1
|
Themann A, Rodriguez M, Calvo DE, Vargas P, Iñiguez SD. Prozac exposure during adolescence increases pain sensitivity in adulthood. J Psychiatr Res 2025; 186:200-204. [PMID: 40250326 DOI: 10.1016/j.jpsychires.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Psychotropic medication prescription rates, particularly of the selective serotonin reuptake inhibitor fluoxetine (FLX; Prozac), are on the rise in the female adolescent population. Particularly, because FLX is dispensed for the treatment of numerous mood-related illnesses, premenstrual dysphoric disorder, as well as for pain management. Although FLX is deemed efficacious shortly post/during chronic treatment, the potential for unexpected long-term side effects has not been thoroughly assessed. For this reason, in this brief report, we examined whether exposure to FLX, during adolescence, influences thermal nociception in adulthood. To do this, postnatal day (PD)-35 female C57BL/6 mice were exposed to FLX (250 mg/L in drinking water) for 15 consecutive days (PD35-49). Once mice reached adulthood (PD70) they were evaluated on thermal nociception sensitivity adopting the hot plate test. We found that adult mice with FLX history displayed reductions in body weight (g) as well as reduced time (s) to display hindpaw-licking behavior, when compared to controls. These outcomes suggest that juvenile FLX exposure induces thermal hyperalgesia in adulthood, thus questioning the safety of antidepressant exposure during early-life stages of development in the female population.
Collapse
Affiliation(s)
- Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Daniel E Calvo
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Paulina Vargas
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
2
|
Gold PW, Wong ML. Advances in discerning the mechanisms underlying depression and resiliency: relation to the neurobiology of stress and the effects of antidepressants. Mol Psychiatry 2025:10.1038/s41380-025-03019-8. [PMID: 40263526 DOI: 10.1038/s41380-025-03019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/30/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Depression denotes a dysregulated stress response with significant mental and health implications. This review examines the neurobiological mechanisms underlying depression and resilience, focusing on how stress mediators influence vulnerability to severe stressors contrasted with resilience. We analyze structural and functional alterations in key brain regions, genetic factors, and potential therapeutic interventions. Understanding these mechanisms offers insights into preventing depression onset instead of solely treating its manifestations.
Collapse
Affiliation(s)
- Philip W Gold
- Clinical Neuroendocrinology Branch, National Institutes of Health, National Institute of Mental Health Intramural Research Program, Bethesda, MD, 20814, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
3
|
Teichman EM, Hu J, Lin HY, Fisher-Foye RL, Blando A, Hu X, Kaniskan HÜ, Montgomery SE, Cai M, Parise LF, Wang J, Russo SJ, Han MH, Jin J, Morel C. Design and validation of novel brain-penetrant HCN channel inhibitors to ameliorate social stress-induced susceptible phenotype. Mol Psychiatry 2025:10.1038/s41380-025-02972-8. [PMID: 40199995 DOI: 10.1038/s41380-025-02972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/16/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Major Depressive Disorder (MDD) is a devastating, multifactorial disease with limited pharmacological treatment options. Patients with MDD exhibit alterations in their dopamine (DA) signaling pathways through the midbrain ventral tegmental area (VTA). A similar observation is also detected in preclinical models of stress - mice exhibit behavioral and physiological impairments following chronic social defeat stress (CSDS). Prior studies demonstrate that CSDS-susceptible mice have increased VTA DA neuronal excitability, in part driven by an upregulation in hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Inhibiting HCN channels with known inhibitors such as Cilobradine alleviates the negative behavioral effects of CSDS. Here, we aimed to identify Cilobradine analogs with improved neural tropism and inhibitory efficacy. Two compounds, MS7710 and MS7712, differing by their left-hand side moieties, have a similar, potent inhibitory effect on VTA DA Ih currents as compared to Cilobradine, and a greater inhibitory effect than Cilobradine on VTA DA firing rate. We demonstrate that MS7710 and MS7712 have superior brain/plasma concentration ratios as compared to Cilobradine. They were efficacious at inhibiting VTA DA neuron firing rate and bursting activity in CSDS-susceptible male mice at lower doses than Cilobradine, which was recapitulated in female CSDS-susceptible mice with MS7710. Finally, we define that a single intraperitoneal injection of MS7710 ameliorates CSDS-induced social interaction deficits and reward-associated cognitive inflexibility for at least two weeks in male and female mice. These findings yield a novel HCN channel inhibitor with improved neural tropism and stress-alleviating effects that could provide a basis for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Emily M Teichman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hsiao-Yun Lin
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel L Fisher-Foye
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony Blando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah E Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Modendo Inc., 3415 Colorado Ave, Boulder, Colorado, 80303, USA
| | - Min Cai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lyonna F Parise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Wang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Brain-Body Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology; Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Carole Morel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Canto-de-Souza L, Baptista-de-Souza D, Thiele M, Garcia VG, Silva KC, de Souza FV, Crestani CC, Nunes-de-Souza RL. Sex differences in behavioral and neural responses induced by witnessing social defeat stress during adolescence or adulthood in mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111313. [PMID: 40049344 DOI: 10.1016/j.pnpbp.2025.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 05/02/2025]
Abstract
Psychosocial stress can lead to emotional disorders and memory-related cognitive impairments. Evidence suggests that stress effects vary with age and sex, involving brain structures such as the medial prefrontal cortex (mPFC), amygdala, and hippocampus. This study hypothesized that witnessing social defeat stress (WSDS) during adolescence or adulthood would produce anxiety- and depression-like behaviors and cognitive deficits in adulthood, with outcomes affected by sex. We examined WSDS effects on male and female mice exposed during adolescence or adulthood, assessing: (i) social avoidance in the social interaction test, (ii) anxiety in the elevated plus-maze (EPM) and open field tests, (iii) cognition in the object recognition test, (iv) depression-like behaviors in the sucrose splash test, and (v) ΔFosB expression in neurons within the mPFC, basolateral amygdala (BLA) and dorsal hippocampus (DH). WSDS during adolescence resulted in reduced EPM open-arm exploration in both sexes and impaired novel object discrimination in males. In adulthood, WSDS reduced open-arm entries only in females and impaired novel object discrimination in both sexes. Female mice showed higher mPFC ΔFosB labeling than males, while control males exhibited higher labeling in the BLA and DH, which was not observed in WSDS mice. In conclusion, this study shows that WSDS during adolescence or adulthood induces anxiety-like behavior in both sexes, cognitive impairments in males, and sex-specific patterns of neuronal activation.
Collapse
Affiliation(s)
- Lucas Canto-de-Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Daniela Baptista-de-Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Mariana Thiele
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil
| | - Vitor Gonçalves Garcia
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Katellyn Costa Silva
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil
| | - Fernanda Victorino de Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil
| | - Carlos C Crestani
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Pharmacology Lab., School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Graduate Program in Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP 14800-903, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, SP 13565-905, Brazil..
| |
Collapse
|
5
|
de Miranda AS, C B Toscano E, Venna VR, Graeff FG, Teixeira AL. Investigating novel pharmacological strategies for treatment-resistant depression: focus on new mechanisms and approaches. Expert Opin Drug Discov 2025:1-15. [PMID: 39885729 DOI: 10.1080/17460441.2025.2460674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A substantial number of patients exhibit treatment-resistant depression (TRD), posing significant challenges to clinicians. The discovery of novel molecules or mechanisms that may underlie TRD pathogenesis and antidepressant actions is highly needed. AREAS COVERED Using the PubMed database, the authors searched for emerging evidence of novel approaches for TRD based on experimental and human studies. Herein, the authors discuss the mechanisms underlying glutamatergic antagonists, modulators of the opioid system, and tryptamine-derivate psychedelics as well as the emerging platforms to investigate novel pharmacological targets for TRD. A search for clinical trials investigating novel agents and interventions for TRD was also conducted. EXPERT OPINION The understanding of the multiple pathophysiological mechanisms involved in TRD may add further value to the effective treatment, contributing to a more personalized approach. Esketamine was approved for the treatment of TRD and novel drugs with rapid antidepressant actions such as psilocybin and buprenorphine have also been investigated as potential therapeutic strategies. Over the past decades, technological advances such as omics approaches have broadened our knowledge regarding molecular and genetic underpinnings of complex conditions like TRD. Omics approaches could open new avenues for investigating glial-mediated mechanisms, including their crosstalk with neurons, as therapeutic targets in TRD.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eliana C B Toscano
- Laboratory of Research in Pathology, Department of Pathology, Federal University of Juiz de Fora (UFJF) Medical School, Juiz de Fora, Brazil
| | - Venugopal Reddy Venna
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | | | - Antonio Lucio Teixeira
- Geriatric Neuropsychiatry Division, The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Ritger AC, Loh MK, Stickling CP, Padival M, Ferrara NC, Rosenkranz JA. Repeated social stress increases posterior medial amygdala neuronal activity in stress-susceptible adult male rats. J Neurophysiol 2025; 133:582-597. [PMID: 39772896 DOI: 10.1152/jn.00215.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons. The posterior division of the MeA (MeAp) has been implicated in driving social engagement. We hypothesized that repeated social stress would cause parallel changes in in vivo activity of MeAp neurons and social behavior. The resident-intruder paradigm was used to produce repeated social stress in adult male rats. After repeated social stress, MeAp neurons were recorded with in vivo single-unit electrophysiology in anesthetized rats. MeAp neurons, specifically those in the posterodorsal subnucleus (MeApd), fired faster in stressed rats than in controls, and this effect was directly associated with stressor intensity. The MeAp sends dense projections to the posterior bed nucleus of stria terminalis (pBNST) and ventromedial hypothalamus (VMH), and both regions are essential for social engagement and are sensitive to social stressors. MeAp projections to pBNST had higher activity after stress, whereas projections to the VMH were not affected. These effects were significant only in rats that displayed susceptibility to this social stressor, as demonstrated by lower weight gain. Furthermore, the effect of stress on MeApd and MeAp-pBNST neuronal firing was correlated with lower social interaction. These results indicate that heightened MeApd and MeA-pBNST activity may contribute to alterations in social behaviors following social stress.NEW & NOTEWORTHY Social stress contributes to psychiatric disorders and impacts multiple brain regions. However, effects on a crucial area for social function, the medial amygdala (MeA), are unclear. We found that social stress increased firing of posterior MeA neurons, and particularly neurons that project to bed nucleus of the stria terminalis, a region implicated in anxiety. Effects of stress on this circuit were associated with diminished social interaction and help clarify how stress can impact social functions.
