1
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
2
|
Baumeister D, Peters E, Pruessner J, Howes O, Chadwick P. The effects of voice content on stress reactivity: A simulation paradigm of auditory verbal hallucinations. Schizophr Res 2022; 243:225-231. [PMID: 31377050 PMCID: PMC9205337 DOI: 10.1016/j.schres.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/27/2019] [Accepted: 07/11/2019] [Indexed: 12/02/2022]
Abstract
OBJECTIVES Psychosis is associated with increased subjective and altered endocrine and autonomic nervous system stress-reactivity. Psychosis patients often experience auditory verbal hallucinations, with negative voice content being particularly associated with distress. The present study developed a voice-simulation paradigm and investigated the effect of simulated voices with neutral and negative content on psychophysiological stress-reactivity, and the effect of mindful voice-appraisals on stress-reactivity. METHOD Eighty-four healthy participants completed the Montreal Imaging Stress Task with simultaneous presentation of one of three randomly allocated auditory stimuli conditions: negative voices, neutral voices or non-voice ambient sounds. Subjective stress-levels and mindful voice-appraisals were assessed using questionnaire measures, and cortisol and α-amylase levels were measured using saliva samples. RESULTS ANOVA revealed a significant effect of condition on subjective stress-levels (p = .002), but not cortisol (p = .63) or α-amylase (p = .73). Post-hoc analyses showed that negative voices increased subjective stress-levels relative to neutral voices (p = .002) and ambient sounds (p = .01), which did not differ from each other (p = .41). Mindful voice-appraisals were associated with less distress across conditions (p = .003), although negative voices were also associated with less mindful appraisals (p < .001). CONCLUSIONS Negative voice content, rather than voices or auditory stimuli per se, is linked to greater subjective but not physiological stress-reactivity. Mindful appraisals may partially moderate this effect. These findings highlight the importance of voice content for the impact of voice-hearing, and highlight the potential value of mindfulness training to treat voice distress in psychosis.
Collapse
Affiliation(s)
- David Baumeister
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychology, London, UK; Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Germany.
| | - Emmanuelle Peters
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychology, London, UK,South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, Kent, UK
| | - Jens Pruessner
- Department of Psychology, University of Constance, Constance, Germany
| | - Oliver Howes
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, Kent, UK,Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychosis Studies, London, UK
| | - Paul Chadwick
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Department of Psychology, London, UK,Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
3
|
van Ruitenbeek P, Quaedflieg CWEM, Hernaus D, Hartogsveld B, Smeets T. Dopaminergic and noradrenergic modulation of stress-induced alterations in brain activation associated with goal-directed behaviour. J Psychopharmacol 2021; 35:1449-1463. [PMID: 34519561 PMCID: PMC8652367 DOI: 10.1177/02698811211044679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acute stress is thought to reduce goal-directed behaviour, an effect purportedly associated with stress-induced release of catecholamines. In contrast, experimentally increased systemic catecholamine levels have been shown to increase goal-directed behaviour. Whether experimentally increased catecholamine function can modulate stress-induced reductions in goal-directed behaviour and its neural substrates, is currently unknown. AIM To assess whether and how experimentally induced increases in dopamine and noradrenaline contribute to the acute stress effects on goal-directed behaviour and associated brain activation. METHODS One hundred participants underwent a stress induction protocol (Maastricht acute stress test; MAST) or a control procedure and received methylphenidate (MPH) (40 mg, oral) or placebo according to a 2 × 2 between-subjects design. In a well-established instrumental learning paradigm, participants learnt stimulus-response-outcome associations, after which rewards were selectively devalued. Participants' brain activation and associated goal-directed behaviour were assessed in a magnetic resonance imaging scanner at peak cortisol/MPH concentrations. RESULTS The MAST and MPH increased physiological measures of stress (salivary cortisol and blood pressure), but only MAST increased subjective measures of stress. MPH modulated stress effects on activation of brain areas associated with goal-directed behaviour, including insula, putamen, amygdala, medial prefrontal cortex, frontal pole and orbitofrontal cortex. However, MPH did not modulate the tendency of stress to induce a reduction in goal-directed behaviour. CONCLUSION Our neuroimaging data suggest that MPH-induced increases in dopamine and noradrenaline reverse stress-induced changes in key brain regions associated with goal-directed behaviour, while behavioural effects were absent. These effects may be relevant for preventing stress-induced maladaptive behaviour like in addiction or binge eating disorder.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands,Peter van Ruitenbeek, Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, The Netherlands.
