1
|
Capatina TF, Oatu A, Babasan C, Trifu S. Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies-A Narrative Review. Int J Mol Sci 2025; 26:4285. [PMID: 40362522 PMCID: PMC12072283 DOI: 10.3390/ijms26094285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients.
Collapse
Affiliation(s)
| | - Anamaria Oatu
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Casandra Babasan
- Department of Psychiatry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.O.); (C.B.)
| | - Simona Trifu
- Department of Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Chen YHE, Wong SM, So MM, Suen YN, Hui CL. Spurious autobiographical memories of psychosis: a dopamine-gated neuroplasticity account for relapse and treatment-resistant psychosis. Psychol Med 2025; 55:e14. [PMID: 40190096 PMCID: PMC12017373 DOI: 10.1017/s0033291724003027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 04/22/2025]
Abstract
Psychotic disorders are known to be associated with elevated dopamine synthesis; yet, nondopamine factors may underlie the manifestation of some psychotic symptoms that are nonresponsive to dopamine-blocking agents. One under-explored nondopamine mechanism is neuroplasticity. We propose an account of the course of psychotic symptoms based on the extensive evidence for dopamine facilitation of Hebbian synaptic plasticity in cortical and subcortical memory systems. The encoding of psychotic experiences in autobiographical memory (AM) is expected to be facilitated in the hyperdopaminergic state associated with acute psychosis. However, once such 'spurious AM of psychosis' (SAMP) is encoded, its persistence may become dependent more on synaptic factors than dopamine factors. Under this framework, the involuntary retrieval of residual SAMP is postulated to play a key role in mediating the reactivation of symptoms with similar contents, as often observed in patients during relapse. In contrast, with active new learning of normalizing experiences across diverse real-life contexts, supported by intact dopamine-mediated salience, well-integrated SAMP may undergo 'extinction', leading to remission. The key steps to the integration of SAMP across psychotic and nonpsychotic memories may correspond to one's 'recovery style', involving processes similar to the formation of 'non-believed memory' in nonclinical populations. The oversuppression of dopamine can compromise such processes. We synthesize this line of evidence into an updated dopamine-gated memory framework where neuroplasticity processes offer a parsimonious account for the recurrence, persistence, and progression of psychotic symptoms. This framework generates testable hypotheses relevant to clinical interventions.
Collapse
Affiliation(s)
- Yu Hai Eric Chen
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Orygen, Parkville, VIC 3052, Australia, 3 School of Clinical Medicine HKU
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Stephanie M.Y. Wong
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong SAR
| | - Melody M. So
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Yi Nam Suen
- School of Nursing, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Christy L.M. Hui
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
3
|
Schinz D, Neubauer A, Hippen R, Schulz J, Li HB, Thalhammer M, Schmitz-Koep B, Menegaux A, Wendt J, Ayyildiz S, Brandl F, Priller J, Uder M, Zimmer C, Hedderich DM, Sorg C. Claustrum Volumes Are Lower in Schizophrenia and Mediate Patients' Attentional Deficits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00350-1. [PMID: 39608754 DOI: 10.1016/j.bpsc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND While the last decade of extensive research revealed the prominent role of the claustrum for mammalian forebrain organization (i.e., widely distributed claustral-cortical circuits coordinate basic cognitive functions such as attention), it is poorly understood whether the claustrum is relevant for schizophrenia and related cognitive symptoms. We hypothesized that claustrum volumes are lower in schizophrenia and also that potentially lower volumes mediate patients' attention deficits. METHODS Based on T1-weighted magnetic resonance imaging, advanced automated claustrum segmentation, and attention symbol coding task in 90 patients with schizophrenia and 96 healthy control participants from 2 independent sites, the COBRE open-source database and Munich dataset, we compared total intracranial volume-normalized claustrum volumes and symbol coding task scores across groups via analysis of covariance and related variables via correlation and mediation analysis. RESULTS Patients had lower claustrum volumes of about 13% (p < .001, Hedges' g = 0.63), which not only correlated with (r = 0.24, p = .014) but also mediated lower symbol coding task scores (indirect effect ab = -1.30 ± 0.69; 95% CI, -3.73 to -1.04). Results were not confounded by age, sex, global and claustrum-adjacent gray matter changes, scanner site, smoking, and medication. CONCLUSIONS Results demonstrate lower claustrum volumes that mediate patients' attention deficits in schizophrenia. Data indicate the claustrum as being relevant for schizophrenia pathophysiology and cognitive functioning.
Collapse
Affiliation(s)
- David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany.
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig Maximilians University of Munich, Munich, Germany
| | - Rebecca Hippen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hongwei Bran Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sevilay Ayyildiz
- Anatomy Ph.D. Program, Graduate School of Health Sciences, Kocaeli University, Istanbul, Turkey
| | - Felix Brandl
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Thalhammer M, Schulz J, Scheulen F, Oubaggi MEM, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Avram M, Brandl F, Sorg C. Distinct Volume Alterations of Thalamic Nuclei Across the Schizophrenia Spectrum. Schizophr Bull 2024; 50:1208-1222. [PMID: 38577901 PMCID: PMC11349018 DOI: 10.1093/schbul/sbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormal thalamic nuclei volumes and their link to cognitive impairments have been observed in schizophrenia. However, whether and how this finding extends to the schizophrenia spectrum is unknown. We hypothesized a distinct pattern of aberrant thalamic nuclei volume across the spectrum and examined its potential associations with cognitive symptoms. STUDY DESIGN We performed a FreeSurfer-based volumetry of T1-weighted brain MRIs from 137 healthy controls, 66 at-risk mental state (ARMS) subjects, 89 first-episode psychosis (FEP) individuals, and 126 patients with schizophrenia to estimate thalamic nuclei volumes of six nuclei groups (anterior, lateral, ventral, intralaminar, medial, and pulvinar). We used linear regression models, controlling for sex, age, and estimated total intracranial volume, both to compare thalamic nuclei volumes across groups and to investigate their associations with positive, negative, and cognitive symptoms. STUDY RESULTS We observed significant volume alterations in medial and lateral thalamic nuclei. Medial nuclei displayed consistently reduced volumes across the spectrum compared to controls, while lower lateral nuclei volumes were only observed in schizophrenia. Whereas positive and negative symptoms were not associated with reduced nuclei volumes across all groups, higher cognitive scores were linked to lower volumes of medial nuclei in ARMS. In FEP, cognition was not linked to nuclei volumes. In schizophrenia, lower cognitive performance was associated with lower medial volumes. CONCLUSIONS Results demonstrate distinct thalamic nuclei volume reductions across the schizophrenia spectrum, with lower medial nuclei volumes linked to cognitive deficits in ARMS and schizophrenia. Data suggest a distinctive trajectory of thalamic nuclei abnormalities along the course of schizophrenia.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Scheulen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed El Mehdi Oubaggi
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Kirschner
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Felix Brandl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Sheffield JM, Brinen AP, Feola B, Heckers S, Corlett PR. Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100333. [PMID: 38952435 PMCID: PMC11215207 DOI: 10.1016/j.bpsgos.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 07/03/2024] Open
Abstract
Psychological treatments for persecutory delusions, particularly cognitive behavioral therapy for psychosis, are efficacious; however, mechanistic theories explaining why they work rarely bridge to the level of cognitive neuroscience. Predictive coding, a general brain processing theory rooted in cognitive and computational neuroscience, has increasing experimental support for explaining symptoms of psychosis, including the formation and maintenance of delusions. Here, we describe recent advances in cognitive behavioral therapy for psychosis-based psychotherapy for persecutory delusions, which targets specific psychological processes at the computational level of information processing. We outline how Bayesian learning models employed in predictive coding are superior to simple associative learning models for understanding the impact of cognitive behavioral interventions at the algorithmic level. We review hierarchical predictive coding as an account of belief updating rooted in prediction error signaling. We examine how this process is abnormal in psychotic disorders, garnering noisy sensory data that is made sense of through the development of overly strong delusional priors. We argue that effective cognitive behavioral therapy for psychosis systematically targets the way sensory data are selected, experienced, and interpreted, thus allowing for the strengthening of alternative beliefs. Finally, future directions based on these arguments are discussed.
Collapse
Affiliation(s)
- Julia M. Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aaron P. Brinen
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip R. Corlett
- Department of Psychiatry, Clinical Neuroscience Research Unit, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Szwajca M, Kazek G, Śmierciak N, Mizera J, Pomierny-Chamiolo L, Szwajca K, Biesaga B, Pilecki M. GDNF and miRNA-29a as biomarkers in the first episode of psychosis: uncovering associations with psychosocial factors. Front Psychiatry 2024; 15:1320650. [PMID: 38645418 PMCID: PMC11027163 DOI: 10.3389/fpsyt.2024.1320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Aim Schizophrenia involves complex interactions between biological and environmental factors, including childhood trauma, cognitive impairments, and premorbid adjustment. Predicting its severity and progression remains challenging. Biomarkers like glial cell line-derived neurotrophic factor (GDNF) and miRNA-29a may bridge biological and environmental aspects. The goal was to explore the connections between miRNAs and neural proteins and cognitive functioning, childhood trauma, and premorbid adjustment in the first episode of psychosis (FEP). Method This study included 19 FEP patients who underwent clinical evaluation with: the Childhood Trauma Questionnaire (CTQ), the Premorbid Adjustment Scale (PAS), the Positive and Negative Syndrome Scale (PANSS), and the Montreal Cognitive Assessment Scale (MoCA). Multiplex assays for plasma proteins were conducted with Luminex xMAP technology. Additionally, miRNA levels were quantitatively determined through RNA extraction, cDNA synthesis, and RT-qPCR on a 7500 Fast Real-Time PCR System. Results Among miRNAs, only miR-29a-3p exhibited a significant correlation with PAS-C scores (r = -0.513, p = 0.025) and cognitive improvement (r = -0.505, p = 0.033). Among the analyzed proteins, only GDNF showed correlations with MoCA scores at the baseline and after 3 months (r = 0.533, p = 0.0189 and r = 0.598, p = 0.007), cognitive improvement (r = 0.511, p = 0.025), and CTQ subtests. MIF concentrations correlated with the PAS-C subscale (r = -0.5670, p = 0.011). Conclusion GDNF and miR-29a-3p are promising as biomarkers for understanding and addressing cognitive deficits in psychosis. This study links miRNA and MIF to premorbid adjustment and reveals GDNF's unique role in connection with childhood trauma.
