1
|
Petroccione MA, Melone M, Rathwell TJ, Dwivedi N, Grienberger C, Conti F, Scimemi A. An unsuspected physiological role for mGluRIII glutamate receptors in hippocampal area CA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646479. [PMID: 40236245 PMCID: PMC11996470 DOI: 10.1101/2025.03.31.646479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Group III metabotropic glutamate receptors (mGluRIII) are expressed broadly throughout the neocortex and hippocampus but are thought to inhibit neurotransmitter release only at a subset of synapses and in a target cell- specific manner. Accordingly, previous slice physiology experiments in hippocampal area CA1 showed that mGluRIII receptors inhibit glutamate and GABA release only at excitatory and inhibitory synapses formed onto GABAergic interneurons, not onto pyramidal cells. Here, we show that the supposed target cell-specific modulation of GABA release only occurs when the extracellular calcium concentration in the recording solution is higher than its physiological concentration in the cerebrospinal fluid. Under more physiological conditions, mGluRIII receptors inhibit GABA release at synapses formed onto both interneurons and pyramidal cells but limit glutamate release only onto interneurons. This previously unrecognized form of mGluRIII-dependent, pre-synaptic modulation of inhibition onto pyramidal cells is accounted for by a reduction in the size of the readily releasable pool, mediated by protein kinase A and its vesicle-associated target proteins, synapsins. Using in vivo whole-cell recordings in behaving mice, we demonstrate that blocking mGluRIII activation in the intact CA1 network results in net effects consistent with decreased inhibition and significantly alters CA1 place cell activity. Together, these findings challenge our current understanding of the role of mGluRIII receptors in the control of synaptic transmission and encoding of spatial information in the hippocampus.
Collapse
|
2
|
Song SH, Augustine GJ. A role for synapsin tetramerization in synaptic vesicle clustering. J Physiol 2024. [PMID: 38979871 DOI: 10.1113/jp286177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Although synapsins have long been proposed to be key regulators of synaptic vesicle (SV) clustering, their mechanism of action has remained mysterious and somewhat controversial. Here, we review synapsins and their associations with each other and with SVs. We highlight the recent hypothesis that synapsin tetramerization is a mechanism for SV clustering. This hypothesis, which aligns with numerous experimental results, suggests that the larger size of synapsin tetramers, in comparison to dimers, allows tetramers to form optimal bridges between SVs that overcome the repulsive force associated with the negatively charged membrane of SVs and allow synapsins to form a reserve pool of SVs within presynaptic terminals.
Collapse
Affiliation(s)
| | - George J Augustine
- Temasek Life sciences Laboratory, Singapore
- Department of Physiology, National University of Singapore, Singapore
| |
Collapse
|
3
|
Stavsky A, Parra-Rivas LA, Tal S, Riba J, Madhivanan K, Roy S, Gitler D. Synapsin E-domain is essential for α-synuclein function. eLife 2024; 12:RP89687. [PMID: 38713200 PMCID: PMC11076041 DOI: 10.7554/elife.89687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.
Collapse
Affiliation(s)
- Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Leonardo A Parra-Rivas
- Department of Pathology, University of California, San DiegoLa JollaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Shani Tal
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Jen Riba
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Subhojit Roy
- Department of Pathology, University of California, San DiegoLa JollaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
4
|
Longfield SF, Gormal RS, Feller M, Parutto P, Reingruber J, Wallis TP, Joensuu M, Augustine GJ, Martínez-Mármol R, Holcman D, Meunier FA. Synapsin 2a tetramerisation selectively controls the presynaptic nanoscale organisation of reserve synaptic vesicles. Nat Commun 2024; 15:2217. [PMID: 38472171 PMCID: PMC10933366 DOI: 10.1038/s41467-024-46256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization has been suggested as a potential clustering mechanism. Here, we used Dual-pulse sub-diffractional Tracking of Internalised Molecules (DsdTIM) to simultaneously track single SVs from the recycling and the reserve pools, in live hippocampal neurons. The reserve pool displays a lower presynaptic mobility compared to the recycling pool and is also present in the axons. Triple knockout of Synapsin 1-3 genes (SynTKO) increased the mobility of reserve pool SVs. Re-expression of wild-type Syn2a (Syn2aWT), but not the tetramerization-deficient mutant K337Q (Syn2aK337Q), fully rescued these effects. Single-particle tracking revealed that Syn2aK337QmEos3.1 exhibited altered activity-dependent presynaptic translocation and nanoclustering. Therefore, Syn2a tetramerization controls its own presynaptic nanoclustering and thereby contributes to the dynamic immobilisation of the SV reserve pool.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matis Feller
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Pierre Parutto
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Jürgen Reingruber
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Holcman
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics (DAMPT) visitor, University of Cambridge, and Churchill College, CB30DS, Cambridge, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Stavsky A, Parra-Rivas LA, Tal S, Riba J, Madhivanan K, Roy S, Gitler D. Synapsin E-domain is essential for α-synuclein function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546170. [PMID: 37425805 PMCID: PMC10327093 DOI: 10.1101/2023.06.24.546170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at the synapse. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.