| | - Conny WEM Quaedflieg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Bart Hartogsveld
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tom Smeets
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands,CoRPS – Center of Research on Psychological and Somatic Diseases, Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, Noord-Brabant, The Netherlands
| |
Collapse
|
4
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
5
|
Ros T, Kwiek J, Andriot T, Michela A, Vuilleumier P, Garibotto V, Ginovart N. PET Imaging of Dopamine Neurotransmission During EEG Neurofeedback. Front Physiol 2021; 11:590503. [PMID: 33584328 PMCID: PMC7873858 DOI: 10.3389/fphys.2020.590503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Neurofeedback (NFB) is a brain-based training method that enables users to control their own cortical oscillations using real-time feedback from the electroencephalogram (EEG). Importantly, no investigations to date have directly explored the potential impact of NFB on the brain's key neuromodulatory systems. Our study's objective was to assess the capacity of NFB to induce dopamine release as revealed by positron emission tomography (PET). Thirty-two healthy volunteers were randomized to either EEG-neurofeedback (NFB) or EEG-electromyography (EMG), and scanned while performing self-regulation during a single session of dynamic PET brain imaging using the high affinity D2/3 receptor radiotracer, [18F]Fallypride. NFB and EMG groups down-regulated cortical alpha power and facial muscle tone, respectively. Task-induced effects on endogenous dopamine release were estimated in the frontal cortex, anterior cingulate cortex, and thalamus, using the linearized simplified reference region model (LSRRM), which accounts for time-dependent changes in radiotracer binding following task initiation. Contrary to our hypothesis of a differential effect for NFB vs. EMG training, significant dopamine release was observed in both training groups in the frontal and anterior cingulate cortex, but not in thalamus. Interestingly, a significant negative correlation was observed between dopamine release in frontal cortex and pre-to-post NFB change in spontaneous alpha power, suggesting that intra-individual changes in brain state (i.e., alpha power) could partly result from changes in neuromodulatory tone. Overall, our findings constitute the first direct investigation of neurofeedback's effect on the endogenous release of a key neuromodulator, demonstrating its feasibility and paving the way for future studies using this methodology.
Collapse
Affiliation(s)
- Tomas Ros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Jessica Kwiek
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Theo Andriot
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Abele Michela
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Ginovart
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To give an update on recent imaging studies probing positron emission tomography (PET) as a tool for improving biomarker-guided diagnosis of neuropsychiatric disorders. RECENT FINDINGS Several studies confirmed the value of imaging of regional neuronal activity and imaging of dopaminergic, serotonergic, and other neuroreceptor function in the diagnostic process of neuropsychiatric disorders, particularly schizophrenia, depression/bipolar disorder, substance use disorders, obsessive compulsive disorders (OCD), and attention-deficit/hyperactivity disorder. Additionally, imaging brain microglial activation using translocator protein 18 kDa (TSPO) radiotracer allows for unique in-vivo insights into pathophysiological neuroinflammatory changes underlying schizophrenia, affective disorders, and OCD. SUMMARY The role of PET imaging in the biomarker-guided diagnostic process of neuropsychiatric disorders has been increasingly acknowledged in recent years. Future prospective studies are needed to define the value of PET imaging for diagnosis, treatment decisions, and prognosis in neuropsychiatric disorders.
