1
|
Liu J, Gao X, Zhan X, Lu Y, Yao L, Yi X, Gu Q. Evaluation of brain and neurophysiologic function in isolated congenital anosmia. Am J Otolaryngol 2025; 46:104664. [PMID: 40339214 DOI: 10.1016/j.amjoto.2025.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025]
Abstract
PURPOSE Isolated congenital anosmia (ICA) is a relatively rare condition characterized by a complete lack of olfactory perception dating from birth or early childhood. Congenital deficits in sensory systems appear to have distinct effects on brain function and nervous system pathway, but little is known about ICA. The study aims to explore the neural basis of ICA through measuring brain activation in response to olfactory stimuli and cerebral processing in patients with ICA. METHODS Retrospective review of medical records of 11 ICA patients from two smell and taste centers. All patients who were diagnosed ICA thorough interview and medical investigation. We used olfactory pathway magnetic resonance imaging (MRI) to evaluate the structural change of olfactory system, and functional MRI (fMRI) to observe the brain's response to pleasant and unpleasant olfactory stimuli (phenethyl alcohol and isovaleric acid) in 11 patients with ICA and 11 age- and sex-matched controls. Additionally, we measured EEG signals using olfactory and trigeminal event-related potentials (oERP and tERP) in response to phenethyl alcohol and CO2 stimuli, respectively. The Sniffin' Sticks test was used to evaluate the participants' subjective olfactory function. RESULTS ICA patients showed the smaller olfactory bulb and shallower olfactory sulcus than controls. Healthy subjects showed brain activity in multiple regions associated with olfactory processing. Subjects with ICA exhibited reduced or no activation in the olfactory cortex, which is responsible for olfactory processing. Nevertheless, these subjects had activation outside the olfactory cortex, indicating functional compensation. In the case of ICA, oERP was missing in all patients while it was present in all control subjects. tERP was detected in 8 patients with anosmia, and these patients displayed higher amplitude signals in the N1 and P2 waves than the controls (p < 0.001, p < 0.05). CONCLUSION Congenital anosmia patients exhibit functional inactivation in the olfactory cortex and neurophysiologic deficits throughout the olfactory pathway. Our findings support the concept of distinct central nervous system abnormalities in ICA.
Collapse
Affiliation(s)
- Jia Liu
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Xing Gao
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiaojun Zhan
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Yingxia Lu
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Linyin Yao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Yi
- Department of Radiology, Capital Center for Children's Health, Capital Medical University, Beijing, China
| | - Qinglong Gu
- Department of Otolaryngology-Head and Neck Surgery, Capital Center for Children's Health, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Schicker D, Khorisantono PA, Rramani Dervishi Q, Lim SXL, Saruco E, Pleger B, Schultz J, Ohla K, Freiherr J. Smell the Label: Odors Influence Label Perception and Their Neural Processing. J Neurosci 2025; 45:e1159242024. [PMID: 39993837 PMCID: PMC11968547 DOI: 10.1523/jneurosci.1159-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 02/26/2025] Open
Abstract
Providing nutrition or health labels on product packaging can be an effective strategy to promote a conscious and healthier diet. However, such labels also have the potential to be counterproductive by creating obstructive expectations about the flavor of the food and influencing odor perception. Conversely, olfaction could significantly influence label perception, whereby negative expectations could be mitigated by pleasant odors. This study explored the neural processing of the interplay between odors and nutrition labels using fMRI in 63 participants of either sex, to whom we presented beverage labels with different nutrition-related statements either with or without a congruent odor. On a behavioral level, the products for which the label was presented together with the odor were in general perceived as more positive than the same labels without an odor. Neuroimaging results revealed that added odors significantly altered activity in brain regions associated with flavor and label processing as well as decision-making, with higher activations in the right amygdala/piriform cortex (Amy/pirC) and orbitofrontal cortex. The presentation of odors induced pattern-based encoding in the right dorsolateral prefrontal cortex, the left ventral striatum/nucleus accumbens, and the right Amy/pirC when accounting for behavioral differences. This suggests that odors influence the effects of labels both on a neural and behavioral level and may offer the possibility of compensating for obstructive associations. The detailed mechanisms of odor and statement interactions within the relevant brain areas should be further investigated, especially for labels that evoke negative expectations.
Collapse
Affiliation(s)
- Doris Schicker
- Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
| | - Putu A Khorisantono
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | - Shirley X L Lim
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
| | - Elodie Saruco
- Clinic for Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| | - Burkhard Pleger
- Clinic for Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| | - Johannes Schultz
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn 53127, Germany
- Center for Economics and Neuroscience & Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn 53223, Germany
| | - Kathrin Ohla
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
- Head of Perception & Cognitive Neuroscience, Science & Research, dsm-firmenich, Satigny 1242, Switzerland
| | - Jessica Freiherr
- Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
3
|
Ignacio B, Baeza J, Ruiz B, Romero JP, Yañez P, Ramírez C, Caprile T, Farkas C, Recabal-Beyer A. The medial amygdala's neural circuitry: Insights into social processing and sex differences. Front Neuroendocrinol 2025; 77:101190. [PMID: 40294707 DOI: 10.1016/j.yfrne.2025.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The amygdala, a critical part of the limbic system, is essential for processing social stimuli and regulating stress responses. Among its various neuronal nuclei, the medial amygdala (MeA) remains one of the least studied in humans. The MeA plays a key role in receiving inputs from the olfactory system through pheromones, as well as from crucial areas such as the hypothalamus, hippocampus, and reward system. This allows the MeA to integrate external stimuli with the organism's internal state, finetuning social interactions, endocrine responses, and innate behaviors. Recent advances in neuroscience have highlighted the sex differences of the MeA and how they influence behavior and environmental perception. Understanding these sexspecific variations in brain structures, like the MeA in rodents, is vital for applying this knowledge to humans and could help bridge gaps in our understanding and treatment of mental health disorders, which often differ between sexes in both prevalence and presentation.
Collapse
Affiliation(s)
| | - Janina Baeza
- Faculty of Medicine, Universidad de Concepción, Chile
| | - Bastián Ruiz
- Faculty of Medicine, Universidad de Concepción, Chile
| | | | - Paulina Yañez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Camila Ramírez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Carlos Farkas
- Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Chile
| | - Antonia Recabal-Beyer
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile.
| |
Collapse
|
4
|
Xu X, Juratli JH, Landis BN, Hummel T. Parosmia: Pathophysiology and Management. Curr Allergy Asthma Rep 2025; 25:10. [PMID: 39821581 DOI: 10.1007/s11882-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Parosmia is a qualitative olfactory disorder in which there is a mismatch between the memory of an odor and the actual experience triggered by an odor. There has been a surge in parosmia-related publications since the COVID-19 pandemic. This review summarizes the latest clinical findings, theories on pathophysiology and potential treatment options. RECENT ADVANCES Potential models of parosmia include peripheral or central hypotheses, which refer to aberrancies in olfactory neuron regeneration or information processing in central olfactory centers respectively. This leads to an incomplete or disorganized pattern of olfactory information relay. Studies using gas chromatography and functional magnetic resonance imaging have identified molecular triggers and intracranial functional connectivity patterns in parosmia respectively. Parosmia tends to occur in a delayed fashion after virus-induced anosmia. It may run a protracted course, but typically improves over time. Currently there are no generally approved, objective ways to ascertain the presence and measure the extent of parosmia. Evidence-based treatment for parosmia remains elusive. In some people, this can lead to health and quality of life issues.
Collapse
Affiliation(s)
- Xinni Xu
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany.
- Department of Otolaryngology - Head & Neck Surgery, National University Hospital, Singapore, Singapore.
| | - Jerry Hadi Juratli
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
- Stanford University School of Medicine, Stanford, California, USA
| | - Basile Nicolas Landis
- Rhinology-Olfactology Unit, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
5
|
Wen X, Zhang J, Wei G, Wu M, Zhang Y, Zhang Q, Hou G. Alterations in orbitofrontal cortex communication relate to suicidal attempts in patients with major depressive disorder. J Affect Disord 2025; 369:681-695. [PMID: 39383951 DOI: 10.1016/j.jad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Investigating how the interaction between the orbitofrontal cortex (OFC) and various brain regions/functional networks in major depressive disorder (MDD) patients with a history of suicide attempt (SA) holds importance for understanding the neurobiology of this population. METHODS We employed resting-state functional magnetic resonance imaging (rs-fMRI) to analyze the OFC's functional segregation in 586 healthy individuals. A network analysis framework was then applied to rs-fMRI data from 86 MDD-SA patients and 85 MDD-Control patients, utilizing seed mappings of OFC subregions and a multi-connectivity-indicator strategy involving cross-correlation, total interdependencies, Granger causality, and machine learning. RESULTS Four functional subregions of left and right OFC, were designated as seed regions of interest. Relative to the MDD-Control group, the MDD-SA group exhibited enhanced functional connectivity (FC) and attenuated interaction between the OFC and the sensorimotor network, imbalanced communication between the OFC and the default mode network, enhanced FC and interaction between the OFC and the ventral attention network, enhanced interaction between the OFC and the salience network, and attenuated FC between the OFC and the frontoparietal network. LIMITATIONS The medication and treatment condition of patients with MDD was not controlled, so the medication effect on the alteration model cannot be affirmed. CONCLUSION The findings suggest an imbalanced interaction pattern between the OFC subregions and a set of cognition- and emotion-related functional networks/regions in the MDD-SA group.
