1
|
Behan C, Greene C, Hanley N, Salla CV, Brennan D, Connolly R, Sweeney K, O'Brien D, Farrell M, Meaney J, Henshall DC, Campbell M, Doherty CP. Restoration of blood brain barrier integrity post neurosurgical resection in drug resistant epilepsy. Epilepsy Behav 2025; 168:110425. [PMID: 40267865 DOI: 10.1016/j.yebeh.2025.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/20/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Surgery for temporal lobe epilepsy (TLE) is a well-recognised therapy for drug resistant seizures which occur in more than 50 % of patients with TLE. Blood-brain barrier (BBB) dysfunction is commonly observed in resected brain tissue from patients with treatment resistant epilepsy however, no studies have documented the recovery of BBB function following surgery. We firstly prospectively performed dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on seven patients scheduled for temporal lobe resections before and after resection. DCE-MRI revealed BBB dysfunction in frontal and temporal brain regions. At 6-24 months post-resection, there was a reduction in the percentage of brain volume with BBB dysfunction in 5/7 patients. We then retrospectively characterised resected brain tissue from 6 further TLE cases (total n = 13) by q-RT-PCR and immunohistochemistry which revealed region-specific changes in markers of BBB integrity and inflammation with changes in CLDN12 and TJP1/2 in the hippocampus and CSF1R pathway genes in cortical and hippocampal tissue. BBB dysfunction is a key component of the molecular disruption caused by seizures and in longstanding early onset chronic epilepsy that is refractory to treatment. Here, we demonstrate for the first time the rescue of BBB dysfunction by controlling seizures after surgery.
Collapse
Affiliation(s)
- Claire Behan
- Academic Unit of Neurology, Room 5.41, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Neurology, Health Care Centre, Hospital 5, St James's Hospital, Dublin 8, Ireland; FutureNeuro Research Ireland Centre, Academic Unit of Neurology Trinity College, School of Medicine, Dublin 2, Ireland; School of Nursing and Midwifery, RSCI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Research Ireland Centre, Department or Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, Ireland
| | - Nicole Hanley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Carme Vila Salla
- Academic Unit of Neurology, Room 5.41, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Neurology, Health Care Centre, Hospital 5, St James's Hospital, Dublin 8, Ireland
| | - Declan Brennan
- Academic Unit of Neurology, Room 5.41, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Neurology, Health Care Centre, Hospital 5, St James's Hospital, Dublin 8, Ireland
| | - Ruairi Connolly
- Academic Unit of Neurology, Room 5.41, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Neurology, Health Care Centre, Hospital 5, St James's Hospital, Dublin 8, Ireland
| | - Kieron Sweeney
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Donncha O'Brien
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - James Meaney
- Thomas Mitchell Centre for Advanced Medical Imaging (CAMI), St. James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro Research Ireland Centre, Department or Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin 2, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; FutireNeuro Research Ireland Centre, Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Colin P Doherty
- Academic Unit of Neurology, Room 5.41, Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Neurology, Health Care Centre, Hospital 5, St James's Hospital, Dublin 8, Ireland; FutureNeuro Research Ireland Centre, Academic Unit of Neurology Trinity College, School of Medicine, Dublin 2, Ireland
| |
Collapse
|
2
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Cavalari VC, Cardoso Garcia LF, Massuda R, Albrecht L. Toxoplasma gondii, endothelial cells and schizophrenia: is it just a barrier matter? Front Cell Infect Microbiol 2025; 15:1468936. [PMID: 40276385 PMCID: PMC12018487 DOI: 10.3389/fcimb.2025.1468936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite responsible for causing toxoplasmosis. It is estimated that approximately one-third of the world's population has positive serology for toxoplasmosis. Acute T. gondii infection often results in subtle symptoms because of its nonspecific nature. Owing to immune pressure, parasites tend to encyst and persist in different tissues and organs, such as the brain, chronicling the infection. While most chronically infected individuals do not develop significant symptoms, the parasite can affect the central nervous system (CNS), leading to symptoms that range from dizziness to behavioral changes. To reach the CNS, parasites must overcome the blood-brain barrier, which is composed primarily of endothelial cells. While these cells are typically efficient at separating blood elements from the CNS, in T. gondii infection, they not only permit parasitic colonization of the CNS but also contribute to an inflammatory profile that may exacerbate previously established conditions at both the local CNS and systemic levels. An increasing body of research has demonstrated a potential link between the CNS, infection by T. gondii and the cellular or humoral response to infection, with the worsening of psychiatric conditions, such as schizophrenia. Therefore, continually advancing research aimed at understanding and mitigating the relationship between parasitic infection and schizophrenia is imperative.
Collapse
Affiliation(s)
- Victoria Cruz Cavalari
- Laboratório de Pesquisa em Apicomplexa – Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Luiz Fernando Cardoso Garcia
- Laboratório de Pesquisa em Apicomplexa – Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Raffael Massuda
- Departamento de Medicina Forense e Psiquiatria da Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa – Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Akande AO, Carter ZA, Stokes KY, Nam HW. Endothelial Neurogranin Regulates Blood-Brain Barrier Permeability via Modulation of the AKT Pathway. Mol Neurobiol 2025; 62:3991-4007. [PMID: 39367201 PMCID: PMC11880131 DOI: 10.1007/s12035-024-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Neurogranin (Ng) expression is a biomarker for Alzheimer's disease. A loss of brain Ng and an increase in CSF Ng positively correlate with cognitive decline. Ng is known to regulate neuronal calcium-calmodulin binding and synaptic plasticity, which are critical for learning/memory. Interestingly, we discovered that Ng is also expressed in mouse and human blood-brain barrier (BBB). However, the role of Ng expression in brain vasculature remains largely undefined. In this study, we investigated the role of Ng expression on neurovascular structure and function using Ng null mice and human cerebral microvascular endothelial (hCMEC/D3) cells. We performed brain clearing and immunolabeling of blood vessels from whole brains and brain slices. Deletion of Ng significantly decreases neurovascular density in mice. Using in vivo permeability assays, we found increased neurovascular permeability in Ng null mice. We also observed significant changes in the expression of tight junction proteins using western blot and immunofluorescent staining. To identify the molecular pathways involved, we carried out label-free proteomics on brain lysates from endothelial-specific Ng knockout mice. Ingenuity Pathway Analysis indicated that the AKT pathway is attenuated in the vasculature of endothelial-specific Ng knockout mice. To validate these in vivo findings, we pharmacologically manipulated AKT signaling in hCMEC/D3 cells and observed that inhibition of AKT activation causes increased permeability. Our results indicate that the loss of Ng expression alters neurovascular structure and permeability, potentially contributing to neurological dysfunction. Therefore, modulating Ng expression in the BBB may offer a novel therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Adesewa O Akande
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Zachary A Carter
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
5
|
Goldwaser EL, Yuen A, Marshall W, Adhikari BM, Chiappelli J, van der Vaart A, Kvarta M, Ma Y, Du X, Gao S, Bruce H, Donnelly P, Mitchell B, Hong C, Wang DJJ, Kochunov P, Hong LE. Peripheral Microvascular and Cerebral White Matter Dysfunction in Schizophrenia: Implications of a Body-Brain Endothelial Pathophysiology. Schizophr Bull 2025:sbaf020. [PMID: 40036787 DOI: 10.1093/schbul/sbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia spectrum disorder (SSD) is a chronic neuropsychiatric illness accompanied by significant brain structural and functional abnormalities and higher rate of cardio- and cerebrovascular comorbidities. We hypothesized that genetic and environmental risk factors that led to SSD act throughout the body and demonstrated the association between lower integrity of peripheral vascular endothelium and white matter (WM) microstructure. STUDY DESIGN Microvascular endothelial function was evaluated using brachial artery post-occlusive reactive hyperemia (PORH), in which endothelial responses are measured under reduced blood flow and after blood flow is restored. White matter microstructure was assessed by multi-shell diffusion tensor imaging in n = 48 healthy controls (HCs) and n = 46 SSD. STUDY RESULTS Patients showed significantly lower PORH (F1,90 = 5.31, P = .02) effect and lower whole-brain fractional anisotropy (FA) values by diffusion imaging (F1,84 = 7.46, P = .008) with a group × post-occlusion time interaction effect (F3,90 = 4.58, P = .02). The PORH and whole-brain FA were significantly correlated in the full sample (r = 0.28, P = .01) and in SSD (r = 0.4, P = .008) separately, but not HC (r = 0.18, P = .28). CONCLUSIONS This study demonstrated, for the first time, significantly lower integrity of vascular endothelium in participants with SSD and showed that it is associated with WM microstructural abnormalities. Together, these findings support the need for a more holistic, body-brain approach to study the pathophysiology of SSD.