Collapse
|
7
|
McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19:15-33. [PMID: 31922684 PMCID: PMC6953551 DOI: 10.1002/wps.20693] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate and dopamine systems play distinct roles in terms of neuronal signalling, yet both have been proposed to contribute significantly to the pathophysiology of schizophrenia. In this paper we assess research that has implicated both systems in the aetiology of this disorder. We examine evidence from post-mortem, preclinical, pharmacological and in vivo neuroimaging studies. Pharmacological and preclinical studies implicate both systems, and in vivo imaging of the dopamine system has consistently identified elevated striatal dopamine synthesis and release capacity in schizophrenia. Imaging of the glutamate system and other aspects of research on the dopamine system have produced less consistent findings, potentially due to methodological limitations and the heterogeneity of the disorder. Converging evidence indicates that genetic and environmental risk factors for schizophrenia underlie disruption of glutamatergic and dopaminergic function. However, while genetic influences may directly underlie glutamatergic dysfunction, few genetic risk variants directly implicate the dopamine system, indicating that aberrant dopamine signalling is likely to be predominantly due to other factors. We discuss the neural circuits through which the two systems interact, and how their disruption may cause psychotic symptoms. We also discuss mechanisms through which existing treatments operate, and how recent research has highlighted opportunities for the development of novel pharmacological therapies. Finally, we consider outstanding questions for the field, including what remains unknown regarding the nature of glutamate and dopamine function in schizophrenia, and what needs to be achieved to make progress in developing new treatments.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| | - John H Krystal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
- South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, UK
| |
Collapse
|
8
|
Schifani C, Hafizi S, Tseng HH, Gerritsen C, Kenk M, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Preliminary data indicating a connection between stress-induced prefrontal dopamine release and hippocampal TSPO expression in the psychosis spectrum. Schizophr Res 2019; 213:80-86. [PMID: 30409695 PMCID: PMC6500775 DOI: 10.1016/j.schres.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Prolonged stress can cause neuronal loss in the hippocampus resulting in disinhibition of glutamatergic neurons proposed to enhance dopaminergic firing in subcortical regions including striatal areas. Supporting this, imaging studies show increased striatal dopamine release in response to psychosocial stress in healthy individuals with low childhood maternal care, individuals at clinical high risk for psychosis (CHR) and patients with schizophrenia. The prefrontal cortex (PFC) is connected to the hippocampus and a key region to control neurochemical responses to stressful stimuli. We recently reported a disrupted PFC dopamine-stress regulation in schizophrenia, which was intact in CHR. Given the available evidence on the link between psychosocial stress, PFC dopamine release and hippocampal immune activation in psychosis, we explored, for the first time in vivo, whether stress-induced PFC dopamine release is associated with hippocampal TSPO expression (a neuroimmune marker) in the psychosis spectrum. We used an overlapping sample of antipsychotic-naïve subjects with CHR (n = 6) and antipsychotic-free schizophrenia patients (n = 9) from our previously published studies, measuring PFC dopamine release induced by a psychosocial stress task with [11C]FLB457 positron emission tomography (PET) and TSPO expression with [18F]FEPPA PET. We observed that participants on the psychosis spectrum with lower stress-induced dopamine release in PFC had significantly higher TSPO expression in hippocampus (β = -2.39, SE = 0.96, F(1,11) = 6.17, p = 0.030). Additionally, we report a positive association between stress-induced PFC dopamine release, controlled for hippocampal TSPO expression, and Global Assessment of Functioning. This is the first exploration of the relationship between PFC dopamine release and hippocampal TSPO expression in vivo in humans.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Cory Gerritsen
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Miran Kenk
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental
Health, Toronto, Ontario, Canada,institute of Medical Science, University of Toronto,
Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Tagore A, Schifani C, Rao N, Tseng HH, Zakzanis KK, Rusjan PM, Houle S, Mizrahi R. Prefrontal cortical dopamine release in clinical high risk for psychosis during a cognitive task: a [ 11C]FLB457 positron emission tomography study. Eur Neuropsychopharmacol 2019; 29:1023-1032. [PMID: 31351843 DOI: 10.1016/j.euroneuro.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023]
Abstract
Research suggests decreased cortical dopamine is a neural correlate of cognitive deficits in schizophrenia. Evidence of impaired cognitive task-induced cortical dopamine release was demonstrated in patients with psychosis. However, whether cortical dopamine release in response to a cognitive task in clinical high risk for psychosis (CHR) is also impaired, is currently unknown. We aimed to test dopamine release in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate cortex (ACC) in antipsychotic-free CHR participants and healthy controls (HC) performing the Wisconsin Card Sorting Task (WCST). Two [11C]FLB457 PET scans were conducted for 13 CHR and 15 HC while performing the WCST and the sensorimotor control task (SMCT), respectively. A magnetic resonance image was acquired for anatomical delineation. Percentage change in binding potential (ΔBPND) in ACC and DLPFC in WCST were compared with the SMCT between CHR and HC. Mixed model analysis revealed no statistically significant differences in the cognitive task induced ΔBPND in any ROIs. There were no main effect of group (F(1, 26) = 0.348; p = 0.560) or ROI (F(1, 26) = 1.080; p = 0.308) and no significant Group x ROI interaction (F(1, 26) = 0.049; p = 0.826). Our findings suggest no statistically significant difference between CHR and HC in cognitive task-induced cortical dopamine release. This is the first in vivo study to illustrate that the cortical hypodopaminergic state observed in schizophrenia may not be present in its putative high-risk state.