Collapse
Affiliation(s)
- Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Leonardo A. Parra-Rivas
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Shani Tal
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jen Riba
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kayalvizhi Madhivanan
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Current address: Arrowhead Pharmaceuticals, Pasadena, CA, 91105
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Hoffmann C, Rentsch J, Tsunoyama TA, Chhabra A, Aguilar Perez G, Chowdhury R, Trnka F, Korobeinikov AA, Shaib AH, Ganzella M, Giannone G, Rizzoli SO, Kusumi A, Ewers H, Milovanovic D. Synapsin condensation controls synaptic vesicle sequestering and dynamics. Nat Commun 2023; 14:6730. [PMID: 37872159 PMCID: PMC10593750 DOI: 10.1038/s41467-023-42372-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Gerard Aguilar Perez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Rajdeep Chowdhury
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Aleksandr A Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Ali H Shaib
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany.
| |
Collapse
|
7
|
Song SH, Augustine GJ. Different mechanisms of synapsin-induced vesicle clustering at inhibitory and excitatory synapses. Cell Rep 2023; 42:113004. [PMID: 37597184 DOI: 10.1016/j.celrep.2023.113004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Synapsins cluster synaptic vesicles (SVs) to provide a reserve pool (RP) of SVs that maintains synaptic transmission during sustained activity. However, it is unclear how synapsins cluster SVs. Here we show that either liquid-liquid phase separation (LLPS) or tetramerization-dependent cross-linking can cluster SVs, depending on whether a synapse is excitatory or inhibitory. Cell-free reconstitution reveals that both mechanisms can cluster SVs, with tetramerization being more effective. At inhibitory synapses, perturbing synapsin-dependent LLPS impairs SV clustering and synchronization of gamma-aminobutyric acid (GABA) release, while preventing synapsin tetramerization does not. At glutamatergic synapses, the opposite is true: synapsin tetramerization enhances clustering of glutamatergic SVs and mobilization of these SVs from the RP, while synapsin LLPS does not. Comparison of inhibitory and excitatory transmission during prolonged synaptic activity reveals that synapsin LLPS serves as a brake to limit GABA release, while synapsin tetramerization enables rapid mobilization of SVs from the RP to sustain glutamate release.
Collapse
Affiliation(s)
- Sang-Ho Song
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - George J Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
8
|
Polishchuk A, Cilleros-Mañé V, Just-Borràs L, Balanyà-Segura M, Vandellòs Pont G, Silvera Simón C, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Synaptic retrograde regulation of the PKA-induced SNAP-25 and Synapsin-1 phosphorylation. Cell Mol Biol Lett 2023; 28:17. [PMID: 36869288 PMCID: PMC9985302 DOI: 10.1186/s11658-023-00431-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied. At the neuromuscular junction (NMJ), protein kinase A (PKA) enhances neurotransmitter release, and the phosphorylation of the molecules of the release machinery including synaptosomal associated protein of 25 kDa (SNAP-25) and Synapsin-1 could be involved. METHODS Accordingly, to study the effect of synaptic retrograde regulation of the PKA subunits and its activity, we stimulated the rat phrenic nerve (1 Hz, 30 min) resulting or not in contraction (abolished by µ-conotoxin GIIIB). Changes in protein levels and phosphorylation were detected by western blotting and cytosol/membrane translocation by subcellular fractionation. Synapsin-1 was localized in the levator auris longus (LAL) muscle by immunohistochemistry. RESULTS Here we show that synaptic PKA Cβ subunit regulated by RIIβ or RIIα subunits controls activity-dependent phosphorylation of SNAP-25 and Synapsin-1, respectively. Muscle contraction retrogradely downregulates presynaptic activity-induced pSynapsin-1 S9 while that enhances pSNAP-25 T138. Both actions could coordinately contribute to decreasing the neurotransmitter release at the NMJ. CONCLUSION This provides a molecular mechanism of the bidirectional communication between nerve terminals and muscle cells to balance the accurate process of ACh release, which could be important to characterize molecules as a therapy for neuromuscular diseases in which neuromuscular crosstalk is impaired.