Collapse
Affiliation(s)
- Alexandra C Ritger
- Department of Foundational Sciences and Humanities, Discipline of Neuroscience, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Maxine K Loh
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Courtney P Stickling
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois, United States
| |
Collapse
|
7
|
Zapata-Ospina JP, Rodríguez N, Rodríguez AM, García-Valencia J, Jiménez-Benítez M, Martínez-Ramos N, Restrepo Bernal D, Gallego AL, Gómez C, Tabares LF, Cardeño-Castro C, Aguirre-Acevedo DC. Development and validation of the "Adjustment Disorder Scale for Medically Ill Patients - ETAM". Front Psychiatry 2025; 16:1482888. [PMID: 39950175 PMCID: PMC11821628 DOI: 10.3389/fpsyt.2025.1482888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Background Adjustment disorder (AD) is common among medically ill patients, yet current evaluation methods do not address the specific characteristics in this population. This study aimed to develop a measurement scale for AD in medically ill patients in Colombia and to find evidence of its validity and reliability. Methods This was a scale development and validation study. In the first qualitative phase, items were developed. In the second phase, the content validity of each item was evaluated by patients and clinicians. In the third phase, structural validity, internal consistency, test-retest reliability, criterion validity, and convergent construct validity were assessed. Items were analyzed using a generalized partial credit model within an item response theory framework. Results The Adjustment Disorder Scale for Medically Ill Patients (ETAM, for its acronym in Spanish) was developed, comprising 20 items that address the free description of stressful situations in the last 15 days and mental symptoms attributed to them. Evidence of content validity was found. The scale was administered to 512 medically ill patients, revealing a three-dimensional structure: 1) "AD Symptoms", 2) "Impact on Self-Care", and 3) "Impact on Desire to Live". Internal consistency was adequate, with McDonald's omega of 0.95 and Cronbach's alpha between 0.82 and 0.92 for its dimensions. ETAM had high test-retest reliability (intraclass correlation coefficient of 0.98). Criterion validity evidence was obtained with an independent psychiatrist's diagnosis, with an AUROC of 0.99, and convergent validity was consistent with hypotheses of correlation with other instruments with similar constructs. Discrimination and difficulty parameters were calculated for each item. Conclusion The ETAM is a scale with evidence of validity and reliability that can be used for the diagnosis of AD in medically ill patients in Colombia.
Collapse
Affiliation(s)
- Juan Pablo Zapata-Ospina
- Institute of Medical Research, Academic Group of Clinical Epidemiology (GRAEPIC), Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Rodríguez
- Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | | | - Jenny García-Valencia
- Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Mercedes Jiménez-Benítez
- Department of Psychology, Faculty of Social and Human Sciences, University of Antioquia, Medellín, Colombia
| | | | | | - Ana Lucía Gallego
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia
| | | | | | - Carlos Cardeño-Castro
- Department of Psychiatry, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Daniel Camilo Aguirre-Acevedo
- Institute of Medical Research, Academic Group of Clinical Epidemiology (GRAEPIC), Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
8
|
Giacolini T, Alcaro A, Conversi D, Tarsitani L. Depression in adolescence and young adulthood: the difficulty to integrate motivational/emotional systems. Front Psychol 2025; 15:1391664. [PMID: 39834756 PMCID: PMC11743547 DOI: 10.3389/fpsyg.2024.1391664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the BrainMind in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.g., chickens, dogs, non-human primates, and humans. Depression is an evolutionarily conserved mechanism in mammals to terminate both separation anxiety, so as to protect the vulnerable social brain from the consequences of prolonged separation anxiety, and the stress of social competition when social defeat is predictable. Adolescence and Young adulthood are particularly susceptible to these two types of threat because of human developmental characteristics that are summarized by the term neoteny. This refers to the slowing down of growth and development, resulting in both a prolonged period of dependence on a caring/protective adult and the persistence of juvenile characteristics throughout life. Therefore, neoteny makes the transition from childhood to sexual maturity more dramatic, making the integration of the SEPARATION (PANIC/GRIEF) system with the dynamics of social competition and dominance more stressful and a source of depression. Stress is an expression of the HPA-Hypothalamic-Pituitary-Adrenal axis that articulates with other systems, mainly the autonomic nervous system and the immune-inflammatory system. The latter is believed to be one of the most significant components in the dynamics of depressive processes, connected to the prodromes of its activation in childhood, under the pressure of environmental and relational stressors which can lead to learned helplessness. The recurrence of stressors makes it easier for the immune-inflammatory system to be activated in later life, which could make a significant contribution to the establishment of a depressive disease. The possible contribution of children's identification processes with their parents' depressive personalities through observational learning is considered.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Zhang H, Gao D, Hu M, Zhou W, Han M, Sun Y, Zhang Y, Wang J, Gao M. Evaluation of a user-friendly CSDS cage apparatus for studying depressive-like behaviors in rodents. Animal Model Exp Med 2025; 8:179-186. [PMID: 39627885 PMCID: PMC11798728 DOI: 10.1002/ame2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Previously, a chronic social defeat stress (CSDS) model has been widely-adopted for assessing depressive-like behaviors in animals. However, there is still room for improvement in the CSDS model to safeguard study accuracy and the welfare of lab rodents. Our study team developed a novel, standardized apparatus to induce CSDS in rodents and assessed the model's practical adaptability. METHODS An innovative CSDS cage apparatus and water bottle was designed. To evaluate the effectiveness of the newly developed tools, a variety of animal models, including the tail suspension test (TST), sucrose preference test, forced swimming test (FST), novelty-suppressed feeding test, female urine sniffing test, and open field test (OFT), were adopted to assess depressive-like behaviors in mice. Fluoxetine treatment was also administered to observe the reversal effect, as part of the validation. RESULTS The CSDS cage apparatus resulted in the manifestation of depressive-like behaviors in the model mice. Significant reductions in sucrose preference and urine sniffing time were observed, while the OFT revealed decreased central zone total distance, residence time, and frequency of entry. Moreover, increased immobility was found in the FST and TST. Fluoxetine treatment was found to successfully reverse the modeling effect. CONCLUSION The CSDS cage apparatus was validated for enhanced usability and addressed the previous challenges of water bottle leakage and lab rodent welfare issues. The consistent results from multiple behavioral tests also supported real-world application of the apparatus, offering researchers a promising alternative to conventional rodent cages.
Collapse
Affiliation(s)
- Hao Zhang
- High‐Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of Education, Shandong University of Traditional Chinese MedicineJinanChina
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Dongmei Gao
- High‐Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of Education, Shandong University of Traditional Chinese MedicineJinanChina
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Minghu Hu
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Wanqing Zhou
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Muxuan Han
- Experimental CenterShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Ya Sun
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Jieqiong Wang
- Social Cooperation and Achievement Transformation DepartmentShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Mingzhou Gao
- High‐Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
- Key Laboratory of Traditional Chinese Medicine Classical TheoryMinistry of Education, Shandong University of Traditional Chinese MedicineJinanChina
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| |
Collapse
|
10
|
Barbosa IG, Miranda AS, Berk M, Teixeira AL. The involvement of the microbiota-gut-brain axis in the pathophysiology of mood disorders and therapeutic implications. Expert Rev Neurother 2025; 25:85-99. [PMID: 39630000 DOI: 10.1080/14737175.2024.2438646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION There is a growing body of evidence implicating gut-brain axis dysfunction in the pathophysiology of mood disorders. Accordingly, gut microbiota has become a promising target for the development of biomarkers and novel therapeutics for bipolar and depressive disorders. AREAS COVERED We describe the observed changes in the gut microbiota of patients with mood disorders and discuss the available studies assessing microbiota-based strategies for their treatment. EXPERT OPINION Microbiota-targeted interventions, such as symbiotics, prebiotics, paraprobiotics, and fecal microbiota transplants seem to attenuate the severity of depressive symptoms. The available results must be seen as preliminary and need to be replicated and/or confirmed in larger and independent studies, also considering the pathophysiological and clinical heterogeneity of mood disorders.
Collapse
Affiliation(s)
- Izabela G Barbosa
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
| | - Aline S Miranda
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Michael Berk
- IMPACT- the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Antonio L Teixeira
- Neuropsychiatry Division, The Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Schuler H, Eid RS, Wu S, Tse YC, Cvetkovska V, Lopez J, Quinn R, Zhou D, Meccia J, Dion-Albert L, Bennett SN, Newman EL, Trainor BC, Peña CJ, Menard C, Bagot RC. Data-Driven Analysis Identifies Novel Modulation of Social Behavior in Female Mice Witnessing Chronic Social Defeat Stress. Biol Psychiatry 2024:S0006-3223(24)01786-4. [PMID: 39638223 DOI: 10.1016/j.biopsych.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Chronic social defeat stress is a widely used depression model in male mice. Several proposed adaptations extend this model to females with variable, often marginal effects. We examined if the widely used male-defined metrics of stress are suboptimal in females witnessing defeat. METHODS Using a data-driven method, we comprehensively classified social interaction behavior in 761 male and female mice after chronic social witness/defeat stress, examining social modulation of behavior and associations with conventional metrics (i.e., social interaction ratio). RESULTS Social stress induced distinct behavioral adaptation patterns in defeated males and witness females. Social interaction ratio led to underpowered analyses in witness females with limited utility to differentiate susceptibility/resilience. Data-driven analyses revealed changes in social adaptation in witness females that were captured in attenuated velocity change from no target to target trials. We explored the utility of this metric in 4 female social stress models and in male witnesses. Combining social interaction ratio and velocity change optimally differentiated susceptibility/resilience in witness females and revealed resilient-specific adaptation in a resilience-associated neural circuit in female mice. CONCLUSIONS Chronic witness stress induced behavioral changes in females that were qualitatively distinct from those observed in defeated males and not adequately sampled by standard male-defined metrics. Modulation of locomotion is a robust and easily implementable metric for rigorous research in witness female mice. Overall, our findings highlight the need to critically evaluate sex differences in behavior and implement sex-based considerations in preclinical model design.
Collapse
Affiliation(s)
- Heike Schuler
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Rand S Eid
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Serena Wu
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Yiu-Chung Tse
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | | | - Joëlle Lopez
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Rosalie Quinn
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Delong Zhou
- Department of Psychology, McGill University, Montréal, Québec, Canada
| | - Juliet Meccia
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Université Laval and CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Shannon N Bennett
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Emily L Newman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety Disorders, Neurobiology of Fear Laboratory, McLean Hospital, Belmont, Massachusetts
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California
| | - Catherine J Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Université Laval and CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Québec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Agusti A, Molina-Mendoza GV, Tamayo M, Rossini V, Cenit MC, Frances-Cuesta C, Tolosa-Enguis V, Gómez Del Pulgar EM, Flor-Duro A, Sanz Y. Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress. Biomed Pharmacother 2024; 180:117377. [PMID: 39316970 DOI: 10.1016/j.biopha.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress. We demonstrate that administered C. minuta alleviates chronic stress-induced depressive, anxiogenic and antisocial behavior. These effects are attributed to the bacterium's ability to modulate the hypothalamic-pituitary-adrenal axis, which mediates the stress response. This included the oversecretion of corticosterone and the overexpression of its receptors, as well as the metabolism of dopamine (DA) and the expression of its receptors (D1, D2L and D2S). Additionally, C. minuta administration reduced chronically induced inflammation in plasma, spleen and some brain areas, which likely contribute to the recovery of physical and behavioral function. Furthermore, C. minuta administration prevented chronic stress-induced cardiovascular damage by regulating key enzymes mediating liver fibrosis and oxidative stress. Finally, C. minuta increased the abundance of bacteria associated with mental health. Overall, our study highlights the potential of microbiota-directed interventions to alleviate both the physical and mental effects of chronic stress.