Collapse
Affiliation(s)
- Eric L Goldwaser
- Weill Cornell Medicine, Department of Psychiatry, New York, NY 10065, United States
| | - Alexa Yuen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Bhim M Adhikari
- Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Andrew van der Vaart
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Yizhou Ma
- Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Xiaoming Du
- Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Si Gao
- Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Patrick Donnelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Braxton Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Charles Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI 48824, United States
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI 48824, United States
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Peter Kochunov
- Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - L Elliot Hong
- Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| |
Collapse
|
6
|
Beard RS, Hoettels BA, McAllister JM, Meegan JE, Wertz TS, Self DA, Hrkach DE, Greiner D, Chapman K, Villalba N, Yang X, Cha BJ, Jorcyk CL, Oxford JT, Wu MH, Yuan SY. Progression of experimental autoimmune encephalomyelitis in mice and neutrophil-mediated blood-brain barrier dysfunction requires non-muscle myosin light chain kinase. J Cereb Blood Flow Metab 2025:271678X251318620. [PMID: 39917847 PMCID: PMC11806455 DOI: 10.1177/0271678x251318620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025]
Abstract
Blood-brain barrier (BBB) dysfunction occurs in numerous central nervous system disorders. Unfortunately, a limited understanding of the mechanisms governing barrier function hinders the identification and assessment of BBB-targeted therapies. Previously, we found that non-muscle myosin light chain kinase (nmMLCK) negatively regulates the tight junction protein claudin-5 in brain microvascular endothelial cells (BMVECs) under inflammatory conditions. Here, we used complementary animal and primary cell co-culture models to further investigate nmMLCK and claudin-5 during neuroinflammation. We found that nmMLCK-knockout mice resisted experimental autoimmune encephalomyelitis (EAE), including paralysis, demyelination, neutrophil infiltration, and BBB dysfunction. However, transiently silencing claudin-5 culminated in a fulminant disease course. In parallel, we found that neutrophil-secreted factors triggered a biphasic loss in the barrier quality of wild-type BMVEC monolayers, plus pronounced neutrophil migration during the second phase. Conversely, nmMLCK-knockout monolayers resisted barrier dysfunction and neutrophil migration. Lastly, we found an inverse relationship between claudin-5 expression in BMVECs and neutrophil migration. Overall, our findings support a pathogenic role for nmMLCK in BMVECs during EAE that includes BBB dysfunction and neutrophil infiltration, reveal that claudin-5 contributes to the immune barrier properties of BMVECs, and underscore the harmful effects of claudin-5 loss during neuroinflammation.
Collapse
Affiliation(s)
- Richard S Beard
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Brian A Hoettels
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Jessica M McAllister
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Travis S Wertz
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Desiree A Self
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Dylan E Hrkach
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Daniel Greiner
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Kristina Chapman
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Byeong J Cha
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Julia T Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, USA
- Biomedical Research Institute, Boise State University, Boise, ID, USA
| | - Mack H Wu
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Tripathi A, Bartosh A, Mata J, Jacks C, Madeshiya AK, Hussein U, Hong LE, Zhao Z, Pillai A. Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits. Mol Psychiatry 2025; 30:423-434. [PMID: 39095477 DOI: 10.1038/s41380-024-02675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Inflammation and synapse loss have been associated with deficits in social behavior and are involved in pathophysiology of many neuropsychiatric disorders. Synapse loss, characterized by reduction in dendritic spines can significantly disrupt synaptic connectivity and neural circuitry underlying social behavior. Chronic stress is known to induce loss of spines and dendrites in the prefrontal cortex (PFC), a brain region implicated in social behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of type I Interferon (IFN-I) signaling in chronic unpredictable stress (CUS)-induced synapse loss and behavior deficits in mice. We found increased expression of type I IFN receptor (IFNAR) in microglia following CUS. Conditional knockout of microglial IFNAR in adult mice rescued CUS-induced social behavior deficits and synapse loss. Bulk RNA sequencing data show that microglial IFNAR deletion attenuated CUS-mediated changes in the expression of genes such as Keratin 20 (Krt20), Claudin-5 (Cldn5) and Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) in the PFC. Cldn5 and Nr4a1 are known for their roles in synaptic plasticity. Krt20 is an intermediate filament protein responsible for the structural integrity of epithelial cells. The reduction in Krt20 following CUS presents a novel insight into the potential contribution of cytokeratin in stress-induced alterations in neuroplasticity. Overall, these results suggest that microglial IFNAR plays a critical role in regulating synaptic plasticity and social behavior deficits associated with chronic stress conditions.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alona Bartosh
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jocelyn Mata
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chale Jacks
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Usama Hussein
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
8
|
Zhang F, Zhang J, Wang X, Han M, Fei Y, Wang J. Blood-Brain Barrier Disruption in Schizophrenia: Insights, Mechanisms, and Future Directions. Int J Mol Sci 2025; 26:873. [PMID: 39940642 PMCID: PMC11817713 DOI: 10.3390/ijms26030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining the homeostasis of the central nervous system by regulating solute transport and preventing neurotoxic substances from infiltrating brain tissue. In schizophrenia, emerging evidence identifies BBB dysfunction as a key pathophysiological factor associated with neuroinflammation, tight junction abnormalities, and endothelial dysfunction. Recent advancements in neuroimaging techniques, such as arterial spin labeling (ASL), have provided valuable tools for investigating BBB permeability and its role in disease progression. This review synthesizes findings from postmortem studies, serum and cerebrospinal fluid biomarker analyses, and advanced neuroimaging research to elucidate BBB alterations in schizophrenia. It highlights the mechanistic roles of tight junction protein dysregulation, neurovascular unit dysfunction, and immune responses in disrupting BBB integrity. Furthermore, the review examines the bidirectional effects of antipsychotic medications on BBB, addressing both therapeutic opportunities and potential challenges. By emphasizing the pivotal role of BBB dysfunction in schizophrenia pathogenesis, this review underscores its translational potential. Through the integration of multidisciplinary evidence, it lays the foundation for innovative diagnostic approaches and therapeutic strategies, enhancing our understanding of schizophrenia's complex pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; (F.Z.); (J.Z.); (X.W.); (M.H.); (Y.F.)
| |
Collapse
|
9
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Carril Pardo C, Oyarce Merino K, Vera-Montecinos A. Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline? Int J Mol Sci 2025; 26:310. [PMID: 39796167 PMCID: PMC11720417 DOI: 10.3390/ijms26010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ. This review summarises and exposes the possible contribution of the imbalance between pro-inflammatory and anti-inflammatory interleukins like IL-1beta, IL-4 and TNFalfa among others on cognitive impairment. We discuss how this inflammatory imbalance affects microglia and astrocytes inducing the disruption of the blood-brain barrier (BBB) in SZ, which could impact the prefrontal cortex or associative areas involved in executive functions such as planning and working tasks. We also highlight that inflammatory molecules generated by intestinal microbiota alterations, due to dysfunctional microbial colonisers or the use of some anti-psychotics, could impact the central nervous system. Finally, the question arises as to whether it is possible to modulate or correct the inflammatory imbalance that characterises SZ, and if an immunomodulatory strategy can be incorporated into conventional clinical treatments, either alone or in complement, to be applied in specific phases, such as prodromal or in the first-episode psychosis.
Collapse
Affiliation(s)
- Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas, Concepción 4080871, Chile; (C.C.P.)
| | - Karina Oyarce Merino
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas, Concepción 4080871, Chile; (C.C.P.)
| | - América Vera-Montecinos
- Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile
| |
Collapse
|
11
|
Maridaki Z, Syrros G, Gianna Delichatsiou S, Warsh J, Konstantinou GN. Claudin-5 and occludin levels in patients with psychiatric disorders - A systematic review. Brain Behav Immun 2025; 123:865-875. [PMID: 39500414 DOI: 10.1016/j.bbi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Recent research has underscored the critical role of blood-brain barrier (BBB) integrity in psychiatric disorders, highlighting disruptions in tight junction (TJ) proteins, specifically claudin-5 and occludin. These proteins are pivotal in maintaining the BBB's selective permeability, which is essential forbrain homeostasis. Altered levels of the TJ proteins have been observed in various psychiatric conditions, suggesting potential as biomarkers for the pathophysiology of these disorders. This systematic review synthesizes existing research on the alterations of claudin-5 and occludin levels in the serum of individuals with psychiatric disorders, evaluating their correlation with BBB dysfunction and psychiatric pathophysiology. METHODS In adherence to the PRISMA guidelines, a comprehensive search strategy was employed, utilizing databases such as PubMed, Google Scholar, Web of Science, and Scopus. The review encompassed studies published between 2000 and 2024 that measured serum claudin-5 and occludin levels of psychiatric patients. Thorough data extraction and synthesis were conducted. RESULTS Seventeen studies met the inclusion criteria. Key findings include indications for increased claudin-5 levels in Schizophrenia, Bipolar Disorder, Depression, and Specific learning disorder, and increased occludin levels in ADHD and Autism Spectrum Disorder patients. No significant differences were found in studies of patients with Alcohol Use and Insomnia Disorder. CONCLUSIONS The review underscores the potential association between altered serum levels of claudin-5 and occludin and psychiatric disorders, supporting their utility as biomarkers for BBB integrity and psychiatric pathophysiology. Further research is essential to elucidate the mechanisms linking TJ protein alterations with pathophysiology and, potentially, neuroprogression in psychiatric disorders, which could lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zinovia Maridaki
- 1(st) Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Syrros
- 2(nd) Department of Psychiatry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | | | - Jerry Warsh
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Poul Hansen Family Centre for Depression, Centre of Mental Health, University Health Network, Toronto, Canada.