Collapse
Affiliation(s)
- Aleksandra Polishchuk
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Balanyà-Segura
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Genís Vandellòs Pont
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Carolina Silvera Simón
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain.
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, c/ Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
9
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
10
|
Zhang M, Augustine GJ. Synapsins and the Synaptic Vesicle Reserve Pool: Floats or Anchors? Cells 2021; 10:cells10030658. [PMID: 33809712 PMCID: PMC8002314 DOI: 10.3390/cells10030658] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
In presynaptic terminals, synaptic vesicles (SVs) are found in a discrete cluster that includes a reserve pool that is mobilized during synaptic activity. Synapsins serve as a key protein for maintaining SVs within this reserve pool, but the mechanism that allows synapsins to do this is unclear. This mechanism is likely to involve synapsins either cross-linking SVs, thereby anchoring SVs to each other, or creating a liquid phase that allows SVs to float within a synapsin droplet. Here, we summarize what is known about the role of synapsins in clustering of SVs and evaluate experimental evidence supporting these two models.
Collapse
|
11
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
12
|
Molecular Diversity of Glutamatergic and GABAergic Synapses from Multiplexed Fluorescence Imaging. eNeuro 2021; 8:ENEURO.0286-20.2020. [PMID: 33355295 PMCID: PMC7877457 DOI: 10.1523/eneuro.0286-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
Neuronal synapses contain hundreds of different protein species important for regulating signal transmission. Characterizing differential expression profiles of proteins within synapses in distinct regions of the brain has revealed a high degree of synaptic diversity defined by unique molecular organization. Multiplexed imaging of in vitro rat primary hippocampal culture models at single synapse resolution offers new opportunities for exploring synaptic reorganization in response to chemical and genetic perturbations. Here, we combine 12-color multiplexed fluorescence imaging with quantitative image analysis and machine learning to identify novel synaptic subtypes within excitatory and inhibitory synapses based on the expression profiles of major synaptic components. We characterize differences in the correlated expression of proteins within these subtypes and we examine how the distribution of these synapses is modified following induction of synaptic plasticity. Under chronic suppression of neuronal activity, phenotypic characterization revealed coordinated increases in both excitatory and inhibitory protein levels without changes in the distribution of synaptic subtypes, suggesting concerted events targeting glutamatergic and GABAergic synapses. Our results offer molecular insight into the mechanisms of synaptic plasticity.
Collapse
|
13
|
Maiole F, Tedeschi G, Candiani S, Maragliano L, Benfenati F, Zullo L. Synapsins are expressed at neuronal and non-neuronal locations in Octopus vulgaris. Sci Rep 2019; 9:15430. [PMID: 31659209 PMCID: PMC6817820 DOI: 10.1038/s41598-019-51899-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Synapsins are a family of phosphoproteins fundamental to the regulation of neurotransmitter release. They are typically neuron-specific, although recent evidence pointed to their expression in non-neuronal cells where they play a role in exocytosis and vesicle trafficking. In this work, we characterized synapsin transcripts in the invertebrate mollusk Octopus vulgaris and present evidence of their expression not only in the brain but also in male and female reproductive organs. We identified three synapsin isoforms phylogenetically correlated to that of other invertebrates and with a modular structure characteristic of mammalian synapsins with a central, highly conserved C domain, important for the protein functions, and less conserved A, B and E domains. Our molecular modeling analysis further provided a solid background for predicting synapsin functional binding to ATP, actin filaments and secretory vesicles. Interestingly, we found that synapsin expression in ovary and testis increased during sexual maturation in cells with a known secretory role, potentially matching the occurrence of a secretion process. This might indicate that its secretory role has evolved across animals according to cell activity in spite of cell identity. We believe that this study may yield insights into the convergent evolution of ubiquitously expressed proteins between vertebrates and invertebrates.