Collapse
Affiliation(s)
- Abanti Tagore
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Naren Rao
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Konstantine K Zakzanis
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Kasanova Z, Ceccarini J, Frank MJ, van Amelsvoort T, Booij J, Heinzel A, Mottaghy FM, Myin-Germeys I. Daily-life stress differentially impacts ventral striatal dopaminergic modulation of reward processing in first-degree relatives of individuals with psychosis. Eur Neuropsychopharmacol 2018; 28:1314-1324. [PMID: 30482598 DOI: 10.1016/j.euroneuro.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022]
Abstract
Emerging evidence shows that stress can impair the ability to learn from and pursue rewards, which in turn has been linked to motivational impairments characteristic of the psychotic disorder. Ventral striatal dopaminergic neurotransmission has been found to modulate reward processing, and appears to be disrupted by exposure to stress. We investigated the hypothesis that stress experienced in the everyday life has a blunting effect on reward-induced dopamine release in the ventral striatum of 16 individuals at a familial risk for psychosis compared to 16 matched control subjects. Six days of ecological momentary assessments quantified the amount of daily-life stress prior to [18F]fallypride PET imaging while performing a probabilistic reinforcement learning task. Relative to the controls, individuals at a familial risk for psychosis who encountered more daily-life stress showed significantly diminished extent of reward-induced dopamine release in the right ventral striatum, as well as poorer performance on the reward task. These findings provide the first neuromolecular evidence for stress-related deregulation of reward processing in familial predisposition to psychosis. The implication of daily-life stress in compromised modulation of reward function may facilitate the design of targeted neuropharmacological and ecological interventions.
Collapse
Affiliation(s)
- Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Kapucijnenvoer 33, blok i, Leuven, 3000, Belgium.
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Nuclear Medicine and Radiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Kapucijnenvoer 33, blok i, Leuven, 3000, Belgium
| |
Collapse
|
11
|
Vaessen T, Kasanova Z, Hernaus D, Lataster J, Collip D, van Nierop M, Myin-Germeys I. Overall cortisol, diurnal slope, and stress reactivity in psychosis: An experience sampling approach. Psychoneuroendocrinology 2018; 96:61-68. [PMID: 29906787 DOI: 10.1016/j.psyneuen.2018.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Results from experimental studies suggest that psychosis and psychosis liability are associated with increased cortisol levels and blunted cortisol reactivity, and that use of antipsychotics may reduce these aberrations. Here, we report on overall cortisol, diurnal slope, and cortisol stress reactivity in everyday life in psychosis and psychosis liability using the experience sampling method (ESM). METHODS Our sample consisted of individuals diagnosed with psychotic disorder currently on (MPD; n = 53) or off antipsychotic medication (NMPD; n = 20), first-degree relatives of psychotic patients (REL; n = 47), and healthy volunteers (HV; n = 67). Saliva samples were collected throughout the day on six consecutive days and analyzed for cortisol levels. Simultaneously, stressfulness of the current activity was assessed with ESM questionnaires. RESULTS We found no group differences in overall cortisol level between groups, but REL had a steeper diurnal slope than HV; in MPD a trend was found in the same direction. Regarding reactivity to stressful activities, results indicated attenuation of the cortisol response in both patient groups compared to HV. CONCLUSION These results do not confirm reports of increased cortisol levels in psychosis, but provide evidence of stress-related cortisol alterations in everyday life.