| |
Collapse
|
12
|
Hashimoto Y, Campbell M. Key Claudins at the Blood-Retina Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:447-451. [PMID: 39930236 DOI: 10.1007/978-3-031-76550-6_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Tight junctions are physical barriers that limit the paracellular diffusion of solutes and ions. The blood-retina barriers are cellular barriers composed of tight junctions established in retinal pigment epithelial (RPE) cells and retinal endothelial cells to maintain retinal homeostasis. Claudins are the major components of tight junctions, and their dysregulation leads to impaired blood-retina barrier integrity, resulting in retinal diseases with concomitant local inflammation. In this chapter, we introduce two important claudins, claudin-5 and -19, and briefly explain how decreased expression of these claudins is associated with the progress of diabetic retinopathy (DR) and age-related macular degeneration (AMD) by compromising the blood-retina barriers.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Matthew Campbell
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
14
|
Sobierajski E, Czubay K, Beemelmans C, Beemelmans C, Meschkat M, Uhlenkamp D, Meyer G, Wahle P. Vascular Development of Fetal and Postnatal Neocortex of the Pig, the European Wild Boar Sus scrofa. J Comp Neurol 2024; 532:e70011. [PMID: 39660539 PMCID: PMC11632654 DOI: 10.1002/cne.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024]
Abstract
The development of the brain's vascular system is a predominantly prenatal process in mammalian species and is required for neurogenesis and further brain development. Our recent work on fetal pig has revealed that many neurodevelopmental processes start well before birth and proceed rapidly reaching near-mature status already around birth. Here, we analyzed the development of neocortical vasculature from embryonic day (E) 45 onward (gestation in pig lasts 114 days) using qualitative and quantitative image analyses and protein blots. In all cortical layers, vessel volume from total brain volume at E100 resembled that of a postnatal day (P) 30 piglet. Endothelial cells expressed the tight junction protein claudin-5 from E45 onward. GFAP+ and AQP4+ astrocytes, PDGFRβ+ pericytes, and α-SMA+ smooth muscle cells are detectable near vessels at E60 suggesting an early assembly of blood-brain barrier components. The vascular system in the visual cortex is advanced before birth with an almost mature pattern at E100. Findings were confirmed by blots that showed a steady increase of expression of tight junction and angiogenesis-related proteins (claudin-5, occludin, VE-cadherin, PECAM-1/CD31) from E65 onward until P90. The expression profile was similar in visual and somatosensory cortex. Together, we report a rapid maturation of the vascular system in pig cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | - Katrin Czubay
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| | | | | | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of MedicineUniversity of La LagunaSanta Cruz de TenerifeTenerifeSpain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and BiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
15
|
Chen JL, Wang R, Ma PQ, Wang YM, Tang QQ. Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease. World J Psychiatry 2024; 14:1661-1670. [PMID: 39564172 PMCID: PMC11572681 DOI: 10.5498/wjp.v14.i11.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease. A clear understanding of the underlying causes of CSVD remains elusive. AIM To explore the association between intercellular adhesion molecule-1 (ICAM-1) and blood-brain barrier (BBB) penetration in CSVD. METHODS This study included patients admitted to Fuyang People's Hospital and Fuyang Community (Anhui, China) between December 2021 and March 2022. The study population comprised 142 patients, including 80 in the CSVD group and 62 in the control group. Depression was present in 53 out of 80 patients with CSVD. Multisequence magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume, cortical thickness, and cortical area of each brain region. Moreover, neuropsychological tests including the Hamilton depression scale, mini-mental state examination, and Montreal cognitive assessment basic scores were performed. RESULTS The multivariable analysis showed that age [P = 0.011; odds ratio (OR) = 0.930, 95% confidence interval (CI): 0.880-0.983] and ICAM-1 levels (P = 0.023; OR = 1.007, 95%CI: 1.001-1.013) were associated with CSVD. Two regions of interest (ROIs; ROI3 and ROI4) in the white matter showed significant (both P < 0.001; 95%CI: 0.419-0.837 and 0.366-0.878) differences between the two groups, whereas only ROI1 in the gray matter showed significant difference (P = 0.046; 95%CI: 0.007-0.680) between the two groups. ICAM-1 was significantly correlated (all P < 0.05) with cortical thickness in multiple brain regions in the CSVD group. CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD. ICAM-1 may be associated with cortical thickness in the brain, predominantly in the white matter, and a significant increase in BBB permeability, proposing the involvement of ICAM-1 in BBB destruction.
Collapse
Affiliation(s)
- Ju-Luo Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Rui Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Pei-Qi Ma
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - You-Meng Wang
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Qi-Qiang Tang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
16
|
Ishizuka T, Nagata W, Nakagawa K, Takahashi S. Brain inflammaging in the pathogenesis of late-life depression. Hum Cell 2024; 38:7. [PMID: 39460876 DOI: 10.1007/s13577-024-01132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Late-life depression (LLD) is a prevalent mental disorder among older adults. Previous studies revealed that many pathologic factors are associated with the onset and development of LLD. However, the precise mechanisms that cause LLD remain elusive. Aging induces chronic inflammatory changes mediated by alterations of immune responses. The chronic systemic inflammation termed "inflammaging" is linked to the etiology of aging-related disorders. Aged microglia induce senescence-associated secretory phenotype (SASP) and transition to M1-phenotype, cause neuroinflammation, and diminish neuroprotective effects. In addition, there is an age-dependent loss of blood-brain barrier (BBB) integrity. As the BBB breakdown can lead to invasion of immune cells into brain parenchyma, peripheral immunosenescence may cause microglial activation and neuroinflammation. Therefore, it is suggested that these mechanisms related to brain inflammaging may be involved in the pathogenesis of LLD. In this review, we described the role of brain inflammaging in LLD. Pharmacologic approaches to prevent brain inflammaging appears to be a promising strategy for treating LLD.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Wataru Nagata
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Sayaka Takahashi
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
17
|
Apostolova D, Apostolov G, Moten D, Batsalova T, Dzhambazov B. Claudin-12: guardian of the tissue barrier or friend of tumor cells. Tissue Barriers 2024:2387408. [PMID: 39087432 DOI: 10.1080/21688370.2024.2387408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Tight junctions (TJs) are an important component of cellular connectivity. Claudin family proteins, as a constituent of TJs, determine their barrier properties, cell polarity and paracellular permeability. Claudin-12 is an atypical member of the claudin family, as it belongs to the group of non-classical claudins that lack a PDZ-binding domain. It has been shown that claudin-12 is involved in paracellular Ca2+ transients and it is present in normal and hyperplastic tissues in addition to neoplastic tissues. Dysregulation of claudin-12 expression has been reported in various cancers, suggesting that this protein may play an important role in cancer cell migration, invasion, and metastasis. Some studies have shown that claudin-12 gene functions as a tumor suppressor, but others have reported that overexpression of claudin-12 significantly increases the metastatic properties of various tumor cells. Investigating this dual role of claudin-12 is of utmost importance and should therefore be studied in detail. The aim of this review is to provide an overview of the information available to date on claudin-12, including its structure, expression in various tissues and substances that may affect it, with a final focus on its role in cancer.