Collapse
Affiliation(s)
- Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China.
| | - Junhui Zhang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Manlin Wu
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Yuquan Zhang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Qiongyue Zhang
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Gangqiang Hou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China.
| |
Collapse
|
6
|
Biljman K, Gozes I, Lam JCK, Li VOK. An experimental framework for conjoint measures of olfaction, navigation, and motion as pre-clinical biomarkers of Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1722-1744. [PMID: 40034341 PMCID: PMC11863766 DOI: 10.1177/25424823241307617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025] Open
Abstract
Elucidating Alzheimer's disease (AD) prodromal symptoms can resolve the outstanding challenge of early diagnosis. Based on intrinsically related substrates of olfaction and spatial navigation, we propose a novel experimental framework for their conjoint study. Artificial intelligence-driven multimodal study combining self-collected olfactory and motion data with available big clinical datasets can potentially promote high-precision early clinical screenings to facilitate timely interventions targeting neurodegenerative progression.
Collapse
Affiliation(s)
- Katarina Biljman
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, The Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jacqueline CK Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Victor OK Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Hong S, Baek SH, Lai MKP, Arumugam TV, Jo DG. Aging-associated sensory decline and Alzheimer's disease. Mol Neurodegener 2024; 19:93. [PMID: 39633396 PMCID: PMC11616278 DOI: 10.1186/s13024-024-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Multisensory decline is common as people age, and aging is the primary risk of Alzheimer's Disease (AD). Recent studies have begun to shed light on the possibility that age-related sensory decline could accelerate AD pathogenesis, or be a prodromal indicator of AD. Sensory impairments, specifically in taste and smell, often emerge before cognitive symptoms in AD, indicating their potential as early biomarkers. Olfactory dysfunction has been frequently associated with AD and may offer valuable insights into early detection. Hearing impairment is significantly associated with AD, but its causal impact on AD progression remains unclear. The review also discusses visual and tactile deficits in AD, including retinal thinning and changes in tactile perception, highlighting their links to disease progression. Focusing on molecular mechanisms, the review explores the roles of amyloid-β (Aβ) accumulation and tau protein pathology in sensory decline and their bidirectional relationship with AD. In summary, the evidence presented conclusively supports advocating for an integrated approach to understanding AD and sensory decline, to enhance early detection, implementing preventive strategies, and developing therapeutic interventions for AD. This approach underscores the significance of sensory health in addressing neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Suji Hong
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hyun Baek
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, 117600, Singapore
| | - Thiruma V Arumugam
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia.
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Mou YK, Song XY, Wang HR, Wang Y, Liu WC, Yang T, Zhang MJ, Hu Y, Ren C, Song XC. Understanding the nose-brain axis and its role in related diseases: A conceptual review. Neurobiol Dis 2024; 202:106690. [PMID: 39389156 DOI: 10.1016/j.nbd.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The nose-brain axis (NBA), a critical component of the body-brain axis, not only serves as a drug transport route for the treatment of brain diseases but also mediates changes such as neuroimmune disorders, which may be an important mechanism in the occurrence and development of some nasal or brain diseases. Despite its importance, there are substantial gaps that remain in our understanding of the characteristics of NBA-mediated diseases and of the cellular and molecular mechanisms underlying the bidirectional NBA crosstalk. These gaps have limited the translational application of NBA-related research findings to some extent. Therefore, this review aims to address the conceptual framework of NBA and highlight its values in representative diseases by combining existing literature with new research results from our group. We hope that this paper will provide a basis for further in-depth research in this field, and facilitate the clinical translation of NBA.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Wan-Chen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ming-Jun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yue Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
9
|
Yurimoto T, Seki F, Yamada A, Okajima J, Yambe T, Takewa Y, Kamioka M, Inoue T, Inoue Y, Sasaki E. Development of a noninvasive olfactory stimulation fMRI system in marmosets. Sci Rep 2024; 14:17830. [PMID: 39090331 PMCID: PMC11294473 DOI: 10.1038/s41598-024-68508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Olfactory dysfunction is associated with aging and the earliest stages of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases; it is thought to be an early biomarker of cognitive decline. In marmosets, a small non-human primate model used in brain research, olfactory pathway activity during olfactory stimulation has not been well studied because of the difficulty in clearly switching olfactory stimuli inside a narrow MRI. Here, we developed an olfactory-stimulated fMRI system using a small-aperture MRI machine. The olfactory presentation system consisted of two tubes, one for supply and one for suction of olfactory stimulants and a balloon valve. A balloon valve installed in the air supply tube controlled the presentation of the olfactory stimulant, which enabled sharp olfactory stimulation within MRI, such as 30 s of stimulation repeated five times at five-minute intervals. The olfactory stimulation system was validated in vivo and in a simulated system. fMRI analysis showed a rapid increase in signal values within 30 s of olfactory stimulation in eight regions related to the sense of smell. As these regions include those associated with Alzheimer's and Parkinson's diseases, olfactory stimulation fMRI may be useful in clarifying the relationship between olfactory dysfunction and dementia in non-human primates.
Collapse
Affiliation(s)
- Terumi Yurimoto
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Fumiko Seki
- Bioimaging Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Akihiro Yamada
- Department of Clinical Engineering, Komatsu University, Komatsu, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Tomoyuki Yambe
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshiaki Takewa
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan
| | - Michiko Kamioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Yusuke Inoue
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Asahikawa, Japan.
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan.
| |
Collapse
|
10
|
Xu J, Liang J, Yan H, Zhang C, Zhang X, Li X, Huang W, Guo H, Yang Y, Ye J, Ou Y, Deng W, Xu J, Li X, Xie G, Guo W. Alterations in amygdala subregions-Default mode network connectivity after treatment in patients with schizophrenia. J Neurosci Res 2024; 102:e25376. [PMID: 39158151 DOI: 10.1002/jnr.25376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/22/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Disrupted connectivity in the default mode network (DMN) during resting-state functional MRI (rs-fMRI) is well-documented in schizophrenia (SCZ). The amygdala, a key component in the neurobiology of SCZ, comprises distinct subregions that may exert varying effects on the disorder. This study aimed to investigate variations in functional connectivity (FC) between distinct amygdala subregions and the DMN in SCZ individuals and explore the effects of treatment on these connections. Fifty-six SCZ patients and 51 healthy controls underwent FC analysis and questionnaire surveys during resting state. The amygdala was selected as the region of interest (ROI) and subdivided into four parts. Changes in FC were examined, and correlations between questionnaire scores and brain activity were explored. Pre-treatment, SCZ patients exhibited reduced FC between the amygdala and DMN compared to HCs. After treatment, significant differences persisted in the right medial amygdala, while other regions did not differ significantly from controls. In addition, PANSS scores positively correlated with FC between the Right Medial Amygdala and the left SMFC (r = .347, p = .009), while RBANS5A scores showed a positive correlation with FC between the Left Lateral Amygdala and the right MTG (rho = -.347, p = .009). The rsFC between the amygdala and the DMN plays a crucial role in the treatment mechanisms of SCZ. This could provide a promising predictive indicator for understanding the neural mechanisms behind treatment and symptomatic improvement.
Collapse
Affiliation(s)
- Jianxiong Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xinglian Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huagui Guo
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jinzhong Ye
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jinbing Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Tong C, Ding Y, Zhang Z, Zhang H, JunLiang Lim K, Guan C. TASA: Temporal Attention With Spatial Autoencoder Network for Odor-Induced Emotion Classification Using EEG. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1944-1954. [PMID: 38722724 DOI: 10.1109/tnsre.2024.3399326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The olfactory system enables humans to smell different odors, which are closely related to emotions. The high temporal resolution and non-invasiveness of Electroencephalogram (EEG) make it suitable to objectively study human preferences for odors. Effectively learning the temporal dynamics and spatial information from EEG is crucial for detecting odor-induced emotional valence. In this paper, we propose a deep learning architecture called Temporal Attention with Spatial Autoencoder Network (TASA) for predicting odor-induced emotions using EEG. TASA consists of a filter-bank layer, a spatial encoder, a time segmentation layer, a Long Short-Term Memory (LSTM) module, a multi-head self-attention (MSA) layer, and a fully connected layer. We improve upon the previous work by utilizing a two-phase learning framework, using the autoencoder module to learn the spatial information among electrodes by reconstructing the given input with a latent representation in the spatial dimension, which aims to minimize information loss compared to spatial filtering with CNN. The second improvement is inspired by the continuous nature of the olfactory process; we propose to use LSTM-MSA in TASA to capture its temporal dynamics by learning the intercorrelation among the time segments of the EEG. TASA is evaluated on an existing olfactory EEG dataset and compared with several existing deep learning architectures to demonstrate its effectiveness in predicting olfactory-triggered emotional responses. Interpretability analyses with DeepLIFT also suggest that TASA learns spatial-spectral features that are relevant to olfactory-induced emotion recognition.