Collapse
Affiliation(s)
- Thomas Vaessen
- Department of Neurosciences, Psychiatry Research Group, Center for Contextual Psychiatry, KU Leuven, Belgium; Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Department of Neurosciences, Psychiatry Research Group, Center for Contextual Psychiatry, KU Leuven, Belgium
| | - Dennis Hernaus
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Johan Lataster
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Faculty of Psychology and Educational Sciences, Open University, Heerlen, The Netherlands
| | - Dina Collip
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Martine van Nierop
- Department of Neurosciences, Psychiatry Research Group, Center for Contextual Psychiatry, KU Leuven, Belgium
| | - Inez Myin-Germeys
- Department of Neurosciences, Psychiatry Research Group, Center for Contextual Psychiatry, KU Leuven, Belgium
| |
Collapse
|
12
|
Kasanova Z, Ceccarini J, Frank MJ, van Amelsvoort T, Booij J, van Duin E, Steinhart H, Vaessen T, Heinzel A, Mottaghy F, Myin-Germeys I. Intact striatal dopaminergic modulation of reward learning and daily-life reward-oriented behavior in first-degree relatives of individuals with psychotic disorder. Psychol Med 2018; 48:1909-1914. [PMID: 29233195 DOI: 10.1017/s0033291717003476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormalities in reward learning in psychotic disorders have been proposed to be linked to dysregulated subcortical dopaminergic (DA) neurotransmission, which in turn is a suspected mechanism for predisposition to psychosis. We therefore explored the striatal dopaminergic modulation of reward processing and its behavioral correlates in individuals at familial risk for psychosis. METHODS We performed a DA D2/3 receptor [18F]fallypride positron emission tomography scan during a probabilistic reinforcement learning task in 16 healthy first-degree relatives of patients with psychosis and 16 healthy volunteers, followed by a 6-day ecological momentary assessment study capturing reward-oriented behavior in the everyday life. RESULTS We detected significant reward-induced DA release in bilateral caudate, putamen and ventral striatum of both groups, with no group differences in its magnitude nor spatial extent. In both groups alike, greater extent of reward-induced DA release in all regions of interest was associated with better performance in the task, as well as in greater tendency to be engaged in reward-oriented behavior in the daily life. CONCLUSIONS These findings suggest intact striatal dopaminergic modulation of reinforcement learning and reward-oriented behavior in individuals with familial predisposition to psychosis. Furthermore, this study points towards a key link between striatal reward-related DA release and pursuit of ecologically relevant rewards.
Collapse
Affiliation(s)
- Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven - Leuven University, Leuven, Belgium
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther van Duin
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Henrietta Steinhart
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven - Leuven University, Leuven, Belgium
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Thomas Vaessen
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven - Leuven University, Leuven, Belgium
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven - Leuven University, Leuven, Belgium
| |
Collapse
|
13
|
Schifani C, Tseng HH, Kenk M, Tagore A, Kiang M, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Cortical stress regulation is disrupted in schizophrenia but not in clinical high risk for psychosis. Brain 2018; 141:2213-2224. [PMID: 29860329 PMCID: PMC6022671 DOI: 10.1093/brain/awy133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
While alterations in striatal dopamine in psychosis and stress have been well studied, the role of dopamine in prefrontal cortex is poorly understood. To date, no study has investigated the prefrontocortical dopamine response to stress in the psychosis spectrum, even though the dorsolateral and medial prefrontal cortices are key regions in cognitive and emotional regulation, respectively. The present study uses the high-affinity dopamine D2/3 receptor radiotracer 11C-FLB457 and PET together with a validated psychosocial stress challenge to investigate the dorsolateral and medial prefrontocortical dopamine response to stress in schizophrenia and clinical high risk for psychosis. Forty participants completed two 11C-FLB457 PET scans (14 antipsychotic-free schizophrenia, 14 clinical high risk for psychosis and 12 matched healthy volunteers), one while performing a Sensory Motor Control Task (control) and another while performing the Montreal Imaging Stress Task (stress). Binding potential (BPND) was estimated using Simplified Reference Tissue Model with cerebellar cortex as reference region. Dopamine release was defined as per cent change in BPND between control and stress scans (ΔBPND) using a novel correction for injected mass. Salivary cortisol response (ΔAUCI) was assessed throughout the tasks and its relationship with dopamine release examined. 11C-FLB457 binding at control conditions was significantly different between groups in medial [F(2,37) = 7.98, P = 0.0013] and dorsolateral [F(2,37) = 6.97, P = 0.0027] prefrontal cortex with schizophrenia patients having lower BPND than participants at clinical high risk for psychosis and healthy volunteers, but there was no difference in ΔBPND among groups [dorsolateral prefrontal cortex: F(2,37) = 1.07, P = 0.35; medial prefrontal cortex: F(2,37) = 0.54, P = 0.59]. We report a positive relationship between ΔAUCI and 11C-FLB457 ΔBPND in dorsolateral and medial prefrontal cortex in healthy volunteers (r = 0.72, P = 0.026; r = 0.76, P = 0.014, respectively) and in participants at clinical high risk for psychosis (r = 0.76, P = 0.0075; r = 0.72, P = 0.018, respectively), which was absent in schizophrenia (r = 0.46, P = 1.00; r = 0.19, P = 1.00, respectively). Furthermore, exploratory associations between ΔBPND or ΔAUCI and stress or anxiety measures observed in clinical high risk for psychosis were absent in schizophrenia. These findings provide first direct evidence of a disrupted prefrontocortical dopamine-stress regulation in schizophrenia.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miran Kenk
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Abanti Tagore
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael Kiang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
van Duin EDA, Kasanova Z, Hernaus D, Ceccarini J, Heinzel A, Mottaghy F, Mohammadkhani-Shali S, Winz O, Frank M, Beck MCH, Booij J, Myin-Germeys I, van Amelsvoort T. Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome. Eur Neuropsychopharmacol 2018; 28:732-742. [PMID: 29703646 DOI: 10.1016/j.euroneuro.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D2/3 receptor [18F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BPND) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency.
