOI: 10.1016/j.bbi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in treating various brain pathologies. In this study, we conducted detailed transcriptomic and metabolomic profiling of rat brains after KD and ischemic stroke in order to investigate the effects of KD and its underlying mechanisms. We evaluated the effect of a two-month KD on gene expression in intact brain tissue and after middle cerebral artery occlusion (MCAO). We analyzed the effects of KD on gut microbiome composition and blood metabolic profile as well as investigated the correlation between severity of neurological deficits and KD-induced changes. We found transcriptional reprogramming in the brain after stroke and KD treatment. The KD altered the expression of genes involved in the regulation of glucose and fatty acid metabolism, mitochondrial function, the immune response, Wnt-associated signaling, stem cell development, and neurotransmission, both in intact rats and after MCAO. The KD led to a significant change in the composition of gut microbiome and the levels of amino acids, acylcarnitines, polyunsaturated fatty acids, and oxylipins in the blood. However, the KD slightly worsened the neurological functions after MCAO, so that the therapeutic effect of the diet remained unproven.
Collapse
Affiliation(s)
- Anastasia A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | | | - Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Y Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
17
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
18
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
19
|
Chaudhari DS, Francescutti DM, Winters AD, Koka O, Kracht DJ, Greenberg JM, Theis KR, Angoa-Perez M. Contributions of the gut microbiota to Gulf War Illness susceptibility: Findings from a mouse model. Life Sci 2024; 359:123244. [PMID: 39551360 DOI: 10.1016/j.lfs.2024.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
AIMS In light of the evidence supporting a significant role of the gut microbiome in Gulf War Illness (GWI) pathology, we sought to examine its contribution to GWI susceptibility in a mouse model. We also aimed to identify bacterial taxa and microbially-derived metabolites associated with disease susceptibility. MAIN METHODS Male mice receiving pyridostigmine bromide (PB) orally, and controls were evaluated for symptoms of GWI at 8 weeks post-treatment. The Kansas criteria were adapted to assess behaviors associated with the following domains: gastrointestinal alterations, pain, mood, cognitive function, skin and respiratory disturbances. PB-treated subjects were classified into susceptible (GWI-S) or resilient (GWI-R). The status of the gut microbiome was assessed via analyses of the 16S rRNA gene and microbial-derived metabolites were evaluated with metabolomics tools. KEY FINDINGS Our results indicate that application of the Kansas criteria to behavioral outcomes in PB-treated mice resulted in a GWI susceptibility rate of ~35 %, similar to the one reported in humans. The composition and structure of the gut microbiome was different in GWI-S subjects compared to both control and GWI-R mice at 8 weeks but differences in microbial community structure were observed prior to PB treatment between GWI-R and GWI-S mice. GWI-S subjects exhibited a pattern of differentially abundant bacterial taxa and microbial metabolites. SIGNIFICANCE To our knowledge, this is the first preclinical report in which a stratification by susceptibility to GWI and its association with the gut microbiome is described. In light of the research conundrum that vulnerability to GWI represents, the use of tools that could provide further insight into this complex factor should be considered.
Collapse
Affiliation(s)
- Diptaraj S Chaudhari
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D Winters
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Orena Koka
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - David J Kracht
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Jonathan M Greenberg
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariana Angoa-Perez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
20
|
Pan I, Issac PK, Rahman MM, Guru A, Arockiaraj J. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases. Mol Neurobiol 2024; 61:9873-9891. [PMID: 37851313 DOI: 10.1007/s12035-023-03691-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Parkinson's disease is a chronic neuropathy characterised by the formation of Lewy bodies (misfolded alpha-synuclein) in dopaminergic neurons of the substantia nigra and other parts of the brain. Dopaminergic neurons play a vital role in generating both motor and non-motor symptoms. Finding therapeutic targets for Parkinson's disease (PD) is hindered due to an incomplete understanding of the disease's pathophysiology. Existing evidence suggests that the gut microbiota participates in the pathogenesis of PD via immunological, neuroendocrine, and direct neural mechanisms. Gut microbial dysbiosis triggers the loss of dopaminergic neurons via mitochondrial dysfunction. Gut dysbiosis triggers bacterial overgrowth in the small intestine, which increases the permeability barrier and induces systemic inflammation. It results in excessive stimulation of the innate immune system. In addition to that, activation of enteric neurons and enteric glial cells initiates the aggregation of alpha-synuclein. This alpha-synucleinopathy thus affects all levels of the brain-gut axis, including the central, autonomic, and enteric nervous systems. Though the neurobiological signaling cascade between the gut microbiome and the central nervous system is poorly understood, gut microbial metabolites may serve as a promising therapeutic strategy for PD. This article summarises all the known possible ways of bidirectional signal communication, i.e., the "gut-brain axis," where microbes from the middle gut interact with the brain and vice versa, and highlights a unique way to treat neurodegenerative diseases by maintaining homeostasis. The tenth cranial nerve (vagus nerve) plays a significant part in this signal communication. However, the leading regulatory factor for this axis is a diet that helps with microbial colonisation and brain function. Short-chain fatty acids (SCFAs), derived from microbially fermented dietary fibres, link host nutrition to maintain intestinal homeostasis. In addition to that, probiotics modulate cognitive function and the metabolic and behavioural conditions of the body. As technology advances, new techniques will emerge to study the tie-up between gut microbes and neuronal diseases.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
21
|