Collapse
|
12
|
Riazi H, Nazari M, Raoufy MR, Mirnajafi-Zadeh J, Shojaei A. Olfactory Epithelium Stimulation Using Rhythmic Nasal Air-Puffs Improves the Cognitive Performance of Individuals with Acute Sleep Deprivation. Brain Sci 2024; 14:378. [PMID: 38672027 PMCID: PMC11048381 DOI: 10.3390/brainsci14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the effects of intranasal air-puffing on cognitive impairments and brain cortical activity following one night of partial sleep deprivation (PSD) in adults. A total of 26 healthy adults underwent the numerical Stroop test (NST) and electroencephalography (EEG) before and after one night of PSD. Following PSD, subjects in the treatment group (n = 13) received nasal air-puffs (5 Hz, 3 min) before beginning the NST and EEG recording. Administration of nasal air-puffs in the treatment group restored the PSD-induced increase in error rate and decrease in reaction time and missing rate in the NST. Intranasal air-puffs recovered the PSD-induced augmentation of delta and theta power and the reduction of beta and gamma power in the EEG, particularly in the frontal lobes. Intranasal air-puffing also almost reversed the PSD-induced decrease in EEG signal complexity. Furthermore, it had a restorative effect on PSD-induced alteration in intra-default mode network functional connectivity in the beta and gamma frequency bands. Rhythmic nasal air-puffing can mitigate acute PSD-induced impairments in cognitive functions. It exerts part of its ameliorating effect by restoring neuronal activity in cortical brain areas involved in cognitive processing.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
- Center for Proteins in Memory—PROMEMO, Danish National Research Foundation, 1057 København, Denmark
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (H.R.); (M.R.R.); (J.M.-Z.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
13
|
Kokubun K, Nemoto K, Yamakawa Y. Continuous inhalation of essential oil increases gray matter volume. Brain Res Bull 2024; 208:110896. [PMID: 38331299 DOI: 10.1016/j.brainresbull.2024.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Research into the health benefits of scents is on the rise. However, little is known about the effects of continuous inhalation, such as wearing scents on clothing, on brain structure. Therefore, in this study, an intervention study was conducted on a total of 50 healthy female people, 28 in the intervention group and 22 in the control group, asking them to wear a designated rose scent on their clothes for a month. The effect of continuous inhalation of essential oil on the gray matter of the brain was measured by calculating changes in brain images of participants taken before and after the intervention using Magnetic Resonance Imaging (MRI). The results showed that the intervention increased the gray matter volume (GMV) of the whole brain and posterior cingulate cortex (PCC) subregion. On the other hand, the GMV of the amygdala and orbitofrontal cortex (OFC) did not change. This study is the first to show that continuous scent inhalation changes brain structure.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan.
| | - Kiyotaka Nemoto
- Department of Psychiatry, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan; Graduate School of Management, Kyoto University, Kyoto, Japan; Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan; ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan; Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan; Brain Impact, Kyoto, Japan
| |
Collapse
|
14
|
Schwarz M, Hamburger K. Memory effects of visual and olfactory landmark information in human wayfinding. Cogn Process 2024; 25:37-51. [PMID: 38032500 PMCID: PMC10827900 DOI: 10.1007/s10339-023-01169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Non-human animals are exceptionally good at using smell to find their way through the environment. However, the use of olfactory cues for human navigation is often underestimated. Although the sense of smell is well-known for its distinct connection to memory and emotion, memory effects in human navigation using olfactory landmarks have not been studied yet. Therefore, this article compares wayfinding and recognition performance for visual and olfactory landmarks learned by 52 participants in a virtual maze. Furthermore, it is one of the first empirical studies investigating differences in memory effects on human navigation by using two separate test situations 1 month apart. The experimental task was to find the way through a maze-like virtual environment with either olfactory or visual cues at the intersections that served as decision points. Our descriptive results show that performance was above chance level for both conditions (visual and olfactory landmarks). Wayfinding performance did not decrease 1 month later when using olfactory landmarks. In contrast, when using visual landmarks wayfinding performance decreased significantly, while visual landmarks overall lead to better recognition than olfactory landmarks at both times of testing. The results demonstrate the unique character of human odor memory and support the conclusion that olfactory cues may be used in human spatial orientation. Furthermore, the present study expands the research field of human wayfinding by providing a study that investigates memory for landmark knowledge and route decisions for the visual and olfactory modality. However, more studies are required to put this important research strand forward.
Collapse
Affiliation(s)
- Mira Schwarz
- Experimental Psychology and Cognitive Science, Department of Psychology and Sport Science, Justus Liebig University, Otto-Behagel-Str. 10F, 35394, Giessen, Germany.
| | - Kai Hamburger
- Experimental Psychology and Cognitive Science, Department of Psychology and Sport Science, Justus Liebig University, Otto-Behagel-Str. 10F, 35394, Giessen, Germany
| |
Collapse
|
15
|
Ekanayake A, Peiris S, Kanekar S, Tobia M, Yang Q, Ahmed B, McCaslin S, Kalra D, Eslinger P, Karunanayaka P. Monorhinal and birhinal odor processing in humans: an fMRI investigation. Chem Senses 2024; 49:bjae038. [PMID: 39387136 PMCID: PMC11582365 DOI: 10.1093/chemse/bjae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 10/12/2024] Open
Abstract
The olfactory nerve, also known as cranial nerve I, is known to have exclusive ipsilateral projections to primary olfactory cortical structures. However, the lateralization of olfactory processes is known to depend on the task and nature of stimuli. It still remains unclear whether olfactory system projections in humans also correspond to functional pathways during olfactory tasks without any trigeminal, perceptual, or cognitive-motor components. Twenty young healthy subjects with a normal sense of smell took part in an olfactory functional magnetic resonance imaging (fMRI) study. We used 2 types of nostril-specific stimulation, passive (no sniffing), and active (with sniffing), with phenyl ethyl alcohol, a pure olfactory stimulant, to investigate fMRI activity patterns in primary and secondary olfactory-related brain structures. Irrespective of the stimulated nostril and the type of stimulation, we detected symmetrical activity in primary and secondary olfactory-related brain structures such as the primary olfactory cortex, entorhinal cortex, and orbitofrontal cortex. In the absence of perceptual or cognitive-motor task demands, the perception of monorhinally presented pure odors is processed bilaterally in the brain.
Collapse
Affiliation(s)
- Anupa Ekanayake
- Grodno State Medical University, Grodno, Belarus
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| | - Michael Tobia
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, United States
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| | - Silas McCaslin
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| | - Deepak Kalra
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, United States
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, United States
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
16
|
Mulc D, Smilović D, Krsnik Ž, Junaković-Munjas A, Kopić J, Kostović I, Šimić G, Vukšić M. Fetal development of the human amygdala. J Comp Neurol 2024; 532:e25580. [PMID: 38289194 DOI: 10.1002/cne.25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024]
Abstract
The intricate development of the human amygdala involves a complex interplay of diverse processes, varying in speed and duration. In humans, transient cytoarchitectural structures deliquesce, leading to the formation of functionally distinct nuclei as a result of multiple interdependent developmental events. This study compares the amygdala's cytoarchitectural development in conjunction with specific antibody reactivity for neuronal, glial, neuropil, and radial glial fibers, synaptic, extracellular matrix, and myelin components in 39 fetal human brains. We recognized that the early fetal period, as a continuation of the embryonic period, is still dominated by relatively uniform histogenetic processes. The typical appearance of ovoid cell clusters in the lateral nucleus during midfetal period is most likely associated with the cell migration and axonal growth processes in the developing human brain. Notably, synaptic markers are firstly detected in the corticomedial group of nuclei, while immunoreactivity for the panaxonal neurofilament marker SMI 312 is found dorsally. The late fetal period is characterized by a protracted migration process evidenced by the presence of doublecortin and SOX-2 immunoreactivity ventrally, in the prospective paralaminar nucleus, reinforced by vimentin immunoreactivity in the last remaining radial glial fibers. Nearing the term period, SMI 99 immunoreactivity indicates that perinatal myelination becomes prominent primarily along major axonal pathways, laying the foundation for more pronounced functional maturation. This study comprehensively elucidates the rate and sequence of maturational events in the amygdala, highlighting the key role of prenatal development in its behavioral, autonomic, and endocrine regulation, with subsequent implications for both normal functioning and psychiatric disorders.
Collapse
Affiliation(s)
- Damir Mulc
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
- Psychiatric Hospital Vrapče, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Alisa Junaković-Munjas
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Chen B, Yang M, Liu M, Wang Q, Zhou H, Zhang M, Hou L, Wu Z, Zhang S, Lin G, Zhong X, Ning Y. Differences in olfactory functional connectivity in early-onset depression and late-onset depression. PSYCHORADIOLOGY 2023; 3:kkad030. [PMID: 38666125 PMCID: PMC10917377 DOI: 10.1093/psyrad/kkad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 04/28/2024]
Abstract
Background Late-onset depression (LOD) and early-onset depression (EOD) exhibit different pathological mechanisms and clinical phenotypes, including different extents of olfactory dysfunction. However, the brain abnormalities underlying the differences in olfactory dysfunction between EOD and LOD remain unclear. Objective The aim of this study was to compare the functional connectivity (FC) patterns of olfactory regions between EOD patients and LOD patients and examine their relationship with cognitive function. Methods One hundred and five patients with EOD, 101 patients with LOD and 160 normal controls (NCs) were recruited for the present study. Participants underwent clinical assessment, olfactory testing, cognitive assessments, and magnetic resonance imaging. Eight regions of the primary and secondary olfactory regions were selected to investigate olfactory FC. Results Patients with LOD exhibited decreased odor identification (OI) compared with patients with EOD and NCs. The LOD group exhibited decreased FC compared with the EOD and NC groups when primary and secondary olfactory regions were selected as the regions of interest (the piriform cortex, lateral entorhinal cortex, and orbital-frontal cortex). Additionally, these abnormal olfactory FCs were associated with decreased cognitive function scores and OI, and the FC between the left orbital-frontal cortex and left amygdala was a partial mediator of the relationship between global cognitive scores and OI. Conclusion Overall, patients with LOD exhibited decreased FC in both the primary and secondary olfactory cortices compared with patients with EOD, and abnormal olfactory FC was associated with OI dysfunction and cognitive impairment. The FC between the orbital-frontal cortex and amygdala mediated the relationship between global cognitive function and OI.