Collapse
Affiliation(s)
- Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Georgi Apostolov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
18
|
Hanael E, Baruch S, Altman RK, Chai O, Rapoport K, Peery D, Friedman A, Shamir MH. Blood-brain barrier dysfunction and decreased transcription of tight junction proteins in epileptic dogs. J Vet Intern Med 2024; 38:2237-2248. [PMID: 38842297 PMCID: PMC11256172 DOI: 10.1111/jvim.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Epilepsy in dogs and humans is associated with blood-brain barrier (BBB) dysfunction (BBBD), which may involve dysfunction of tight junction (TJ) proteins, matrix metalloproteases, and astrocytes. Imaging techniques to assess BBB integrity, to identify potential treatment strategies, have not yet been evaluated in veterinary medicine. HYPOTHESIS Some dogs with idiopathic epilepsy (IE) will exhibit BBBD. Identifying BBBD may improve antiepileptic treatment in the future. ANIMALS Twenty-seven dogs with IE and 10 healthy controls. METHODS Retrospective, prospective cohort study. Blood-brain barrier permeability (BBBP) scores were calculated for the whole brain and piriform lobe of all dogs by using dynamic contrast enhancement (DCE) magnetic resonance imaging (MRI) and subtraction enhancement analysis (SEA). Matrix metalloproteinase-9 (MMP9) activity in serum and cerebrospinal fluid (CSF) was measured and its expression in the piriform lobe was examined using immunofluorescent staining. Gene expression of TJ proteins and astrocytic transporters was analyzed in the piriform lobe. RESULTS The DCE-MRI analysis of the piriform lobe identified higher BBBP score in the IE group when compared with controls (34.5% vs 26.5%; P = .02). Activity and expression of MMP9 were increased in the serum, CSF, and piriform lobe of IE dogs as compared with controls. Gene expression of Kir4.1 and claudin-5 in the piriform lobe of IE dogs was significantly lower than in control dogs. CONCLUSIONS AND CLINICAL IMPORTANCE Our findings demonstrate BBBD in dogs with IE and were supported by increased MMP9 activity and downregulation of astrocytic potassium channels and some TJ proteins. Blood brain barrier dysfunction may be a novel antiepileptic therapy target.
Collapse
Affiliation(s)
- Erez Hanael
- Koret School of Veterinary Medicine, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| | - Shelly Baruch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| | - Rotem Kalev Altman
- Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
| | - Orit Chai
- Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
| | - Kira Rapoport
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| | - Dana Peery
- Koret School of Veterinary MedicineThe Hebrew University of JerusalemRehovotIsrael
| | | | - Merav H. Shamir
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Neurology and NeurosurgeryThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
19
|
Hashimoto Y, Greene C, Hanley N, Hudson N, Henshall D, Sweeney KJ, O'Brien DF, Campbell M. Pumilio-1 mediated translational control of claudin-5 at the blood-brain barrier. Fluids Barriers CNS 2024; 21:52. [PMID: 38898501 PMCID: PMC11188261 DOI: 10.1186/s12987-024-00553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Claudin-5 is one of the most essential tight junction proteins at the blood-brain barrier. A single nucleotide polymorphism rs10314 is located in the 3'-untranslated region of claudin-5 and has been shown to be a risk factor for schizophrenia. Here, we show that the pumilio RNA-binding protein, pumilio-1, is responsible for rs10314-mediated claudin-5 regulation. The RNA sequence surrounding rs10314 is highly homologous to the canonical pumilio-binding sequence and claudin-5 mRNA with rs10314 produces 25% less protein due to its inability to bind to pumilio-1. Pumilio-1 formed cytosolic granules under stress conditions and claudin-5 mRNA appeared to preferentially accumulate in these granules. Added to this, we observed granular pumilio-1 in endothelial cells in human brain tissues from patients with psychiatric disorders or epilepsy with increased/accumulated claudin-5 mRNA levels, suggesting translational claudin-5 suppression may occur in a brain-region specific manner. These findings identify a key regulator of claudin-5 translational processing and how its dysregulation may be associated with neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole Hanley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Natalie Hudson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - David Henshall
- Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, FutureNeuro, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, FutureNeuro, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
20
|
Ohbuchi M, Shibuta M, Tetsuka K, Sasaki-Iwaoka H, Oishi M, Shimizu F, Nagasaka Y. Modeling of Blood-Brain Barrier (BBB) Dysfunction and Immune Cell Migration Using Human BBB-on-a-Chip for Drug Discovery Research. Int J Mol Sci 2024; 25:6496. [PMID: 38928202 PMCID: PMC11204321 DOI: 10.3390/ijms25126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature in neuroimmunological and neurodegenerative diseases. In this study, we developed a microfluidic human BBB-on-a-chip to model barrier dysfunction and immune cell migration using immortalized TY10 brain endothelial cells, pericytes, and astrocytes. It was found that immortalized TY10 brain endothelial cells developed a microvascular structure under flow. Pericytes were localized on the basal side surrounding the TY10 microvascular structure, showing an in vivo-like structure. Barrier integrity increased under co-culture with pericytes. In addition, both ethylenediaminetetraacetic acid (EDTA) and anti-Claudin-5 (CLDN5) neutralizing antibody caused a decrease in the transendothelial electrical resistance (TEER). EDTA caused the leakage of 20 kDa dextran, suggesting different effects on the BBB based on the mechanism of action, whereas anti-CLDN5 antibody did not cause leakage. In the tri-culture model, human T cells migrated through endothelial vessels towards basal C-X-C motif chemokine ligand 12 (CXCL12). The live-imaging analysis confirmed the extravasation of fluorescence-labelled T cells in a CXCL12-concentration- and time-dependent manner. Our BBB model had an in vivo-like structure and successfully represented barrier dysfunction and transendothelial T cell migration. In addition, our study suggests that the inhibition of CLDN5 attenuates the BBB in humans. This platform has various potential uses in relation to the BBB in both drug discovery research and in elucidating the mechanisms of central nervous system diseases.
Collapse
Affiliation(s)
- Masato Ohbuchi
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Mayu Shibuta
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Kazuhiro Tetsuka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Haruna Sasaki-Iwaoka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Masayo Oishi
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Yamaguchi, Japan;
| | - Yasuhisa Nagasaka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| |
Collapse
|
21
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
22
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
23
|
Crockett AM, Kebir H, Anderson SA, Jyonouchi S, Romberg N, Alvarez JI. 22q11.2 Deletion-Associated Blood-Brain Barrier Permeability Potentiates Systemic Capillary Leak Syndrome Neurologic Features. J Clin Immunol 2024; 44:87. [PMID: 38578402 PMCID: PMC11490314 DOI: 10.1007/s10875-024-01686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intravenous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysaccharide (LPS) alongside endothelial cells in circulation. We report that the patient's serum significantly impairs barrier function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.
Collapse
Affiliation(s)
- Alexis M Crockett
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 412 Hill, Philadelphia, PA, 19104-4539, USA
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 412 Hill, Philadelphia, PA, 19104-4539, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Soma Jyonouchi
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jorge I Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 412 Hill, Philadelphia, PA, 19104-4539, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
24
|
Zhao Y, Chen C, Xiao X, Fang L, Cheng X, Chang Y, Peng F, Wang J, Shen S, Wu S, Huang Y, Cai W, Zhou L, Qiu W. Teriflunomide Promotes Blood-Brain Barrier Integrity by Upregulating Claudin-1 via the Wnt/β-catenin Signaling Pathway in Multiple Sclerosis. Mol Neurobiol 2024; 61:1936-1952. [PMID: 37819429 DOI: 10.1007/s12035-023-03655-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The blood-brain barrier (BBB) and tight junction (TJ) proteins maintain the homeostasis of the central nervous system (CNS). The dysfunction of BBB allows peripheral T cells infiltration into CNS and contributes to the pathophysiology of multiple sclerosis (MS). Teriflunomide is an approved drug for the treatment of MS by suppressing lymphocytes proliferation. However, whether teriflunomide has a protective effect on BBB in MS is not understood. We found that teriflunomide restored the injured BBB in the EAE model. Furthermore, teriflunomide treatment over 6 months improved BBB permeability and reduced peripheral leakage of CNS proteins in MS patients. Teriflunomide increased human brain microvascular endothelial cell (HBMEC) viability and promoted BBB integrity in an in vitro cell model. The TJ protein claudin-1 was upregulated by teriflunomide and responsible for the protective effect on BBB. Furthermore, RNA sequencing revealed that the Wnt signaling pathway was affected by teriflunomide. The activation of Wnt signaling pathway increased claudin-1 expression and reduced BBB damage in cell model and EAE rats. Our study demonstrated that teriflunomide upregulated the expression of the tight junction protein claudin-1 in endothelial cells and promoted the integrity of BBB through Wnt signaling pathway.
Collapse
Affiliation(s)
- Yipeng Zhao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xiuqing Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Ling Fang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shishi Shen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shilin Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yiying Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Linli Zhou
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
- The Center of Mental and Neurological Disorders Study, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
25
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
27
|
Tachibana K, Hirayama R, Sato N, Hattori K, Kato T, Takeda H, Kondoh M. Association of Plasma Claudin-5 with Age and Alzheimer Disease. Int J Mol Sci 2024; 25:1419. [PMID: 38338697 PMCID: PMC10855409 DOI: 10.3390/ijms25031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The blood-brain barrier (BBB) plays pivotal roles in synaptic and neuronal functioning by sealing the space between adjacent microvascular endothelial cells. BBB breakdown is present in patients with mild cognitive impairment (MCI) or Alzheimer disease (AD). Claudin-5 (CLDN-5) is a tetra-spanning protein essential for sealing the intercellular space between adjacent endothelial cells in the BBB. In this study, we developed a blood-based assay for CLDN-5 and investigated its diagnostic utility using 100 cognitively normal (control) subjects, 100 patients with MCI, and 100 patients with AD. Plasma CLDN-5 levels were increased in patients with AD (3.08 ng/mL) compared with controls (2.77 ng/mL). Plasma levels of phosphorylated tau (pTau181), a biomarker of pathological tau, were elevated in patients with MCI or AD (2.86 and 4.20 pg/mL, respectively) compared with control subjects (1.81 pg/mL). In patients with MCI or AD, plasma levels of CLDN-5-but not pTau181-decreased with age, suggesting some age-dependent BBB changes in MCI and AD. These findings suggest that plasma CLDN-5 may a potential biochemical marker for the diagnosis of AD.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Ryuichi Hirayama
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
| | - Naoyuki Sato
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan; (R.H.); (N.S.)