Lin H, Yin Y, Li J, Liu S, Long X, Liao Z. Causal relationships between gut microbiota and Aneurysmal Subarachnoid Hemorrhage: A Bidirectional Mendelian Randomization Study. J Stroke Cerebrovasc Dis 2024; 33:108030. [PMID: 39353537 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Aneurysmal Subarachnoid Hemorrhage (aSAH) poses a significant health burden globally, necessitating a deeper understanding of its etiology and potential preventive strategies. Recent research has suggested a possible link between gut microbiota composition and the risk of vascularity, prompting investigation into this association using Mendelian Randomization (MR) analysis. Here, we aimed to elucidate the causal relationship between gut microbiota composition and aSAH risk utilizing MR analysis. METHODS We employed four distinct MR methodologies, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode, to assess the causal nexus between gut microbiota composition and aSAH risk. Genetic instrumental variables (IVs) associated with gut microbiome composition were selected from a comprehensive multiethnic genome-wide association study (GWAS) involving 18,473 individuals across diverse geographic regions. Sensitivity analyses were conducted to detect potential heterogeneity and pleiotropy. RESULTS Our Mendelian Randomization (MR) analyses unveiled a substantial and statistically significant causal relationship between gut microbiota composition and the risk of Aneurysmal Subarachnoid Hemorrhage (aSAH). Employing the Inverse Variance Weighted (IVW) method, we observed negative associations between aSAH and specific taxonomic levels of gut microbiota. Specifically, the IVW approach identified significant associations with one order, Victivallales (PIVW=0.047, OR: 0.78, 95 % CI: 0.62-0.99), one family, Porphyromonadaceae (PIVW=0.03, OR: 0.64, 95 % CI: 0.43-0.95), one class, Lentisphaeria (PIVW=0.047, OR: 0.78, 95 % CI: 0.62-0.99), and three genera: Bilophila (PIVW=0.02, OR: 0.68, 95 % CI: 0.50-0.93), Fusicatenibacter (PIVW=0.04, OR: 0.69, 95 % CI: 0.49-0.98), and Ruminococcus1 (PIVW=0.01, OR: 0.51, 95 % CI: 0.32-0.84). These findings were consistent across various MR methodologies, underscoring the robustness of our results. Sensitivity analyses further validated the stability of our findings, with no evidence of heterogeneity or pleiotropy detected. CONCLUSION Our study provides compelling evidence supporting a causal relationship between gut microbiota composition and the risk of aSAH. These findings underscore the potential therapeutic implications of modulating gut microbiota to prevent and manage aSAH. Further research is warranted to explore the underlying mechanisms and develop targeted interventions aimed at mitigating aSAH risk through gut microbiota modulation.
Collapse
Affiliation(s)
- Heng Lin
- Department of Cerebrovascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Yanqing Yin
- Department of Cerebrovascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Jie Li
- Department of Cerebrovascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Siwei Liu
- Department of Cerebrovascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Xiaoao Long
- Department of Cerebrovascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Zhuangbin Liao
- Department of Cerebrovascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China.
| |
Collapse
|
22
|
Gan G, Zhang R, Zeng Y, Lu B, Luo Y, Chen S, Lei H, Cai Z, Huang X. Fecal microbiota transplantation validates the importance of gut microbiota in an ApoE -/- mouse model of chronic apical periodontitis-induced atherosclerosis. BMC Oral Health 2024; 24:1455. [PMID: 39614243 DOI: 10.1186/s12903-024-05230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Chronic apical periodontitis (CAP) has been linked to the development of atherosclerosis, although the underlying mechanisms remain unclear. This study aimed to investigate the role of gut microbiota disruption in CAP-induced atherosclerosis development, focusing on trimethylamine N-oxide (TMAO)-related metabolites. METHODS The study utilized fecal microbiota transplantation (FMT) to transfer gut microbiota from mice with CAP to healthy mice. Atherosclerosis development was assessed by analyzing lesions in the aortic arch and aortic root. Serum lipid and inflammatory factor levels were measured. Composition and diversity of gut microbiota were analyzed using targeted metabolomics, with a focus on the ratio of Firmicutes to Bacteroidetes. The expression of hepatic flavin-containing monooxygenase 3 (FMO3) and serum TMAO levels were also evaluated. RESULTS Mice receiving gut microbiota from CAP mice showed increased atherosclerotic lesions compared to controls, without significant differences in serum lipid or inflammatory factor levels. Alterations in gut microbiota composition were observed, characterized by an increase in the Firmicutes to Bacteroidetes ratio. Peptostreptococcaceae abundance positively correlated with atherosclerosis severity, while Odoribacteraceae showed a negative correlation. No significant differences were found in hepatic FMO3 expression or serum TMAO levels. CONCLUSIONS The study confirms the role of gut microbiota disruption in CAP-mediated atherosclerosis development, independent of serum lipid or TMAO levels. Alterations in gut microbiota composition, particularly increased Firmicutes to Bacteroidetes ratio and specific bacterial families, were associated with atherosclerosis severity. These findings highlight the intricate interplay between gut microbiota and cardiovascular health in the context of CAP.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yu Zeng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Clinical Research Center for Oral Tissue Deficiency Diseases of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
23
|
O'Connor LC, Kang WK, Vo P, Spinelli JB, Alkema MJ, Byrne AB. Comamonas aquatica inhibits TIR-1/SARM1 induced axon degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.622298. [PMID: 39605655 PMCID: PMC11601612 DOI: 10.1101/2024.11.20.622298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Emerging evidence suggests the microbiome critically influences the onset and progression of neurodegenerative diseases; however, the identity of neuroprotective bacteria and the molecular mechanisms that respond within the host remain largely unknown. We took advantage of Caenorhabditis elegans' well characterized nervous system and ability to eat uni-bacterial diets to determine how metabolites and neuroprotective molecules from single species of bacteria suppress degeneration of motor neurons. We found Comamonas aquatica significantly protects against degeneration induced by overexpressing a key regulator of axon degeneration, TIR-1/SARM1. Genetic analyses and metabolomics reveal Comamonas protects against neurodegeneration by providing sufficient Vitamin B12 to activate METR-1/MTR methionine synthase in the intestine, which then lowers toxic levels of homocysteine in TIR-1-expressing animals. Defining a molecular pathway between Comamonas and neurodegeneration adds significantly to our understanding of gut-brain interactions and, given the prominent role of homocysteine in neurodegenerative disorders, reveals how such a bacterium could protect against disease.