Collapse
Affiliation(s)
- Ben Chen
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden 01307, Germany
| | - Mingfeng Yang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Meiling Liu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Qiang Wang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Huarong Zhou
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Min Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Le Hou
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Zhangying Wu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Si Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Gaohong Lin
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Xiaomei Zhong
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
| | - Yuping Ning
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510370, China
- The first School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| |
Collapse
|
18
|
Johnson AJ, Shankland E, Richards T, Corrigan N, Shusterman D, Edden R, Estes A, St John T, Dager S, Kleinhans NM. Relationships between GABA, glutamate, and GABA/glutamate and social and olfactory processing in children with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111745. [PMID: 37956467 PMCID: PMC10841920 DOI: 10.1016/j.pscychresns.2023.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Theories of altered inhibitory/excitatory signaling in autism spectrum disorder (ASD) suggest that gamma amino butyric acid (GABA) and glutamate (Glu) abnormalities may underlie social and sensory challenges in ASD. Magnetic resonance spectroscopy was used to measure Glu and GABA+ levels in the amygdala-hippocampus region and cerebellum in autistic children (n = 30), a clinical control group with sensory abnormalities (SA) but not ASD (n = 30), and children with typical development (n = 37). All participants were clinically assessed using the Autism Diagnostic Interview-Revised, the Autism Diagnostic Observation Scale-2, and the Child Sensory Profile-2. The Social Responsiveness Scale-2, Sniffin Sticks Threshold Test, and the University of Pennsylvania Smell Identification Test were administered to assess social impairment and olfactory processing. Overall, autistic children showed increased cerebellar Glu levels compared to TYP children. Evidence for altered excitatory/inhibitory signaling in the cerebellum was more clear-cut when analyses were restricted to male participants. Further, lower cerebellar GABA+/Glu ratios were correlated to more severe social impairment in both autistic and SA males, suggesting that the cerebellum may play a transdiagnostic role in social impairment. Future studies of inhibitory/excitatory neural markers, powered to investigate the role of sex, may aid in parsing out disorder-specific neurochemical profiles.
Collapse
Affiliation(s)
- Allegra J Johnson
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | | | - Todd Richards
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Neva Corrigan
- Institute on Human Development and Disability (IHDD), University of Washington, USA
| | - Dennis Shusterman
- Department of Medicine, University of California, San Francisco, USA
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA; F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, USA
| | - Annette Estes
- Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Speech and Hearing Sciences, University of Washington, USA; University of Washington Autism Center, USA
| | - Tanya St John
- University of Washington Autism Center, USA; Department of Medicine, University of California, San Francisco, USA
| | - Stephen Dager
- Department of Radiology, University of Washington, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA; Department of Biomedical Engineering, University of Washington, USA
| | - Natalia M Kleinhans
- Department of Radiology, University of Washington, USA; Integrated Brain Imaging Center (IBIC), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98195, USA; Institute on Human Development and Disability (IHDD), University of Washington, USA.
| |
Collapse
|
19
|
Dozier T, Mitchell N. Novel five-phase model for understanding the nature of misophonia, a conditioned aversive reflex disorder. F1000Res 2023; 12:808. [PMID: 37881332 PMCID: PMC10594049 DOI: 10.12688/f1000research.133506.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background: Misophonia is a recently identified condition in which a person perceives a subtle stimulus (e.g., eating sounds, hair twirling) and has an intense, negative emotional response. Misophonia cannot be classified with established nosological systems. Methods: We present a novel five-phase model of misophonia from a cognitive-behavioral framework. This model identifies a learned reflex of the autonomic nervous system as the primary etiology and maintenance of misophonia. Phase one is anticipatory anxiety and avoidance. Phase two is a conditioned physical reflex (for example, the tensing of calf muscles) that develops through stimulus-response Pavlovian conditioning. Phase three includes intense negative emotional responses and accompanying physiological distress, thoughts, urges, and emotion-driven behavior. Phase four is the individual's coping responses to emotional distress, and phase five is the environmental response and resulting internal and external consequences of the coping behaviors. Each phase helps explain the maintenance of the response and the individual's impairment. Results: Anticipatory anxiety and avoidance of phase one contributes to an increased arousal and awareness of triggers, resulting in increased severity of the trigger experience. Both the Pavlovian-conditioned physical reflex of phase two and the emotion-driven behavior caused by the conditioned emotional response of phase three increase with in vivo exposure to triggers. Phase four includes internal and external coping behaviors to the intense emotions and distress, and phase five includes the consequences of those behaviors. Internal consequences include beliefs fiveand new emotions based on environmental responses to anger and panic. For example, the development of emotions such as shame and guilt, and beliefs regarding how 'intolerable' the trigger is. Conclusions: We assert misophonia is a multi-sensory condition and includes anticipatory anxiety, conditioned physical reflexes, intense emotional and physical distress, subsequent internal and external responses, and environmental consequences.
Collapse
|
20
|
Hatsukawa H, Ishikawa M. Psychological states affecting initial pupil size changes after olfactory stimulation in healthy participants. Sci Rep 2023; 13:16050. [PMID: 37749199 PMCID: PMC10520065 DOI: 10.1038/s41598-023-43004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Odor perception affects physiological and psychological states. Pupillary light reflex (PLR) parameters can be affected by olfactory stimulation and psychological states, although it remains unclear whether the olfactory stimulation-induced psychological changes can associate with PLR parameter changes. This study aimed to investigate effects of olfactory stimulation-induced psychological changes on PLR parameter changes with repeated measurements. We collected data on six mood subscales of the profile of mood states, and on five PLR parameter measurements from 28 healthy participants. Participants underwent a 10-min olfactory stimulation on different days with six odorants available with the T&T olfactometer. As obtained data were clustered, we used linear mixed-effects models for statistical analyses. The olfactory stimulation using the no-odor liquid did not affect mood states and the initial pupil size (INIT). The sweat odorant worsened all mood subscales including fatigue-inertia (Fatigue)/Vigor-Activity (Vigor), and decreased INIT compared to the no-odor liquid. When comparing INIT responses related to changes in mood subscales between the no-odor liquid and the sweat odorant, worsened states of Fatigue/Vigor were associated with decreased INIT in the sweat odorant. Fatigue/Vigor can be used as mental fatigue indicators. Thus, mental fatigue can be associated with decreased INIT in the olfactory stimulation.
Collapse
Affiliation(s)
- Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan
| | - Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan.
| |
Collapse
|
21
|
Sagar V, Shanahan LK, Zelano CM, Gottfried JA, Kahnt T. High-precision mapping reveals the structure of odor coding in the human brain. Nat Neurosci 2023; 26:1595-1602. [PMID: 37620443 PMCID: PMC10726579 DOI: 10.1038/s41593-023-01414-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/18/2023] [Indexed: 08/26/2023]
Abstract
Odor perception is inherently subjective. Previous work has shown that odorous molecules evoke distributed activity patterns in olfactory cortices, but how these patterns map on to subjective odor percepts remains unclear. In the present study, we collected neuroimaging responses to 160 odors from 3 individual subjects (18 h per subject) to probe the neural coding scheme underlying idiosyncratic odor perception. We found that activity in the orbitofrontal cortex (OFC) represents the fine-grained perceptual identity of odors over and above coarsely defined percepts, whereas this difference is less pronounced in the piriform cortex (PirC) and amygdala. Furthermore, the implementation of perceptual encoding models enabled us to predict olfactory functional magnetic resonance imaging responses to new odors, revealing that the dimensionality of the encoded perceptual spaces increases from the PirC to the OFC. Whereas encoding of lower-order dimensions generalizes across subjects, encoding of higher-order dimensions is idiosyncratic. These results provide new insights into cortical mechanisms of odor coding and suggest that subjective olfactory percepts reside in the OFC.
Collapse
Affiliation(s)
- Vivek Sagar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Christina M Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jay A Gottfried
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
22
|
Hosseini M, Borhani-Haghighi A, Petramfar P, Foroughi AA, Ostovan VR, Nami M. Evaluating cognitive impairment in the early stages of Parkinson's disease using the Cambridge brain sciences-cognitive platform. Clin Neurol Neurosurg 2023; 232:107866. [PMID: 37413872 DOI: 10.1016/j.clineuro.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Non-motor symptoms (NMS) such as cognitive impairment are among common presentations in patients with Parkinson's disease (PD). In parallel with motor symptoms, these impediments can affect PD patients' quality of life. However, cognitive impairment has received less attention in early PD. On the other hand, the relationship between olfactory symptoms and cognitive impairment is unclear in early PD. Considering the importance of accurate and timely assessment of cognitive function in PD patients using readily available/validated tests, this study has employed the Cambridge Brain Sciences-Cognitive Platform (CBS-CP) as a computer-based tool to assess cognitive presentations in early PD patients. METHODS Thirty-four eligible males and females were assigned to PD and healthy controls (HCs). The cognitive performance was assessed using CBS-CP and Mini-Mental State Examination (MMSE), and olfactory function was measured through the standardized olfactory Quick Smell test (QST). RESULTS PD patients had poorer performance in all CBS-CP tasks, including short-term memory, attention, and reasoning domains than HCs. Meanwhile, the verbal domain task scores showed no significant difference between groups. PD MMSE results were in the normal range (mean=26.96), although there was a significant difference between the PD and HCs groups (P = 0.000). Our results revealed no correlation between cognitive impairment and olfactory function in PD patients. CONCLUSION Given the widely studied features of CBS-CP and its reliability across published evidence, CBS-CP appears to be a suitable measurement to evaluate cognitive impairment in early PD with normal MMSE scores. It seems cognitive and olfactory impairments are independent in early PD. DATA AVAILABILITY STATEMENT The datasets generated during the current study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
| | | | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Abolhasani Foroughi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Nami
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran; Cognitive Neuropsychology Unit, Department of Social Sciences, Canadian University Dubai, Dubai, United Arab Emirates.