Collapse
Affiliation(s)
- Federica Maiole
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,Department of Experimental Medicine, University of Genova, viale Benedetto XV, 3, 16132, Genova, Italy
| | - Giulia Tedeschi
- Department of Experimental Medicine, University of Genova, viale Benedetto XV, 3, 16132, Genova, Italy.,Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, 92697, CA, USA
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy.
| | - Luca Maragliano
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,IRCSS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Fabio Benfenati
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,IRCSS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy. .,IRCSS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
14
|
Vaden JH, Banumurthy G, Gusarevich ES, Overstreet-Wadiche L, Wadiche JI. The readily-releasable pool dynamically regulates multivesicular release. eLife 2019; 8:47434. [PMID: 31364987 PMCID: PMC6716946 DOI: 10.7554/elife.47434] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically control release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling. Our nervous system allows us to rapidly sense and respond to the world around us via cells called neurons that relay electrical signals around the brain and body. When an electrical impulse travelling along one neuron reaches a junction – called a synapse – with a neighboring neuron, it stimulates small containers known as vesicles from the first cell to release their contents into the synapse. These contents then travel across to the neighboring cell and may generate a new electrical impulse. The number of vesicles at a synapse that are ready to be released varies from one to ten. The more vesicles the neuron releases, the more likely the second cell will produce an electrical signal of its own. However, not all electrical signals reaching a synapse stimulate vesicles to be released and some signals only release a single vesicle. What determines how many vesicles are released by a single electrical signal? Some vesicles have a higher likelihood of being released than others, but this “eagerness” does not always predict how many vesicles an individual synapse will actually discharge. Now, Vaden et al. have used brain tissue from mice to test an alternative possibility: the simple idea that the number of vesicles available at the synapse affects how many vesicles are released without altering their eagerness for release. Vaden et al. found that activating an enzyme called protein kinase A increased the number of vesicles released from synapses without changing how likely individual vesicles were to be released. Inhibiting protein kinase A also did not change individual vesicle’s eagerness to be released, but did decrease the number of vesicles that were discharged. Further experiments found that protein kinase A modifies a molecule on the surface of vesicles, known as synapsin, which controls the number of vesicles that are available for release. These findings show that the number of vesicles released at a synapse is controlled by two independently regulated parameters: the number of vesicles that are available, as well as how eager individual vesicles are to be released. The ability of neurons to communicate with each other is disrupted in autism spectrum disorders, Alzheimer’s disease and many other diseases. Learning how neurons communicate in healthy brains will help us understand what happens in the neurons of individuals with these conditions.
Collapse
Affiliation(s)
- Jada H Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | | | - Eugeny S Gusarevich
- Department of Fundamental and Applied Physics, Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
15
|
Matos H, Quiles R, Andrade R, Bykhovskaia M. Growth and excitability at synapsin II deficient hippocampal neurons. Mol Cell Neurosci 2019; 96:25-34. [PMID: 30858140 DOI: 10.1016/j.mcn.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.
Collapse
Affiliation(s)
- Heidi Matos
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Raymond Quiles
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America.
| |
Collapse
|
16
|
Cheng Q, Song SH, Augustine GJ. Molecular Mechanisms of Short-Term Plasticity: Role of Synapsin Phosphorylation in Augmentation and Potentiation of Spontaneous Glutamate Release. Front Synaptic Neurosci 2018; 10:33. [PMID: 30425632 PMCID: PMC6218601 DOI: 10.3389/fnsyn.2018.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
We used genetic and pharmacological approaches to identify the signaling pathways involved in augmentation and potentiation, two forms of activity dependent, short-term synaptic plasticity that enhance neurotransmitter release. Trains of presynaptic action potentials produced a robust increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs). Following the end of the stimulus, mEPSC frequency followed a bi-exponential decay back to basal levels. The time constants of decay identified these two exponential components as the decay of augmentation and potentiation, respectively. Augmentation increased mEPSC frequency by 9.3-fold, while potentiation increased mEPSC frequency by 2.4-fold. In synapsin triple-knockout (TKO) neurons, augmentation was reduced by 83% and potentiation was reduced by 74%, suggesting that synapsins are key signaling elements in both forms of plasticity. To examine the synapsin isoforms involved, we expressed individual synapsin isoforms in TKO neurons. While synapsin IIIa rescued both augmentation and potentiation, none of the other synapsin isoforms produced statistically significant amounts of rescue. To determine the involvement of protein kinases in these two forms of short-term plasticity, we examined the effects of inhibitors of protein kinases A (PKA) and C (PKC). While inhibition of PKC had little effect, PKA inhibition reduced augmentation by 76% and potentiation by 60%. Further, elevation of intracellular cAMP concentration, by either forskolin or IBMX, greatly increased mEPSC frequency and occluded the amount of augmentation and potentiation evoked by electrical stimulation. Finally, mutating a PKA phosphorylation site to non-phosphorylatable alanine largely abolished the ability of synapsin IIIa to rescue both augmentation and potentiation. Together, these results indicate that PKA activation is required for both augmentation and potentiation of spontaneous neurotransmitter release and that PKA-mediated phosphorylation of synapsin IIIa underlies both forms of presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Qing Cheng
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sang-Ho Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
17
|
Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:4. [PMID: 29532181 PMCID: PMC5851683 DOI: 10.1007/s10158-018-0207-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK.