Collapse
Affiliation(s)
- A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M C Cenit
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - V Tolosa-Enguis
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - E M Gómez Del Pulgar
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - A Flor-Duro
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| |
Collapse
|
13
|
Savva C, Vlassakev I, Bunney BG, Bunney WE, Massier L, Seldin M, Sassone-Corsi P, Petrus P, Sato S. Resilience to Chronic Stress Is Characterized by Circadian Brain-Liver Coordination. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100385. [PMID: 39387094 PMCID: PMC11462208 DOI: 10.1016/j.bpsgos.2024.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 10/12/2024] Open
Abstract
Background Chronic stress has a profound impact on circadian regulation of physiology. In turn, disruption of circadian rhythms increases the risk of developing both psychiatric and metabolic disorders. To explore the role of chronic stress in modulating the links between neural and metabolic rhythms, we characterized the circadian transcriptional regulation across different brain regions and the liver as well as serum metabolomics in mice exposed to chronic social defeat stress, a validated model for studying depressive-like behaviors. Methods Male C57BL/6J mice underwent chronic social defeat stress, and subsequent social interaction screening identified distinct behavioral phenotypes associated with stress resilience and susceptibility. Stressed mice and their control littermates were sacrificed every 4 hours over the circadian cycle for comprehensive analyses of the circadian transcriptome in the hypothalamus, hippocampus, prefrontal cortex, and liver together with assessments of the circadian circulatory metabolome. Results Our data demonstrate that stress adaptation was characterized by reprogramming of the brain as well as the hepatic circadian transcriptome. Stress resiliency was associated with an increase in cyclic transcription in the hypothalamus, hippocampus, and liver. Furthermore, cross-tissue analyses revealed that resilient mice had enhanced transcriptional coordination of circadian pathways between the brain and liver. Conversely, susceptibility to social stress resulted in a loss of cross-tissue coordination. Circadian serum metabolomic profiles corroborated the transcriptome data, highlighting that stress-resilient mice gained circadian rhythmicity of circulating metabolites, including bile acids and sphingomyelins. Conclusions This study reveals that resilience to stress is characterized by enhanced metabolic rhythms and circadian brain-liver transcriptional coordination.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Ivan Vlassakev
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Marcus Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California
| | - Paul Petrus
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California
| | - Shogo Sato
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
14
|
Nemets VV, Vinogradova EP, Zavialov V, Grinevich VP, Budygin EA, Gainetdinov RR. Accumbal Dopamine Responses Are Distinct between Female Rats with Active and Passive Coping Strategies. Biomolecules 2024; 14:1280. [PMID: 39456212 PMCID: PMC11505701 DOI: 10.3390/biom14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
There is a gap in existing knowledge of stress-triggered neurochemical and behavioral adaptations in females. This study was designed to explore the short-term consequences of a single social defeat (SD) on accumbal dopamine (DA) dynamics and related behaviors in female Wistar rats. During the SD procedure, rats demonstrated different stress-handling strategies, which were defined as active and passive coping. The "active" subjects expressed a significantly higher level of activity directed toward handling stress experience, while the "passive" ones showed an escalated freezing pattern. Remarkably, these opposite behavioral manifestations were negatively correlated. Twenty-four hours following the SD exposure, decreased immobility latency in the Porsolt test and cognitive augmentation in the new object recognition evaluation were evident, along with an increase in electrically evoked mesolimbic DA release in passive coping rats. Rats exhibiting an active pattern of responses showed insignificant changes in immobility and cognitive performance as well as in evoked mesolimbic DA response. Furthermore, the dynamics of the decline and recovery of DA efflux under the depletion protocol were significantly altered in the passive but not active female rats. Taken together, these data suggest that female rats with a passive coping strategy are more susceptible to developing behavioral and neurochemical alterations within 24 h after stress exposure. This observation may represent both maladaptive and protective responses of an organism on a short timescale.
Collapse
Affiliation(s)
- Vsevolod V. Nemets
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Ekaterina P. Vinogradova
- Department of High Neuros Activity, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Vladislav Zavialov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Vladimir P. Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| |
Collapse
|
15
|
Hernandez Silva JC, Pausic N, Marroquin Rivera A, Labonté B, Proulx CD. Chronic Social Defeat Stress Induces Pathway-Specific Adaptations at Lateral Habenula Neuronal Outputs. J Neurosci 2024; 44:e2082232024. [PMID: 39164106 PMCID: PMC11426382 DOI: 10.1523/jneurosci.2082-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/15/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
The lateral habenula (LHb) has emerged as a pivotal brain region implicated in depression, displaying hyperactivity in human and animal models of depression. While the role of LHb efferents in depressive disorders has been acknowledged, the specific synaptic alterations remain elusive. Here, employing optogenetics, retrograde tracing, and ex vivo whole-cell patch-clamp techniques, we investigated synaptic transmission in male mice subjected to chronic social defeat stress (CSDS) at three major LHb neuronal outputs: the dorsal raphe nucleus (DRN), the ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). Our findings uncovered distinct synaptic adaptations in LHb efferent circuits in response to CSDS. Specifically, CSDS induced in susceptible mice postsynaptic potentiation and postsynaptic depression at the DRN and VTA neurons, respectively, receiving excitatory inputs from the LHb, while CSDS altered presynaptic transmission at the LHb terminals in RMTg in both susceptible and resilient mice. Moreover, whole-cell recordings at projection-defined LHb neurons indicate decreased spontaneous activity in VTA-projecting LHb neurons, accompanied by an imbalance in excitatory-inhibitory inputs at the RMTg-projecting LHb neurons. Collectively, these novel findings underscore the circuit-specific alterations in LHb efferents following chronic social stress, shedding light on potential synaptic adaptations underlying stress-induced depressive-like states.
Collapse
Affiliation(s)
- Jose Cesar Hernandez Silva
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Nikola Pausic
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Arturo Marroquin Rivera
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Benoît Labonté
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Christophe D Proulx
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| |
Collapse
|
16
|
Ritger AC, Rasheed NM, Padival M, Ferrara NC, Rosenkranz JA. Prior Negative Experience Biases Activity of Medial Amygdala during Interstrain Social Engagement in Male Rats. eNeuro 2024; 11:ENEURO.0288-24.2024. [PMID: 39260890 PMCID: PMC11419602 DOI: 10.1523/eneuro.0288-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Social recognition is an essential part of social function and often promotes specific social behaviors based on prior experience. Social and defensive behaviors in particular often emerge with prior experiences of familiarity or novelty/stress, respectively. This is also commonly seen in rodents toward same-strain and interstrain conspecifics. Medial amygdala (MeA) activity guides social choice based on age and sex recognition and is sensitive to social experiences. However, little is known about whether the MeA exhibits differential responses based on strain or how this is impacted by experience. Social stress impacts posterior MeA (MeAp) function and can shift measures of social engagement. However, it is unclear how stress impacts MeAp activity and contributes to altered social behavior. The primary goal of this study in adult male Sprague Dawley rats was to determine whether prior stress experience with a different-strain (Long-Evans) rat impacts MeAp responses to same-strain and different-strain conspecifics in parallel with a change in behavior using in vivo fiber photometry. We found that MeAp activity was uniformly activated during social contact with a novel same-strain rat during a three-chamber social preference test following control handling but became biased toward a novel different-strain rat following social stress. Socially stressed rats also showed initially heightened social interaction with novel same-strain rats but showed social avoidance and fragmented social behavior with novel different-strain rats relative to controls. These results indicate that heightened MeAp activity may guide social responses to novel, threatening, rather than non-threatening, social stimuli after stress.
Collapse
Affiliation(s)
- Alexandra C Ritger
- Department of Foundational Sciences and Humanities, Discipline of Neuroscience, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nimah M Rasheed
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois 60064
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
17
|
Pagliusi M, Amorim-Marques AP, Lobo MK, Guimarães FS, Lisboa SF, Gomes FV. The rostral ventromedial medulla modulates pain and depression-related behaviors caused by social stress. Pain 2024; 165:1814-1823. [PMID: 38661577 DOI: 10.1097/j.pain.0000000000003257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 04/26/2024]
Abstract
ABSTRACT The rostral ventromedial medulla (RVM) is a crucial structure in the descending pain modulatory system, playing a key role as a relay for both the facilitation and inhibition of pain. The chronic social defeat stress (CSDS) model has been widely used to study stress-induced behavioral impairments associated with depression in rodents. Several studies suggest that CSDS also causes changes related to chronic pain. In this study, we aimed to investigate the involvement of the RVM in CSDS-induced behavioral impairments, including those associated with chronic pain. We used chemogenetics to activate or inhibit the RVM during stress. The results indicated that the RVM is a vital hub influencing stress outcomes. Rostral ventromedial medulla activation during CSDS ameliorates all the stress outcomes, including social avoidance, allodynia, hyperalgesia, anhedonia, and behavioral despair. In addition, RVM inhibition in animals exposed to a subthreshold social defeat stress protocol induces a susceptible phenotype, facilitating all stress outcomes. Finally, chronic RVM inhibition-without any social stress stimulus-induces chronic pain but not depressive-like behaviors. Our findings provide insights into the comorbidity between chronic pain and depression by indicating the involvement of the RVM in establishing social stress-induced behavioral responses associated with both chronic pain and depression.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anna P Amorim-Marques
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sabrina F Lisboa
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Gabbay V, Ely BA, Vileisis JN, Petrovic Z, Cicvaric A, Asnis GM, Kim-Schulze S, Radulovic J. Immune and neural response to acute social stress in adolescent humans and rodents. Transl Psychiatry 2024; 14:306. [PMID: 39054336 PMCID: PMC11272929 DOI: 10.1038/s41398-024-03008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Studies in adults have linked stress-related activation of the immune system to the manifestation of psychiatric conditions. Using a translational design, this study aimed to examine the impact of social stress on immune activity in adolescents and on neuronal activity in a preclinical mouse model. Participants were 31 adolescents (ages 12-19), including 25 with mood and anxiety symptoms. Whole-blood samples were collected before and after the Trier Social Stress Test (TSST), a stress-inducing public speaking task, then cultured for 6 hours in the presence and absence of the inflammatory endotoxin lipopolysaccharide (LPS). Effects of TSST and LPS on 41 immune biomarkers were examined using repeated-measures analysis of variance. Separately, juvenile (8-week-old) male mice were non-stressed or exposed to reminder social defeat then intraperitoneally injected with saline or LPS (n = 6/group). Brains were perfused and collected for immunohistochemistry and confocal microscopy at 0, 1, 6, and 24 hours post-injection. The activity was determined by the density of cFos-positive neurons in the paraventricular hypothalamus, paraventricular thalamus, and basolateral amygdala, regions known to show sustained activation to immunological challenge. Analyses in the adolescent study indicated a strong effect of LPS but no effects of TSST or TSST×LPS interaction on immune biomarkers. Similarly, reminder social defeat did not induce sustained neuronal activity changes comparable to LPS immunological challenge in juvenile mice. Our convergent findings across species suggest that the acute immune response to stress documented in adults is not present in youth. Thus, aging and chronicity effects may play an important role in the inflammatory response to acute psychosocial stress.