Collapse
Affiliation(s)
- Marta Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Śmierciak
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Józef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Krzysztof Szwajca
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Beata Biesaga
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Wengler K, Baker SC, Velikovskaya A, Fogelson A, Girgis RR, Reyes-Madrigal F, Lee S, de la Fuente-Sandoval C, Ojeil N, Horga G. Generalizability and Out-of-Sample Predictive Ability of Associations Between Neuromelanin-Sensitive Magnetic Resonance Imaging and Psychosis in Antipsychotic-Free Individuals. JAMA Psychiatry 2024; 81:198-208. [PMID: 37938847 PMCID: PMC10633403 DOI: 10.1001/jamapsychiatry.2023.4305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Importance The link between psychosis and dopaminergic dysfunction is established, but no generalizable biomarkers with clear potential for clinical adoption exist. Objective To replicate previous findings relating neuromelanin-sensitive magnetic resonance imaging (NM-MRI), a proxy measure of dopamine function, to psychosis severity in antipsychotic-free individuals in the psychosis spectrum and to evaluate the out-of-sample predictive ability of NM-MRI for psychosis severity. Design, Setting, and Participants This cross-sectional study recruited participants from 2019 to 2023 in the New York City area (main samples) and Mexico City area (external validation sample). The main samples consisted of 42 antipsychotic-free patients with schizophrenia, 53 antipsychotic-free individuals at clinical high risk for psychosis (CHR), and 52 matched healthy controls. An external validation sample consisted of 16 antipsychotic-naive patients with schizophrenia. Main Outcomes and Measures NM-MRI contrast within a subregion of the substantia nigra previously linked to psychosis severity (a priori psychosis region of interest [ROI]) and psychosis severity measured using the Positive and Negative Syndrome Scale (PANSS) in schizophrenia and the Structured Interview for Psychosis-Risk Syndromes (SIPS) in CHR. The cross-validated performance of linear support vector regression to predict psychosis severity across schizophrenia and CHR was assessed, and a final trained model was tested on the external validation sample. Results Of the 163 included participants, 76 (46.6%) were female, and the mean (SD) age was 29.2 (10.4) years. In the schizophrenia sample, higher PANSS positive total scores correlated with higher mean NM-MRI contrast in the psychosis ROI (t37 = 2.24, P = .03; partial r = 0.35; 95% CI, 0.05 to 0.55). In the CHR sample, no significant association was found between higher SIPS positive total score and NM-MRI contrast in the psychosis ROI (t48 = -0.55, P = .68; partial r = -0.08; 95% CI, -0.36 to 0.23). The 10-fold cross-validated prediction accuracy of psychosis severity was above chance in held-out test data (mean r = 0.305, P = .01; mean root-mean-square error [RMSE] = 1.001, P = .005). External validation prediction accuracy was also above chance (r = 0.422, P = .046; RMSE = 0.882, P = .047). Conclusions and Relevance This study provided a direct ROI-based replication of the in-sample association between NM-MRI contrast and psychosis severity in antipsychotic-free patients with schizophrenia. In turn, it failed to replicate such association in CHR individuals. Most critically, cross-validated machine-learning analyses provided a proof-of-concept demonstration that NM-MRI patterns can be used to predict psychosis severity in new data, suggesting potential for developing clinically useful tools.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Seth C. Baker
- New York State Psychiatric Institute, New York
- University at Buffalo Jacobs School of Medicine and Biological Sciences, Buffalo, New York
| | | | | | - Ragy R. Girgis
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry & Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
- Department of Biostatistics, Columbia University, New York, New York
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry & Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| |
Collapse
|
8
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Schulz J, Brandl F, Grothe MJ, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Priller J, Sorg C, Avram M. Basal-Forebrain Cholinergic Nuclei Alterations are Associated With Medication and Cognitive Deficits Across the Schizophrenia Spectrum. Schizophr Bull 2023; 49:1530-1541. [PMID: 37606273 PMCID: PMC10686329 DOI: 10.1093/schbul/sbad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS The cholinergic system is altered in schizophrenia. Particularly, patients' volumes of basal-forebrain cholinergic nuclei (BFCN) are lower and correlated with attentional deficits. It is unclear, however, if and how BFCN changes and their link to cognitive symptoms extend across the schizophrenia spectrum, including individuals with at-risk mental state for psychosis (ARMS) or during first psychotic episode (FEP). STUDY DESIGN To address this question, we assessed voxel-based morphometry (VBM) of structural magnetic resonance imaging data of anterior and posterior BFCN subclusters as well as symptom ratings, including cognitive, positive, and negative symptoms, in a large multi-site dataset (n = 4) comprising 68 ARMS subjects, 98 FEP patients (27 unmedicated and 71 medicated), 140 patients with established schizophrenia (SCZ; medicated), and 169 healthy controls. RESULTS In SCZ, we found lower VBM measures for the anterior BFCN, which were associated with the anticholinergic burden of medication and correlated with patients' cognitive deficits. In contrast, we found larger VBM measures for the posterior BFCN in FEP, which were driven by unmedicated patients and correlated at-trend with cognitive deficits. We found no BFCN changes in ARMS. Altered VBM measures were not correlated with positive or negative symptoms. CONCLUSIONS Results demonstrate complex (posterior vs. anterior BFCN) and non-linear (larger vs. lower VBM) differences in BFCN across the schizophrenia spectrum, which are specifically associated both with medication, including its anticholinergic burden, and cognitive symptoms. Data suggest an altered trajectory of BFCN integrity in schizophrenia, influenced by medication and relevant for cognitive symptoms.
Collapse
Affiliation(s)
- Julia Schulz
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Felix Brandl
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Nordio G, Easmin R, Giacomel A, Dipasquale O, Martins D, Williams S, Turkheimer F, Howes O, Veronese M, Jauhar S, Rogdaki M, McCutcheon R, Kaar S, Vano L, Rutigliano G, Angelescu I, Borgan F, D’Ambrosio E, Dahoun T, Kim E, Kim S, Bloomfield M, Egerton A, Demjaha A, Bonoldi I, Nosarti C, Maccabe J, McGuire P, Matthews J, Talbot PS. An automatic analysis framework for FDOPA PET neuroimaging. J Cereb Blood Flow Metab 2023; 43:1285-1300. [PMID: 37026455 PMCID: PMC10369152 DOI: 10.1177/0271678x231168687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 04/08/2023]
Abstract
In this study we evaluate the performance of a fully automated analytical framework for FDOPA PET neuroimaging data, and its sensitivity to demographic and experimental variables and processing parameters. An instance of XNAT imaging platform was used to store the King's College London institutional brain FDOPA PET imaging archive, alongside individual demographics and clinical information. By re-engineering the historical Matlab-based scripts for FDOPA PET analysis, a fully automated analysis pipeline for imaging processing and data quantification was implemented in Python and integrated in XNAT. The final data repository includes 892 FDOPA PET scans organized from 23 different studies. We found good reproducibility of the data analysis by the automated pipeline (in the striatum for the Kicer: for the controls ICC = 0.71, for the psychotic patients ICC = 0.88). From the demographic and experimental variables assessed, gender was found to most influence striatal dopamine synthesis capacity (F = 10.7, p < 0.001), with women showing greater dopamine synthesis capacity than men. Our automated analysis pipeline represents a valid resourse for standardised and robust quantification of dopamine synthesis capacity using FDOPA PET data. Combining information from different neuroimaging studies has allowed us to test it comprehensively and to validate its replicability and reproducibility performances on a large sample size.