| | - Patricia G Izquierdo
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| |
Collapse
|
18
|
Synapsin Isoforms Regulating GABA Release from Hippocampal Interneurons. J Neurosci 2017; 36:6742-57. [PMID: 27335405 DOI: 10.1523/jneurosci.0011-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/13/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Although synapsins regulate GABA release, it is unclear which synapsin isoforms are involved. We identified the synapsin isoforms that regulate GABA release via rescue experiments in cultured hippocampal neurons from synapsin I, II, and III triple knock-out (TKO) mice. In situ hybridization indicated that five different synapsin isoforms are expressed in hippocampal interneurons. Evoked IPSC amplitude was reduced in TKO neurons compared with triple wild-type neurons and was rescued by introducing any of the five synapsin isoforms. This contrasts with hippocampal glutamatergic terminals, where only synapsin IIa rescues the TKO phenotype. Deconvolution analysis indicated that the duration of GABA release was prolonged in TKO neurons and this defect in release kinetics was rescued by each synapsin isoform, aside from synapsin IIIa. Because release kinetics remained slow, whereas peak release rate was rescued, there was a 2-fold increase in GABA release in TKO neurons expressing synapsin IIIa. TKO neurons expressing individual synapsin isoforms showed normal depression kinetics aside from more rapid depression in neurons expressing synapsin IIIa. Measurements of the cumulative amount of GABA released during repetitive stimulation revealed that the rate of mobilization of vesicles from the reserve pool to the readily releasable pool and the size of the readily releasable pool of GABAergic vesicles were unaffected by synapsins. Instead, synapsins regulate release of GABA from the readily releasable pool, with all isoforms aside from synapsin IIIa controlling release synchrony. These results indicate that synapsins play fundamentally distinct roles at different types of presynaptic terminals. SIGNIFICANCE STATEMENT Synapsins are a family of proteins that regulate synaptic vesicle (SV) trafficking within nerve terminals. Here, we demonstrate that release of the inhibitory neurotransmitter GABA is supported by many different synapsin types. This contrasts with the release of other neurotransmitters, which typically is supported by only one type of synapsin. We also found that synapsins serve to synchronize the release of GABA in response to presynaptic action potentials, which is different from the synapsin-dependent trafficking of SVs in other nerve terminals. Our results establish that different synapsins play fundamentally different roles at nerve terminals releasing different types of neurotransmitters. This is an important clue to understanding how neurons release their neurotransmitters, a process essential for normal brain function.
Collapse
|
19
|
Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype. J Neurosci 2017; 37:1757-1771. [PMID: 28087765 DOI: 10.1523/jneurosci.0844-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/21/2022] Open
Abstract
Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.
Collapse
|
20
|
Song SH, Augustine GJ. Synapsin Isoforms and Synaptic Vesicle Trafficking. Mol Cells 2015; 38:936-40. [PMID: 26627875 PMCID: PMC4673407 DOI: 10.14348/molcells.2015.0233] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/27/2022] Open
Abstract
Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts.
Collapse
Affiliation(s)
- Sang-Ho Song
- Lee Kong Chian School of Medicine,
Singapore 637553,
Singapore
- Institute of Molecular and Cell Biology,
Singapore 138673,
Singapore
| | - George J. Augustine
- Lee Kong Chian School of Medicine,
Singapore 637553,
Singapore
- Institute of Molecular and Cell Biology,
Singapore 138673,
Singapore
| |
Collapse
|
21
|
Molinaro L, Hui P, Tan M, Mishra RK. Role of presynaptic phosphoprotein synapsin II in schizophrenia. World J Psychiatry 2015; 5:260-272. [PMID: 26425441 PMCID: PMC4582303 DOI: 10.5498/wjp.v5.i3.260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 06/11/2015] [Indexed: 02/05/2023] Open
Abstract
Synapsin II is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene (3p25) in the etiology of schizophrenia (SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II mRNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world’s population, amounting to 51 million people today. The disorder is characterized by positive (hallucinations, paranoia), negative (social withdrawal, lack of motivation), and cognitive (memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.