Collapse
Affiliation(s)
- Vilma Gabbay
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Benjamin A Ely
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julia N Vileisis
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Zorica Petrovic
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ana Cicvaric
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Gregory M Asnis
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jelena Radulovic
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
19
|
Nerio-Morales LK, Boender AJ, Young LJ, Lamprea MR, Smith AS. Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles ( Microtus ochrogaster). Front Neurosci 2024; 18:1409316. [PMID: 39081850 PMCID: PMC11286410 DOI: 10.3389/fnins.2024.1409316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The social defeat paradigm is the most representative animal model to study social anxiety disorder (SAD) and its underlying neuronal mechanisms. We have previously reported that defeat progressively reduces oxytocin receptors (OXTR) in limbic regions of the brain over an eight-week period in female prairie voles (Microtus ochrogaster). Oxytocin receptors activate the mitogen-activated protein kinase (MAPK) pathway, which has been previously associated with the anxiolytic effects of oxytocin. Here, we assessed the functional significance of OXTR in stress-induced social avoidance and the response of the MAPK signaling pathway in the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and basolateral amygdala (BLA) of female prairie voles. Methods In experiment 1, Sexually naïve adult female prairie voles were defeated for three consecutive days and tested a week after for social preference/avoidance (SPA) test. Control subjects were similarly handled without defeat conditioning. In experiment 2, sexually and stress naïve adult female prairie voles were bilaterally injected into the NAc, ACC, or the BLA with a CRISPR/Cas9 virus targeting the Oxtr coding sequence to induce OXTR knockdown. Two weeks post-surgery, subjects were tested for SPA behavior. Viral control groups were similarly handled but injected with a control virus. A subgroup of animals from each condition in both experiments were similarly treated and euthanized without being tested for SPA behavior. Brains were harvested for OXTR autoradiography, western blot analysis of MAPK proteins and quantification of local oxytocin content in the NAc, BLA, ACC, and PVN through ELISA. Results Social defeat reduced OXTR binding in the NAc and affected MAPK pathway activity and oxytocin availability. These results were region-specific and sensitive to exposure to the SPA test. Additionally, OXTR knockdown in the NAc, ACC, and BLA induced social avoidance and decreased basal MAPK activity in the NAc. Finally, we found that OXTR knockdown in these regions was associated with less availability of oxytocin in the PVN. Conclusion Dysregulation of the oxytocin system and MAPK signaling pathway in the NAc, ACC, and BLA are important in social behavior disruptions in female voles. This dysregulation could, therefore, play an important role in the etiology of SAD in women.
Collapse
Affiliation(s)
- Lina K. Nerio-Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arjen J. Boender
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisol R. Lamprea
- Department of Psychology, School of Human Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Program in Neuroscience, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
20
|
Deng J, Tong X, Huang Y, Du Z, Sun R, Zheng Y, Ma R, Ding W, Zhang Y, Li J, Sun Y, Chen C, Zhang JC, Song L, Liu B, Lin S. Prophylactic nicotinamide mononucleotide (NMN) mitigates CSDS-induced depressive-like behaviors in mice via preserving of ATP level in the mPFC. Biomed Pharmacother 2024; 176:116850. [PMID: 38834006 DOI: 10.1016/j.biopha.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.
Collapse
Affiliation(s)
- Jialin Deng
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohan Tong
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanhua Huang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zean Du
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruizhe Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yantao Zheng
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ruijia Ma
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanzhao Ding
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junfeng Li
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunxiao Chen
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li Song
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Krupp KT, Yaeger JDW, Ledesma LJ, Withanage MHH, Gale JJ, Howe CB, Allen TJ, Sathyanesan M, Newton SS, Summers CH. Single administration of a psychedelic [(R)-DOI] influences coping strategies to an escapable social stress. Neuropharmacology 2024; 252:109949. [PMID: 38636726 PMCID: PMC11073902 DOI: 10.1016/j.neuropharm.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.
Collapse
Affiliation(s)
- Kevin T Krupp
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Jazmine D W Yaeger
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, 57104, USA
| | - Leighton J Ledesma
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | | | - J J Gale
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Chase B Howe
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trevor J Allen
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Samuel S Newton
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
22
|
Mitra S, Sameer Kumar GS, Samanta A, Schmidt MV, Thakur SS. Hypothalamic protein profiling from mice subjected to social defeat stress. Mol Brain 2024; 17:30. [PMID: 38802853 PMCID: PMC11131206 DOI: 10.1186/s13041-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The Hypothalmic-Pituitary-Adrenal axis also known as the HPA axis is central to stress response. It also acts as the relay center between the body and the brain. We analysed hypothalamic proteome from mice subjected to chronic social defeat paradigm using iTRAQ based quantitative proteomics to identify changes associated with stress response. We identified greater than 2000 proteins after processing our samples analysed through Q-Exactive (Thermo) and Orbitrap Velos (Thermo) at 5% FDR. Analysis of data procured from the runs showed that the proteins whose levels were affected belonged primarily to mitochondrial and metabolic processes, translation, complement pathway among others. We also found increased levels of fibrinogen, myelin basic protein (MBP) and neurofilaments (NEFL, NEFM, NEFH) in the hypothalamus from socially defeated mice. Interestingly, research indicates that these proteins are upregulated in blood and CSF of subjects exposed to trauma and stress. Since hypothalamus secreted proteins can be found in blood and CSF, their utility as biomarkers in depression holds an impressive probability and should be validated in clinical samples.
Collapse
Affiliation(s)
- Shiladitya Mitra
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | | | - Anumita Samanta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
- Donders Institute for Brain Cognition and Behavior, Radboud University, Postbs 9010, Nijmegen, 6500GL, Netherlands
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
| |
Collapse
|
23
|
de Miranda AS, de Brito Toscano EC, O'Connor JC, Teixeira AL. Targeting inflammasome complexes as a novel therapeutic strategy for mood disorders. Expert Opin Ther Targets 2024; 28:401-418. [PMID: 38871633 DOI: 10.1080/14728222.2024.2366872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Inflammasome complexes, especially NLRP3, have gained great attention as a potential therapeutic target in mood disorders. NLRP3 triggers a caspase 1-dependent release of the inflammatory cytokines IL-1β and IL-18, and seems to interact with purinergic and kynurenine pathways, all of which are implicated in mood disorders development and progression. AREAS COVERED Emerging evidence supports NLRP3 inflammasome as a promising pharmacological target for mood disorders. We discussed the available evidence from animal models and human studies and provided a reflection on drawbacks and perspectives for this novel target. EXPERT OPINION Several studies have supported the involvement of NLRP3 inflammasome in MDD. However, most of the evidence comes from animal models. The role of NLRP3 inflammasome in BD as well as its anti-manic properties is not very clear and requires further exploration. There is evidence of anti-manic effects of P2×R7 antagonists associated with reduction in the brain levels of IL-1β and TNF-α in a murine model of mania. The involvement of other NLRP3 inflammasome expressing cells besides microglia, like astrocytes, and of other inflammasome complexes in mood disorders also deserves further investigation. Preclinical and clinical characterization of NLRP3 and other inflammasomes in mood disorders is needed before considering translational approaches, including clinical trials.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eliana Cristina de Brito Toscano
- Laboratory of Research in Pathology, Department of Pathology, Federal University of Juiz de Fora (UFJF) Medical School, Juiz de Fora, Brazil
| | - Jason C O'Connor
- Department of Pharmacology, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy VA Hospital, South Texas Veterans Care System, San Antonio, TX, USA
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Barbetti M, Mancabelli L, Vacondio F, Longhi G, Ferlenghi F, Viglioli M, Turroni F, Carnevali L, Mor M, Ventura M, Sgoifo A, Rivara S. Social stress-induced depressive-like symptoms and changes in gut microbial and lipidomic profiles are prevented by pharmacological inhibition of FAAH activity in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110963. [PMID: 38354897 DOI: 10.1016/j.pnpbp.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Pharmacological inhibition of fatty acid amide hydrolase (FAAH) activity has antidepressant-like effects in preclinical models of stress. In this study, we investigated whether the antidepressant-like effects of FAAH inhibition are associated with corresponding changes in gut microbial and lipidomic profiles, which are emerging as critical components in the pathophysiology of depression. Adult male Wistar rats experienced five weeks of repeated social defeat or control procedure and were treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle starting from the third week. Repeated social defeat induced the emergence of depressive-like behavioral (sucrose preference reduction and passive coping behaviors in the forced swim test) and neuroendocrine (increased corticosterone levels) changes, which were prevented by URB694 treatment. Repeated social defeat also provoked a significant variation in gut microbiota (changes in the relative abundance of 14 bacterial taxa) and lipidic (e.g., glycerophospholipids) composition. These stress-induced changes were prevented by URB694 treatment. These findings indicate that inhibition of FAAH activity with URB694 blocks the co-occurrence of depressive-like behavioral and neuroendocrine changes and alterations in gut microbial and lipid composition in rats exposed to repeated social defeat. In conclusion, these results suggest that the gut microbiota-lipid crosstalk may represent a novel biological target for FAAH inhibitors to enhance stress resilience.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | | | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Marco Mor
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Rodriguez M, Themann A, Garcia-Carachure I, Lira O, Robison AJ, Cushing BS, Iñiguez SD. Chronic social defeat stress in prairie voles (Microtus ochrogaster): A preclinical model for the study of depression-related phenotypes. J Affect Disord 2024; 351:833-842. [PMID: 38341153 DOI: 10.1016/j.jad.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Stress-induced illnesses, like major depression, are among the leading causes of disability across the world. Consequently, there is a dire need for the validation of translationally-suited animal models incorporating social stress to uncover the etiology of depression. Prairie voles (Microtus ochrogaster) are more translationally relevant than many other rodent models as they display monogamous social and bi-parental behaviors. Therefore, we evaluated whether a novel social defeat stress (SDS) model in male prairie voles induces depression-relevant behavioral outcomes. METHODS Adult sexually-naïve male prairie voles experienced SDS bouts from a conspecific pair-bonded male aggressor, 10 min per day for 10 consecutive days. Non-stressed controls (same-sex siblings) were housed in similar conditions but never experienced physical stress. Twenty-four h later, voles were evaluated in social interaction, sucrose preference, and Morris water maze tests - behavioral endpoints validated to assess social withdrawal, anhedonia-related behavior, and spatial memory performance, respectively. RESULTS SDS-exposed voles displayed lower sociability and body weight, decreased preference for a sucrose solution, and impairment of spatial memory retrieval. Importantly, no differences in general locomotor activity were observed as a function of SDS exposure. LIMITATIONS This study does not include female voles in the experimental design. CONCLUSIONS We found that repeated SDS exposure, in male prairie voles, results in a depression-relevant phenotype resembling an anhedonia-like outcome (per reductions in sucrose preference) along with social withdrawal and spatial memory impairment - highlighting that the prairie vole is a valuable model with potential to study the neurobiology of social stress-induced depression-related outcomes.