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan;
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Ehime, Japan;
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan;
| |
Collapse
|
28
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME, Colak D. Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry 2024; 14:53. [PMID: 38263175 PMCID: PMC10806043 DOI: 10.1038/s41398-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).
Collapse
Affiliation(s)
- Isidora Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
29
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
30
|
Shang B, Wang T, Zhao S, Yi S, Zhang T, Yang Y, Zhang F, Zhang D, Xu X, Xu J, Shan B, Cheng Y. Higher Blood-brain barrier permeability in patients with major depressive disorder identified by DCE-MRI imaging. Psychiatry Res Neuroimaging 2024; 337:111761. [PMID: 38061159 DOI: 10.1016/j.pscychresns.2023.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024]
Abstract
BACKGROUND Studies from animal models and clinical trials of blood and cerebrospinal fluid have proposed that blood-brain barrier (BBB) dysfunction in depression (MDD). But there are no In vivo proves focused on BBB dysfunction in MDD patients. The present study aimed to identify whether there was abnormal BBB permeability, as well as the association with clinical status in MDD patients using dynamic contrast-enhanced magnetic resonance (DCE-MRI) imaging. METHODS Patients with MDD and healthy adults were recruited and underwent DCE-MRI and structural MRI scans. The mean volume transfer constant (Ktrans) values were calculated for a quantitative assessment of BBB leakage. For each subject, the mean Ktrans values were calculated for the whole gray matter, white matter, and 90 brain regions of the anatomical automatic labeling template (AAL). The differences in Ktrans values between patients and controls and between treated and untreated patients were compared. RESULTS 23 MDD patients (12 males and 11 females, mean age 28.09 years) and 18 healthy controls (HC, 8 males and 10 females, mean age 30.67 years) were recruited in the study. We found that the Ktrans values in the olfactory, caudate, and thalamus were higher in MDD patients compared to healthy controls (p<0.05). The Ktrans values in the orbital lobe, anterior cingulate gyrus, putamen, and thalamus in treated patients were lower than the patients never treated. There were positive correlations between HAMD total score with Ktrans values in whole brain WM, hippocampus and thalamus. The total HAMA score was positively correlated with the Ktrans of hippocampus. CONCLUSION These findings supported a link between blood-brain barrier leakage and depression and symptom severity. The results also suggested a role for non-invasive DCE-MRI in detecting blood-brain barrier dysfunction in depression patients.
Collapse
Affiliation(s)
- Binli Shang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ting Wang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shilun Zhao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing,100049, China
| | - Shu Yi
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing,100049, China
| | - Yifan Yang
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Fengrui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Dafu Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Clinical Research Centre for Mental Health, Kunming, 650032, China
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing,100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan medical Centre for Mental Health, Kunming, 650032, China.
| |
Collapse
|
31
|
Hanafy AS, Lamprecht A, Dietrich D. Local perfusion of capillaries reveals disrupted beta-amyloid homeostasis at the blood-brain barrier in Tg2576 murine Alzheimer's model. Fluids Barriers CNS 2023; 20:85. [PMID: 37993886 PMCID: PMC10666337 DOI: 10.1186/s12987-023-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Parenchymal accumulation of beta-amyloid (Aβ) characterizes Alzheimer's disease (AD). Aβ homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aβ transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aβ by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aβ accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aβ fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aβ-RAGE binding.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
32
|
Fan M, Deng F, Tang R, Cai Y, Zhang X, Li H, Xiang T, Pan J. Serum Zonula Occludens-1 and Claudin-5 Levels in Patients with Insomnia Disorder: A Pilot Study. Nat Sci Sleep 2023; 15:873-884. [PMID: 37928369 PMCID: PMC10625320 DOI: 10.2147/nss.s424756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose This research aimed to investigate serum Zonula occludens-1 (ZO-1) and Claudin-5 (CLDN5) levels to show whether or not their eventual changes in patients with insomnia disorder could have etiopathogenetic importance. There was no research investigating serum ZO-1 and CLDN5 concentrations in insomnia disorder. Patients and Methods This study included 60 insomnia disorder patients and 45 normal controls. None of the patients received drugs for insomnia. The patients completed Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality Index (PSQI), and Polysomnography (PSG) to score the insomnia disorder symptoms. Venous blood samples were collected, and serum ZO-1 and claudin-5 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Results Serum ZO-1 level was significantly higher without a significant difference between age, sex, and body mass index, whereas the difference in serum claudin-5 level between the two groups was not statistically significant. In addition, ZO-1 levels were positively correlated with ISI and PSQI and negatively with N1 and N1_perc. We also demonstrated a positive correlation between the levels of CLDN5 and HAMA, and a negative correlation with total sleep time (TST), N1 and N1_perc. Conclusion Our findings suggest an association between these intestinal and brain endothelial permeability markers and insomnia disorders. However, these remain modest and preliminary and need more extensive studies, including long-term follow-up populations and involving gut microbes, to further validate and explore the mechanisms involved.
Collapse
Affiliation(s)
- Mei Fan
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Fangyi Deng
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Rui Tang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Yixian Cai
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Xiaotao Zhang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Hongyao Li
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Ting Xiang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
33
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
34
|
Goldwaser EL, Wang DJJ, Adhikari BM, Chiappelli J, Shao X, Yu J, Lu T, Chen S, Marshall W, Yuen A, Kvarta M, Ma Y, Du X, Gao S, Saeedi O, Bruce H, Donnelly P, O’Neill H, Shuldiner AR, Mitchell BD, Kochunov P, Hong LE. Evidence of Neurovascular Water Exchange and Endothelial Vascular Dysfunction in Schizophrenia: An Exploratory Study. Schizophr Bull 2023; 49:1325-1335. [PMID: 37078962 PMCID: PMC10483475 DOI: 10.1093/schbul/sbad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Mounting evidence supports cerebrovascular contributions to schizophrenia spectrum disorder (SSD) but with unknown mechanisms. The blood-brain barrier (BBB) is at the nexus of neural-vascular exchanges, tasked with regulating cerebral homeostasis. BBB abnormalities in SSD, if any, are likely more subtle compared to typical neurological insults and imaging measures that assess large molecule BBB leakage in major neurological events may not be sensitive enough to directly examine BBB abnormalities in SSD. STUDY DESIGN We tested the hypothesis that neurovascular water exchange (Kw) measured by non-invasive diffusion-prepared arterial spin label MRI (n = 27 healthy controls [HC], n = 32 SSD) is impaired in SSD and associated with clinical symptoms. Peripheral vascular endothelial health was examined by brachial artery flow-mediated dilation (n = 44 HC, n = 37 SSD) to examine whether centrally measured Kw is related to endothelial functions. STUDY RESULTS Whole-brain average Kw was significantly reduced in SSD (P = .007). Exploratory analyses demonstrated neurovascular water exchange reductions in the right parietal lobe, including the supramarginal gyrus (P = .002) and postcentral gyrus (P = .008). Reduced right superior corona radiata (P = .001) and right angular gyrus Kw (P = .006) was associated with negative symptoms. Peripheral endothelial function was also significantly reduced in SSD (P = .0001). Kw in 94% of brain regions in HC positively associated with peripheral endothelial function, which was not observed in SSD, where the correlation was inversed in 52% of brain regions. CONCLUSIONS This study provides initial evidence of neurovascular water exchange abnormalities, which appeared clinically associated, especially with negative symptoms, in schizophrenia.