Collapse
Affiliation(s)
- Giovanna Nordio
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Rubaida Easmin
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Steven Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Information Engineering (DEI), University of Padua, Padua, Italy
| | - and the FDOPA PET imaging working group:
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, UK
- Department of Information Engineering (DEI), University of Padua, Padua, Italy
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- COMPASS Pathways plc, London, UK
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Division of Psychiatry, Faculty of Brain Sciences, University College of London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosicences, King’s College London, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Luke Vano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Ilinca Angelescu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- COMPASS Pathways plc, London, UK
| | - Enrico D’Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Tarik Dahoun
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Imperial College London, London, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Micheal Bloomfield
- Division of Psychiatry, Faculty of Brain Sciences, University College of London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Arsime Demjaha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neurosicences, King’s College London, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - James Maccabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London, UK
| | - Julian Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peter S Talbot
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Tabrisi R, Harun-Rashid MD, Montero J, Venizelos N, Msghina M. Clozapine but not lithium reverses aberrant tyrosine uptake in patients with bipolar disorder. Psychopharmacology (Berl) 2023; 240:1667-1676. [PMID: 37318540 PMCID: PMC10349740 DOI: 10.1007/s00213-023-06397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
RATIONALE Availability of the dopamine and noradrenaline precursor tyrosine is critical for normal functioning, and deficit in tyrosine transport across cell membrane and the blood-brain barrier has been reported in bipolar disorder and schizophrenia. Clozapine and lithium are two psychoactive agents used to treat psychosis, mood disorders and suicidal behavior, but their mechanism of action remains largely unknown. OBJECTIVE To characterize immediate and delayed differences in tyrosine uptake between healthy controls (HC) and bipolar patients (BP) and see if these differences could be normalized by either clozapine, lithium or both. A second objective was to see if clozapine and lithium have additive, antagonistic or synergistic effects in this. METHOD Fibroblasts from five HC and five BP were incubated for 5 min or 6 h with clozapine, lithium, or combination of both. Radioactive labelled tyrosine was used to quantify tyrosine membrane transport. RESULTS There was significantly reduced tyrosine uptake at baseline in BP compared to HC, a deficit that grew with increasing incubation time. Clozapine selectively increased tyrosine uptake in BP and abolished the deficit seen under baseline conditions, while lithium had no such effect. Combination treatment with clozapine and lithium was less effective than when clozapine was used alone. CONCLUSIONS There was significant deficit in tyrosine transport in BP compared to HC that was reversed by clozapine but not lithium. Clozapine was more effective when used alone than when added together with lithium. Potential clinical implications of this will be discussed.
Collapse
Affiliation(s)
- R Tabrisi
- Department of Plastic Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - M D Harun-Rashid
- School of Health Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - J Montero
- School of Health Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - N Venizelos
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - M Msghina
- Department of Psychiatry, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Zorlu N, Bayrakçı A, Karakılıç M, Zalesky A, Seguin C, Tian Y, Gülyüksel F, Yalınçetin B, Oral E, Gelal F, Bora E. Abnormal Structural Network Communication Reflects Cognitive Deficits in Schizophrenia. Brain Topogr 2023; 36:294-304. [PMID: 36971857 DOI: 10.1007/s10548-023-00954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
Schizophrenia has long been thought to be a disconnection syndrome and several previous studies have reported widespread abnormalities in white matter tracts in individuals with schizophrenia. Furthermore, reductions in structural connectivity may also impair communication between anatomically unconnected pairs of brain regions, potentially impacting global signal traffic in the brain. Therefore, we used different communication models to examine direct and indirect structural connections (polysynaptic) communication in large-scale brain networks in schizophrenia. Diffusion-weighted magnetic resonance imaging scans were acquired from 62 patients diagnosed with schizophrenia and 35 controls. In this study, we used five network communication models including, shortest paths, navigation, diffusion, search information and communicability to examine polysynaptic communication in large-scale brain networks in schizophrenia. We showed less efficient communication between spatially widespread brain regions particulary encompassing cortico-subcortical basal ganglia network in schizophrenia group relative to controls. Then, we also examined whether reduced communication efficiency was related to clinical symptoms in schizophrenia group. Among different measures of communication efficiency, only navigation efficiency was associated with global cognitive impairment across multiple cognitive domains including verbal learning, processing speed, executive functions and working memory, in individuals with schizophrenia. We did not find any association between communication efficiency measures and positive or negative symptoms within the schizophrenia group. Our findings are important for improving our mechanistic understanding of neurobiological process underlying cognitive symptoms in schizophrenia.
Collapse
|
13
|
Ferreira MD, Duarte J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020678. [PMID: 36840000 PMCID: PMC9959474 DOI: 10.3390/pharmaceutics15020678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Orally administered antipsychotic drugs are the first-line treatment for psychotic disorders, such as schizophrenia and bipolar disorder. Nevertheless, adverse drug reactions jeopardize clinical outcomes, resulting in patient non-compliance. The design formulation strategies for enhancing brain drug delivery has been a major challenge, mainly due to the restrictive properties of the blood-brain barrier. However, recent pharmacokinetic and pharmacodynamic in vivo assays confirmed the advantage of the intranasal route when compared to oral and intravenous administration, as it allows direct nose-to-brain drug transport via neuronal pathways, reducing systemic side effects and maximizing therapeutic outcomes. In addition, the incorporation of antipsychotic drugs into nanosystems such as polymeric nanoparticles, polymeric mixed micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanoemulgels, nanosuspensions, niosomes and spanlastics, has proven to be quite promising. The developed nanosystems, having a small and homogeneous particle size (ideal for nose-to-brain delivery), high encapsulation efficiency and good stability, resulted in improved brain bioavailability and therapeutic-like effects in animal models. Hence, although it is essential to continue research in this field, the intranasal delivery of nanosystems for the treatment of schizophrenia, bipolar disorder and other related disorders has proven to be quite promising, opening a path for future therapies with higher efficacy.
Collapse
Affiliation(s)
- Maria Daniela Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Duarte
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.C.P.-S.); or (P.C.P.)
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (A.C.P.-S.); or (P.C.P.)
| |
Collapse
|
14
|
Brandl F, Knolle F, Avram M, Leucht C, Yakushev I, Priller J, Leucht S, Ziegler S, Wunderlich K, Sorg C. Negative symptoms, striatal dopamine and model-free reward decision-making in schizophrenia. Brain 2023; 146:767-777. [PMID: 35875972 DOI: 10.1093/brain/awac268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Negative symptoms, such as lack of motivation or social withdrawal, are highly prevalent and debilitating in patients with schizophrenia. Underlying mechanisms of negative symptoms are incompletely understood, thereby preventing the development of targeted treatments. We hypothesized that in patients with schizophrenia during psychotic remission, impaired influences of both model-based and model-free reward predictions on decision-making ('reward prediction influence', RPI) underlie negative symptoms. We focused on psychotic remission, because psychotic symptoms might confound reward-based decision-making. Moreover, we hypothesized that impaired model-based/model-free RPIs depend on alterations of both associative striatum dopamine synthesis and storage (DSS) and executive functioning. Both factors influence RPI in healthy subjects and are typically impaired in schizophrenia. Twenty-five patients with schizophrenia with pronounced negative symptoms during psychotic remission and 24 healthy controls were included in the study. Negative symptom severity was measured by the Positive and Negative Syndrome Scale negative subscale, model-based/model-free RPI by the two-stage decision task, associative striatum DSS by 18F-DOPA positron emission tomography and executive functioning by the symbol coding task. Model-free RPI was selectively reduced in patients and associated with negative symptom severity as well as with reduced associative striatum DSS (in patients only) and executive functions (both in patients and controls). In contrast, model-based RPI was not altered in patients. Results provide evidence for impaired model-free reward prediction influence as a mechanism for negative symptoms in schizophrenia as well as for reduced associative striatum dopamine and executive dysfunction as relevant factors. Data suggest potential treatment targets for patients with schizophrenia and pronounced negative symptoms.
Collapse
Affiliation(s)
- Felix Brandl
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Franziska Knolle
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Psychiatry, University of Cambridge, Cambridge CB20SZ, UK
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Claudia Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Neuropsychiatry, Charité-Universitätsmedizin Berlin, and DZNE, Berlin, 10117, Germany.,UK DRI at University of Edinburgh, Edinburgh EH16 4SB, UK.,IoPPN, King's College London, London SE5 8AF, UK
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Psychosis studies, King's College London, London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Klaus Wunderlich
- Department of Psychology, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Christian Sorg
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| |
Collapse
|
15
|
Wang S, Zhang F, Huang P, Hong H, Jiaerken Y, Yu X, Zhang R, Zeng Q, Zhang Y, Kikinis R, Rathi Y, Makris N, Lou M, Pasternak O, Zhang M, O'Donnell LJ. Superficial white matter microstructure affects processing speed in cerebral small vessel disease. Hum Brain Mapp 2022; 43:5310-5325. [PMID: 35822593 PMCID: PMC9812245 DOI: 10.1002/hbm.26004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.
Collapse
Affiliation(s)
- Shuyue Wang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Peiyu Huang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Hui Hong
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Yeerfan Jiaerken
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Xinfeng Yu
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ruiting Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Qingze Zeng
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Yao Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ron Kikinis
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric AnalysisMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Min Lou
- Department of Neurologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | - Ofer Pasternak
- Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Minming Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineChina
| | | |
Collapse
|
16
|
Schulz J, Zimmermann J, Sorg C, Menegaux A, Brandl F. Magnetic resonance imaging of the dopamine system in schizophrenia - A scoping review. Front Psychiatry 2022; 13:925476. [PMID: 36203848 PMCID: PMC9530597 DOI: 10.3389/fpsyt.2022.925476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, aberrant dopamine transmission has been proposed to play a central role in schizophrenia pathophysiology. These theories are supported by human in vivo molecular imaging studies of dopamine transmission, particularly positron emission tomography. However, there are several downsides to such approaches, for example limited spatial resolution or restriction of the measurement to synaptic processes of dopaminergic neurons. To overcome these limitations and to measure complementary aspects of dopamine transmission, magnetic resonance imaging (MRI)-based approaches investigating the macrostructure, metabolism, and connectivity of dopaminergic nuclei, i.e., substantia nigra pars compacta and ventral tegmental area, can be employed. In this scoping review, we focus on four dopamine MRI methods that have been employed in patients with schizophrenia so far: neuromelanin MRI, which is thought to measure long-term dopamine function in dopaminergic nuclei; morphometric MRI, which is assumed to measure the volume of dopaminergic nuclei; diffusion MRI, which is assumed to measure fiber-based structural connectivity of dopaminergic nuclei; and resting-state blood-oxygenation-level-dependent functional MRI, which is thought to measure functional connectivity of dopaminergic nuclei based on correlated blood oxygenation fluctuations. For each method, we describe the underlying signal, outcome measures, and downsides. We present the current state of research in schizophrenia and compare it to other disorders with either similar (psychotic) symptoms, i.e., bipolar disorder and major depressive disorder, or dopaminergic abnormalities, i.e., substance use disorder and Parkinson's disease. Finally, we discuss overarching issues and outline future research questions.