Collapse
|
24
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
25
|
Pearce CS, Bukovsky D, Douchant K, Katoch A, Greenlaw J, Gale DJ, Nashed JY, Brien D, Kuhlmeier VA, Sabbagh MA, Blohm G, De Felice FG, Pare M, Cook DJ, Scott SH, Munoz DP, Sjaarda CP, Tusche A, Sheth PM, Winterborn A, Boehnke S, Gallivan JP. Changes in social environment impact primate gut microbiota composition. Anim Microbiome 2024; 6:66. [PMID: 39538341 PMCID: PMC11562706 DOI: 10.1186/s42523-024-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) has proven to be essential for both physical health and mental wellbeing, yet the forces that ultimately shape its composition remain opaque. One critical force known to affect the GM is the social environment. Prior work in humans and free-ranging non-human primates has shown that cohabitation and frequent social interaction can lead to changes in GM composition. However, it is difficult to assess the direction of causation in these studies, and interpretations are complicated by the influence of uncontrolled but correlated factors, such as shared diet. RESULTS We performed a 15-month longitudinal investigation wherein we disentangled the impacts of diet and social living conditions on GM composition in a captive cohort of 13 male cynomolgus macaques. The animals were in single housing for the first 3 months of the study initially with a variable diet. After baseline data collection they were placed on a controlled diet for the remainder of the study. Following this diet shift the animals were moved to paired housing for 6 months, enabling enhanced social interaction, and then subsequently returned to single housing at the end of our study. This structured sequencing of diet and housing changes allowed us to assess their distinct impacts on GM composition. We found that the early dietary adjustments led to GM changes in both alpha and beta diversity, whereas changes in social living conditions only altered beta diversity. With respect to the latter, we found that two particular bacterial families - Lactobacillaceae and Clostridiaceae - demonstrated significant shifts in abundance during the transition from single housing to paired housing, which was distinct from the shifts we observed based on a change in diet. Conversely, we found that other bacteria previously associated with sociality were not altered based on changes in social living conditions but rather only by changes in diet. CONCLUSIONS Together, these findings decouple the influences that diet and social living have on GM composition and reconcile previous observations in the human and animal literatures. Moreover, the results indicate biological alterations of the gut that may, in part, mediate the relationship between sociality and wellbeing.
Collapse
Affiliation(s)
- Colleen S Pearce
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | | | - Katya Douchant
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Abhay Katoch
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Jill Greenlaw
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Don Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Valerie A Kuhlmeier
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Mark A Sabbagh
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Martin Pare
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Neurosurgery, Queen's University, Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Calvin P Sjaarda
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anita Tusche
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Andrew Winterborn
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Susan Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychology, Queen's University, Kingston, ON, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
26
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
27
|
Zhao J, Liu J, Feng J, Liu X, Hu Q. The gut microbiota-brain connection: insights into major depressive disorder and bipolar disorder. Front Psychiatry 2024; 15:1421490. [PMID: 39564459 PMCID: PMC11574523 DOI: 10.3389/fpsyt.2024.1421490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are two of the most prevalent mood disorders that seriously jeopardize both physical and mental health. The current diagnosis of MDD and BD relies primarily on clinical symptoms. However, correctly differentiating between MDD and BD during depressive episode states remains a substantial clinical challenge. The human gut hosts a large and diverse microbiota, which plays a pivotal role in various physiological processes. Emerging evidence suggests that the gut microbiota (GM) exerts beneficial effects on mental health disorders, including MDD, BD, and schizophrenia, through the microbe-gut-brain axis (MGBA). In recent years, the relationship between GM and mood disorders has garnered considerable attention, leading to intensive research in this area. The MGBA is a bidirectional communication system between the gut and the brain. Growing evidence indicates that the brain can influence the GM, which in turn may modulate the brain through this axis. This review aims to explore the changes in the GM of patients with MDD and BD and evaluate the effects of different treatments on their GM, including medication, probiotic, prebiotic and synbiotic interventions, and fecal microbiota transplantation (FMT). By doing so, we seek to identify potential disease-specific biomarkers, improve differential diagnosis, and offer novel therapeutic avenues for these disorders.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiaoyan Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xing Liu
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qinxue Hu
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Stevens AJ, Heiwari TM, Rich FJ, Bradley HA, Gur TL, Galley JD, Kennedy MA, Dixon LA, Mulder RT, Rucklidge JJ. Randomised control trial indicates micronutrient supplementation may support a more robust maternal microbiome for women with antenatal depression during pregnancy. Clin Nutr 2024; 43:120-132. [PMID: 39361984 DOI: 10.1016/j.clnu.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS We investigated the effects of high dose dietary micronutrient supplementation or placebo on the human gut microbiome in pregnant women who had moderate symptoms of antenatal depression. There is a significant absence of well-controlled clinical studies that have investigated the dynamic changes of the microbiome during pregnancy and the relationship among diet, microbiome and antenatal depression. This research is among the first to provide an insight into this area of research. METHODS This 12 - week study followed a standard double blinded randomised placebo-controlled trial (RCT) design with either high dose micronutrients or active placebo. Matching stool microbiome samples and mood data were obtained at baseline and post-treatment, from participants between 12 and 24 weeks gestation. Stool microbiome samples from 33 participants (17 in the placebo and 16 in the treatment group) were assessed using 16s rRNA sequencing. Data preparation and statistical analysis was predominantly performed using the QIIME2 bioinformatic software tools for 16s rRNA analysis. RESULTS Microbiome community structure became increasingly heterogenous with decreased diversity during the course of the study, which was represented by significant changes in alpha and beta diversity. This effect appeared to be mitigated by micronutrient administration. There were less substantial changes at the genus level, where Coprococcus decreased in relative abundance in response to micronutrient administration. We also observed that a higher abundance of Coprococcus and higher alpha diversity correlated with higher antenatal depression scores. CONCLUSIONS Micronutrient treatment appeared to support a more diverse (alpha diversity) and stable (beta diversity) microbiome during pregnancy. This may aid in maintaining a more resilient or adaptable microbial community, which would help protect against decreases or fluctuations that are observed during pregnancy.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand.