Collapse
Affiliation(s)
- Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | | | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Bruce S Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States.
| |
Collapse
|
26
|
Kaeppler AK, Erath SA, Hinnant JB, El-Sheikh M. Coping Responses in the Context of Family Stress Moderate the Association Between Childhood Anxiety and Adolescent Depressive Symptoms. Res Child Adolesc Psychopathol 2024; 52:429-441. [PMID: 37897676 PMCID: PMC11097902 DOI: 10.1007/s10802-023-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/30/2023]
Abstract
Anxiety and depressive symptoms are common and highly interrelated. A relatively consistent temporal pattern of anxious and depressive symptoms has emerged from previous studies, such that the development of anxiety tends to precede and predict the development of depression rather than the other way around. Whether high levels of childhood anxiety predict depressive symptoms in late adolescence may depend, in part, on the ways in which children cope with stressful events. Accordingly, the present study used latent intercept models to examine involuntary and voluntary coping responses to familial stress as potential moderators of the association between childhood anxiety and adolescent depressive symptoms. Two hundred twenty-seven participants completed questionnaires measuring demographic variables as well as anxiety, depressive symptoms, and coping responses at a minimum of one time point over four waves of data collection (T1 Mage = 10.26 years, T2 Mage = 15.77 years, T3 Mage = 16.75 years, T4 Mage = 17.68 years). We found that childhood anxiety was positively associated with adolescent depressive symptoms when children reported higher levels of involuntary responses to family stress (e.g., rumination or physiological arousal) in conjunction with either lower levels of voluntary engaged responses (e.g., problem solving or emotion regulation) or higher levels of voluntary disengaged responses (e.g., avoidance or denial). These results shed light on the conditions under which childhood anxiety is associated with adolescent depressive symptoms and underscore the need for continued longitudinal and developmental research on this topic.
Collapse
Affiliation(s)
- Alexander K Kaeppler
- Department of Human Development and Family Science, Auburn University, Auburn, AL, USA
| | - Stephen A Erath
- Department of Human Development and Family Science, Auburn University, Auburn, AL, USA.
| | - J Benjamin Hinnant
- Department of Human Development and Family Science, Auburn University, Auburn, AL, USA
| | - Mona El-Sheikh
- Department of Human Development and Family Science, Auburn University, Auburn, AL, USA
| |
Collapse
|
27
|
Le TH, Oh JM, Rami FZ, Li L, Chun SK, Chung YC. Effects of Social Defeat Stress on Microtubule Regulating Proteins and Tubulin Polymerization. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:129-138. [PMID: 38247419 PMCID: PMC10811395 DOI: 10.9758/cpn.23.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Objective : Microtubule (MT) stability in neurons is vital for brain development; instability is associated with neuropsychiatric disorders. The present study examined the effects of social defeat stress (SDS) on MT-regulating proteins and tubulin polymerization. Methods : After 10 days of SDS, defeated mice were separated into susceptible (Sus) and unsusceptible (Uns) groups based on their performance in a social avoidance test. Using extracted brain tissues, we measured the expression levels of α-tubulin, acetylated α-tubulin, tyrosinated α-tubulin, MT-associated protein-2 (MAP2), stathmin (STMN1), phospho stathmin serine 16 (p-STMN1 [Ser16]), phospho stathmin serine 25 (p-STMN1 [Ser25]), phospho stathmin serine 38 (p-STMN1 [Ser38]), stathmin2 (STMN2), phospho stathmin 2 serine 73 (p-STMN2 [Ser73]), 78-kDa glucose-regulated protein (GRP-78), and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) using Western blot assay. The tubulin polymerization rate was also measured. Results : We observed increased and decreased expression of acetylated and tyrosinated α-tubulin, respectively, decreased expression of p-STMN1 (Ser16) and increased expression of p-STMN1 (Ser25), p-STMN2 (Ser73) and GRP-78 and CHOP in the prefrontal cortex and/or hippocampus of defeated mice. A reduced tubulin polymerization rate was observed in the Sus group compared to the Uns and Con groups. Conclusion : Our findings suggest that SDS has detrimental effects on MT stability, and a lower tubulin polymerization rate could be a molecular marker for susceptibility to SDS.
Collapse
Affiliation(s)
- Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jung-Mi Oh
- Department of Physiology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sung-Kun Chun
- Department of Physiology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
28
|
Zhang L, Wang Y, Li S, Otani S, Chen F. Post-stress Social Interaction and 3-Cyano-N-(1,3-Diphenyl-1H-Pyrazol-5-yl) Benzamide Treatment Attenuate Depressive-like Behavior Induced by Repeated Social Defeat Stress. Neuroscience 2024; 538:11-21. [PMID: 38103860 DOI: 10.1016/j.neuroscience.2023.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Persistent stress increases the probability for developing depression significantly thereafter. Repeated social defeat stress is a widely used model to investigate depressive-like behavior in preclinical models. Hence, the repeated social defeat stress model provided an ideal animal model, through which the hypotheses of prevention and treatment can be investigated. We have successfully induced depressive-like behavior for male C57BL/6J mice with this model. Here, we reported that certain level of during-stress social interactions with single female or multiple male peer(s) exerted a positive role in preventing the development of depressive-like behavior induced by repeated social defeat stress. Our data suggested that the stress-susceptible mice may benefit from positive social interaction, which reduces the chance for depressive-like behavior development. Since numerous studies indicate that the metabotropic glutamate receptor 5 (mGluR5) plays an important role in various cognitive functions, we further investigate the treatment effect of 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) on the depressive-like behavior induced by repeated social defeat stress. Most importantly, robust anti-depressant effects have been achieved through modulating the mGluR5 function. We found that single oral dose administration of CDPPB (20 mg/kg), to some extent, alleviated the social avoidance behaviors for the stress-susceptible mice. Our data implies that the CDPPB, a positive allosteric modulator of mGluR5, is a promising anti-depressant candidate with limited side effect.
Collapse
Affiliation(s)
- Liangui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Ying Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shengtian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Satoru Otani
- Vision Institute, CNRS - INSERM - Sorbonne University, Paris 75012, France.
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
29
|
Gabbay V, Ely B, Vileisis J, Petrovic Z, Cicvaric A, Asnis G, Kim-Schulze S, Radulovic J. Immune and Neural Response to Acute Social Stress in Adolescent Humans and Rodents. RESEARCH SQUARE 2024:rs.3.rs-3845793. [PMID: 38405791 PMCID: PMC10889054 DOI: 10.21203/rs.3.rs-3845793/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Studies in adults have linked stress-related activation of the immune system to the manifestation of psychiatric conditions. Using a translational design, this study aimed to examine the impact of social stress on immune activity in adolescents and on neuronal activity in a preclinical mouse model. Participants were 31 adolescents (ages 12-19), including 25 with mood and anxiety symptoms. Whole-blood samples were collected before and after the Trier Social Stress Test (TSST), a stress-inducing public speaking task, then cultured for 6 hours in the presence and absence of the inflammatory endotoxin lipopolysaccharide (LPS). Effects of TSST and LPS on 41 immune biomarkers were examined using repeated-measures analysis of variance. Separately, juvenile (8-week-old) male mice were non-stressed or exposed to reminder social defeat then intraperitoneally injected with saline or LPS (n = 6/group). Brains were perfused and collected for immunohistochemistry and confocal microscopy at 0, 1, 6, and 24 hours post-injection. Activity was determined by the density of cFos-positive neurons in the paraventricular hypothalamus, paraventricular thalamus, and basolateral amygdala, regions known to show sustained activation to immunological challenge. Analyses in the adolescent study indicated a strong effect of LPS but no effects of TSST or TSST×LPS interaction on immune biomarkers. Similarly, reminder social defeat did not induce sustained neuronal activity changes comparable to LPS immunological challenge in juvenile mice. Our convergent findings across species suggest that the acute immune response to stress documented in adults is not present in youth. Thus, aging and chronicity effects may play an important role in the inflammatory response to acute psychosocial stress.
Collapse
|
30
|
Wayne CR, Karam AM, McInnis AL, Arms CM, Kaller MD, Maruska KP. Impacts of repeated social defeat on behavior and the brain in a cichlid fish. J Exp Biol 2023; 226:jeb246322. [PMID: 37909345 DOI: 10.1242/jeb.246322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Social defeat is a powerful experience leading to drastic changes in physiology and behavior, many of which are negative. For example, repeated social defeat in vertebrates results in reduced reproductive success, sickness and behavioral abnormalities that threaten individual survival and species persistence. However, little is known about what neural mechanisms are involved in determining whether an individual is resilient or susceptible to repeated social defeat stress. It also remains unknown whether exclusive use of reactive behaviors after repeated social defeat is maintained over time and impacts future behaviors during subsequent contests. We used a resident-intruder experiment in the African cichlid fish Astatotilapia burtoni to investigate the behavior and neural correlates of these two opposing groups. Behavior was quantified by watching fish during defeat trials and used to distinguish resilient and susceptible individuals. Both resilient and susceptible fish started with searching and freezing behaviors, with searching decreasing and freezing increasing after repeated social defeat. After a 4 day break period, resilient fish used both searching and freezing behaviors during a social defeat encounter with a new resident, while susceptible fish almost exclusively used freezing behaviors. By quantifying neural activation using pS6 in socially relevant brain regions, we identified differential neural activation patterns associated with resilient and susceptible fish and found nuclei that co-varied and may represent functional networks. These data provide the first evidence of specific conserved brain networks underlying social stress resilience and susceptibility in fishes.
Collapse
Affiliation(s)
- C Rose Wayne
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Ava M Karam
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Alora L McInnis
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Catherine M Arms
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Michael D Kaller
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
31
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
32
|
Tran I, Gellner AK. Long-term effects of chronic stress models in adult mice. J Neural Transm (Vienna) 2023; 130:1133-1151. [PMID: 36786896 PMCID: PMC10460743 DOI: 10.1007/s00702-023-02598-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders, such as major depression, anxiety disorders, and post-traumatic stress disorder, tend to be long-term conditions in whose development and maintenance stress are central pathogenic factors. Translational mouse models are widely used in neuropsychiatric research, exploiting social and non-social stressors to investigate the mechanisms underlying their detrimental effects. However, most studies focus on the short-term consequences of chronic stress, whereas only a few are interested in the long-term course. This is counterintuitive given the human conditions that preclinical models are designed to mimic. In this review, we have summarized the limited work to date on long-term effects of chronic stress in mice models. First, the different models are presented and a definition of short- vs. long-term sequelae is proposed. On this basis, behavioral, endocrine, and vegetative effects are addressed before examining data on cellular and molecular alterations in the brain. Finally, future directions for research on the long-term effects of stress are discussed.