Collapse
Affiliation(s)
- Julia Schulz
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Wong SMY, Suen YN, Wong CWC, Chan SKW, Hui CLM, Chang WC, Lee EHM, Cheng CPW, Ho GCL, Lo GG, Leung EYL, Yeung PKMA, Chen S, Honer WG, Mak HKF, Sham PC, McKenna PJ, Pomarol-Clotet E, Veronese M, Howes OD, Chen EYH. Striatal dopamine synthesis capacity and its association with negative symptoms upon resolution of positive symptoms in first-episode schizophrenia and delusional disorder. Psychopharmacology (Berl) 2022; 239:2133-2141. [PMID: 35211769 DOI: 10.1007/s00213-022-06088-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
RATIONALE How striatal dopamine synthesis capacity (DSC) contributes to the pathogenesis of negative symptoms in first-episode schizophrenia (SZ) and delusional disorder (DD) has seldom been explored. As negative symptoms during active psychotic episodes can be complicated by secondary influences, such as positive symptoms, longitudinal investigations may help to clarify the relationship between striatal DSC and negative symptoms and differentiate between primary and secondary negative symptoms. OBJECTIVE A longitudinal study was conducted to examine whether baseline striatal DSC would be related to negative symptoms at 3 months in first-episode SZ and DD patients. METHODS Twenty-three first-episode age- and gender-matched patients (11 DD and 12 SZ) were consecutively recruited through an early intervention service for psychosis in Hong Kong. Among them, 19 (82.6%) patients (9 DD and 10 SZ) were followed up at 3 months. All patients received an 18F-DOPA PET/MR scan at baseline. RESULTS Baseline striatal DSC (Kocc;30-60) was inversely associated with negative symptoms at 3 months in first-episode SZ patients (rs = - 0.80, p = 0.010). This association remained in SZ patients even when controlling for baseline negative, positive, and depressive symptoms, as well as cumulative antipsychotic dosage (β = - 0.69, p = 0.012). Such associations were not observed in first-episode DD patients. Meanwhile, the severity of negative symptoms at 3 months was associated with more positive symptoms in DD patients (rs = 0.74, p = 0.010) and not in SZ patients. CONCLUSIONS These findings highlight the role of striatal DSC in negative symptoms upon resolution of active psychotic episodes among first-episode SZ patients. Baseline striatal dopamine activity may inform future symptom expression with important treatment implications.
Collapse
Affiliation(s)
- Stephanie M Y Wong
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Y N Suen
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Charlotte W C Wong
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Sherry K W Chan
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Christy L M Hui
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China
| | - W C Chang
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Edwin H M Lee
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Calvin P W Cheng
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Garrett C L Ho
- Hong Kong Sanatorium & Hospital, Happy Valley, Pokfulam, Hong Kong, China
| | - Gladys Goh Lo
- Hong Kong Sanatorium & Hospital, Happy Valley, Pokfulam, Hong Kong, China
| | - Eric Y L Leung
- Hong Kong Sanatorium & Hospital, Happy Valley, Pokfulam, Hong Kong, China
| | - Paul K M Au Yeung
- Hong Kong Sanatorium & Hospital, Happy Valley, Pokfulam, Hong Kong, China
| | - Sirong Chen
- Hong Kong Sanatorium & Hospital, Happy Valley, Pokfulam, Hong Kong, China
| | - William G Honer
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada.,British Columbia Institute of Mental Health and Substance Use Services, Vancouver, Canada
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - P C Sham
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Peter J McKenna
- FIDMAG Hermanas Hospitalarias Research Foundation, Barcelona, Spain
| | | | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Oliver D Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Eric Y H Chen
- Department of Psychiatry, The University of Hong Kong, 2/F New Clinical Building, Queen Mary Hospital, Pokfulam Road, Pokfulam, Hong Kong, China. .,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
18
|
González-Rodríguez A, Seeman MV. Differences between delusional disorder and schizophrenia: A mini narrative review. World J Psychiatry 2022; 12:683-692. [PMID: 35663297 PMCID: PMC9150033 DOI: 10.5498/wjp.v12.i5.683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Psychotic syndromes are divided into affective and non-affective forms. Even among the non-affective forms, substantial differences exist. The aim of this relatively brief review is to synthesize what is known about the differences between two non-affective psychoses, schizophrenia and delusional disorder (DD), with respect to clinical, epidemiological, sociodemographic, and treatment response characteristics. A PubMed literature search revealed the following: in schizophrenia, hallucinations, negative symptoms and cognitive symptoms are prominent. They are rare in DD. Compared to schizophrenia patients, individuals with DD maintain relatively good function, and their delusions are believable; many are beliefs that are widely held in the general population. Treatments are generally similar in these two forms of psychosis, with the exception that antidepressants are used more frequently in DD and, for acute treatment, effective antipsychotic doses are lower in DD than in schizophrenia. It is with the hope that the contrasts between these two conditions will aid in the provision of safe and effective treatment for both that this review has been conducted.
Collapse
Affiliation(s)
- Alexandre González-Rodríguez
- Department of Mental Health, Mutua Terrassa University Hospital, University of Barcelona, Barcelona 08280, Spain
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto M5P 3L6, Ontario, Canada
| |
Collapse
|
19
|
Katrinli S, Maihofer AX, Wani AH, Pfeiffer JR, Ketema E, Ratanatharathorn A, Baker DG, Boks MP, Geuze E, Kessler RC, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Logue MW, Nievergelt CM, Smith AK, Uddin M. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol Psychiatry 2022; 27:1720-1728. [PMID: 34992238 PMCID: PMC9106882 DOI: 10.1038/s41380-021-01398-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Epigenetic factors modify the effects of environmental factors on biological outcomes. Identification of epigenetic changes that associate with PTSD is therefore a crucial step in deciphering mechanisms of risk and resilience. In this study, our goal is to identify epigenetic signatures associated with PTSD symptom severity (PTSS) and changes in PTSS over time, using whole blood DNA methylation (DNAm) data (MethylationEPIC BeadChip) of military personnel prior to and following combat deployment. A total of 429 subjects (858 samples across 2 time points) from three male military cohorts were included in the analyses. We conducted two different meta-analyses to answer two different scientific questions: one to identify a DNAm profile of PTSS using a random effects model including both time points for each subject, and the other to identify a DNAm profile of change in PTSS conditioned on pre-deployment DNAm. Four CpGs near four genes (F2R, CNPY2, BAIAP2L1, and TBXAS1) and 88 differentially methylated regions (DMRs) were associated with PTSS. Change in PTSS after deployment was associated with 15 DMRs, of those 2 DMRs near OTUD5 and ELF4 were also associated with PTSS. Notably, three PTSS-associated CpGs near F2R, BAIAP2L1 and TBXAS1 also showed nominal evidence of association with change in PTSS. This study, which identifies PTSD-associated changes in genes involved in oxidative stress and immune system, provides novel evidence that epigenetic differences are associated with PTSS.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Agaz H Wani
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Marco P Boks
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, The Netherlands
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - Eric Vermetten
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, ZA, Leiden, The Netherlands
- Research Center, Netherlands Defense Department, UT, AA Utrecht, The Netherlands
- Arq Psychotrauma Expert Group, XE, Diemen, The Netherlands
| | - Mark W Logue
- National Center for PTSD, Behavioral Science Division at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Veterans Affairs Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
20
|
Dopaminergic Activity in Antipsychotic-Naïve Patients Assessed With Positron Emission Tomography Before and After Partial Dopamine D 2 Receptor Agonist Treatment: Association With Psychotic Symptoms and Treatment Response. Biol Psychiatry 2022; 91:236-245. [PMID: 34743917 DOI: 10.1016/j.biopsych.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine activity has been associated with the response to antipsychotic treatment. Our study used a four-parameter model to test the association between the striatal decarboxylation rate of 18F-DOPA to 18F-dopamine (k3) and the effect of treatment on psychotic symptoms in antipsychotic-naïve patients with first-episode psychosis. We further explored the effect of treatment with a partial dopamine D2 receptor agonist (aripiprazole) on k3 and dopamine synthesis capacity (DSC) determined by the four-parameter model and by the conventional tissue reference method. METHODS Sixty-two individuals (31 patients and 31 control subjects) underwent 18F-DOPA positron emission tomography at baseline, and 15 patients were re-examined after 6 weeks. Clinical re-examinations were completed after 6 weeks (n = 28) and 6 months (n = 15). Symptoms were evaluated with the Positive and Negative Syndrome Scale. RESULTS High baseline decarboxylation rates (k3) were associated with more positive symptoms at baseline (p < .001) and with symptom improvement after 6 weeks (p = .006). Subregion analyses showed that baseline k3 for the putamen (p = .003) and nucleus accumbens (p = .013) and DSC values for the nucleus accumbens (p = .003) were associated with psychotic symptoms. The tissue reference method yielded no associations between DSC and symptoms or symptom improvement. Neither method revealed any effects of group or treatment on average magnitudes of k3 or DSC, whereas changes in dopamine synthesis were correlated with higher baseline values, implying a potential effect of treatment. CONCLUSIONS Striatal decarboxylation rate at baseline was associated with psychotic symptoms and treatment response. The strong association between k3 and treatment effect potentially implicate on new treatment strategies.