| | - Thalia M Heiwari
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Fenella J Rich
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Hayley A Bradley
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, 8011, New Zealand
| | - Lesley A Dixon
- New Zealand College of Midwives, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand; Canterbury District Health Board, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| |
Collapse
|
29
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
30
|
Miller MA, Medina S. Synthetic Colonic Mucus Enables the Development of Modular Microbiome Organoids. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2402514. [PMID: 39309137 PMCID: PMC11415244 DOI: 10.1002/adfm.202402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Indexed: 09/25/2024]
Abstract
The human colon is home to trillions of microorganisms that modulate gastrointestinal physiology. Our understanding of how this gut ecosystem impacts human health, although evolving, has been slowed by the lack of accessible tools suitable to studying complex host-mucus-microbe interactions. Here, we report a synthetic gel-like material capable of recapitulating the varied structural, mechanical, and biochemical profiles of native human colonic mucus to develop compositionally simple microbiome screening platforms with utility in microbiology and drug discovery. The viscous fibrillar material is realized through templated assembly of a fluorine-rich amino acid at liquid-liquid interphases. The fluorine-assisted mucus surrogate (FAMS) can be decorated with mucins to serve as a habitat for microbial colonization and integrated with human colorectal cells to generate artificial mucosae, referred to as a microbiome organoid. Notably, FAMS are made with inexpensive and commercially available materials, and can be generated using simple protocols and standard laboratory hardware. As a result, this platform can be broadly incorporated into various laboratory settings to advance probiotic research and inform in vivo approaches. If implemented into high throughput screening approaches, FAMS may represent a valuable tool to study compound metabolism and gut permeability, with an exemplary demonstration of this utility presented here.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802-4400
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802-4400
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802-4400
| |
Collapse
|
31
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Kim HE, Kim BR, Hong SH, Song SY, Jeong JH, Kim GH. Predicting superagers: a machine learning approach utilizing gut microbiome features. Front Aging Neurosci 2024; 16:1444998. [PMID: 39314993 PMCID: PMC11417495 DOI: 10.3389/fnagi.2024.1444998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Cognitive decline is often considered an inevitable aspect of aging; however, recent research has identified a subset of older adults known as "superagers" who maintain cognitive abilities comparable to those of younger individuals. Investigating the neurobiological characteristics associated with superior cognitive function in superagers is essential for understanding "successful aging." Evidence suggests that the gut microbiome plays a key role in brain function, forming a bidirectional communication network known as the microbiome-gut-brain axis. Alterations in the gut microbiome have been linked to cognitive aging markers such as oxidative stress and inflammation. This study aims to investigate the unique patterns of the gut microbiome in superagers and to develop machine learning-based predictive models to differentiate superagers from typical agers. Methods We recruited 161 cognitively unimpaired, community-dwelling volunteers aged 60 years or from dementia prevention centers in Seoul, South Korea. After applying inclusion and exclusion criteria, 115 participants were included in the study. Following the removal of microbiome data outliers, 102 participants, comprising 57 superagers and 45 typical agers, were finally analyzed. Superagers were defined based on memory performance at or above average normative values of middle-aged adults. Gut microbiome data were collected from stool samples, and microbial DNA was extracted and sequenced. Relative abundances of bacterial genera were used as features for model development. We employed the LightGBM algorithm to build predictive models and utilized SHAP analysis for feature importance and interpretability. Results The predictive model achieved an AUC of 0.832 and accuracy of 0.764 in the training dataset, and an AUC of 0.861 and accuracy of 0.762 in the test dataset. Significant microbiome features for distinguishing superagers included Alistipes, PAC001137_g, PAC001138_g, Leuconostoc, and PAC001115_g. SHAP analysis revealed that higher abundances of certain genera, such as PAC001138_g and PAC001115_g, positively influenced the likelihood of being classified as superagers. Conclusion Our findings demonstrate the machine learning-based predictive models using gut-microbiome features can differentiate superagers from typical agers with a reasonable performance.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Artificial Intelligence Convergence, Ewha Womans University, College of Artificial Intelligence, Seoul, Republic of Korea
| | - Bori R. Kim
- Ewha Medical Research Institute, Ewha Womans University, Seoul, Republic of Korea
| | - Sang Hi Hong
- GI&Neurology Part, R&D, CJ Bioscience, Seoul, Republic of Korea
| | | | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University, College of Medicine, Seoul, Republic of Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
34
|
Bian X, Shao X. Advances in the study of gut microbes in pediatric epilepsy. Epilepsy Behav 2024; 157:109899. [PMID: 38885595 DOI: 10.1016/j.yebeh.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy a prevalent childhood neurological disorder, arises from chronic brain dysfunction caused by oversynchronized firing of neurons. Frequent seizures often lead to both physical and intellectual damage in children, seriously affecting their growth and development, life and health. Recent research studies have shown that the intestinal microbes in pediatric epilepsy is significantly different from that of healthy children, characterised by changes in the abundance of specific microbe communities and a reduction in diversity. These alterations may influence epileptic seizures through various pathways, including the microbiota-gut-brain axis by modulating neurotransmitters metabolism, affecting gut barrier function and immune responses, and directly impacting brain activity via the vagus nerves. This review highlights the alterations in gut microbes and their metabolites in epileptic children, analyzes their impact on seizures, and explores potential associations.