| |
Collapse
|
23
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
24
|
Kucirkova NI, Tosun S. Children's Olfactory Picturebooks: Charting New Trends in Early Childhood Education. EARLY CHILDHOOD EDUCATION JOURNAL 2023:1-10. [PMID: 37360605 PMCID: PMC10024514 DOI: 10.1007/s10643-023-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 06/28/2023]
Abstract
Converging global trends (digitization, globalization, datafication) have influenced all aspects of children's literacies, including children's picturebooks. The recent turn towards embodied, affective and sensory literacies, stimulated our interest in multisensory picturebooks that engage all children's senses, including the sense of smell (olfaction). Olfactory children's picturebooks demand new forms of literary conversations, which capitalise on unique properties of odours and integrate these with stories. Drawing on a systematic search of children's picturebooks about, and with, smell, in paper-based and digital formats, we identified three principal ways in which olfaction is currently embedded in children's picturebooks: 1, as an add-on to depiction of objects (including foods, plants) and places, 2, as a device to introduce humour into a story, and 3, as an engagement tool for children's active participation in the story. We mobilise Sipe's (2008) concept of seven constituting elements in children's picturebooks to describe how current olfactory picturebooks apply the elements in their design and make recommendations for future development of children's olfactory picturebooks. Reflecting on the generative potential of literary theories and olfactory power to stimulate children's non-linguistic embodied interactions with picturebooks, we propose some extensions to the current olfactory picturebook landscape.
Collapse
Affiliation(s)
| | - Selim Tosun
- Ankara University, Graduate School of Health Sciences, 06110 Ankara, Turkey
| |
Collapse
|
25
|
Cieri F, Cera N, Ritter A, Cordes D, Caldwell JZK. Olfaction and Anxiety Are Differently Associated in Men and Women in Cognitive Physiological and Pathological Aging. J Clin Med 2023; 12:2338. [PMID: 36983338 PMCID: PMC10054317 DOI: 10.3390/jcm12062338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Olfaction impairment in aging is associated with increased anxiety. We explored this association in cognitively healthy controls (HCs), Mild Cognitive Impairment (MCI) and Parkinson's disease (PD) patients. Both olfaction and anxiety have sex differences, therefore we also investigated these variances. OBJECTIVES Investigate the association of olfaction with anxiety in three distinct clinical categories of aging, exploring the potential role of sex. METHODS 117 subjects (29 HCs, 43 MCI, and 45 PD patients) were assessed for olfaction and anxiety. We used regression models to determine whether B-SIT predicted anxiety and whether sex impacted that relationship. RESULTS Lower olfaction was related to greater anxiety traits in all groups (HCs: p = 0.015; MCI: p = 0.001 and PD: p = 0.038), significantly differed by sex. In fact, in HCs, for every unit increase in B-SIT, anxiety traits decreased by 7.63 in men (p = 0.009) and 1.5 in women (p = 0.225). In MCI patients for every unit increase in B-SIT, anxiety traits decreased by 1.19 in men (p = 0.048) and 3.03 in women (p = 0.0036). Finally, in PD patients for every unit increase in B-SIT, anxiety traits decreased by 1.73 in men (p = 0.004) and 0.41 in women (p = 0.3632). DISCUSSION Olfaction and anxiety are correlated in all three distinct diagnostic categories, but differently in men and women.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Nicoletta Cera
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Aaron Ritter
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Dietmar Cordes
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
26
|
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Kazour F, Atanasova B, Mourad M, El Hachem C, Desmidt T, Richa S, El-Hage W. Mania associated olfactory dysfunction: A comparison between bipolar subjects in mania and remission. J Psychiatr Res 2022; 156:330-338. [PMID: 36323136 DOI: 10.1016/j.jpsychires.2022.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this study was to assess the olfactory functions of patients with bipolar disorder in manic phase and to compare them to those of bipolar subjects in remission and healthy controls. METHODS We recruited 96 participants divided in 3 groups: bipolar mania (MB), euthymic bipolar in remission (EB) and healthy controls (HC). All participants underwent an assessment of their olfactory functions using the Sniffin' sticks threshold and identification tests. Odors' pleasantness, intensity, familiarity and emotion were assessed. All participants were screened for the presence of psychiatric disorder through the MINI questionnaire. Clinical evaluation explored dimensions of mania, depression, anxiety respectively through YMRS, MADRS and STAI scales. Anhedonia was explored through the Chapman physical and social anhedonia questionnaire. RESULTS Patients in mania had deficits in identifying positive smells compared to bipolar subjects in remission and to healthy controls (MB < EB < HC; p < 0.001). Hedonic (MB < EB = HC; p < 0.001) and emotional (MB < EB = HC; p < 0.001) ratings of positive smells were lower in patients in manic phase compared to remitted subjects or controls. Mania was associated to higher emotion rating of negative smells compared to remitted subjects and controls (MB > EB = HC; p < 0.001). There was no difference between the 3 groups in the ratings of intensity and familiarity of smells, as well as in the olfactory threshold testing. The 3 groups showed no difference in the identification of negative smells. CONCLUSIONS Patients in manic episodes showed deficits in identifying positive odors. They evaluated these smells as less pleasant and less emotional compared to remitted bipolar subjects and healthy controls. These olfactory dysfunctions may constitute potential indicators of manic state. The persistence of olfactory dysfunction in remission phase (deficit in the olfactory identification of positive odors compared to healthy controls) may constitute a potential trait indicator of bipolarity.
Collapse
Affiliation(s)
- Francois Kazour
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France; Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
| | | | - Marc Mourad
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Charline El Hachem
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Thomas Desmidt
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France
| | - Sami Richa
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France
| |
Collapse
|
28
|
Van Regemorter V, Rombaux P, Dricot L, Kupers R, Grégoire A, Hox V, Huart C. Functional Imaging in Olfactory Disorders. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022; 10:421-426. [PMID: 36276577 PMCID: PMC9579609 DOI: 10.1007/s40136-022-00433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Purpose of Review The aim was to synthesize key findings regarding the use of functional MRI (fMRI) to assess olfactory dysfunction (OD), and thus, to evaluate whether fMRI could be a reliable clinical diagnostic tool. Recent Findings In response to olfactory stimulation, patients with quantitative OD display reduced activation in olfactory-related brain regions but also stronger activation in non-olfactory brain areas. Parosmic patients also seem to show both weaker and higher brain signals. As to trigeminal chemosensory system, fMRI suggests that central processing may be declined in patients with OD. Functional connectivity studies report a possible correlation between altered neuronal connections within brain networks and olfactory performances. Summary fMRI emerges as a valuable and promising objective method in OD evaluation. Yet, its high inter-individual variability still precludes its routine clinical use for diagnostic purpose. Future research should focus on optimizing stimulation paradigms and analysis methods.
Collapse
Affiliation(s)
- V. Van Regemorter
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Anesthesiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Ph. Rombaux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - L. Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - R. Kupers
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- School of Optometry, University of Montreal, Montreal, QC Canada
- BRAINlab, University of Copenhagen, Copenhagen, Denmark
| | - A. Grégoire
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - V. Hox
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - C. Huart
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
29
|
Larsen EM, Donaldson KR, Jonas KG, Lian W, Bromet EJ, Kotov R, Mohanty A. Pleasant and unpleasant odor identification ability is associated with distinct dimensions of negative symptoms transdiagnostically in psychotic disorders. Schizophr Res 2022; 248:183-193. [PMID: 36084492 PMCID: PMC10774004 DOI: 10.1016/j.schres.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
Negative symptoms are among the greatest sources of functional impairment for individuals with schizophrenia, yet their mechanisms remain poorly understood. Olfactory impairment is associated with negative symptoms. The processing of pleasant olfactory stimuli is subserved by reward-related neural circuitry while unpleasant olfactory processing is subserved by emotion-related neural circuitry, suggesting that these two odor dimensions may offer a window into differential mechanisms of negative symptoms. We examined whether pleasant and unpleasant odor identification bears differential relationships with avolition and inexpressivity dimensions of negative symptoms, whether these relationships are transdiagnostic, and whether pleasant and unpleasant odor processing also relate differently to other domains of functioning in a sample of individuals diagnosed with schizophrenia (N = 54), other psychotic disorders (N = 65), and never-psychotic adults (N = 160). Hierarchical regressions showed that pleasant odor identification was uniquely associated with avolition, while unpleasant odor identification was uniquely associated with inexpressivity. These relationships were largely transdiagnostic across groups. Additionally, pleasant and unpleasant odor identification displayed signs of specificity with other functional and cognitive measures. These results align with past work suggesting dissociable pathomechanisms of negative symptoms and provide a potential avenue for future work using valence-specific olfactory dysfunction as a semi-objective and low-cost marker for understanding and predicting the severity of specific negative symptom profiles.
Collapse
Affiliation(s)
- Emmett M. Larsen
- Department of Psychology, Stony Brook University, Stony Brook, NY
| | | | - Katherine G. Jonas
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Wenxuan Lian
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Evelyn J. Bromet
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University School of Medicine, Stony Brook, NY
| | - Aprajita Mohanty
- Department of Psychology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
30
|
Kulason S, Ratnanather JT, Miller MI, Kamath V, Hua J, Yang K, Ma M, Ishizuka K, Sawa A. A comparative neuroimaging perspective of olfaction and higher-order olfactory processing: on health and disease. Semin Cell Dev Biol 2022; 129:22-30. [PMID: 34462249 PMCID: PMC9900497 DOI: 10.1016/j.semcdb.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.