Collapse
Affiliation(s)
- Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa Yuen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland Medical Center, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Donnelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugh O’Neill
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Lizano P, Pong S, Santarriaga S, Bannai D, Karmacharya R. Brain microvascular endothelial cells and blood-brain barrier dysfunction in psychotic disorders. Mol Psychiatry 2023; 28:3698-3708. [PMID: 37730841 DOI: 10.1038/s41380-023-02255-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Although there is convergent evidence for blood-brain barrier (BBB) dysfunction and peripheral inflammation in schizophrenia (SZ) and bipolar disorder (BD), it is unknown whether BBB deficits are intrinsic to brain microvascular endothelial cells (BMECs) or arise via effects of peripheral inflammatory cytokines. We examined BMEC function using stem cell-based models to identify cellular and molecular deficits associated with BBB dysfunction in SZ and BD. Induced pluripotent stem cells (iPSCs) from 4 SZ, 4 psychotic BD and 4 healthy control (HC) subjects were differentiated into BMEC-"like" cells. Gene expression and protein levels of tight junction proteins were assessed. Transendothelial electrical resistance (TEER) and permeability were assayed to evaluate BBB function. Cytokine levels were measured from conditioned media. BMECs derived from human iPSCs in SZ and BD did not show differences in BBB integrity or permeability compared to HC BMECs. Outlier analysis using TEER revealed a BBB-deficit (n = 3) and non-deficit (n = 5) group in SZ and BD lines. Stratification based on BBB function in SZ and BD patients identified a BBB-deficit subtype with reduced barrier function, tendency for increased permeability to smaller molecules, and decreased claudin-5 (CLDN5) levels. BMECs from the BBB-deficit group show increased matrix metallopeptidase 1 (MMP1) activity, which correlated with reduced CLDN5 and worse BBB function, and was improved by tumor necrosis factor α (TNFα) and MMP1 inhibition. These results show potential deficits in BMEC-like cells in psychotic disorders that result in BBB disruption and further identify TNFα and MMP1 as promising targets for ameliorating BBB deficits.
Collapse
Affiliation(s)
- Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
36
|
Tarzian M, Ndrio M, Chique B, Serai J, Thalackal B, Lau J, Fakoya AO. Illuminating Hope for Mental Health: A Drug Review on Lumateperone. Cureus 2023; 15:e46143. [PMID: 37900490 PMCID: PMC10612995 DOI: 10.7759/cureus.46143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
This drug review provides a comprehensive analysis of a novel antipsychotic called lumateperone, marketed as Caplyta. Lumateperone gained FDA approval in 2019 for treating schizophrenia and later, in 2021, for treating bipolar depression. The review begins by delving into lumateperone's mechanism of action, which involves the partial agonism of the dopamine D2 receptor as well as its unique effects on the dopamine transporter, N-methyl-D-aspartate (NMDA) receptor, and serotonin transporter. Additionally, the study examines lumateperone's distinctive pharmacokinetics. Moreover, this review assesses lumateperone's metabolic profile and highlights its favorable outcomes regarding mean body weight, BMI, and waist circumference, surpassing those of other second-generation antipsychotic medications. The study explicitly emphasizes the efficacy and safety of lumateperone in treating schizophrenia and bipolar depression associated with bipolar I and II disorders. An extensive investigation of multiple clinical trials provides compelling evidence of lumateperone's advantages over existing antipsychotic medications. The review also acknowledges the limitations of lumateperone compared to other antipsychotics. In conclusion, this drug review underscores the importance of further research to uncover the additional limitations of lumateperone while acknowledging its promising benefits and potential for advancing treatment options.
Collapse
Affiliation(s)
- Martin Tarzian
- Psychiatry, University of Medicine and Health Sciences, Basseterre, KNA
| | - Mariana Ndrio
- Psychiatry and Behavioral Sciences, University of Medicine and Health Sciences, Basseterre, KNA
| | - Byron Chique
- Surgery, University of Medicine and Health Sciences, Basseterre, KNA
| | - Japjit Serai
- Medicine, University of Medicine and Health Sciences, Basseterre, KNA
| | - Bryce Thalackal
- Medicine, University of Medicine and Health Sciences, Basseterre, KNA
| | - Jessi Lau
- Human Health, University of Guelph, Guelph, CAN
| | - Adegbenro O Fakoya
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
37
|
Panda SP, Singh V. The Dysregulated MAD in Mad: A Neuro-theranostic Approach Through the Induction of Autophagic Biomarkers LC3B-II and ATG. Mol Neurobiol 2023; 60:5214-5236. [PMID: 37273153 DOI: 10.1007/s12035-023-03402-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The word mad has historically been associated with the psyche, emotions, and abnormal behavior. Dementia is a common symptom among psychiatric disorders or mad (schizophrenia, depression, bipolar disorder) patients. Autophagy/mitophagy is a protective mechanism used by cells to get rid of dysfunctional cellular organelles or mitochondria. Autophagosome/mitophagosome abundance in autophagy depends on microtubule-associated protein light chain 3B (LC3B-II) and autophagy-triggering gene (ATG) which functions as an autophagic biomarker for phagophore production and quick mRNA disintegration. Defects in either LC3B-II or the ATG lead to dysregulated mitophagy-and-autophagy-linked dementia (MAD). The impaired MAD is closely associated with schizophrenia, depression, and bipolar disorder. The pathomechanism of psychosis is not entirely known, which is the severe limitation of today's antipsychotic drugs. However, the reviewed circuit identifies new insights that may be especially helpful in targeting biomarkers of dementia. Neuro-theranostics can also be achieved by manufacturing either bioengineered bacterial and mammalian cells or nanocarriers (liposomes, polymers, and nanogels) loaded with both imaging and therapeutic materials. The nanocarriers must cross the BBB and should release both diagnostic agents and therapeutic agents in a controlled manner to prove their effectiveness against psychiatric disorders. In this review, we highlighted the potential of microRNAs (miRs) as neuro-theranostics in the treatment of dementia by targeting autophagic biomarkers LC3B-II and ATG. Focus was also placed on the potential for neuro-theranostic nanocells/nanocarriers to traverse the BBB and induce action against psychiatric disorders. The neuro-theranostic approach can provide targeted treatment for mental disorders by creating theranostic nanocarriers.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India.
| | - Vikrant Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| |
Collapse
|
38
|
Yan L, Li Y, Fan F, Gou M, Xuan F, Feng W, Chithanathan K, Li W, Huang J, Li H, Chen W, Tian B, Wang Z, Tan S, Zharkovsky A, Hong LE, Tan Y, Tian L. CSF1R regulates schizophrenia-related stress response and vascular association of microglia/macrophages. BMC Med 2023; 21:286. [PMID: 37542262 PMCID: PMC10403881 DOI: 10.1186/s12916-023-02959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.
Collapse
Affiliation(s)
- Ling Yan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Yanli Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Fengmei Fan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Mengzhuang Gou
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Fangling Xuan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Wei Feng
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Keerthana Chithanathan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Wei Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Junchao Huang
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Hongna Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Wenjin Chen
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Baopeng Tian
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Zhiren Wang
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Shuping Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L Elliot Hong
- Department of Psychiatry, School of Medicine, Maryland Psychiatric Research Center, University of Maryland, Baltimore, USA
| | - Yunlong Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China.
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Peking University HuiLongGuan Clinical Medical School, Beijing, P. R. China.