Collapse
Affiliation(s)
- Xueying Bian
- Pediatrics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiaoli Shao
- Pediatrics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
35
|
Anaya-Prado R, Cárdenas-Fregoso AP, Reyes-Perez AM, Ortiz-Hernandez DM, Quijano-Ortiz M, Delgado-Martinez MV, Pelayo-Romo AS, Anaya-Fernandez R, Anaya-Fernandez MM, Azcona-Ramirez CC, Garcia-Ramirez IF, Guerrero-Palomera MA, Gonzalez-Martinez D, Guerrero-Palomera CS, Paredes-Paredes K, Garcia-Perez C. The Biomolecular Basis of Gut Microbiome on Neurological Diseases. OBM NEUROBIOLOGY 2024; 08:1-40. [DOI: 10.21926/obm.neurobiol.2403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The human gastrointestinal (GI) tract harbors many microorganisms, including viruses, protozoa, archaea, fungi, and bacteria. Altogether, these microbes constitute what we know as the gut microbiome (GM). These commensal communities have important implications for human health. They influence physiological processes through different mechanisms, including synthesizing neurotransmitters, regulating enzymatic pathways, and releasing molecules responsible for different signal pathways. The interaction between GM and brain function has been associated with the development and pathogenesis of neuropsychiatric diseases. This review discusses current studies targeting the regulation and modulation of GM in nerve, neuroendocrine, and immune pathways. Thus, we analyze current evidence on transcription, changes in composition, and specific interactions between the gut and brain from a biomolecular perspective. Special attention is paid to mood disorders and neurodegenerative diseases.
Collapse
|
36
|
Ashique S, Mohanto S, Ahmed MG, Mishra N, Garg A, Chellappan DK, Omara T, Iqbal S, Kahwa I. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon 2024; 10:e34092. [PMID: 39071627 PMCID: PMC11279763 DOI: 10.1016/j.heliyon.2024.e34092] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The microbiota-gut-brain axis (MGBA) represents a sophisticated communication network between the brain and the gut, involving immunological, endocrinological, and neural mediators. This bidirectional interaction is facilitated through the vagus nerve, sympathetic and parasympathetic fibers, and is regulated by the hypothalamic-pituitary-adrenal (HPA) axis. Evidence shows that alterations in gut microbiota composition, or dysbiosis, significantly impact neurological disorders (NDs) like anxiety, depression, autism, Parkinson's disease (PD), and Alzheimer's disease (AD). Dysbiosis can affect the central nervous system (CNS) via neuroinflammation and microglial activation, highlighting the importance of the microbiota-gut-brain axis (MGBA) in disease pathogenesis. The microbiota influences the immune system by modulating chemokines and cytokines, impacting neuronal health. Synbiotics have shown promise in treating NDs by enhancing cognitive function and reducing inflammation. The gut microbiota's role in producing neurotransmitters and neuroactive compounds, such as short-chain fatty acids (SCFAs), is critical for CNS homeostasis. Therapeutic interventions targeting the MGBA, including dietary modulation and synbiotic supplementation, offer potential benefits for managing neurodegenerative disorders. However, more in-depth clinical studies are necessary to fully understand and harness the therapeutic potential of the MGBA in neurological health and disease.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Uganda
| |
Collapse
|
37
|
Li K, Wang S, Qu W, Ahmed AA, Enneb W, Obeidat MD, Liu HY, Dessie T, Kim IH, Adam SY, Cai D. Natural products for Gut-X axis: pharmacology, toxicology and microbiology in mycotoxin-caused diseases. Front Pharmacol 2024; 15:1419844. [PMID: 38978980 PMCID: PMC11228701 DOI: 10.3389/fphar.2024.1419844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction: The gastrointestinal tract is integral to defending against external contaminants, featuring a complex array of immunological, physical, chemical, and microbial barriers. Mycotoxins, which are toxic metabolites from fungi, are pervasive in both animal feed and human food, presenting substantial health risks. Methods: This review examines the pharmacological, toxicological, and microbiological impacts of natural products on mycotoxicosis, with a particular focus on the gut-x axis. The analysis synthesizes current understanding and explores the role of natural products rich in polysaccharides, polyphenols, flavonoids, and saponins. Results: The review highlights that mycotoxins can disrupt intestinal integrity, alter inflammatory responses, damage the mucus layer, and disturb the bacterial balance. The toxins' effects are extensive, potentially harming the immune system, liver, kidneys, and skin, and are associated with serious conditions such as cancer, hormonal changes, genetic mutations, bleeding, birth defects, and neurological issues. Natural products have shown potential anticancer, anti-tumor, antioxidant, immunomodulatory, and antitoxic properties. Discussion: The review underscores the emerging therapeutic strategy of targeting gut microbial modulation. It identifies knowledge gaps and suggests future research directions to deepen our understanding of natural products' role in gut-x axis health and to mitigate the global health impact of mycotoxin-induced diseases.