Collapse
Affiliation(s)
- Sue Kulason
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
31
|
Avery JA, Liu AG, Carrington M, Martin A. Taste Metaphors Ground Emotion Concepts Through the Shared Attribute of Valence. Front Psychol 2022; 13:938663. [PMID: 35903735 PMCID: PMC9314637 DOI: 10.3389/fpsyg.2022.938663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
“Parting is such sweet sorrow.” Taste metaphors provide a rich vocabulary for describing emotional experience, potentially serving as an adaptive mechanism for conveying abstract emotional concepts using concrete verbal references to our shared experience. We theorized that the popularity of these expressions results from the close association with hedonic valence shared by these two domains of experience. To explore the possibility that this affective quality underlies the semantic similarity of these domains, we used a behavioral “odd-one-out” task in an online sample of 1059 participants in order to examine the semantic similarity of concepts related to emotion, taste, and color, another rich source of sensory metaphors. We found that the semantic similarity of emotion and taste concepts was greater than that of emotion and color concepts. Importantly, the similarity of taste and emotion concepts was strongly related to their similarity in hedonic valence, a relationship which was also significantly greater than that present between color and emotion. These results suggest that the common core of valence between taste and emotion concepts allows us to bridge the conceptual divide between our shared sensory environment and our internal emotional experience.
Collapse
Affiliation(s)
- Jason A. Avery
- *Correspondence: Jason A. Avery, , orcid.org/0000-0003-4097-2819
| | | | | | | |
Collapse
|
32
|
Orendáčová M, Kvašňák E. Possible Mechanisms Underlying Neurological Post-COVID Symptoms and Neurofeedback as a Potential Therapy. Front Hum Neurosci 2022; 16:837972. [PMID: 35431842 PMCID: PMC9010738 DOI: 10.3389/fnhum.2022.837972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Theoretical considerations related to neurological post-COVID complications have become a serious issue in the COVID pandemic. We propose 3 theoretical hypotheses related to neurological post-COVID complications. First, pathophysiological processes responsible for long-term neurological complications caused by COVID-19 might have 2 phases: (1) Phase of acute Sars-CoV-2 infection linked with the pathogenesis responsible for the onset of COVID-19-related neurological complications and (2) the phase of post-acute Sars-CoV-2 infection linked with the pathogenesis responsible for long-lasting persistence of post-COVID neurological problems and/or exacerbation of another neurological pathologies. Second, post-COVID symptoms can be described and investigated from the perspective of dynamical system theory exploiting its fundamental concepts such as system parameters, attractors and criticality. Thirdly, neurofeedback may represent a promising therapy for neurological post-COVID complications. Based on the current knowledge related to neurofeedback and what is already known about neurological complications linked to acute COVID-19 and post-acute COVID-19 conditions, we propose that neurofeedback modalities, such as functional magnetic resonance-based neurofeedback, quantitative EEG-based neurofeedback, Othmer's method of rewarding individual optimal EEG frequency and heart rate variability-based biofeedback, represent a potential therapy for improvement of post-COVID symptoms.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
33
|
Wang J, Zhang S, Liu W, Zhang Y, Hu Z, Sun Z, Di H. Olfactory Stimulation and the Diagnosis of Patients With Disorders of Consciousness: A Double-Blind, Randomized Clinical Trial. Front Neurosci 2022; 16:712891. [PMID: 35250440 PMCID: PMC8891647 DOI: 10.3389/fnins.2022.712891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The aim of this study was to determine whether behavioral responses elicited by olfactory stimulation are a predictor of conscious behavioral response and prognosis of patients with disorders of consciousness (DOC). METHODS Twenty-three DOC patients (8 unresponsive wakefulness syndrome [UWS]; 15 minimally conscious state [MCS]) were recruited for this study in which 1-Octen-3-ol (familiar neutral odor) and pyridine were used to test odor behavioral responses, and water was used as an odorless stimulus. One rater presented the three odors in front of each patient's nose randomly, and another one videotaped all behavioral responses (e.g., pouting, wrinkling nose, slightly shaking head, frowning, etc.). Two independent raters, blind to the stimuli and the patient's diagnosis, gave the behavioral results according to the recorded videos. One-, 3-, and 6-month follow-up evaluations were conducted to obtain a good prognostic value. RESULTS All MCS patients showed behavioral responses to the 1-Octen-3-ol stimulus; nine MCS and one UWS showed olfactory emotional responses to the pyridine, and two MCS showed olfactory emotional responses to the water stimulus. The incidence of behavioral response was significantly higher using 1-Octen-3-ol than it was for water by McNemar test (p < 0.001), significantly higher using pyridine than it was for water (p < 0.01). The χ2 test results indicated that there were significant differences between MCS and UWS to 1-Octen-3-ol (p < 0.001). For MCS patients, the incidence of behavioral response was no different between using 1-Octen-3-ol and pyridine (p > 0.05). There was no significant relationship between the olfactory behavioral response and the improvement of consciousness based on the χ2 test analysis (p > 0.05). CONCLUSION Olfactory stimuli, especially for the familiar neutral odor, might be effective for eliciting a conscious behavioral response and estimating the clinical diagnosis of DOC patients. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/ct2/show/NCT03732092], [identifier NCT03732092].
Collapse
Affiliation(s)
- Jing Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Shaoming Zhang
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Wenbin Liu
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Yao Zhang
- Shanghai Yongci Rehabilitation Hospital, Shanghai, China
| | - Zhouyao Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Ziwei Sun
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
34
|
White Matter Microstructural Alterations in Newly Diagnosed Parkinson’s Disease: A Whole-Brain Analysis Using dMRI. Brain Sci 2022; 12:brainsci12020227. [PMID: 35203990 PMCID: PMC8870150 DOI: 10.3390/brainsci12020227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by cardinal motor symptoms and other non-motor symptoms. Studies have investigated various brain areas in PD by detecting white matter alterations using diffusion magnetic resonance imaging processing techniques, which can produce diffusion metrics such as fractional anisotropy and quantitative anisotropy. In this study, we compared the quantitative anisotropy of whole brain regions throughout the subcortical and cortical areas between newly diagnosed PD patients and healthy controls. Additionally, we evaluated the correlations between the quantitative anisotropy of each region and respective neuropsychological test scores to identify the areas most affected by each neuropsychological dysfunction in PD. We found significant quantitative anisotropy differences in several subcortical structures such as the basal ganglia, limbic system, and brain stem as well as in cortical structures such as the temporal lobe, occipital lobe, and insular lobe. Additionally, we found that quantitative anisotropy of some subcortical structures such as the basal ganglia, cerebellum, and brain stem showed the highest correlations with motor dysfunction, whereas cortical structures such as the temporal lobe and occipital lobe showed the highest correlations with olfactory dysfunction in PD. Our study also showed evidence regarding potential neural compensation by revealing higher diffusion metric values in early-stage PD than in healthy controls. We anticipate that our results will improve our understanding of PD’s pathophysiology.
Collapse
|
35
|
Chee K, Razmara A, Geller AS, Harris WB, Restrepo D, Thompson JA, Kramer DR. The role of the piriform cortex in temporal lobe epilepsy: A current literature review. Front Neurol 2022; 13:1042887. [PMID: 36479052 PMCID: PMC9720270 DOI: 10.3389/fneur.2022.1042887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy is the most common form of focal epilepsy and can have various detrimental consequences within many neurologic domains. Recent evidence suggests that the piriform cortex may also be implicated in seizure physiology. The piriform cortex is a primary component of the olfactory network and is located at the junction of the frontal and temporal lobes, wrapping around the entorhinal sulcus. Similar to the hippocampus, it is a tri-layered allocortical structure, with connections to many adjacent regions including the orbitofrontal cortex, amygdala, peri- and entorhinal cortices, and insula. Both animal and human studies have implicated the piriform cortex as a critical node in the temporal lobe epilepsy network. It has additionally been shown that resection of greater than half of the piriform cortex may significantly increase the odds of achieving seizure freedom. Laser interstitial thermal therapy has also been shown to be an effective treatment strategy with recent evidence hinting that ablation of the piriform cortex may be important for seizure control as well. We propose that sampling piriform cortex in intracranial stereoelectroencephalography (sEEG) procedures with the use of a temporal pole or amygdalar electrode would be beneficial for further understanding the role of the piriform cortex in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Keanu Chee
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashkaun Razmara
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Aaron S Geller
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - William B Harris
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diego Restrepo
- Department of Developmental and Cell Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel R Kramer
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
36
|
Torske A, Koch K, Eickhoff S, Freiherr J. Localizing the human brain response to olfactory stimulation: A meta-analytic approach. Neurosci Biobehav Rev 2021; 134:104512. [PMID: 34968523 DOI: 10.1016/j.neubiorev.2021.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
The human sense of smell and the ability to detect and distinguish odors allows for the extraction of valuable information from the environment, thereby driving human behavior. Not only can the sense of smell help to monitor the safety of inhaled air, but it can also help to evaluate the edibility of food. Therefore, in an effort to further our understanding of the human sense of smell, the aim of this meta-analysis was to provide the scientific community with activation probability maps of the functional anatomy of the olfactory system, in addition to separate activation maps for specific odor categories (pleasant, food, and aversive odors). The activation likelihood estimation (ALE) method was utilized to quantify all relevant and available data to perform a formal statistical analysis on the inter-study concordance of various odor categories. A total of 81 studies (108 contrasts, 1053 foci) fulfilled our inclusion criteria. Significant ALE peaks were observed in all odor categories in brain areas typically associated with the functional neuroanatomy of olfaction including the piriform cortex, amygdala, insula, and orbitofrontal cortex, amongst others. Additional contrast analyses indicate clear differences in neural activation patterns between odor categories.