Collapse
|
21
|
Falkai P, Koutsouleris N, Bertsch K, Bialas M, Binder E, Bühner M, Buyx A, Cai N, Cappello S, Ehring T, Gensichen J, Hamann J, Hasan A, Henningsen P, Leucht S, Möhrmann KH, Nagelstutz E, Padberg F, Peters A, Pfäffel L, Reich-Erkelenz D, Riedl V, Rueckert D, Schmitt A, Schulte-Körne G, Scheuring E, Schulze TG, Starzengruber R, Stier S, Theis FJ, Winkelmann J, Wurst W, Priller J. Concept of the Munich/Augsburg Consortium Precision in Mental Health for the German Center of Mental Health. Front Psychiatry 2022; 13:815718. [PMID: 35308871 PMCID: PMC8930853 DOI: 10.3389/fpsyt.2022.815718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
The Federal Ministry of Education and Research (BMBF) issued a call for a new nationwide research network on mental disorders, the German Center of Mental Health (DZPG). The Munich/Augsburg consortium was selected to participate as one of six partner sites with its concept "Precision in Mental Health (PriMe): Understanding, predicting, and preventing chronicity." PriMe bundles interdisciplinary research from the Ludwig-Maximilians-University (LMU), Technical University of Munich (TUM), University of Augsburg (UniA), Helmholtz Center Munich (HMGU), and Max Planck Institute of Psychiatry (MPIP) and has a focus on schizophrenia (SZ), bipolar disorder (BPD), and major depressive disorder (MDD). PriMe takes a longitudinal perspective on these three disorders from the at-risk stage to the first-episode, relapsing, and chronic stages. These disorders pose a major health burden because in up to 50% of patients they cause untreatable residual symptoms, which lead to early social and vocational disability, comorbidities, and excess mortality. PriMe aims at reducing mortality on different levels, e.g., reducing death by psychiatric and somatic comorbidities, and will approach this goal by addressing interdisciplinary and cross-sector approaches across the lifespan. PriMe aims to add a precision medicine framework to the DZPG that will propel deeper understanding, more accurate prediction, and personalized prevention to prevent disease chronicity and mortality across mental illnesses. This framework is structured along the translational chain and will be used by PriMe to innovate the preventive and therapeutic management of SZ, BPD, and MDD from rural to urban areas and from patients in early disease stages to patients with long-term disease courses. Research will build on platforms that include one on model systems, one on the identification and validation of predictive markers, one on the development of novel multimodal treatments, one on the regulation and strengthening of the uptake and dissemination of personalized treatments, and finally one on testing of the clinical effectiveness, utility, and scalability of such personalized treatments. In accordance with the translational chain, PriMe's expertise includes the ability to integrate understanding of bio-behavioral processes based on innovative models, to translate this knowledge into clinical practice and to promote user participation in mental health research and care.
Collapse
Affiliation(s)
- Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Katja Bertsch
- Department of Psychology, LMU Munich, Munich, Germany
| | - Mirko Bialas
- Münchner Psychiatrie-Erfahrene e.V., Munich, Germany
| | | | - Markus Bühner
- Department of Psychology, LMU Munich, Munich, Germany
| | - Alena Buyx
- Institute of History and Ethics in Medicine, Technical University Munich, Munich, Germany
| | - Na Cai
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
| | | | - Thomas Ehring
- Department of Psychology, LMU Munich, Munich, Germany
| | | | - Johannes Hamann
- Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Peter Henningsen
- Department of Psychosomatic Medicine and Psychotherapy, Technical University Munich, Munich, Germany
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | | | | | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Center Munich, Munich, Germany
| | - Lea Pfäffel
- Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany
| | - Daniela Reich-Erkelenz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany
| | - Valentin Riedl
- Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Daniel Rueckert
- Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | | | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany
| | | | - Susanne Stier
- Münchner Psychiatrie-Erfahrene e.V., Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Technical University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Centre for Clinical Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Bekhbat M, Treadway MT, Felger JC. Inflammation as a Pathophysiologic Pathway to Anhedonia: Mechanisms and Therapeutic Implications. Curr Top Behav Neurosci 2022; 58:397-419. [PMID: 34971449 DOI: 10.1007/7854_2021_294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Anhedonia, characterized by a lack of motivation, interest, or ability to experience pleasure, is a prominent symptom of depression and other psychiatric disorders and has been associated with poor response to standard therapies. One pathophysiologic pathway receiving increased attention for its potential role in anhedonia is inflammation and its effects on the brain. Exogenous administration of inflammatory stimuli to humans and laboratory animals has reliably been found to affect neurotransmitters and neurocircuits involved in reward processing, including the ventral striatum and ventromedial prefrontal cortex, in association with reduced motivation. Moreover, a rich literature including meta-analyses describes increased inflammation in a significant proportion of patients with depression and other psychiatric illnesses involving anhedonia, as evident by elevated inflammatory cytokines, acute phase proteins, chemokines, and adhesion molecules in both the periphery and central nervous system. This endogenous inflammation may arise from numerous sources including stress, obesity or metabolic dysfunction, genetics, and lifestyle factors, many of which are also risk factors for psychiatric illness. Consistent with laboratory studies involving exogenous administration of peripheral inflammatory stimuli, neuroimaging studies have further confirmed that increased endogenous inflammation in depression is associated with decreased activation of and reduced functional connectivity within reward circuits involving ventral striatum and ventromedial prefrontal cortex in association with anhedonia. Here, we review recent evidence of relationships between inflammation and anhedonia, while highlighting translational and mechanistic work describing the impact of inflammation on synthesis, release, and reuptake of neurotransmitters like dopamine and glutamate that affects circuits to drive motivational deficits. We will then present insight into novel pharmacological strategies that target either inflammation or its downstream effects on the brain and behavior. The meaningful translation of these concepts through appropriately designed trials targeting therapies for psychiatric patients with high inflammation and transdiagnostic symptoms of anhedonia is also discussed.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
23
|
Li P, Zhao SW, Wu XS, Zhang YJ, Song L, Wu L, Liu XF, Fu YF, Wu D, Wu WJ, Zhang YH, Yin H, Cui LB, Guo F. The Association Between Lentiform Nucleus Function and Cognitive Impairments in Schizophrenia. Front Hum Neurosci 2021; 15:777043. [PMID: 34744673 PMCID: PMC8566813 DOI: 10.3389/fnhum.2021.777043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction: Cognitive decline is the core schizophrenia symptom, which is now well accepted. Holding a role in various aspects of cognition, lentiform nucleus (putamen and globus pallidus) dysfunction contributes to the psychopathology of this disease. However, the effects of lentiform nucleus function on cognitive impairments in schizophrenia are yet to be investigated. Objectives: We aim to detect the fractional amplitude of low-frequency fluctuation (fALFF) alterations in patients with schizophrenia, and examine how their behavior correlates in relation to the cognitive impairments of the patients. Methods: All participants underwent magnetic resonance imaging (MRI) and cognitive assessment (digit span and digit symbol coding tests). Screening of brain regions with significant changes in fALFF values was based on analysis of the whole brain. The data were analyzed between Jun 2020 and Mar 2021. There were no interventions beyond the routine therapy determined by their clinicians on the basis of standard clinical practice. Results: There were 136 patients (75 men and 61 women, 24.1 ± 7.4 years old) and 146 healthy controls (82 men and 64 women, 24.2 ± 5.2 years old) involved in the experiments seriatim. Patients with schizophrenia exhibited decreased raw scores in cognitive tests (p < 0.001) and increased fALFF in the bilateral lentiform nuclei (left: 67 voxels; x = −24, y = −6, z = 3; peak t-value = 6.90; right: 16 voxels; x = 18, y = 0, z = 3; peak t-value = 6.36). The fALFF values in the bilateral lentiform nuclei were positively correlated with digit span-backward test scores (left: r = 0.193, p = 0.027; right: r = 0.190, p = 0.030), and the right lentiform nucleus was positively correlated with digit symbol coding scores (r = 0.209, p = 0.016). Conclusion: This study demonstrates that cognitive impairments in schizophrenia are associated with lentiform nucleus function as revealed by MRI, involving working memory and processing speed.
Collapse
Affiliation(s)
- Ping Li
- Medical Imaging Department 1, Xi'an Mental Health Center, Xi'an, China
| | - Shu-Wan Zhao
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Lei Song
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Lin Wu
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Liu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Wu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Wu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
25
|
Abstract
The use of PET imaging agents in oncology, cardiovascular disease, and neurodegenerative disease shows the power of this technique in evaluating the molecular and biological characteristics of numerous diseases. These agents provide crucial information for designing therapeutic strategies for individual patients. Novel PET tracers are in continual development and many have potential use in clinical and research settings. This article discusses the potential applications of tracers in diagnostics, the biological characteristics of diseases, the ability to provide prognostic indicators, and using this information to guide treatment strategies including monitoring treatment efficacy in real time to improve outcomes and survival.