| |
Collapse
|
39
|
Hassamal S. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry 2023; 14:1130989. [PMID: 37252156 PMCID: PMC10213648 DOI: 10.3389/fpsyt.2023.1130989] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
In a subset of patients, chronic exposure to stress is an etiological risk factor for neuroinflammation and depression. Neuroinflammation affects up to 27% of patients with MDD and is associated with a more severe, chronic, and treatment-resistant trajectory. Inflammation is not unique to depression and has transdiagnostic effects suggesting a shared etiological risk factor underlying psychopathologies and metabolic disorders. Research supports an association but not necessarily a causation with depression. Putative mechanisms link chronic stress to dysregulation of the HPA axis and immune cell glucocorticoid resistance resulting in hyperactivation of the peripheral immune system. The chronic extracellular release of DAMPs and immune cell DAMP-PRR signaling creates a feed forward loop that accelerates peripheral and central inflammation. Higher plasma levels of inflammatory cytokines, most consistently interleukin IL-1β, IL-6, and TNF-α, are correlated with greater depressive symptomatology. Cytokines sensitize the HPA axis, disrupt the negative feedback loop, and further propagate inflammatory reactions. Peripheral inflammation exacerbates central inflammation (neuroinflammation) through several mechanisms including disruption of the blood-brain barrier, immune cellular trafficking, and activation of glial cells. Activated glial cells release cytokines, chemokines, and reactive oxygen and nitrogen species into the extra-synaptic space dysregulating neurotransmitter systems, imbalancing the excitatory to inhibitory ratio, and disrupting neural circuitry plasticity and adaptation. In particular, microglial activation and toxicity plays a central role in the pathophysiology of neuroinflammation. Magnetic resonance imaging (MRI) studies most consistently show reduced hippocampal volumes. Neural circuitry dysfunction such as hypoactivation between the ventral striatum and the ventromedial prefrontal cortex underlies the melancholic phenotype of depression. Chronic administration of monoamine-based antidepressants counters the inflammatory response, but with a delayed therapeutic onset. Therapeutics targeting cell mediated immunity, generalized and specific inflammatory signaling pathways, and nitro-oxidative stress have enormous potential to advance the treatment landscape. Future clinical trials will need to include immune system perturbations as biomarker outcome measures to facilitate novel antidepressant development. In this overview, we explore the inflammatory correlates of depression and elucidate pathomechanisms to facilitate the development of novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sameer Hassamal
- California University of Sciences and Medicine, Colton, CA, United States
- Clinicaltriallink, Los Angeles, CA, United States
- California Neuropsychiatric Institute, Ontario, CA, United States
| |
Collapse
|
40
|
Dion-Albert L, Dudek KA, Russo SJ, Campbell M, Menard C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci 2023; 46:276-292. [PMID: 36805768 DOI: 10.1016/j.tins.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The neurovascular unit (NVU) is a dynamic center for substance exchange between the blood and the brain, making it an essential gatekeeper for central nervous system (CNS) homeostasis. Recent evidence supports a role for the NVU in modulating brain function and cognition. In addition, alterations in NVU processes are observed in response to stress, although the mechanisms via which they can affect mood and cognitive functions remain elusive. Here, we summarize recent studies of neurovascular regulation of emotional processes and cognitive function, including under stressful conditions. We also highlight relevant RNA-sequencing (RNA-seq) databases aiming to profile the NVU along with innovative tools to study and manipulate NVU function that can be exploited in the context of cognition and stress research throughout development, aging, or brain disorders.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Katarzyna A Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai and Center for Affective Neuroscience, 1 Gustave L Levy Place, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
41
|
Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023; 20:22. [PMID: 36978081 PMCID: PMC10044825 DOI: 10.1186/s12987-023-00424-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| | - Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland
| | - Arnold Munnich
- Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, F-75015, France
- Departments of Pediatric Neurology and Medical Genetics, Hospital Necker Enfants Malades, Université Paris Cité, Paris, F-75015, France
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| |
Collapse
|
42
|
Hochman E, Taler M, Flug R, Gur S, Dar S, Bormant G, Blattberg D, Nitzan U, Krivoy A, Weizman A. Serum claudin-5 levels among patients with unipolar and bipolar depression in relation to the pro-inflammatory cytokine tumor necrosis factor-alpha levels. Brain Behav Immun 2023; 109:162-167. [PMID: 36706845 DOI: 10.1016/j.bbi.2023.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Accumulating evidence indicates that inflammation and neurovascular unit (NVU) dysfunction contribute to depression via disrupted blood-brain barrier (BBB) integrity. Claudin-5, an endothelial tight-junction protein expressed in the NVU and contributing to BBB integrity, has been implicated in psychiatric disorders, including major depressive disorder (MDD) and schizophrenia. In an animal model of depressive-like behavior, the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) was found to affect BBB permeability and claudin-5 expression of NVU endothelial cells. To the best of the authors' knowledge, this study is the first to assess the relationship between serum claudin-5 and TNF-α levels, during major depressive episodes (MDEs). Serum levels of claudin-5 and TNF-α of 40 patients diagnosed with current MDE [19 with MDD and 21 with bipolar disorder (BD)] and 28 matched healthy controls (HCs) were analyzed. Claudin-5 and TNF-α serum levels in the MDE group were significantly higher than in the HC one. Discrete analysis according to MDE type indicated significantly increased claudin-5 serum levels in BD but not in MDD patients, compared to HCs, even after controlling for confounders. In the MDE group, a significant positive correlation was found between claudin-5 and TNF-α serum levels. In complementary analysis, serum levels of the pro-inflammatory cytokine interleukin-6 were significantly higher among MDE patients compared to HCs, however, no significant correlation was found with claudin-5 levels. In conclusion, as indicated by preclinical studies, our clinical study suggests a possible specific interaction between the NVU/BBB marker claudin-5 and the inflammatory marker TNF-α in the pathogenesis of depression.
Collapse
Affiliation(s)
- Eldar Hochman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel; Laboratory of Molecular and Biological Psychiatry, Felsenstein Medical Research Center, Petah-Tikva, Israel.
| | - Michal Taler
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; The Pediatric Molecular Psychiatry Laboratory, Sheba Tel Hashomer Medical Center, Ramat Gan, Israel
| | - Reut Flug
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel
| | - Shay Gur
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel
| | - Shira Dar
- The Pediatric Molecular Psychiatry Laboratory, Sheba Tel Hashomer Medical Center, Ramat Gan, Israel
| | - Gil Bormant
- Geha Mental Health Center, Petah-Tikva, Israel
| | | | - Uri Nitzan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Amir Krivoy
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel; Laboratory of Molecular and Biological Psychiatry, Felsenstein Medical Research Center, Petah-Tikva, Israel; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Geha Mental Health Center, Petah-Tikva, Israel; Laboratory of Molecular and Biological Psychiatry, Felsenstein Medical Research Center, Petah-Tikva, Israel
| |
Collapse
|
43
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Faron-Górecka A, Latocha K, Pabian P, Kolasa M, Sobczyk-Krupiarz I, Dziedzicka-Wasylewska M. The Involvement of Prolactin in Stress-Related Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3257. [PMID: 36833950 PMCID: PMC9959798 DOI: 10.3390/ijerph20043257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The most important and widely studied role of prolactin (PRL) is its modulation of stress responses during pregnancy and lactation. PRL acts as a neuropeptide to support physiological reproductive responses. The effects of PRL on the nervous system contribute to a wide range of changes in the female brain during pregnancy and the inhibition of the hypothalamic-pituitary axis. All these changes contribute to the behavioral and physiological adaptations of a young mother to enable reproductive success. PRL-driven brain adaptations are also crucial for regulating maternal emotionality and well-being. Hyperprolactinemia (elevated PRL levels) is a natural and beneficial phenomenon during pregnancy and lactation. However, in other situations, it is often associated with serious endocrine disorders, such as ovulation suppression, which results in a lack of offspring. This introductory example shows how complex this hormone is. In this review, we focus on the different roles of PRL in the body and emphasize the results obtained from animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Katarzyna Latocha
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Iwona Sobczyk-Krupiarz
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
45
|
Lumateperone Normalizes Pathological Levels of Acute Inflammation through Important Pathways Known to Be Involved in Mood Regulation. J Neurosci 2023; 43:863-877. [PMID: 36549907 PMCID: PMC9899083 DOI: 10.1523/jneurosci.0984-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Lumateperone is indicated for the treatment of schizophrenia in adults and for depressive episodes associated with bipolar I or II disorder (bipolar depression) in adults, as monotherapy and as adjunctive therapy with lithium or valproate (Calabrese et al., 2021). It is currently under evaluation for the treatment of major depressive disorder (www.ClinicalTrials.gov). Lumateperone acts by selectively modulating serotonin, dopamine, and glutamate neurotransmission in the brain. However, other mechanisms could be involved in the actions of lumateperone, and because of the connection between the immune system and psychiatric health, we hypothesized that lumateperone might improve symptoms of depression, at least in part, by normalizing pathologic inflammation. Here, we show that in male and female C57BL/6 mice subjected to an acute immune challenge, lumateperone reduced aberrantly elevated levels of key proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) in both brain and serum; lumateperone also reduced proinflammatory cytokines in male mice under acute behavioral stress. Further, we demonstrate that lumateperone altered key genes/pathways involved in maintaining tissue integrity and supporting blood-brain barrier function, such as claudin-5 and intercellular adhesion molecule 1. In addition, in acutely stressed male Sprague Dawley rats, lumateperone conferred anxiolytic- and antianhedonic-like properties while enhancing activity in the mammalian target of rapamycin complex 1 pathway in the PFC. Together, our preclinical findings indicate that lumateperone, in addition to its ability to modulate multiple neurotransmitter systems, could also act by reducing the impact of acute inflammatory challenges.SIGNIFICANCE STATEMENT Lumateperone is indicated in adults to treat schizophrenia and depressive episodes associated with bipolar I or II disorder, as monotherapy and adjunctive therapy with lithium or valproate. Because aberrant immune system activity is associated with increased depressive symptoms, the relationship between lumateperone and immune function was studied. Here, lumateperone reduced the levels of proinflammatory cytokines that were increased following an immune challenge or stress in mice. Additionally, lumateperone altered genes and pathways that maintain blood-brain barrier integrity, restored an index of blood-brain barrier function, reduced anxiety-like behavior in rodents, and enhanced mammalian target of rapamycin complex 1 pathway signaling in the PFC. These results highlight the anti-inflammatory actions of lumateperone and describe how lumateperone may reduce immune pathophysiology, which is associated with depressive symptoms.