Collapse
Affiliation(s)
- Inès Tran
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Kathrin Gellner
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
33
|
Koskinen MK, Laine M, Abdollahzadeh A, Gigliotta A, Mazzini G, Journée S, Alenius V, Trontti K, Tohka J, Hyytiä P, Sierra A, Hovatta I. Node of Ranvier remodeling in chronic psychosocial stress and anxiety. Neuropsychopharmacology 2023; 48:1532-1540. [PMID: 36949148 PMCID: PMC10425340 DOI: 10.1038/s41386-023-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
Differential expression of myelin-related genes and changes in myelin thickness have been demonstrated in mice after chronic psychosocial stress, a risk factor for anxiety disorders. To determine whether and how stress affects structural remodeling of nodes of Ranvier, another form of myelin plasticity, we developed a 3D reconstruction analysis of node morphology in C57BL/6NCrl and DBA/2NCrl mice. We identified strain-dependent effects of chronic social defeat stress on node morphology in the medial prefrontal cortex (mPFC) gray matter, including shortening of paranodes in C57BL/6NCrl stress-resilient and shortening of node gaps in DBA/2NCrl stress-susceptible mice compared to controls. Neuronal activity has been associated with changes in myelin thickness. To investigate whether neuronal activation is a mechanism influencing also node of Ranvier morphology, we used DREADDs to repeatedly activate the ventral hippocampus-to-mPFC pathway. We found reduced anxiety-like behavior and shortened paranodes specifically in stimulated, but not in the nearby non-stimulated axons. Altogether, our data demonstrate (1) nodal remodeling of the mPFC gray matter axons after chronic stress and (2) axon-specific regulation of paranodes in response to repeated neuronal activity in an anxiety-associated pathway. Nodal remodeling may thus contribute to aberrant circuit function associated with anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikaela Laine
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ali Abdollahzadeh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Adrien Gigliotta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Giulia Mazzini
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sarah Journée
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Varpu Alenius
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Bordes J, Miranda L, Reinhardt M, Narayan S, Hartmann J, Newman EL, Brix LM, van Doeselaar L, Engelhardt C, Dillmann L, Mitra S, Ressler KJ, Pütz B, Agakov F, Müller-Myhsok B, Schmidt MV. Automatically annotated motion tracking identifies a distinct social behavioral profile following chronic social defeat stress. Nat Commun 2023; 14:4319. [PMID: 37463994 PMCID: PMC10354203 DOI: 10.1038/s41467-023-40040-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Severe stress exposure increases the risk of stress-related disorders such as major depressive disorder (MDD). An essential characteristic of MDD is the impairment of social functioning and lack of social motivation. Chronic social defeat stress is an established animal model for MDD research, which induces a cascade of physiological and behavioral changes. Current markerless pose estimation tools allow for more complex and naturalistic behavioral tests. Here, we introduce the open-source tool DeepOF to investigate the individual and social behavioral profile in mice by providing supervised and unsupervised pipelines using DeepLabCut-annotated pose estimation data. Applying this tool to chronic social defeat in male mice, the DeepOF supervised and unsupervised pipelines detect a distinct stress-induced social behavioral pattern, which was particularly observed at the beginning of a novel social encounter and fades with time due to habituation. In addition, while the classical social avoidance task does identify the stress-induced social behavioral differences, both DeepOF behavioral pipelines provide a clearer and more detailed profile. Moreover, DeepOF aims to facilitate reproducibility and unification of behavioral classification by providing an open-source tool, which can advance the study of rodent individual and social behavior, thereby enabling biological insights and, for example, subsequent drug development for psychiatric disorders.
Collapse
Affiliation(s)
- Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Lucas Miranda
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Maya Reinhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Emily L Newman
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Larissa Dillmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Benno Pütz
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Felix Agakov
- Pharmatics Limited, Edinburgh, EH16 4UX, Scotland, UK
| | - Bertram Müller-Myhsok
- Research Group Statistical Genetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
35
|
Ryakiotakis E, Fousfouka D, Stamatakis A. Maternal neglect alters reward-anticipatory behavior, social status stability, and reward circuit activation in adult male rats. Front Neurosci 2023; 17:1201345. [PMID: 37521688 PMCID: PMC10375725 DOI: 10.3389/fnins.2023.1201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Adverse early life experiences affect neuronal growth and maturation of reward circuits that modify behavior under reward predicting conditions. Previous studies demonstrate that rats undergoing denial of expected reward in the form of maternal contact (DER-animal model of maternal neglect) during early post-natal life developed anhedonia, aggressive play-fight behaviors and aberrant prefrontal cortex structure and neurochemistry. Although many studies revealed social deficiency following early-life stress most reports focus on individual animal tasks. Thus, attention needs to be given on the social effects during group tasks in animals afflicted by early life adversity. Methods To investigate the potential impact of the DER experience on the manifestation of behavioral responses induced by natural rewards, we evaluated: 1) naïve adult male sexual preference and performance, and 2) anticipatory behavior during a group 2-phase food anticipation learning task composed of a context-dependent and a cue-dependent learning period. Results DER rats efficiently spent time in the vicinity of and initiated sexual intercourse with receptive females suggesting an intact sexual reward motivation and consummation. Interestingly, during the context-dependent phase of food anticipation training DER rats displayed a modified exploratory activity and lower overall reward-context association. Moreover, during the cue-dependent phase DER rats displayed a mild deficit in context-reward association while increased cue-dependent locomotion. Additionally, DER rats displayed unstable food access priority following food presentation. These abnormal behaviours were accompanied by overactivation of the ventral prefrontal cortex and nucleus accumbens, as assessed by pCREB levels. Conclusions/discussion Collectively, these data show that the neonatal DER experience resulted in adulthood in altered activation of the reward circuitry, interfered with the normal formation of context-reward associations, and disrupted normal reward access hierarchy formation. These findings provide additional evidence to the deleterious effects of early life adversity on reward system, social hierarchy formation, and brain function.
Collapse
Affiliation(s)
- Ermis Ryakiotakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Fousfouka
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- MSc Program in Molecular Biomedicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Pan Y, Mou Q, Huang Z, Chen S, Shi Y, Ye M, Shao M, Wang Z. Chronic social defeat alters behaviors and neuronal activation in the brain of female Mongolian gerbils. Behav Brain Res 2023; 448:114456. [PMID: 37116662 DOI: 10.1016/j.bbr.2023.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Chronic social defeat has been found to be stressful and to affect many aspects of the brain and behaviors in males. However, relatively little is known about its effects on females. In the present study, we examined the effects of repeated social defeat on social approach and anxiety-like behaviors as well as the neuronal activation in the brain of sexually naïve female Mongolian gerbils (Meriones unguiculatus). Our data indicate that repeated social defeats for 20 days reduced social approach and social investigation, but increased risk assessment or vigilance to an unfamiliar conspecific. Such social defeat experience also increased anxiety-like behavior and reduced locomotor activity. Using ΔFosB-immunoreactive (ΔFosB-ir) staining as a marker of neuronal activation in the brain, we found significant elevations by social defeat experience in the density of ΔFosB-ir stained neurons in several brain regions, including the prelimbic (PL) and infralimbic (IL) subnuclei of the prefrontal cortex (PFC), CA1 subfields (CA1) of the hippocampus, central subnuclei of the amygdala (CeA), the paraventricular nucleus (PVN), dorsomedial nucleus (DMH), and ventrolateral subdivision of the ventromedial nucleus (VMHvl) of the hypothalamus. As these brain regions have been implicated in social behaviors and stress responses, our data suggest that the specific patterns of neuronal activation in the brain may relate to the altered social and anxiety-like behaviors following chronic social defeat in female Mongolian gerbils.
Collapse
Affiliation(s)
- Yongliang Pan
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China.
| | - Qiuyue Mou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Zhexue Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Senyao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Yilei Shi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Mengfan Ye
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Mingqin Shao
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
37
|
Li H, Zhu X, Xu J, Li L, Kan W, Bao H, Xu J, Wang W, Yang Y, Chen P, Zou Y, Feng Y, Yang J, Du J, Wang G. The FXR mediated anti-depression effect of CDCA underpinned its therapeutic potentiation for MDD. Int Immunopharmacol 2023; 115:109626. [PMID: 36584576 DOI: 10.1016/j.intimp.2022.109626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Emerging evidence from animal and human studies has suggested that small microbial metabolites generated in the gut influence host mood and behavior. Our previous study reported that patients with major depressive disorder (MDD) reduced the abundance of genera Blautia and Eubacterium, the microbials critically regulating cholesterol and bile acid metabolism in the gut. In this study, we further demonstrated that the levels of plasma bile acid chenodeoxycholic acid (CDCA) were significantly lower in Chinese MDD patients (142) than in healthy subjects (148). Such low levels of plasma CDCA in MDD patients were rescued in remitters but not in nonremitters following antidepressant treatment. In a parallel animal study, Chronic Social Defeat Stress (CSDS) depressed mice reduced the plasma CDCA and expression level in prefrontal cortex (PFC) of bile acid receptor (FXR) protein, which is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. We found that CDCA treatment restored the level of FXR in the CSDS mice, suggesting the involvement of bile acid receptors in MDD. We observed that CDCA decreased the activity of the NLRP3 inflammasome and caspase-1 and subsequently increased the levels of phosphorylation and expression of PFC glutamate receptors (GluA1) in the PFC. In addition, CDCA showed antidepressant effects in the tests of sucrose preference, tail suspension, and forced swimming in CSDS mouse model of depression. Finally, in agreement with this idea, blocking these receptors by a FXR antagonist GS abolished CDCA-induced antidepressant effect. Moreover, CDCA treatment rescued the increase of IL-1β, IL-6, TNF α and IL-17, which also were blocked by GS. These results suggest that CDCA is a biomarker and target potentially important for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Haoran Li
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Jinjie Xu
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Lei Li
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Jiyi Xu
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Weiwei Wang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Yang Yang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Yuchuan Zou
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| | - Jing Du
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China; School of Medicine, Yunnan University, Kunming 650091, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China.
| |
Collapse
|
38
|
Ecological validity of social defeat stressors in mouse models of vulnerability and resilience. Neurosci Biobehav Rev 2023; 145:105032. [PMID: 36608919 DOI: 10.1016/j.neubiorev.2023.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Laboratory mouse models offer opportunities to bridge the gap between basic neuroscience and applied stress research. Here we consider the ecological validity of social defeat stressors in mouse models of emotional vulnerability and resilience. Reports identified in PubMed from 1980 to 2020 are reviewed for the ecological validity of social defeat stressors, sex of subjects, and whether results are discussed in terms of vulnerability alone, resilience alone, or both vulnerability and resilience. Most of the 318 reviewed reports (95%) focus on males, and many reports (71%) discuss vulnerability and resilience. Limited ecological validity is associated with increased vulnerability and decreased resilience. Elements of limited ecological validity include frequent and repeated exposure to defeat stressors without opportunities to avoid or escape from unfamiliar conspecifics that are pre-screened and selected for aggressive behavior. These elements ensure defeat and may be required to induce vulnerability, but they are not representative of naturalistic conditions. Research aimed at establishing causality is needed to determine whether ecologically valid stressors build resilience in both sexes of mice.