Collapse
|
26
|
Kim S, Shin SH, Santangelo B, Veronese M, Kang SK, Lee JS, Cheon GJ, Lee W, Kwon JS, Howes OD, Kim E. Dopamine dysregulation in psychotic relapse after antipsychotic discontinuation: an [ 18F]DOPA and [ 11C]raclopride PET study in first-episode psychosis. Mol Psychiatry 2021; 26:3476-3488. [PMID: 32929214 DOI: 10.1038/s41380-020-00879-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023]
Abstract
Although antipsychotic drugs are effective for relieving the psychotic symptoms of first-episode psychosis (FEP), psychotic relapse is common during the course of the illness. While some FEPs remain remitted even without medication, antipsychotic discontinuation is regarded as the most common risk factor for the relapse. Considering the actions of antipsychotic drugs on presynaptic and postsynaptic dopamine dysregulation, this study evaluated possible mechanisms underlying relapse after antipsychotic discontinuation. Twenty five FEPs who were clinically stable and 14 matched healthy controls were enrolled. Striatal dopamine activity was assessed as Kicer value using [18F]DOPA PET before and 6 weeks after antipsychotic discontinuation. The D2/3 receptor availability was measured as BPND using [11C]raclopride PET after antipsychotic discontinuation. Healthy controls also underwent PET scans according to the corresponding schedule of the patients. Patients were monitored for psychotic relapse during 12 weeks after antipsychotic discontinuation. 40% of the patients showed psychotic relapse after antipsychotic discontinuation. The change in Kicer value over time significantly differed between relapsed, non-relapsed patients and healthy controls (Week*Group: F = 4.827, df = 2,253.193, p = 0.009). In relapsed patients, a significant correlation was found between baseline striatal Kicer values and time to relapse after antipsychotic discontinuation (R2 = 0.518, p = 0.018). BPND were not significantly different between relapsed, non-relapsed patients and healthy controls (F = 1.402, df = 2,32.000, p = 0.261). These results suggest that dysfunctional dopamine autoregulation might precipitate psychotic relapse after antipsychotic discontinuation in FEP. This finding could be used for developing a strategy for the prevention of psychotic relapse related to antipsychotic discontinuation.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Sang Ho Shin
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Barbara Santangelo
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Seung Kwan Kang
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Institute of Radiation Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woojoo Lee
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Oliver D Howes
- Department of Psychosis studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea. .,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Campeiro JD, Nani JV, Monte GG, Almeida PGC, Mori MA, Hayashi MAF. Regulation of monoamine levels by typical and atypical antipsychotics in Caenorhabditis elegans mutant for nuclear distribution element genes. Neurochem Int 2021; 147:105047. [PMID: 33872680 DOI: 10.1016/j.neuint.2021.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Mammalian nuclear distribution genes encode proteins with essential roles in neuronal migration and brain formation during embryogenesis. The implication of human nuclear distribution genes, namely nudC and NDE1 (Nuclear Distribution Element 1)/NDEL1 (Nuclear Distribution Element-Like 1), in psychiatric disorders including schizophrenia and bipolar disorder, has been recently described. The partial loss of NDEL1 expression results in neuronal migration defects, while ndel1 null knockout (KO) leads to early embryonic lethality in mice. On the other hand, loss-of-function of the orthologs of nuclear distribution element genes (nud) in Caenorhabditis elegans renders viable worms and influences behavioral endophenotypes associated with dopaminergic and serotoninergic pathways. In the present work, we evaluated the role of nud genes in monoamine levels at baseline and after the treatment with typical or atypical antipsychotics. Dopamine, serotonin and octopamine levels were significantly lower in homozygous loss-of-function mutant worms KO for nud genes compared with wild-type (WT) C. elegans at baseline. While treatment with antipsychotics determined significant differences in monoamine levels in WT, the nud KO mutant worms appear to respond differently to the treatment. According to the best of our knowledge, we are the first to report the influence of nud genes in the monoamine levels changes in response to antipsychotic drugs, ultimately placing the nuclear distribution genes family at the cornerstone of pathways involved in the modulation of monoamines in response to different classes of antipsychotic drugs.
Collapse
Affiliation(s)
- Joana D'Arc Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Brazil
| | - Gabriela G Monte
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Priscila G C Almeida
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Brazil.
| |
Collapse
|
28
|
D’Ambrosio E, Jauhar S, Kim S, Veronese M, Rogdaki M, Pepper F, Bonoldi I, Kotoula V, Kempton MJ, Turkheimer F, Kwon JS, Kim E, Howes OD. The relationship between grey matter volume and striatal dopamine function in psychosis: a multimodal 18F-DOPA PET and voxel-based morphometry study. Mol Psychiatry 2021; 26:1332-1345. [PMID: 31690805 PMCID: PMC7610423 DOI: 10.1038/s41380-019-0570-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the majority of patients who respond to treatment. Although supported by preclinical findings that prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between prefrontal structural volume and striatal dopamine function has not been tested in people with psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis capacity and prefrontal grey matter volume in treatment-responsive patients with psychosis, and compared them to treatment non-responsive patients, where dopaminergic mechanisms are not thought to be central. Forty patients with psychosis across two independent cohorts underwent 18F-DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Kicer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test the relationship between prefrontal grey matter volume and striatal Kicer. Treatment responders showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis capacity, but this was not evident in treatment non-responders. Specifically, we found an interaction between treatment response, whole striatal dopamine synthesis capacity and grey matter volume in left (pFWE corr. = 0.017) and right (pFWE corr. = 0.042) prefrontal cortex. We replicated the finding in right prefrontal cortex in the independent sample (pFWE corr. = 0.031). The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-responsive schizophrenia only. This suggests that different mechanisms underlie the pathophysiology of treatment-responsive and treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Enrico D’Ambrosio
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Sameer Jauhar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Trust, London
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Maria Rogdaki
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Fiona Pepper
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ilaria Bonoldi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Matthew J Kempton
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Jun Soo Kwon
- Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euitae Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK. .,Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
| |
Collapse
|
29
|
Schalbroeck R, van Velden FHP, de Geus-Oei LF, Yaqub M, van Amelsvoort T, Booij J, Selten JP. Striatal dopamine synthesis capacity in autism spectrum disorder and its relation with social defeat: an [ 18F]-FDOPA PET/CT study. Transl Psychiatry 2021; 11:47. [PMID: 33441546 PMCID: PMC7806928 DOI: 10.1038/s41398-020-01174-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Alterations in dopamine signalling have been implied in autism spectrum disorder (ASD), and these could be associated with the risk of developing a psychotic disorder in ASD adults. Negative social experiences and feelings of social defeat might result in an increase in dopamine functioning. However, few studies examined dopamine functioning in vivo in ASD. Here we examine whether striatal dopamine synthesis capacity is increased in ASD and associated with social defeat. Forty-four unmedicated, non-psychotic adults diagnosed with ASD and 22 matched controls, aged 18-30 years, completed a dynamic 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine positron emission tomography/computed tomography ([18F]-FDOPA PET/CT) scan to measure presynaptic dopamine synthesis capacity in the striatum. We considered unwanted loneliness, ascertained using the UCLA Loneliness Scale, as primary measure of social defeat. We found no statistically significant difference in striatal dopamine synthesis capacity between ASD and controls (F1,60 = 0.026, p = 0.87). In ASD, striatal dopamine synthesis capacity was not significantly associated with loneliness (β = 0.01, p = 0.96). Secondary analyses showed comparable results when examining the associative, limbic, and sensorimotor sub-regions of the striatum (all p-values > 0.05). Results were similar before and after adjusting for age, sex, smoking-status, and PET/CT-scanner-type. In conclusion, in unmedicated, non-psychotic adults with ASD, striatal dopamine synthesis capacity is not increased and not associated with social defeat.
Collapse
Affiliation(s)
- Rik Schalbroeck
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands. .,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands. .,Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Floris H. P. van Velden
- grid.10419.3d0000000089452978Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- grid.10419.3d0000000089452978Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands ,grid.6214.10000 0004 0399 8953Biomedical Imaging Group, University of Twente, Enschede, The Netherlands
| | - Maqsood Yaqub
- grid.16872.3a0000 0004 0435 165XDepartment of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Therese van Amelsvoort
- grid.5012.60000 0001 0481 6099School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- grid.5650.60000000404654431Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Rivierduinen Institute for Mental Healthcare, Leiden, The Netherlands ,grid.5012.60000 0001 0481 6099School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
30
|
Rubio JM, Malhotra AK, Kane JM. Towards a framework to develop neuroimaging biomarkers of relapse in schizophrenia. Behav Brain Res 2021; 402:113099. [PMID: 33417996 DOI: 10.1016/j.bbr.2020.113099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a chronic disorder that often requires long-term relapse-prevention treatment. This treatment is effective for most individuals, yet approximately 20-30 % of them may still relapse despite confirmed adherence. Alternatively, for about 15 % it may be safe to discontinue medications over the long term, but since there are no means to identify who those individuals will be, the recommendation is that all individuals receive long-term relapse-prevention treatment with antipsychotic maintenance. Thus, the current approach to prevent relapse in schizophrenia may be suboptimal for over one third of individuals, either by being insufficient to protect against relapse, or by unnecessarily exposing them to medication side effects. There is great need to identify biomarkers of relapse in schizophrenia to stratify treatment according to the risk and develop therapeutics targeting its pathophysiology. In order to develop a line of research that meets those needs, it is necessary to create a framework by identifying the challenges to this type of study as well as potential areas for biomarker identification and development. In this manuscript we review the literature to create such a framework.