Collapse
Affiliation(s)
- Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wuyi Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Wael Enneb
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mohammad Diya’ Obeidat
- Department of Animal Production, Jordan University of Science and Technology, Irbid, Jordan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Saber Y. Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
38
|
Goldenberg JZ, Wright TJ, Batson RD, Wexler RS, McGovern KA, Venugopal NK, Ward WW, Randolph KM, Urban RJ, Pyles RB, Sheffield-Moore M. What is the association between the microbiome and cognition? An umbrella review protocol. BMJ Open 2024; 14:e077873. [PMID: 38890133 PMCID: PMC11191802 DOI: 10.1136/bmjopen-2023-077873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Cognitive impairment is reported in a variety of clinical conditions including Alzheimer's disease, Parkinson's and 'long-COVID'. Interestingly, many of these clinical conditions are also associated with microbial dysbiosis. This comanifestation of cognitive and microbiome findings in seemingly unrelated maladies suggests that they could share a common mechanism and potentially presents a treatment target. Although a rapidly growing body of literature has documented this comorbid presentation within specific conditions, an overview highlighting potential parallels across healthy and clinical populations is lacking. The objective of this umbrella review, therefore, is to summarise and synthesise the findings of these systematic reviews. METHODS AND ANALYSIS On 2 April 2023, we searched MEDLINE (Pubmed), Embase (Ovid), the Web of Science (Core Collection), the Cochrane Library of Systematic Reviews and Epistemonikos as well as grey literature sources, for systematic reviews on clinical conditions and interventions where cognitive and microbiome outcomes were coreported. An updated search will be conducted before completion of the project if the search-to-publication date is >1 year old. Screening, data abstraction and quality assessment (AMSTAR 2, A MeaSurement Tool to Assess systematic Reviews) will be conducted independently and in duplicate, with disagreements resolved by consensus. Evidence certainty statements for each review's conclusions (eg, Grading of Recommendations Assessment, Development and Evaluation (GRADE)) will be extracted or constructed de novo. A narrative synthesis will be conducted and delineated by the review question. Primary study overlap will be visualised using a citation matrix as well as calculated using the corrected covered area method. ETHICS AND DISSEMINATION No participant-identifying information will be used in this review. No ethics approval was required due to our study methodology. Our findings will be presented at national and international conferences and disseminated via social media and press releases. We will recruit at least one person living with cognitive impairment to collaborate on writing the plain language summary for the review. PROSPERO REGISTRATION NUMBER CRD42023412903.
Collapse
Affiliation(s)
- Joshua Z Goldenberg
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
- Endocrine and Brain Injury Research Alliance, Friday Harbor, Washington, USA
| | - Traver J Wright
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Richard D Batson
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
- Endocrine and Brain Injury Research Alliance, Friday Harbor, Washington, USA
| | - Ryan S Wexler
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| | - Kristen A McGovern
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Navneet K Venugopal
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Weston W Ward
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Kathleen M Randolph
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Randall J Urban
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Richard B Pyles
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| | - Melinda Sheffield-Moore
- The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas, USA
| |
Collapse
|
39
|
Liu C, Liu F, Nie D, Xiao Y, Wu W, Jia Y, Jin L, Qiao N, Cai K, Ru S, Liu X, Song Y, Xu J, Cao L, Gui S. Gut microbiota composition and metabolic characteristics in patients with Craniopharyngioma. BMC Cancer 2024; 24:521. [PMID: 38658858 PMCID: PMC11044453 DOI: 10.1186/s12885-024-12283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that the gut microbiota is associated with various intracranial neoplastic diseases. It has been observed that alterations in the gut microbiota are present in gliomas, meningiomas, and pituitary neuroendocrine tumors (Pit-NETs). However, the correlation between gut microbiota and craniopharyngioma (CP), a rare embryonic malformation tumor in the sellar region, has not been previously mentioned. Consequently, this study aimed to investigate the gut microbiota composition and metabolic patterns in CP patients, with the goal of identifying potential therapeutic approaches. METHODS We enrolled 15 medication-free and non-operated patients with CP and 15 healthy controls (HCs), conducting sequential metagenomic and metabolomic analyses on fecal samples to investigate changes in the gut microbiota of CP patients. RESULTS The composition of gut microbiota in patients with CP compared to HCs show significant discrepancies at both the genus and species levels. The CP group exhibits greater species diversity. And the metabolic patterns between the two groups vary markedly. CONCLUSIONS The gut microbiota composition and metabolic patterns in patients with CP differ significantly from the healthy population, presenting potential new therapeutic opportunities.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Ding Nie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100071, China
| | - Youchao Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yanfei Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Ning Qiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Kefan Cai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Siming Ru
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Xin Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yifan Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Jintian Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China.