Collapse
Affiliation(s)
- Esther D A van Duin
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Leuven, Belgium
| | - Dennis Hernaus
- University of Maryland School of Medicine, Department of Psychiatry; Maryland Psychiatric Research Center, MD, USA
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, University Hospital Leuven, KU Leuven, Belgium
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Germany
| | - Michael Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Merrit C H Beck
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Academic Medical Center Amsterdam, The Netherlands
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Tseng HH, Watts JJ, Kiang M, Suridjan I, Wilson AA, Houle S, Rusjan PM, Mizrahi R. Nigral Stress-Induced Dopamine Release in Clinical High Risk and Antipsychotic-Naïve Schizophrenia. Schizophr Bull 2018; 44:542-551. [PMID: 29036383 PMCID: PMC5890468 DOI: 10.1093/schbul/sbx042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Striatal dopamine (DA) synthesis capacity and release are elevated in schizophrenia (SCZ) and its putative prodrome, the clinical high risk (CHR) state. Striatal DA function results from the activity of midbrain DA neurons projecting mainly from the substantia nigra (SN). Elevated stress-induced DA release in SCZ and CHR was observed in the striatum; however, whether it is also elevated in the SN is unclear. The current study aims to determine whether nigral DA release in response to a validated stress task is altered in CHR and in antipsychotic-naïve SCZ. Further, we explore how DA release in the SN and striatum might be related. Methods 24 CHR subjects, 9 antipsychotic-naïve SCZ and 25 healthy volunteers (HV) underwent 2 positron emission tomography (PET) scans using the DA D2/3 agonist radiotracer, [11C]-(+)-PHNO, which allows simultaneous investigations of DA in the SN and striatum. Psychosocial stress-induced DA release was estimated as the percentage differences in BPND (%[11C]-(+)-PHNO displacement) between stress and sensory-motor control sessions. Results We observed a significant diagnostic group by session interaction, such that SCZ exhibited greater stress-induced [11C]-(+)-PHNO % displacement (25.90% ± 32.2%; mean ± SD), as compared to HVs (-10.94% ± 27.1%). Displacement in CHRs (-1.13% ± 32.2%) did not differ significantly from either HV or SCZ. Conclusion Our findings suggest that elevated nigral DA responsiveness to stress is observed in antipsychotic-naïve SCZ.
Collapse
Affiliation(s)
- Huai-Hsuan Tseng
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pablo M Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Kasanova Z, Ceccarini J, Frank MJ, Amelsvoort TV, Booij J, Heinzel A, Mottaghy F, Myin-Germeys I. Striatal dopaminergic modulation of reinforcement learning predicts reward-oriented behavior in daily life. Biol Psychol 2017; 127:1-9. [PMID: 28461214 DOI: 10.1016/j.biopsycho.2017.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023]
Abstract
Much human behavior is driven by rewards. Preclinical neurophysiological and clinical positron emission tomography (PET) studies have implicated striatal phasic dopamine (DA) release as a primary modulator of reward processing. However, the relationship between experimental reward-induced striatal DA release and responsiveness to naturalistic rewards, and therefore functional relevance of these findings, has been elusive. We therefore combined, for the first time, a DA D2/3 receptor [18F]fallypride PET during a probabilistic reinforcement learning (RL) task with a six day ecological momentary assessments (EMA) of reward-related behavior in the everyday life of 16 healthy volunteers. We detected significant reward-induced DA release in the bilateral putamen, caudate nucleus and ventral striatum, the extent of which was associated with better behavioral performance on the RL task across all regions. Furthermore, individual variability in the extent of reward-induced DA release in the right caudate nucleus and ventral striatum modulated the tendency to be actively engaged in a behavior if the active engagement was previously deemed enjoyable. This study suggests a link between striatal reward-related DA release and ecologically relevant reward-oriented behavior, suggesting an avenue for the inquiry into the DAergic basis of optimal and impaired motivational drive.