Collapse
Affiliation(s)
- Jose M Rubio
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA.
| | - Anil K Malhotra
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| | - John M Kane
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA
| |
Collapse
|
31
|
Sun Z, Zhao L, Bo Q, Mao Z, He Y, Jiang T, Li Y, Wang C, Li R. Brain-Specific Oxysterols and Risk of Schizophrenia in Clinical High-Risk Subjects and Patients With Schizophrenia. Front Psychiatry 2021; 12:711734. [PMID: 34408685 PMCID: PMC8367079 DOI: 10.3389/fpsyt.2021.711734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that schizophrenia might be a neuronal development disorder. While oxysterols are important factors in neurodevelopment, it is unknown whether oxysterols might be involved in development of schizophrenia. The present study investigated the relationship between tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216 individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential links between the oxysterols and specific clinical symptoms in schizophrenic patients and CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of 24OHC to 27OHC was only increased in the schizophrenic group compared with CHR and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly associated with disease duration, positively correlated with the positive and negative syndrome total scores, while the 27OHC levels were inversely correlated with the positive symptom scores. Together, our data demonstrated the disruption of tissue-specifically originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating 24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for schizophrenia but also be biomarkers for functional abnormalities in neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Avram M, Brandl F, Knolle F, Cabello J, Leucht C, Scherr M, Mustafa M, Koutsouleris N, Leucht S, Ziegler S, Sorg C. Aberrant striatal dopamine links topographically with cortico-thalamic dysconnectivity in schizophrenia. Brain 2020; 143:3495-3505. [PMID: 33155047 DOI: 10.1093/brain/awaa296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant dopamine function in the dorsal striatum and aberrant intrinsic functional connectivity (iFC) between distinct cortical networks and thalamic nuclei are among the most consistent large-scale brain imaging findings in schizophrenia. A pathophysiological link between these two alterations is suggested by theoretical models based on striatal dopamine's topographic modulation of cortico-thalamic connectivity within cortico-basal-ganglia-thalamic circuits. We hypothesized that aberrant striatal dopamine links topographically with aberrant cortico-thalamic iFC, i.e. aberrant associative striatum dopamine is associated with aberrant iFC between the salience network and thalamus, and aberrant sensorimotor striatum dopamine with aberrant iFC between the auditory-sensorimotor network and thalamus. Nineteen patients with schizophrenia during remission of psychotic symptoms and 19 age- and sex-comparable control subjects underwent simultaneous fluorodihydroxyphenyl-l-alanine PET (18F-DOPA-PET) and resting state functional MRI (rs-fMRI). The influx constant kicer based on 18F-DOPA-PET was used to measure striatal dopamine synthesis capacity; correlation coefficients between rs-fMRI time series of cortical networks and thalamic regions of interest were used to measure iFC. In the salience network-centred system, patients had reduced associative striatum dopamine synthesis capacity, which correlated positively with decreased salience network-mediodorsal-thalamus iFC. This correlation was present in both patients and healthy controls. In the auditory-sensorimotor network-centred system, patients had reduced sensorimotor striatum dopamine synthesis capacity, which correlated positively with increased auditory-sensorimotor network-ventrolateral-thalamus iFC. This correlation was present in patients only. Results demonstrate that reduced striatal dopamine synthesis capacity links topographically with cortico-thalamic intrinsic dysconnectivity in schizophrenia. Data suggest that aberrant striatal dopamine and cortico-thalamic dysconnectivity are pathophysiologically related within dopamine-modulated cortico-basal ganglia-thalamic circuits in schizophrenia.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Franziska Knolle
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jorge Cabello
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Claudia Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Martin Scherr
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry, University Hospital, LMU Munich, Munich, 81377, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, UK
| | - Stefan Leucht
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychosis studies, King's College London, UK
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| |
Collapse
|
33
|
Kirschner M, Schmidt A, Hodzic-Santor B, Burrer A, Manoliu A, Zeighami Y, Yau Y, Abbasi N, Maatz A, Habermeyer B, Abivardi A, Avram M, Brandl F, Sorg C, Homan P, Riecher-Rössler A, Borgwardt S, Seifritz E, Dagher A, Kaiser S. Orbitofrontal-Striatal Structural Alterations Linked to Negative Symptoms at Different Stages of the Schizophrenia Spectrum. Schizophr Bull 2020; 47:849-863. [PMID: 33257954 PMCID: PMC8084448 DOI: 10.1093/schbul/sbaa169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Negative symptoms such as anhedonia and apathy are among the most debilitating manifestations of schizophrenia (SZ). Imaging studies have linked these symptoms to morphometric abnormalities in 2 brain regions implicated in reward and motivation: the orbitofrontal cortex (OFC) and striatum. Higher negative symptoms are generally associated with reduced OFC thickness, while higher apathy specifically maps to reduced striatal volume. However, it remains unclear whether these tissue losses are a consequence of chronic illness and its treatment or an underlying phenotypic trait. Here, we use multicentre magnetic resonance imaging data to investigate orbitofrontal-striatal abnormalities across the SZ spectrum from healthy populations with high schizotypy to unmedicated and medicated first-episode psychosis (FEP), and patients with chronic SZ. Putamen, caudate, accumbens volume, and OFC thickness were estimated from T1-weighted images acquired in all 3 diagnostic groups and controls from 4 sites (n = 337). Results were first established in 1 discovery dataset and replicated in 3 independent samples. There was a negative correlation between apathy and putamen/accumbens volume only in healthy individuals with schizotypy; however, medicated patients exhibited larger putamen volume, which appears to be a consequence of antipsychotic medications. The negative association between reduced OFC thickness and total negative symptoms also appeared to vary along the SZ spectrum, being significant only in FEP patients. In schizotypy, there was increased OFC thickness relative to controls. Our findings suggest that negative symptoms are associated with a temporal continuum of orbitofrontal-striatal abnormalities that may predate the occurrence of SZ. Thicker OFC in schizotypy may represent either compensatory or pathological mechanisms prior to the disease onset.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,To whom correspondence should be addressed; 3801 Rue University, Montréal QC, H3A 2B4 Canada; tel: +1 514-398-1726, fax: +1 514–398–8948, e-mail:
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Achim Burrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Wellcome Centre for Human Neuroimaging, University College London, London, UK,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yvonne Yau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nooshin Abbasi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Anke Maatz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Aslan Abivardi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Mihai Avram
- Department of Neuroradiology and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, Lübeck Germany
| | - Felix Brandl
- Department of Psychiatry and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany,Department of Psychiatry and TUM-NIC Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY,Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY
| | | | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
34
|
Cumming P, Abi-Dargham A, Gründer G. Molecular imaging of schizophrenia: Neurochemical findings in a heterogeneous and evolving disorder. Behav Brain Res 2020; 398:113004. [PMID: 33197459 DOI: 10.1016/j.bbr.2020.113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The past four decades have seen enormous efforts placed on a search for molecular markers of schizophrenia using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this narrative review, we cast a broad net to define and summarize what researchers have learned about schizophrenia from molecular imaging studies. Some PET studies of brain energy metabolism with the glucose analogue FDGhave have shown a hypofrontality defect in patients with schizophrenia, but more generally indicate a loss of metabolic coherence between different brain regions. An early finding of significantly increased striatal trapping of the dopamine synthesis tracer FDOPA has survived a meta-analysis of many replications, but the increase is not pathognomonic of the disorder, since one half of patients have entirely normal dopamine synthesis capacity. Similarly, competition SPECT studies show greater basal and amphetamine-evoked dopamine occupancy at post-synaptic dopamine D2/3 receptors in patients with schizophrenia, but the difference is likewise not pathognomonic. We thus propose that molecular imaging studies of brain dopamine indicate neurochemical heterogeneity within the diagnostic entity of schizophrenia. Occupancy studies have established the relevant target engagement by antipsychotic medications at dopamine D2/3 receptors in living brain. There is evidence for elevated frontal cortical dopamine D1 receptors, especially in relation to cognitive deficits in schizophrenia. There is a general lack of consistent findings of abnormalities in serotonin markers, but some evidence for decreased levels of nicotinic receptors in patients. There are sparse and somewhat inconsistent findings of reduced binding of muscarinic, glutamate, and opioid receptors ligands, inconsistent findings of microglial activation, and very recently, evidence of globally reduced levels of synaptic proteins in brain of patients. One study reports a decline in histone acetylase binding that is confined to the dorsolateral prefrontal cortex. In most contexts, the phase of the disease and effects of past or present medication can obscure or confound PET and SPECT findings in schizophrenia.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland; School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| | - Anissa Abi-Dargham
- Stony Brook University, Renaissance School of Medicine, Stony Brook, New York, USA
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
35
|
The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology 2020; 45:1870-1876. [PMID: 32612207 PMCID: PMC7608388 DOI: 10.1038/s41386-020-0740-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
There have been few studies performed to examine the pathophysiological differences between different types of psychosis, such as between delusional disorder (DD) and schizophrenia (SZ). Notably, despite the different clinical characteristics of DD and schizophrenia (SZ), antipsychotics are deemed equally effective pharmaceutical treatments for both conditions. In this context, dopamine dysregulation may be transdiagnostic of the pathophysiology of psychotic disorders such as DD and SZ. In this study, an examination is made of the dopamine synthesis capacity (DSC) of patients with SZ, DD, other psychotic disorders, and the DSC of healthy subjects. Fifty-four subjects were recruited to the study, comprising 35 subjects with first-episode psychosis (11 DD, 12 SZ, 12 other psychotic disorders) and 19 healthy controls. All received an 18F-DOPA positron emission tomography (PET)/magnetic resonance (MR) scan to measure DSC (Kocc;30-60 value) within 1 month of starting antipsychotic treatment. Clinical assessments were also made, which included Positive and Negative Syndrome Scale (PANSS) measurements. The mean Kocc;30-60 was significantly greater in the caudate region of subjects in the DD group (ES = 0.83, corrected p = 0.048), the SZ group (ES = 1.40, corrected p = 0.003) and the other psychotic disorder group (ES = 1.34, corrected p = 0.0045), compared to that of the control group. These data indicate that DD, SZ, and other psychotic disorders have similar dysregulated mechanisms of dopamine synthesis, which supports the utility of abnormal dopamine synthesis in transdiagnoses of these psychotic conditions.