| |
Collapse
|
40
|
Ge Y, Yang C, Zadeh M, Sprague SM, Lin YD, Jain HS, Determann BF, Roth WH, Palavicini JP, Larochelle J, Candelario-Jalil E, Mohamadzadeh M. Functional regulation of microglia by vitamin B12 alleviates ischemic stroke-induced neuroinflammation in mice. iScience 2024; 27:109480. [PMID: 38715940 PMCID: PMC11075062 DOI: 10.1016/j.isci.2024.109480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Ischemic stroke is the second leading cause of death and disability worldwide, and efforts to prevent stroke, mitigate secondary neurological damage, and promote neurological recovery remain paramount. Recent findings highlight the critical importance of microbiome-related metabolites, including vitamin B12 (VB12), in alleviating toxic stroke-associated neuroinflammation. Here, we showed that VB12 tonically programmed genes supporting microglial cell division and activation and critically controlled cellular fatty acid metabolism in homeostasis. Intriguingly, VB12 promoted mitochondrial transcriptional and metabolic activities and significantly restricted stroke-associated gene alterations in microglia. Furthermore, VB12 differentially altered the functions of microglial subsets during the acute phase of ischemic stroke, resulting in reduced brain damage and improved neurological function. Pharmacological depletion of microglia before ischemic stroke abolished VB12-mediated neurological improvement. Thus, our preclinical studies highlight the relevance of VB12 in the functional programming of microglia to alleviate neuroinflammation, minimize ischemic injury, and improve host neurological recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Shane M. Sprague
- Department of Neurosurgery, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Heetanshi Sanjay Jain
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | | | - William H. Roth
- Department of Neurology, University of Chicago Medical Center, Chicago, IL, USA
| | - Juan Pablo Palavicini
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
41
|
Salvadori M, Rosso G. Update on the gut microbiome in health and diseases. World J Methodol 2024; 14:89196. [PMID: 38577200 PMCID: PMC10989414 DOI: 10.5662/wjm.v14.i1.89196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
The Human Microbiome Project, Earth Microbiome Project, and next-generation sequencing have advanced novel genome association, host genetic linkages, and pathogen identification. The microbiome is the sum of the microbes, their genetic information, and their ecological niche. This study will describe how millions of bacteria in the gut affect the human body in health and disease. The gut microbiome changes in relation with age, with an increase in Bacteroidetes and Firmicutes. Host and environmental factors affecting the gut microbiome are diet, drugs, age, smoking, exercise, and host genetics. In addition, changes in the gut microbiome may affect the local gut immune system and systemic immune system. In this study, we discuss how the microbiome may affect the metabolism of healthy subjects or may affect the pathogenesis of metabolism-generating metabolic diseases. Due to the high number of publications on the argument, from a methodologically point of view, we decided to select the best papers published in referred journals in the last 3 years. Then we selected the previously published papers. The major goals of our study were to elucidate which microbiome and by which pathways are related to healthy and disease conditions.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
42
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
43
|
Xu L, Zhai X, Shi D, Zhang Y. Depression and coronary heart disease: mechanisms, interventions, and treatments. Front Psychiatry 2024; 15:1328048. [PMID: 38404466 PMCID: PMC10884284 DOI: 10.3389/fpsyt.2024.1328048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Coronary heart disease (CHD), a cardiovascular condition that poses a significant threat to human health and life, has imposed a substantial economic burden on the world. However, in contrast to conventional risk factors, depression emerges as a novel and independent risk factor for CHD. This condition impacts the onset and progression of CHD and elevates the risk of adverse cardiovascular prognostic events in those already affected by CHD. As a result, depression has garnered increasing global attention. Despite this growing awareness, the specific mechanisms through which depression contributes to the development of CHD remain unclear. Existing research suggests that depression primarily influences the inflammatory response, Hypothalamic-pituitary-adrenocortical axis (HPA) and Autonomic Nervous System (ANS) dysfunction, platelet activation, endothelial dysfunction, lipid metabolism disorders, and genetics, all of which play pivotal roles in CHD development. Furthermore, the effectiveness and safety of antidepressant treatment in CHD patients with comorbid depression and its potential impact on the prognosis of CHD patients have become subjects of controversy. Further investigation is warranted to address these unresolved questions.
Collapse
Affiliation(s)
- Linjie Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xu Zhai
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Matin S, Dadkhah M. BDNF/CREB signaling pathway contribution in depression pathogenesis: A survey on the non-pharmacological therapeutic opportunities for gut microbiota dysbiosis. Brain Res Bull 2024; 207:110882. [PMID: 38244808 DOI: 10.1016/j.brainresbull.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Emerging evidence supports the gut microbiota and the brain communication in general health. This axis may affect behavior through modulating neurotransmission, and thereby involve in the pathogenesis and/or progression of different neuropsychiatric disorders such as depression. Brain-derived neurotrophic factor and cAMP response element-binding protein known as CREB/BDNF pathway plays have critical functions in the pathogenesis of depression as the same of mechanisms related to antidepressants. However, the putative causal significance of the CREB/BDNF signaling cascade in the gut-brain axis in depression remains unknown. Also interventions such as probiotics supplementation and exercise can influence microbiome also improve bidirectional communication of gut and brain. In this review we aim to explain the BDNF/CREB signaling pathway and gut microbiota dysfunction and then evaluate the potential role of probiotics, prebiotics, and exercise as a therapeutic target in the gut microbiota dysfunction induced depression. The current narrative review will specifically focus on the impact of exercise and diet on the intestinal microbiota component, as well as the effect that these therapies may have on the microbiota to alleviate depressive symptoms. Finally, we look at how BDNF/CREB signaling pathway may exert distinct effects on depression and gut microbiota dysfunction.