Collapse
|
39
|
von Mücke-Heim IA, Urbina-Treviño L, Bordes J, Ries C, Schmidt MV, Deussing JM. Introducing a depression-like syndrome for translational neuropsychiatry: a plea for taxonomical validity and improved comparability between humans and mice. Mol Psychiatry 2023; 28:329-340. [PMID: 36104436 PMCID: PMC9812782 DOI: 10.1038/s41380-022-01762-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Depressive disorders are the most burdensome psychiatric disorders worldwide. Although huge efforts have been made to advance treatment, outcomes remain unsatisfactory. Many factors contribute to this gridlock including suboptimal animal models. Especially limited study comparability and replicability due to imprecise terminology concerning depressive-like states are major problems. To overcome these issues, new approaches are needed. Here, we introduce a taxonomical concept for modelling depression in laboratory mice, which we call depression-like syndrome (DLS). It hinges on growing evidence suggesting that mice possess advanced socioemotional abilities and can display non-random symptom patterns indicative of an evolutionary conserved disorder-like phenotype. The DLS approach uses a combined heuristic method based on clinical depression criteria and the Research Domain Criteria to provide a biobehavioural reference syndrome for preclinical rodent models of depression. The DLS criteria are based on available, species-specific evidence and are as follows: (I) minimum duration of phenotype, (II) significant sociofunctional impairment, (III) core biological features, (IV) necessary depressive-like symptoms. To assess DLS presence and severity, we have designed an algorithm to ensure statistical and biological relevance of findings. The algorithm uses a minimum combined threshold for statistical significance and effect size (p value ≤ 0.05 plus moderate effect size) for each DLS criterion. Taken together, the DLS is a novel, biologically founded, and species-specific minimum threshold approach. Its long-term objective is to gradually develop into an inter-model validation standard and microframework to improve phenotyping methodology in translational research.
Collapse
Affiliation(s)
- Iven-Alex von Mücke-Heim
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany ,grid.419548.50000 0000 9497 5095Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Lidia Urbina-Treviño
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| | - Joeri Bordes
- grid.4372.20000 0001 2105 1091International Max Planck Research School for Translational Psychiatry, Munich, Germany ,grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Neurobiology of Stress Resilience, Munich, Germany
| | - Clemens Ries
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Mathias V. Schmidt
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Neurobiology of Stress Resilience, Munich, Germany
| | - Jan M. Deussing
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| |
Collapse
|
40
|
Short-Term Consequences of Single Social Defeat on Accumbal Dopamine and Behaviors in Rats. Biomolecules 2022; 13:biom13010035. [PMID: 36671420 PMCID: PMC9855991 DOI: 10.3390/biom13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to explore the consequences of a single exposure to a social defeat on dopamine release in the rat nucleus accumbens measured with a fast-scan cyclic voltammetry. We found that 24 h after a social defeat, accumbal dopamine responses, evoked by a high frequency electrical stimulation of the ventral tegmental area, were more profound in socially defeated rats in comparison with non-defeated control animals. The enhanced dopamine release was associated with the prolonged immobility time in the forced swim test. The use of the dopamine depletion protocol revealed no alteration in the reduction and recovery of the amplitude of dopamine release following social defeat stress. However, administration of dopamine D2 receptor antagonist, raclopride (2 mg/kg, i.p.), resulted in significant increase of the electrically evoked dopamine release in both groups of animals, nevertheless exhibiting less manifested effect in the defeated rats comparing to control animals. Taken together, our data demonstrated profound alterations in the dopamine transmission in the association with depressive-like behavior following a single exposure to stressful environment. These voltammetric findings pointed to a promising path for the identification of neurobiological mechanisms underlying stress-promoted behavioral abnormalities.
Collapse
|
41
|
Wang Y, Bai Y, Xiao X, Wang L, Wei G, Guo M, Song X, Tian Y, Ming D, Yang J, Zheng C. Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress. Cereb Cortex 2022; 32:5580-5596. [PMID: 35188969 DOI: 10.1093/cercor/bhac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
The excitatory neurons of the medial prefrontal cortex (mPFC) respond to social stimuli. However, little is known about how the neural activity is altered during social avoidance, and whether it could act as a target of low-intensity focused ultrasound stimulation (LIFUS) to rescue social deficits. The present study aimed to investigate the mechanisms of neuronal activities and inflammatory responses underlying the effect of LIFUS on social avoidance. We found that chronic LIFUS stimulation can effectively improve social avoidance in the defeated mice. Calcium imaging recordings by fiber photometry in the defeated mice showed inhibited ensemble activity during social behaviors. LIFUS instantaneously triggered the mPFC neuronal activities, and chronic LIFUS significantly enhanced their neuronal excitation related to social interactions. We further found that the excessive activation of microglial cells and the overexpression of the inflammation signaling, i.e. Toll-like receptors(TLR4)/nuclear factor-kappaB(NF-КB), in mPFC were significantly inhibited by LIFUS. These results suggest that the LIFUS may inhibit social avoidance behavior by reducing activation of the inflammatory response, increasing neuronal excitation, and protecting the integrity of the neuronal structure in the mPFC. Our findings raised the possibility of LIFUS being applied as novel neuromodulation for social avoidance treatment in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Yimeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xi Xiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Ling Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Ganjiang Wei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Mingkun Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, #92 Weijin Road, Tianjin 300072, China.,Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Jiajia Yang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| | - Chenguang Zheng
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China.,School of Precision Instruments and Optoelectronics Engineering, Department of Biomedical Engineering, Tianjin University, #92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
42
|
Medina-Rodriguez EM, Rice KC, Jope RS, Beurel E. Comparison of inflammatory and behavioral responses to chronic stress in female and male mice. Brain Behav Immun 2022; 106:180-197. [PMID: 36058417 PMCID: PMC9561002 DOI: 10.1016/j.bbi.2022.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating disease with a high worldwide prevalence. Despite its greater prevalence in women, male animals are used in most preclinical studies of depression even though there are many sex differences in key components of depression, such as stress responses and immune system functions. In the present study, we found that chronic restraint stress-induced depressive-like behaviors are quite similar in male and female mice, with both sexes displaying increased immobility time in the tail suspension test and reduced social interactions, and both sexes exhibited deficits in working and spatial memories. However, in contrast to the similar depressive-like behaviors developed by male and female mice in response to stress, they displayed different patterns of pro-inflammatory cytokine increases in the periphery and the brain, different changes in microglia, and different changes in the expression of Toll-like receptor 4 in response to stress. Treatment with (+)-naloxone, a Toll-like receptor 4 antagonist that previously demonstrated anti-depressant-like effects in male mice, was more efficacious in male than female mice in reducing the deleterious effects of stress, and its effects were not microbiome-mediated. Altogether, these results suggest differential mechanisms to consider in potential sex-specific treatments of depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
43
|
Helman TJ, Headrick JP, Vider J, Peart JN, Stapelberg NJC. Sex-specific behavioral, neurobiological, and cardiovascular responses to chronic social stress in mice. J Neurosci Res 2022; 100:2004-2027. [PMID: 36059192 DOI: 10.1002/jnr.25115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.,Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
44
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Intermittent voluntary wheel running promotes resilience to the negative consequences of repeated social defeat in mice. Physiol Behav 2022; 254:113916. [PMID: 35850205 DOI: 10.1016/j.physbeh.2022.113916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
A novel approach to reduce the incidence of substance use disorders is to promote resilience to stress using environmental resources such as physical exercise. In the present study we test the hypothesis that Voluntary Wheel Running (VWR) during adolescence blocks the negative consequences of stress induced by intermittent repeated social defeat (IRSD). Four groups of adolescent male C57BL/6 mice were employed in the experiment; two groups were exposed to VWR (1 h, 3 days/week) from postnatal day (PND) 21 until the first social defeat (PND 47), while the remaining two groups did not have access to activity wheels (controls). On PND 47, 50, 53 and 56 mice, who had performed VWR, were exposed to an episode of social defeat by a resident aggressive mouse (VWR+IRSD group) or allowed to explore an empty cage (VWR+EXPL group). The same procedure was performed with control mice that had not undergone VWR (CONTROL+IRSD and CONTROL+EXPL groups). On PND 57, all the mice performed the Elevated Plus Maze (EPM), Hole-Board, Social Interaction, Tail Suspension and Splash tests. After an interval of 3 weeks, all mice underwent a conditioned place preference (CPP) procedure with 1 mg/kg of cocaine. Exposure to VWR prevented the negative consequences of social stress in the EPM, splash test and CPP, since the VWR+IRSD group did not display anxiety- or depression-like effects or the potentiation of cocaine reward observed in the Control+IRSD group. Our results support the idea that physical exercise promotes resilience to stress and represents an excellent target in drug abuse prevention.
Collapse
Affiliation(s)
- C Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M A Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M P García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - M A Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
45
|
Role of sirtuin1 in impairments of emotion-related behaviors in mice with chronic mild unpredictable stress during adolescence. Physiol Behav 2022; 257:113971. [PMID: 36183852 DOI: 10.1016/j.physbeh.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
Long-term exposure to physical and/or psychosocial stress during early life and/or adolescence increases the risk of psychiatric disorders such as major depressive disorder and anxiety disorders. However, the molecular mechanisms underlying early stress-induced brain dysfunction are poorly understood. In the present study, mice at 4 weeks old were subjected to chronic mild unpredictable stress (CMUS) for 4 weeks, and subsequently to assays of emotion-related behaviors. Thereafter, they were sacrificed and their brains were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Mice with CMUS during adolescence showed despair behavior, anxiety-like behavior, social behavior deficits, and anhedonia in forced-swim, marble-burying, social interaction, and sucrose preference tests, respectively. Additionally, RT-qPCR revealed that the expression levels of sirtuin1 (SIRT1), a NAD+-dependent deacetylase that mediates stress responses, were down-regulated in the prefrontal cortex and hippocampus of mice with CMUS compared with control mice. Next, to investigate the pathophysiological role of decreased Sirt1 expression levels in stress-induced behavioral deficits, we assessed the effects of resveratrol, a pharmacological activator of SIRT1, in mice exposed to CMUS. Chronic treatment with resveratrol prevented -induced social behavior deficits and depression-like behaviors. These results suggest that CMUS during adolescence decreases Sirt1 expression in the brain, leading to deficits in emotional behavior. Accordingly, SIRT1 activators, such as resveratrol, may be preventive agents against abnormalities in emotional behavior following stress during an immature period.