Collapse
|
36
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
37
|
Conn KA, Burne THJ, Kesby JP. Subcortical Dopamine and Cognition in Schizophrenia: Looking Beyond Psychosis in Preclinical Models. Front Neurosci 2020; 14:542. [PMID: 32655348 PMCID: PMC7325949 DOI: 10.3389/fnins.2020.00542] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is characterized by positive, negative and cognitive symptoms. All current antipsychotic treatments feature dopamine-receptor antagonism that is relatively effective at addressing the psychotic (positive) symptoms of schizophrenia. However, there is no clear evidence that these medications improve the negative or cognitive symptoms, which are the greatest predictors of functional outcomes. One of the most robust pathophysiological observations in patients with schizophrenia is increased subcortical dopamine neurotransmission, primarily in the associative striatum. This brain area has an important role in a range of cognitive processes. Dopamine is also known to play a major part in regulating a number of cognitive functions impaired in schizophrenia but much of this research has been focused on cortical dopamine. Emerging research highlights the strong influence subcortical dopamine has on a range of cognitive domains, including attention, reward learning, goal-directed action and decision-making. Nonetheless, the precise role of the associative striatum in the cognitive impairments observed in schizophrenia remains poorly understood, presenting an opportunity to revisit its contribution to schizophrenia. Without a better understanding of the mechanisms underlying cognitive dysfunction, treatment development remains at a standstill. For this reason, improved preclinical animal models are needed if we are to understand the complex relationship between subcortical dopamine and cognition. A range of new techniques are facillitating the discrete manipulation of dopaminergic neurotransmission and measurements of cognitive performance, which can be investigated using a variety of sensitive translatable tasks. This has the potential to aid the successful incorporation of recent clinical research to address the lack of treatment strategies for cognitive symptoms in schizophrenia. This review will give an overview on the current state of research focused on subcortical dopamine and cognition in the context of schizophrenia research. We also discuss future strategies and approaches aimed at improving the translational outcomes for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
38
|
Katthagen T, Kaminski J, Heinz A, Buchert R, Schlagenhauf F. Striatal Dopamine and Reward Prediction Error Signaling in Unmedicated Schizophrenia Patients. Schizophr Bull 2020; 46:1535-1546. [PMID: 32318717 PMCID: PMC7751190 DOI: 10.1093/schbul/sbaa055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms.
Collapse
Affiliation(s)
- Teresa Katthagen
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany; tel: +49-(0)-30-450-517389, fax: +49-(0)-30-450-517962, e-mail:
| | - Jakob Kaminski
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health, Berlin, Germany,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health, Berlin, Germany,Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Berlin, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
39
|
Vidal PM, Pacheco R. The Cross-Talk Between the Dopaminergic and the Immune System Involved in Schizophrenia. Front Pharmacol 2020; 11:394. [PMID: 32296337 PMCID: PMC7137825 DOI: 10.3389/fphar.2020.00394] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine is one of the neurotransmitters whose transmission is altered in a number of neural pathways in the brain of schizophrenic patients. Current evidence indicates that these alterations involve hyperactive dopaminergic transmission in mesolimbic areas, striatum, and hippocampus, whereas hypoactive dopaminergic transmission has been reported in the prefrontal cortex of schizophrenic patients. Consequently, schizophrenia is associated with several cognitive and behavioral alterations. Of note, the immune system has been found to collaborate with the central nervous system in a number of cognitive and behavioral functions, which are dysregulated in schizophrenia. Moreover, emerging evidence has associated schizophrenia and inflammation. Importantly, different lines of evidence have shown dopamine as a major regulator of inflammation. In this regard, dopamine might exert strong regulation in the activity, migration, differentiation, and proliferation of immune cells that have been shown to contribute to cognitive functions, including T-cells, microglial cells, and peripheral monocytes. Thereby, alterations in dopamine levels associated to schizophrenia might affect inflammatory response of immune cells and consequently some behavioral functions, including reference memory, learning, social behavior, and stress resilience. Altogether these findings support the involvement of an active cross-talk between the dopaminergic and immune systems in the physiopathology of schizophrenia. In this review we summarize, integrate, and discuss the current evidence indicating the involvement of an altered dopaminergic regulation of immunity in schizophrenia.
Collapse
Affiliation(s)
- Pia M Vidal
- Department of Basic Science, Biomedical Science Research Lab, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile.,Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
40
|
A Novel Schizophrenia Diagnostic Model Based on Statistically Significant Changes in Gene Methylation in Specific Brain Regions. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8047146. [PMID: 32104705 PMCID: PMC7037884 DOI: 10.1155/2020/8047146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Objective The present study identified methylation patterns of schizophrenia- (SCZ-) related genes in different brain regions and used them to construct a novel DNA methylation-based SCZ diagnostic model. Methods Four DNA methylation datasets representing different brain regions were downloaded from the Gene Expression Omnibus. The common differentially methylated genes (CDMGs) in all datasets were identified to perform functional enrichment analysis. The differential methylation sites of 10 CDMGs involved in the largest numbers of neurological or psychiatric-related biological processes were used to construct a DNA methylation-based diagnostic model for SCZ in the respective datasets. Results A total of 849 CDMGs were identified in the four datasets, but the methylation sites as well as degree of methylation differed across the brain regions. Functional enrichment analysis showed CDMGs were significantly involved in biological processes associated with neuronal axon development, intercellular adhesion, and cell morphology changes and, specifically, in PI3K-Akt, AMPK, and MAPK signaling pathways. Four DNA methylation-based classifiers for diagnosing SCZ were constructed in the four datasets, respectively. The sample recognition efficiency of the classifiers showed an area under the receiver operating characteristic curve of 1.00 in three datasets and >0.9 in one dataset. Conclusion DNA methylation patterns in SCZ vary across different brain regions, which may be a useful epigenetic characteristic for diagnosing SCZ. Our novel model based on SCZ-gene methylation shows promising diagnostic power.
Collapse
|
41
|
Zhang Y, You X, Li S, Long Q, Zhu Y, Teng Z, Zeng Y. Peripheral Blood Leukocyte RNA-Seq Identifies a Set of Genes Related to Abnormal Psychomotor Behavior Characteristics in Patients with Schizophrenia. Med Sci Monit 2020; 26:e922426. [PMID: 32038049 PMCID: PMC7032534 DOI: 10.12659/msm.922426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Schizophrenia is a multigene disease with a complex etiology and different clinical manifestations. It is of great significance to understand the etiology and pathogenesis of schizophrenia patients from different clinical dimensions and to interpret the potential molecular changes of schizophrenia patients from different clinical dimensions. MATERIAL AND METHODS RNA-Seq was performed on peripheral blood leukocytes of 50 patients with schizophrenia and 50 healthy controls. Phenotypic information of patients with schizophrenia was collected during blood sampling. Differentially expressed genes (DEGs) were screened by the edgeR package of R software. To better analyze the correlation between DEG expression values, explore the potential association between differential genes and clinical dimensions of schizophrenia, and identify hub genes, we constructed a DEG co-expression network using weighted gene co-expression network analysis (WGCNA). RESULTS We provide the transcription profiles of peripheral blood leukocytes in patients with schizophrenia and found a gene module (including 89 genes) closely related to the clinical dimension of abnormal psychomotor behavior in schizophrenia. CONCLUSIONS The findings enhance our understanding of the biological processes of schizophrenia, enabling us to identify specific clinical dimensions of genes for diagnosis and prognostic markers and possibly for targeted therapy.
Collapse
Affiliation(s)
- Yunqiao Zhang
- Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Xu You
- Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Siwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China (mainland)
| | - Qing Long
- Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Yun Zhu
- Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Zhaowei Teng
- Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China (mainland)
| | - Yong Zeng
- Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan, China (mainland)
| |
Collapse
|
42
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
43
|
Affiliation(s)
- Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Paul Cumming
- Institute for Nuclear Medicine, Inselspital, Berne University, Berne, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|