Collapse
Affiliation(s)
- A Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - K Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - S Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - J Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute for Process Engineering and Packaging IVV, Sensory Analytics and Technologies, Fraunhofer Freising, Germany.
| |
Collapse
|
37
|
Cognitive behavioral therapy (CBT), acceptance and commitment therapy (ACT), and Morita therapy (MT); comparison of three established psychotherapies and possible common neural mechanisms of psychotherapies. J Neural Transm (Vienna) 2021; 129:805-828. [PMID: 34889976 DOI: 10.1007/s00702-021-02450-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Psychotherapies aim to relieve patients from mental distress by guiding them toward healthier attitudes and behaviors. Psychotherapies can differ substantially in concepts and approaches. In this review article, we compare the methods and science of three established psychotherapies: Morita Therapy (MT), which is a 100-year-old method established in Japan; Cognitive Behavioral Therapy (CBT), which-worldwide-has become the major psychotherapy; and Acceptance and Commitment Therapy (ACT), which is a relatively young psychotherapy that shares some characteristics with MT. The neuroscience of psychotherapy as a system is only beginning to be understood, but relatively solid scientific information is available about some of its important aspects such as learning, physical health, and social interactions. On average, psychotherapies work best if combined with pharmacotherapies. This synergy may rely on the drugs helping to "kickstart" the use of neural pathways (behaviors) to which a patient otherwise has poor access. Improved behavior, guided by psychotherapy, can then consolidate these pathways by their continued usage throughout a patient's life.
Collapse
|
38
|
Canbeyli R. Sensory Stimulation Via the Visual, Auditory, Olfactory and Gustatory Systems Can Modulate Mood and Depression. Eur J Neurosci 2021; 55:244-263. [PMID: 34708453 DOI: 10.1111/ejn.15507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Abstract
Depression is one of the most common mental disorders, predicted to be the leading cause of disease burden by the next decade. There is great deal of emphasis on the central origin and potential therapeutics of depression whereby the symptomatology of depression has been interpreted and treated as brain generated dysfunctions filtering down to the periphery. This top-down approach has found strong support from clinical work and basic neuroscientific research. Nevertheless, despite great advances in our knowledge of the etiology and therapeutics of depression, success in treatment is still by no means assured.. As a consequence, a wide net has been cast by both clinicians and researchers in search of more efficient therapies for mood disorders. As a complementary view, the present integrative review advocates approaching mood and depression from the opposite perspective: a bottom-up view that starts from the periphery. Specifically, evidence is provided to show that sensory stimulation via the visual, auditory, olfactory and gustatory systems can modulate depression. The review shows how -depending on several parameters- unisensory stimulation via these modalities can ameliorate or aggravate depressive symptoms. Moreover, the review emphasizes the bidirectional relationship between sensory stimulation and depression. Just as peripheral stimulation can modulate depression, depression in turn affects-and in most cases impairs-sensory reception. Furthermore, the review suggests that combined use of multisensory stimulation may have synergistic ameliorative effects on depressive symptoms over and above what has so far been documented for unisensory stimulation.
Collapse
Affiliation(s)
- Resit Canbeyli
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University
| |
Collapse
|
39
|
Li D, Wang X. The processing characteristics of bodily expressions under the odor context: An ERP study. Behav Brain Res 2021; 414:113494. [PMID: 34329669 DOI: 10.1016/j.bbr.2021.113494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
The recognition of facial expressions has been shown to be influenced by contextual odors. The aims of this study were (1) to investigate whether odor has a similar effect on the recognition of bodily expressions, and (2) to analyze the time-course of such effects. Sixty-nine adults were randomized into three groups to identify bodily expressions (happy, fearful, and neutral) in three odor environments (pleasant odor, unpleasant odor, and no odor). Event-related potentials (ERPs) induced by the viewing bodily expressions were analyzed. Behaviorally, the unpleasant odor context promoted the recognition of bodily expressions. The ERP results showed odor influences on bodily expression recognition in two phases. In a middle stage phase (150-200 ms post-stimulus onset), VPP amplitudes induced by bodily expressions were greater in an unpleasant odor context than in a pleasant odor context. In a mid-late stage phase (beyond 200 ms), an interaction between contextual odor and bodily expression type was observed. When exposed to an unpleasant contextual odor, N2 and LPP amplitudes related to fearful bodily expressions were smaller than when exposed to other odor contexts, showing the promoting effect of mood coherence effect. Behavioral and ERP evidence confirmed that contextual odor can modulate the visual processing of bodily expressions, with an overall promoting effect of an unpleasant odor on bodily expression processing (phase one) and a specific modulating influence of odors on affectively congruent/incongruent bodily expressions (phase two).
Collapse
Affiliation(s)
- Danyang Li
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Xiaochun Wang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
40
|
Jo HG, Wudarczyk O, Leclerc M, Regenbogen C, Lampert A, Rothermel M, Habel U. Effect of odor pleasantness on heat-induced pain: An fMRI study. Brain Imaging Behav 2021; 15:1300-1312. [PMID: 32770446 DOI: 10.1007/s11682-020-00328-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Odor modulates the experience of pain, but the neural basis of how the two sensory modalities, olfaction and pain, are linked in the central nervous system is far from clear. In this study, we investigated the mechanisms by which the brain modulates the pain experience under concurrent odorant stimulation. We conducted an fMRI study using a 2 × 3 factorial design, in which one of two temperatures (warm, hot) and one of three types of odors (pleasant, unpleasant, no odor) were presented simultaneously. "Hot" temperatures were individually determined as those perceived as painful (mean temperature = 46.9 °C). The non-painful "warm" temperature was set to 40 °C. Participants rated hot compared to warm stimuli as more intense and unpleasant, especially in the presence of an unpleasant odor. Parametric modeling on the intensity ratings activated the pain network, covering brain regions activated by the hot stimuli. The presence of an odor, irrespective of its valence, activated the amygdalae. In addition, the amygdalae showed stimulus-dependent functional couplings with the right supramarginal gyrus and with the left superior frontal gyrus. The coupling between the right amygdala and the left superior frontal gyrus was related to the intensity and unpleasantness ratings of the pain experience. Our results suggest that these functional connections may reflect the integrating process of the two sensory modalities, enabling olfactory influence on the pain experience.
Collapse
Affiliation(s)
- Han-Gue Jo
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany. .,School of Computer, Information and Communication Engineering, Kunsan National University, Gunsan, South Korea.
| | - Olga Wudarczyk
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence Science of Intelligence, Technische Universität Berlin and Humboldt Universität zu Berlin, 10587, Berlin, Germany
| | - Marcel Leclerc
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM-10), Research Center Jülich and RWTH Aachen University, Jülich, Germany
| |
Collapse
|
41
|
Spence C. The scent of attraction and the smell of success: crossmodal influences on person perception. Cogn Res Princ Implic 2021; 6:46. [PMID: 34173932 PMCID: PMC8233629 DOI: 10.1186/s41235-021-00311-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
In recent decades, there has been an explosion of research into the crossmodal influence of olfactory cues on multisensory person perception. Numerous peer-reviewed studies have documented that a variety of olfactory stimuli, from ambient malodours through to fine fragrances, and even a range of chemosensory body odours can influence everything from a perceiver's judgments of another person's attractiveness, age, affect, health/disease status, and even elements of their personality. The crossmodal and multisensory contributions to such effects are reviewed and the limitations/peculiarities of the research that have been published to date are highlighted. At the same time, however, it is important to note that the presence of scent (and/or the absence of malodour) can also influence people's (i.e., a perceiver's) self-confidence which may, in turn, affect how attractive they appear to others. Several potential cognitive mechanisms have been put forward to try and explain such crossmodal/multisensory influences, and some of the neural substrates underpinning these effects have now been characterized. At the end of this narrative review, a number of the potential (and actual) applications for, and implications of, such crossmodal/multisensory phenomena involving olfaction are outlined briefly.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Anna Watts Building, Oxford, OX2 6BW, UK.
| |
Collapse
|
42
|
Xu J, Dong H, Li N, Wang Z, Guo F, Wei J, Dang J. Weighted RSA: An Improved Framework on the Perception of Audio-visual Affective Speech in Left Insula and Superior Temporal Gyrus. Neuroscience 2021; 469:46-58. [PMID: 34119576 DOI: 10.1016/j.neuroscience.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Being able to accurately perceive the emotion expressed by the facial or verbal expression from others is critical to successful social interaction. However, only few studies examined the multimodal interactions on speech emotion, and there is no consistence in studies on the speech emotion perception. It remains unclear, how the speech emotion of different valence is perceived on the multimodal stimuli by our human brain. In this paper, we conducted a functional magnetic resonance imaging (fMRI) study with an event-related design, using dynamic facial expressions and emotional speech stimuli to express different emotions, in order to explore the perception mechanism of speech emotion in audio-visual modality. The representational similarity analysis (RSA), whole-brain searchlight analysis, and conjunction analysis of emotion were used to interpret the representation of speech emotion in different aspects. Significantly, a weighted RSA approach was creatively proposed to evaluate the contribution of each candidate model to the best fitted model and provided a supplement to RSA. The results of weighted RSA indicated that the fitted models were superior to all candidate models and the weights could be used to explain the representation of ROIs. The bilateral amygdala has been shown to be associated with the processing of both positive and negative emotions except neutral emotion. It is indicated that the left posterior insula and the left anterior superior temporal gyrus (STG) play important roles in the perception of multimodal speech emotion.