Collapse
|
46
|
Mazor M, Brown S, Ciaunica A, Demertzi A, Fahrenfort J, Faivre N, Francken JC, Lamy D, Lenggenhager B, Moutoussis M, Nizzi MC, Salomon R, Soto D, Stein T, Lubianiker N. The Scientific Study of Consciousness Cannot and Should Not Be Morally Neutral. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:535-543. [PMID: 36170496 DOI: 10.1177/17456916221110222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A target question for the scientific study of consciousness is how dimensions of consciousness, such as the ability to feel pain and pleasure or reflect on one's own experience, vary in different states and animal species. Considering the tight link between consciousness and moral status, answers to these questions have implications for law and ethics. Here we point out that given this link, the scientific community studying consciousness may face implicit pressure to carry out certain research programs or interpret results in ways that justify current norms rather than challenge them. We show that because consciousness largely determines moral status, the use of nonhuman animals in the scientific study of consciousness introduces a direct conflict between scientific relevance and ethics-the more scientifically valuable an animal model is for studying consciousness, the more difficult it becomes to ethically justify compromises to its well-being for consciousness research. Finally, in light of these considerations, we call for a discussion of the immediate ethical corollaries of the body of knowledge that has accumulated and for a more explicit consideration of the role of ideology and ethics in the scientific study of consciousness.
Collapse
Affiliation(s)
- Matan Mazor
- Department of Psychological Sciences, Birkbeck, University of London.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London
| | - Simon Brown
- Department of Philosophy, Johns Hopkins University
| | - Anna Ciaunica
- Centre for Philosophy of Science, University of Lisbon
| | - Athena Demertzi
- Physiology of Cognition, GIGA Consciousness Research Unit, Université de Liège.,Fund for Scientific Research, Bruxelles, Belgium
| | - Johannes Fahrenfort
- Department of Psychology, University of Amsterdam.,Department of Experimental and Applied Psychology, Vrije Universiteit
| | - Nathan Faivre
- Centre for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology.,University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC
| | - Jolien C Francken
- Faculty of Philosophy, Theology and Religious Studies, Radboud University
| | - Dominique Lamy
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel.,School of Psychological Sciences, Tel Aviv University
| | | | - Michael Moutoussis
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London.,Max Planck-University College London Centre for Computational Psychiatry and Ageing Research, University College London
| | - Marie-Christine Nizzi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles.,Cognitive Science Program, Dartmouth College.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University
| | - Roy Salomon
- Gonda Multidisciplinary Brain Research Centre, Bar-Ilan University
| | - David Soto
- Basque Centre on Cognition, Brain and Language, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Timo Stein
- Department of Psychology, University of Amsterdam
| | - Nitzan Lubianiker
- School of Psychological Sciences, Tel Aviv University.,Sagol Brain Institute, Tel-Aviv Medical Centre, Tel Aviv, Israel
| |
Collapse
|
47
|
Sailer LL, Patel PP, Park AH, Moon J, Hanadari-Levy A, Ophir AG. Synergistic consequences of early-life social isolation and chronic stress impact coping and neural mechanisms underlying male prairie vole susceptibility and resilience. Front Behav Neurosci 2022; 16:931549. [PMID: 35957922 PMCID: PMC9358287 DOI: 10.3389/fnbeh.2022.931549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic stress can be challenging, lead to maladaptive coping strategies, and cause negative mental and physical health outcomes. Early-life adversity exposes developing young to physical or psychological experiences that risks surpassing their capacity to effectively cope, thereby impacting their lifetime physical and mental wellbeing. Sensitivity to stressful events, like social isolation, has the potential to magnify stress-coping. Chronic stress through social defeat is an established paradigm that models adverse early-life experiences and can trigger enduring alterations in behavioral and neural phenotypes. To assess the degree to which stress resilience and sensitivity stemming from early-life chronic stress impact sociability, we exposed male prairie voles to chronic social defeat stress (CSDS) during adolescence. We simultaneously exposed subjects to either social isolation (CSDS+Isol) or group housing (CSDS+Soc) during this crucial time of development. On PND41, all subjects underwent a social approach test to examine the immediate impact of isolation, CSDS, or their combined effects on sociability. Unlike the CSDS+Isol group which primarily displayed social avoidance, the CSDS+Soc group was split by individuals exhibiting susceptible or resilient stress phenotypes. Notably, the Control+Soc and CSDS+Soc animals and their cage-mates significantly gained body weight between PND31 and PND40, whereas the Control+Isol and CSDS+Isol animals did not. These results suggest that the effects of early-life stress may be mitigated by having access to social support. Vasopressin, oxytocin, and opioids and their receptors (avpr1a, oxtr, oprk1, oprm1, and oprd1) are known to modulate social and stress-coping behaviors in the lateral septum (LS). Therefore, we did an mRNA expression analysis with RT-qPCR of the avpr1a, oxtr, oprk1, oprm1, and oprd1 genes to show that isolation and CSDS, or their collective influence, can potentially differentially bias sensitivity of the LS to early-life stressors. Collectively, our study supports the impact and dimensionality of early-life adversity because the type (isolation vs. CSDS), duration (acute vs. chronic), and combination (isolation + CSDS) of stressors can dynamically alter behavioral and neural outcomes.
Collapse
|
48
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
49
|
Gilbert P, Basran JK, Raven J, Gilbert H, Petrocchi N, Cheli S, Rayner A, Hayes A, Lucre K, Minou P, Giles D, Byrne F, Newton E, McEwan K. Compassion Focused Group Therapy for People With a Diagnosis of Bipolar Affective Disorder: A Feasibility Study. Front Psychol 2022; 13:841932. [PMID: 35936292 PMCID: PMC9347420 DOI: 10.3389/fpsyg.2022.841932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Compassion focused therapy (CFT) is an evolutionary informed, biopsychosocial approach to mental health problems and therapy. It suggests that evolved motives (e.g., for caring, cooperating, competing) are major sources for the organisation of psychophysiological processes which underpin mental health problems. Hence, evolved motives can be targets for psychotherapy. People with certain types of depression are psychophysiologically orientated towards social competition and concerned with social status and social rank. These can give rise to down rank-focused forms of social comparison, sense of inferiority, worthlessness, lowered confidence, submissive behaviour, shame proneness and self-criticism. People with bipolar disorders also experience elevated aspects of competitiveness and up rank status evaluation. These shift processing to a sense of superiority, elevated confidence, energised behaviour, positive affect and social dominance. This is the first study to explore the feasibility of a 12 module CFT group, tailored to helping people with a diagnosis of bipolar disorder understand the impact of evolved competitive, status-regulating motivation on their mental states and the value of cultivating caring and compassion motives and their psychophysiological regulators. Methods Six participants with a history of bipolar disorder took part in a CFT group consisting of 12 modules (over 25 sessions) as co-collaborators to explore their personal experiences of CFT and potential processes of change. Assessment of change was measured via self-report, heart rate variability (HRV) and focus groups over three time points. Results Although changes in self-report scales between participants and across time were uneven, four of the six participants consistently showed improvements across the majority of self-report measures. Heart rate variability measures revealed significant improvement over the course of the therapy. Qualitative data from three focus groups revealed participants found CFT gave them helpful insight into: how evolution has given rise to a number of difficult problems for emotion regulation (called tricky brain) which is not one's fault; an evolutionary understanding of the nature of bipolar disorders; development of a compassionate mind and practices of compassion focused visualisations, styles of thinking and behaviours; addressing issues of self-criticism; and building a sense of a compassionate identity as a means of coping with life difficulties. These impacted their emotional regulation and social relationships. Conclusion Although small, the study provides evidence of feasibility, acceptability and engagement with CFT. Focus group analysis revealed that participants were able to switch from competitive focused to compassion focused processing with consequent improvements in mental states and social behaviour. Participants indicated a journey over time from 'intellectually' understanding the process of building a compassionate mind to experiencing a more embodied sense of compassion that had significant impacts on their orientation to (and working with) the psychophysiological processes of bipolar disorder.
Collapse
Affiliation(s)
- Paul Gilbert
- Centre for Compassion Research and Training, College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
- The Compassionate Mind Foundation, Derby, United Kingdom
| | - Jaskaran K. Basran
- Centre for Compassion Research and Training, College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
- The Compassionate Mind Foundation, Derby, United Kingdom
| | - Joanne Raven
- The Compassionate Mind Foundation, Derby, United Kingdom
| | - Hannah Gilbert
- The Compassionate Mind Foundation, Derby, United Kingdom
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Nicola Petrocchi
- Department of Economics and Social Sciences, John Cabot University, Rome, Italy
- Compassionate Mind ITALIA, Rome, Italy
| | - Simone Cheli
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Andrew Rayner
- The Compassionate Mind Foundation, Derby, United Kingdom
| | - Alison Hayes
- Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, United Kingdom
| | - Kate Lucre
- Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, United Kingdom
| | - Paschalina Minou
- Department of Philosophy, University College London, London, United Kingdom
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
| | - David Giles
- Lattice Coaching and Training, Chesterfield, United Kingdom
| | - Frances Byrne
- Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, United Kingdom
| | - Elizabeth Newton
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
| | - Kirsten McEwan
- Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
50
|
Liu D, Wang J, Chang L, Zhu Q, Jiang N, Azhar M, Zeng G. Effect of Qingyangshen glycosides on social defeat mice model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115253. [PMID: 35390471 DOI: 10.1016/j.jep.2022.115253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingyangshen (Cynanchum otophyllum C.K.Schneid.PI.Wilson.) is the folk medicine of Yunnan which is renowned for its use in the management of neuropsychiatric diseases. The isolated glycosides from Qingyangshen have demonstrated relief in the social defeat stress, however, mechanism of action has not yet been elucidated. AIM OF THE STUDY This study is aimed to elucidate the effect of Qingyangshen glycosides (QYS) on chronic social defeat stress (CSDS)-induced depression-like symptoms and the related mechanism. MATERIALS AND METHODS In mice, CSDS model was developed, and the effect of QYS was evaluated by observing the behavioral performance of these mice exposed to tasks related to depression-like activities. Moreover, microscopic pathological examinutesation was also done. Furthermore, the protein expressions related to social defeat stress were also determined to elucidate the possible underlying mechanism. RESULTS Our results indicated that QYS treatment reversed the CSDS-induced depressive-like behaviors as measured by the increased sucrose preference, open field activity, and social interactions among mice. The reversal of the morphological changes in the hippocampus of the CSDS mice was also noted. Additionally, QYS treatment also upregulated the silent mating type information regulation 2 homolog 1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), fibronectin III domain containing protein 5 (FNDC5), brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), and mitogen-activated protein kinase (MAPK) proteins. CONCLUSIONS Our study indicated that QYS had a good anti-social defeat stress effect on CSDS-induced depression in mice, mainly through SIRT1/PGC-1α/FNDC5/BDNF-TrkB signaling pathway activation.
Collapse
Affiliation(s)
- Dingding Liu
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jingru Wang
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lulu Chang
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qiang Zhu
- College of Pharmacy & Research Center for Pharmacodynamic Material Basis and Mechanism of Action, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Mudassar Azhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270, Pakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, 410331, China.
| |
Collapse
|