Collapse
Affiliation(s)
- Somaieh Matin
- Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
45
|
Kaul R, Paul P, Harfouche M, Saliba R, Chaari A. Microbiome-modulating nutraceuticals ameliorate dyslipidemia in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Diabetes Metab Res Rev 2024; 40:e3675. [PMID: 37381688 DOI: 10.1002/dmrr.3675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/26/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
AIMS Type 2 Diabetes is intrinsically linked to cardiovascular disease (CVD) via diabetic dyslipidemia, both of which remain global health concerns with annually increasing prevalence. Given the established links between gut microbiome dysbiosis and metabolic diseases, its modulation is an attractive target to ameliorate metabolic imbalances in such patients. There is a need to quantitively summarise, analyse, and describe future directions in this field. METHODS We conducted a systematic review, meta-analysis, and meta-regression following searches in major scientific databases for clinical trials investigating the effect of pro/pre/synbiotics on lipid profile published until April 2022. Data were pooled using random-effects meta-analysis and reported as mean differences with 95% confidence intervals (CIs). PROSPERO No. CRD42022348525. RESULTS Data from 47 trial comparisons across 42 studies (n = 2692) revealed that, compared to placebo/control groups, the administration of pro/pre/synbiotics was associated with statistically significant changes in total cholesterol (-9.97 mg/dL [95% CI: -15.08; -4.87], p < 0.0001), low-density lipoprotein (-6.29 mg/dL [95% CI: -9.25; -3.33], p < 0.0001), high-density lipoprotein (+3.21 mg/dL [95% CI: 2.20; 4.22], p < 0.0001), very-low-density lipoprotein (-4.52 mg/dL [95% CI: -6.36; -2.67], p < 0.0001) and triglyceride (-22.93 mg/dL [95% CI: -33.99; -11.87], p < 0.001). These results are influenced by patient characteristics such as age or baseline BMI, and intervention characteristics such as dosage and duration. CONCLUSIONS Our study shows that adjunct supplementation with a subset of pro/pre/synbiotics ameliorates dyslipidemia in diabetic individuals and has the potential to reduce CVD risk. However, widespread inter-study heterogeneity and the presence of several unknown confounders limit their adoption in clinical practice; future trials should be designed with these in mind.
Collapse
Affiliation(s)
- Ridhima Kaul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Reya Saliba
- Health Sciences Library, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, Doha, Qatar
| |
Collapse
|
46
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
47
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Kang WK, Florman JT, Araya A, Fox BW, Thackeray A, Schroeder FC, Walhout AJM, Alkema MJ. Vitamin B 12 produced by gut bacteria modulates cholinergic signalling. Nat Cell Biol 2024; 26:72-85. [PMID: 38168768 PMCID: PMC11650697 DOI: 10.1038/s41556-023-01299-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut-brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.
Collapse
Affiliation(s)
- Woo Kyu Kang
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy T Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Antonia Araya
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Andrea Thackeray
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
49
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
50
|
Zhou J, Wu X, Xiang T, Liu F, Gao H, Tong L, Yan B, Li Z, Zhang C, Wang L, Ou L, Li Z, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Lan C, Wang Q, Li H, Wang L, Wang X, Li Y, Zeng Q. Dynamical alterations of brain function and gut microbiome in weight loss. Front Cell Infect Microbiol 2023; 13:1269548. [PMID: 38173792 PMCID: PMC10761423 DOI: 10.3389/fcimb.2023.1269548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Intermittent energy restriction (IER) is an effective weight loss strategy. However, little is known about the dynamic effects of IER on the brain-gut-microbiome axis. METHODS In this study, a total of 25 obese individuals successfully lost weight after a 2-month IER intervention. FMRI was used to determine the activity of brain regions. Metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways in from fecal samples. RESULTS Our results showed that IER longitudinally reduced the activity of obese-related brain regions at different timepoints, including the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit. IER longitudinally reduced E. coli abundance across multiple timepoints while elevating the abundance of obesity-related Faecalibacterium prausnitzii, Parabacteroides distasonis, and Bacterokles uniformis. Correlation analysis revealed longitudinally correlations between gut bacteria abundance alterations and brain activity changes. CONCLUSIONS There was dynamical alteration of BGM axis (the communication of E. coli with specific brain regions) during the weight loss under the IER.
Collapse
Affiliation(s)
- Jing Zhou
- Henan Provincial Research Center of Clinical Medicine of Nephropathy, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Tianyuan Xiang
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Lei Ou
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd, Guangzhou, Guangdong, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Huimin Ma
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Na Mi
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Canhui Lan
- Beijing Rexinchang Biotechnology Research Institute Co. Ltd, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Li
- Department of Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Liming Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Wang
- The Institute of Geriatrics, The State Clinic Center for Geriatrics & The State Key Laboratory of Kidney, The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|