Collapse
Affiliation(s)
- Junhai Xu
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Haibin Dong
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China; State Grid Tianjin Electric Power Company, China
| | - Na Li
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Zeyu Wang
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Jianguo Wei
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China.
| | - Jianwu Dang
- College of Intelligence and Computing, Tianjin Key Lab of Cognitive Computing and Application, Tianjin University, Tianjin, China; School of Information Science, Japan Advanced Institute of Science and Technology, Japan
| |
Collapse
|
43
|
Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021; 11:biom11060823. [PMID: 34072960 PMCID: PMC8228195 DOI: 10.3390/biom11060823] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
- Correspondence:
| | - Mladenka Tkalčić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, 51000 Rijeka, Croatia;
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Damir Mulc
- University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia;
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Marina Šagud
- Department of Psychiatry, Clinical Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | | | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 07305, USA;
| |
Collapse
|
44
|
Deco G, Vidaurre D, Kringelbach ML. Revisiting the global workspace orchestrating the hierarchical organization of the human brain. Nat Hum Behav 2021; 5:497-511. [PMID: 33398141 PMCID: PMC8060164 DOI: 10.1038/s41562-020-01003-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
A central challenge in neuroscience is how the brain organizes the information necessary to orchestrate behaviour. Arguably, this whole-brain orchestration is carried out by a core subset of integrative brain regions, a 'global workspace', but its constitutive regions remain unclear. We quantified the global workspace as the common regions across seven tasks as well as rest, in a common 'functional rich club'. To identify this functional rich club, we determined the information flow between brain regions by means of a normalized directed transfer entropy framework applied to multimodal neuroimaging data from 1,003 healthy participants and validated in participants with retest data. This revealed a set of regions orchestrating information from perceptual, long-term memory, evaluative and attentional systems. We confirmed the causal significance and robustness of our results by systematically lesioning a generative whole-brain model. Overall, this framework describes a complex choreography of the functional hierarchical organization of the human brain.
Collapse
Affiliation(s)
- Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Diego Vidaurre
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Prokosch ML, Airington Z, Murray DR. Investigating the relationship between olfactory acuity, disgust, and mating strategies. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Sandri A, Cecchini MP, Riello M, Zanini A, Nocini R, Fiorio M, Tinazzi M. Pain, Smell, and Taste in Adults: A Narrative Review of Multisensory Perception and Interaction. Pain Ther 2021; 10:245-268. [PMID: 33635507 PMCID: PMC8119564 DOI: 10.1007/s40122-021-00247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Every day our sensory systems perceive and integrate a variety of stimuli containing information vital for our survival. Pain acts as a protective warning system, eliciting a response to remove harmful stimuli; it may also be a symptom of an illness or present as a disease itself. There is a growing need for additional pain-relieving therapies involving the multisensory integration of smell and taste in pain modulation, an approach that may provide new strategies for the treatment and management of pain. While pain, smell, and taste share common features and are strongly linked to emotion and cognition, their interaction has been poorly explored. In this review, we provide an overview of the literature on pain modulation by olfactory and gustatory substances. It includes adult human studies investigating measures of pain threshold, tolerance, intensity, and/or unpleasantness. Due to the limited number of studies currently available, we have structured this review as a narrative in which we comment on experimentally induced and clinical pain separately on pain–smell and pain–taste interaction. Inconsistent study findings notwithstanding, pain, smell, and taste seem to interact at both the behavioral and the neural levels. Pain intensity and unpleasantness seem to be affected more by olfactory substances, whereas pain threshold and tolerance are influenced by gustatory substances. Few pilot studies to date have investigated these effects in clinical populations. While the current results are promising for the future, more evidence is needed to elucidate the link between the chemical senses and pain. Doing so has the potential to improve and develop novel options for pain treatment.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Maria Paola Cecchini
- Anatomy and Histology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marianna Riello
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Zanini
- Anatomy and Histology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Riccardo Nocini
- Otolaryngology Section, Department of Surgery, Dentistry, Paediatrics and Gynaecology , University of Verona, Verona, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
47
|
Li YY, Ni XK, You YF, Qing YH, Wang PR, Yao JS, Ren KM, Zhang L, Liu ZW, Song TJ, Wang J, Zang YF, Shen YD, Chen W. Common and Specific Alterations of Amygdala Subregions in Major Depressive Disorder With and Without Anxiety: A Combined Structural and Resting-State Functional MRI Study. Front Hum Neurosci 2021; 15:634113. [PMID: 33658914 PMCID: PMC7917186 DOI: 10.3389/fnhum.2021.634113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Anxious major depressive disorder is a common subtype of major depressive disorder; however, its unique neural mechanism is not well-understood currently. Using multimodal MRI data, this study examined common and specific alterations of amygdala subregions between patients with and without anxiety. No alterations were observed in the gray matter volume or intra-region functional integration in either patient group. Compared with the controls, both patient groups showed decreased functional connectivity between the left superficial amygdala and the left putamen, and between the right superficial amygdala and the bilateral anterior cingulate cortex and medial orbitofrontal cortex, while only patients with anxiety exhibited decreased activity in the bilateral laterobasal and superficial amygdala. Moreover, the decreased activity correlated negatively with the Hamilton depression scale scores in the patients with anxiety. These findings provided insights into the pathophysiologic processes of anxious major depressive disorder and may help to develop new and effective treatment programs.
Collapse
Affiliation(s)
- Yao Yao Li
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Xiao Kang Ni
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Feng You
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Hua Qing
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei Rong Wang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Shu Yao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Ming Ren
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Wei Liu
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tie Jun Song
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhui Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yu-Feng Zang
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yue di Shen
- Department of Diagnostics, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
48
|
Hiser J, Schneider B, Koenigs M. Uncertainty Potentiates Neural and Cardiac Responses to Visual Stimuli in Anxiety Disorders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:725-734. [PMID: 33592312 DOI: 10.1016/j.bpsc.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Intolerance of uncertainty and worry about future events are cardinal features of anxiety. However, the neurobiological and physiological mechanisms underlying these characteristics of anxiety remain to be fully elucidated. METHODS Individuals with diagnosed anxiety disorders (n = 29, 22 female) and age-matched comparison subjects (n = 28, 17 female) completed a task in which pictures (aversive or neutral content) were preceded by cues indicating certainty or uncertainty about the emotional valence of the subsequent pictures. We assessed functional magnetic resonance imaging and heart rate activity with respect to the 1) cue period, 2) emotional valence of the pictures, and 3) modulatory effect of uncertainty on responses to subsequent pictures. RESULTS Individuals with anxiety disorders and comparison subjects exhibited similar functional magnetic resonance imaging and cardiac activity during the cue period and for the aversive versus neutral picture contrast. However, individuals with anxiety disorders exhibited greater modulatory effects of uncertainty on their responses to subsequent pictures. Specifically, they displayed greater functional magnetic resonance imaging activity in a number of cortical regions (visual cortex, anterior cingulate cortex, superior temporal gyrus, and anterior insula), as well as significantly reduced cardiac deceleration to pictures preceded by the uncertainty cue. CONCLUSIONS These findings suggest that heightened neural and autonomic reactivity to stimuli during conditions of uncertainty may be a key psychobiological mechanism of anxiety.
Collapse
Affiliation(s)
- Jaryd Hiser
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Brett Schneider
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael Koenigs
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
49
|
Olfaction Is Associated With Sexual Motivation and Satisfaction in Older Men and Women. J Sex Med 2021; 18:295-302. [DOI: 10.1016/j.jsxm.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023]
|
50
|
Zang Y, Han P, Chen B, Hähner A, Yan X, Hummel T. Brain response to odors presented inside the nose, directly in front of the nose or with ambient air. Eur Arch Otorhinolaryngol 2021; 278:2843-2850. [PMID: 33389011 DOI: 10.1007/s00405-020-06547-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Functional magnetic resonance imaging (fMRI) allows the measurement of changes in blood flow in association with changes in brain activity. This technique has been used frequently to study brain activation in response to odorous stimuli. The aim of this study was to evaluate the effects of odor delivery conditions on brain responses obtained with fMRI. STUDY DESIGN Prospective cohort study SETTING: Academic institution. METHODS Twenty healthy volunteers (mean age = 29.5 years; 9 women, 11 men) participated. Three odor delivery methods were used: "tube" (odor presented intranasally with separate tubing for each nostril), "mask" (odor presented in a face mask covering the subject's nose) and "vacuum" (odor presented into the ambient air). Presentation of the pleasant "peach" odor was performed using a computer-controlled olfactometer. Subjects were asked to evaluate the intensity of the odors after each fMRI run. RESULTS "Tube" showed higher self-rated odor intensity compared to "mask" and "vacuum" (F = 18.4, p < 0.001). Odor intensity had a positive correlation (r = 0.6, p < 0.05) with percent signal change extracted from the secondary olfactory cortex region in the mask condition. In the tube condition, several selected regions of interest (Amygdala, Insula, Thalamus) showed lower activations compared to the other two conditions (puncorrected < 0.001, mask > tube, vacuum > tube). CONCLUSION Activations of region of interests (ROIs) in response to the odorous stimuli showed differences under the three conditions (mask, tube, vacuum). In this passive fMRI paradigm, this may partly reflect the differences in odor intensity, but also in attention and contextual variables related to odor perception.
Collapse
Affiliation(s)
- Yunpeng Zang
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Department of Otorhinolaryngology, The Affiliated Hospital Xuzhou Medical University, Xuzhou, China.
| | - Pengfei Han
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ben Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University Guangzhou Huiai Hospital, Guangzhou, China
| | - Antje Hähner
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Xiaoguang Yan
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|