Collapse
|
46
|
Sheikh MA, O'Connell KS, Lekva T, Szabo A, Akkouh IA, Osete JR, Agartz I, Engh JA, Andreou D, Boye B, Bøen E, Elvsåshagen T, Hope S, Frogner Werner MC, Joa I, Johnsen E, Kroken RA, Lagerberg TV, Melle I, Drange OK, Morken G, Nærland T, Sørensen K, Vaaler AE, Weibell MA, Westlye LT, Aukrust P, Djurovic S, Steen NE, Andreassen OA, Ueland T. Systemic Cell Adhesion Molecules in Severe Mental Illness: Potential Role of Intercellular CAM-1 in Linking Peripheral and Neuroinflammation. Biol Psychiatry 2023; 93:187-196. [PMID: 36182530 DOI: 10.1016/j.biopsych.2022.06.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cell adhesion molecules (CAMs) orchestrate leukocyte trafficking and could link peripheral and neuroinflammation in patients with severe mental illness (SMI), by promoting inflammatory and immune-mediated responses and mediating signals across blood-brain barrier. We hypothesized that CAMs would be dysregulated in SMI and evaluated plasma levels of different vascular and neural CAMs. Dysregulated CAMs in plasma were further evaluated in vivo in leukocytes and brain tissue and in vitro in induced pluripotent stem cells. METHODS We compared plasma soluble levels of different vascular (VCAM-1, ICAM-1, P-SEL) and neural (JAM-A, NCAD) CAMs in circulating leukocytes in a large SMI sample of schizophrenia (SCZ) spectrum disorder (n = 895) and affective disorder (n = 737) and healthy control participants (n = 1070) controlling for age, sex, body mass index, C-reactive protein, and freezer storage time. We also evaluated messenger RNA expression of ICAM1 and related genes encoding ICAM-1 receptors in leukocytes using microarray (n = 842) and in available RNA sequencing data from the CommonMind Consortium (CMC) in postmortem samples from the dorsolateral prefrontal cortex (n = 474). The regulation of soluble ICAM-1 in induced pluripotent stem cell-derived neurons and astrocytes was assessed in patients with SCZ and healthy control participants (n = 8 of each). RESULTS Our major findings were 1) increased soluble ICAM-1 in patients with SMI compared with healthy control participants; 2) increased ITGB2 messenger RNA, encoding the beta chain of the ICAM-1 receptor, in circulating leukocytes from patients with SMI and increased prefrontal cortex messenger RNA expression of ICAM1 in SCZ; and 3) enhanced soluble ICAM-1 release in induced pluripotent stem cell-derived neurons from patients with SCZ. CONCLUSIONS Our results support a systemic and cerebral dysregulation of soluble ICAM-1 expression in SMI and especially in patients with SCZ.
Collapse
Affiliation(s)
- Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - John A Engh
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Vestfold Hospital Trust, Division of Mental Health and Addiction, Tønsberg, Norway
| | - Dimitrios Andreou
- NORMENT, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | | | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sigrun Hope
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Maren Caroline Frogner Werner
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Bergen, Norway
| | - Trine Vik Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway; Department of Psychiatry, Sørlandet Hospital HF, Kristiansand, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Kjetil Sørensen
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Østmarka, Division of Mental Health, St. Olavs University Hospital, Trondheim, Norway
| | - Melissa Authen Weibell
- Network for Clinical Psychosis Research, Division of Psychiatry, Stavanger University Hospital, Stavanger, Norway; Network for Medical Sciences, Faculty of Health, University of Stavanger, Stavanger, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; NORMENT, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
47
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
48
|
Chan AP, Choi Y, Rangan A, Zhang G, Podder A, Berens M, Sharma S, Pirrotte P, Byron S, Duggan D, Schork NJ. Interrogating the Human Diplome: Computational Methods, Emerging Applications, and Challenges. Methods Mol Biol 2023; 2590:1-30. [PMID: 36335489 DOI: 10.1007/978-1-0716-2819-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human DNA sequencing protocols have revolutionized human biology, biomedical science, and clinical practice, but still have very important limitations. One limitation is that most protocols do not separate or assemble (i.e., "phase") the nucleotide content of each of the maternally and paternally derived chromosomal homologs making up the 22 autosomal pairs and the chromosomal pair making up the pseudo-autosomal region of the sex chromosomes. This has led to a dearth of studies and a consequent underappreciation of many phenomena of fundamental importance to basic and clinical genomic science. We discuss a few protocols for obtaining phase information as well as their limitations, including those that could be used in tumor phasing settings. We then describe a number of biological and clinical phenomena that require phase information. These include phenomena that require precise knowledge of the nucleotide sequence in a chromosomal segment from germline or somatic cells, such as DNA binding events, and insight into unique cis vs. trans-acting functionally impactful variant combinations-for example, variants implicated in a phenotype governed by compound heterozygosity. In addition, we also comment on the need for reliable and consensus-based diploid-context computational workflows for variant identification as well as the need for laboratory-based functional verification strategies for validating cis vs. trans effects of variant combinations. We also briefly describe available resources, example studies, as well as areas of further research, and ultimately argue that the science behind the study of human diploidy, referred to as "diplomics," which will be enabled by nucleotide-level resolution of phased genomes, is a logical next step in the analysis of human genome biology.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Aditya Rangan
- Courant Institute of Mathematical Sciences at New York University, New York, NY, USA
| | - Guangfa Zhang
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Avijit Podder
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Michael Berens
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sunil Sharma
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sara Byron
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Dave Duggan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
49
|
Ibrahim WW, Sayed RH, Kandil EA, Wadie W. Niacin mitigates blood-brain barrier tight junctional proteins dysregulation and cerebral inflammation in ketamine rat model of psychosis: Role of GPR109A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110583. [PMID: 35690118 DOI: 10.1016/j.pnpbp.2022.110583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023]
Abstract
Dysregulated inflammatory responses and blood-brain barrier (BBB) dysfunction are recognized as central factors in the development of psychiatric disorders. The present study was designed to evaluate the effect of niacin on BBB integrity in ketamine-induced model of psychosis. Meanwhile, mepenzolate bromide (MPN), a GPR109A receptor blocker, was used to investigate the role of this receptor on the observed niacin's effect. Male Wistar rats received ketamine (30 mg/kg/day, i.p) for 5 consecutive days and then niacin (40 mg/kg/day, p.o), with or without MPN (5 mg/kg/day, i.p), was given for the subsequent 15 days. Three days before the end of experiment, rats were behaviorally tested using open field, novel object recognition, social interaction, and forced swimming tests. Niacin significantly ameliorated ketamine-induced behavioral deficits, amended gamma aminobutyric acid and glutamate concentration, decreased tumor necrosis factor-α and matrix metallopeptidase 9 levels, and increased netrin-1 contents in the hippocampus of rats. Niacin also augmented the hippocampal expression of ZO-1, occludin, and claudin-5 proteins, indicating the ability of niacin to restore the BBB integrity. Moreover, the histopathologic changes in hippocampal neurons were alleviated. Since all the beneficial effects of niacin in the present investigation were partially abolished by the co-administration of MPN; GPR109A receptor was proven to partially mediate the observed antipsychotic effects of niacin. These data revealed that GPR109A-mediated signaling pathways might represent potential targets for therapeutic interventions to prevent or slow the progression of psychosis.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
50
|
Song R, Pekrun K, Khan TA, Zhang F, Paşca SP, Kay MA. Selection of rAAV vectors that cross the human blood-brain barrier and target the central nervous system using a transwell model. Mol Ther Methods Clin Dev 2022; 27:73-88. [PMID: 36186955 PMCID: PMC9494039 DOI: 10.1016/j.omtm.2022.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
A limitation for recombinant adeno-associated virus (rAAV)-mediated gene transfer into the central nervous system (CNS) is the low penetration of vectors across the human blood-brain barrier (BBB). High doses of intravenously delivered vector are required to reach the CNS, which has resulted in varying adverse effects. Moreover, selective transduction of various cell types might be important depending on the disorder being treated. To enhance BBB penetration and improve CNS cell selectivity, we screened an AAV capsid-shuffled library using an in vitro transwell BBB system with separate layers of human endothelial cells, primary astrocytes and/or human induced pluripotent stem cell-derived cortical neurons. After multiple passages through the transwell, we identified chimeric AAV capsids with enhanced penetration and improved transduction of astrocytes and/or neurons compared with wild-type capsids. We identified the amino acids (aa) from regions 451–470 of AAV2 associated with the capsids selected for neurons, and a combination of aa from regions 413–496 of AAV-rh10 and 538–598 of AAV3B/LK03 associated with capsids selected for astrocytes. A small interfering RNA screen identified several genes that affect transcytosis of AAV across the BBB. Our work supports the use of a human transwell system for selecting enhanced AAV capsids targeting the CNS and may allow for unraveling the underlying molecular mechanisms of BBB penetration.
Collapse
Affiliation(s)
- Ren Song
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Themasap A. Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute and Bio-X, Stanford University, CA 94305, USA
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sergiu P. Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute and Bio-X, Stanford University, CA 94305, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author Mark A. Kay, Departments of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|