Collapse
Affiliation(s)
- Zuzana Kasanova
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Leuven, Belgium.
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging & Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Inez Myin-Germeys
- Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven - Leuven University, Leuven, Belgium
| |
Collapse
|
17
|
Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry 2017; 81:9-20. [PMID: 27720198 PMCID: PMC5675052 DOI: 10.1016/j.biopsych.2016.07.014] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom.
| | - Robert McCutcheon
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| | - Robin M Murray
- Psychosis Studies, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Kasanova Z, Hernaus D, Vaessen T, van Amelsvoort T, Winz O, Heinzel A, Pruessner J, Mottaghy FM, Collip D, Myin-Germeys I. Early-Life Stress Affects Stress-Related Prefrontal Dopamine Activity in Healthy Adults, but Not in Individuals with Psychotic Disorder. PLoS One 2016; 11:e0150746. [PMID: 27007554 PMCID: PMC4805207 DOI: 10.1371/journal.pone.0150746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Early life stress may have a lasting impact on the developmental programming of the dopamine (DA) system implicated in psychosis. Early adversity could promote resilience by calibrating the prefrontal stress-regulatory dopaminergic neurotransmission to improve the individual's fit with the predicted stressful environment. Aberrant reactivity to such match between proximal and distal environments may, however, enhance psychosis disease risk. We explored the combined effects of childhood adversity and adult stress by exposing 12 unmedicated individuals with a diagnosis of non-affective psychotic disorder (NAPD) and 12 healthy controls (HC) to psychosocial stress during an [18F]fallypride positron emission tomography. Childhood trauma divided into early (ages 0-11 years) and late (12-18 years) was assessed retrospectively using a questionnaire. A significant group x childhood trauma interaction on the spatial extent of stress-related [18F]fallypride displacement was observed in the mPFC for early (b = -8.45, t(1,23) = -3.35, p = .004) and late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). In healthy individuals, the spatial extent of mPFC DA activity under acute psychosocial stress was positively associated with the severity of early (b = 7.23, t(11) = 3.06, p = .016) as well as late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). Additionally, a trend-level main effect of early childhood trauma on subjective stress response emerged within this group (b = -.7, t(11) = -2, p = .07), where higher early trauma correlated with lower subjective stress response to the task. In the NAPD group, childhood trauma was not associated with the spatial extent of the tracer displacement in mPFC (b = -1.22, t(11) = -0.67), nor was there a main effect of trauma on the subjective perception of stress within this group (b = .004, t(11) = .01, p = .99). These findings reveal a potential mechanism of neuroadaptation of prefrontal DA transmission to early life stress and suggest its role in resilience and vulnerability to psychosis.
Collapse
Affiliation(s)
- Zuzana Kasanova
- Department of Neuroscience, KU Leuven–University of Leuven, Leuven, Belgium
| | - Dennis Hernaus
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Thomas Vaessen
- Department of Neuroscience, KU Leuven–University of Leuven, Leuven, Belgium
| | - Thérèse van Amelsvoort
- Department of Neuroscience, KU Leuven–University of Leuven, Leuven, Belgium
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Oliver Winz
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Jens Pruessner
- Department of Psychiatry, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
- Department of Nuclear Medicine, Maastricht University Hospital, Maastricht, The Netherlands
| | - Dina Collip
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Inez Myin-Germeys
- Department of Neuroscience, KU Leuven–University of Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Vaessen T, Hernaus D, Myin-Germeys I, van Amelsvoort T. The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neurosci Biobehav Rev 2015. [PMID: 26196459 DOI: 10.1016/j.neubiorev.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response.
Collapse
Affiliation(s)
- Thomas Vaessen
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands.
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Inez Myin-Germeys
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| |
Collapse
|