Collapse
|
22
|
SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation. Nat Commun 2015; 6:7728. [PMID: 26173895 PMCID: PMC4504226 DOI: 10.1038/ncomms8728] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/04/2015] [Indexed: 11/08/2022] Open
Abstract
Synapsins are key components of the presynaptic neurotransmitter release machinery. Their main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin cytoskeleton to establish the reserve vesicle pool, and then release them in response to appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia (SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation as a fundamental regulator of SynIa function and reveal a novel link between reduced SUMOylation of SynIa and neurological disorders.
Collapse
|
23
|
Cheng Q, Yakel JL. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology 2015; 95:405-14. [PMID: 25937212 DOI: 10.1016/j.neuropharm.2015.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The activation of α7 nAChRs has been shown to improve hippocampal-dependent learning and memory. However, the molecular mechanism of α7 nAChRs' action remains elusive. We previously reported that activation of α7 nAChRs induced a prolonged enhancement of glutamatergic synaptic transmission in a PKA-dependent manner. Here, we investigated any connection between the activation of the α7 nAChR and cAMP signaling in hippocampal neurons. To address this question, we employed a FRET-based biosensor to measure the intracellular cAMP levels directly via live cell imaging. We found that application of the α7 nAChR-selective agonist choline, in the presence of the α7 nAChR positive allosteric modulator PNU-120596, induced a significant change in emission ratio of F535/F470, which indicated an increase in intracellular cAMP levels. This choline-induced increase was abolished by the α7 nAChR antagonist MLA and the calcium chelator BAPTA, suggesting that the cAMP increase depends on the α7 nAChR activation and subsequent intracellular calcium rise. The selective AC1 inhibitor CB-6673567 and siRNA-mediated deletion of AC1 both blocked the choline-induced cAMP increase, suggesting that calcium-dependent AC1 is required for choline's action. Furthermore, α7 nAChR activation stimulated the phosphorylation of synapsin, which serves as a downstream effector to regulate neurotransmitter release. Our findings provide the first direct evidence to link activation of α7 nAChRs to a cAMP rise via AC1, which defines a new signaling pathway employed by α7 nAChRs. Our study sheds light into potential molecular mechanisms of the positive cognitive actions of α7 nAChR agonists and development of therapeutic treatments for cognitive impairments.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA.
| |
Collapse
|
24
|
ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 2015; 35:985-98. [PMID: 25609616 DOI: 10.1523/jneurosci.0944-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
Collapse
|
25
|
Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics. J Neurosci 2015; 34:14752-68. [PMID: 25355227 DOI: 10.1523/jneurosci.1093-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synapsins (Syns) are synaptic vesicle (SV)-associated proteins involved in the regulation of synaptic transmission and plasticity, which display a highly conserved ATP binding site in the central C-domain, whose functional role is unknown. Using molecular dynamics simulations, we demonstrated that ATP binding to SynI is mediated by a conformational transition of a flexible loop that opens to make the binding site accessible; such transition, prevented in the K269Q mutant, is not significantly affected in the absence of Ca(2+) or by the E373K mutation that abolishes Ca(2+)-binding. Indeed, the ATP binding to SynI also occurred under Ca(2+)-free conditions and increased its association with purified rat SVs regardless of the presence of Ca(2+) and promoted SynI oligomerization. However, although under Ca(2+)-free conditions, SynI dimerization and SV clustering were enhanced, Ca(2+) favored the formation of tetramers at the expense of dimers and did not affect SV clustering, indicating a role of Ca(2+)-dependent dimer/tetramer transitions in the regulation of ATP-dependent SV clustering. To elucidate the role of ATP/SynI binding in synaptic physiology, mouse SynI knock-out hippocampal neurons were transduced with either wild-type or K269Q mutant SynI and inhibitory transmission was studied by patch-clamp and electron microscopy. K269Q-SynI expressing inhibitory synapses showed increased synaptic strength due to an increase in the release probability, an increased vulnerability to synaptic depression and a dysregulation of SV trafficking, when compared with wild-type SynI-expressing terminals. The results suggest that the ATP-SynI binding plays predocking and postdocking roles in the modulation of SV clustering and plasticity of inhibitory synapses.
Collapse
|
26
|
Gallart-Palau X, Serra A, Qian J, Chen CP, Kalaria RN, Sze SK. Temporal lobe proteins implicated in synaptic failure exhibit differential expression and deamidation in vascular dementia. Neurochem Int 2014; 80:87-98. [PMID: 25497727 DOI: 10.1016/j.neuint.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
Abstract
Progressive synaptic failure precedes the loss of neurons and decline in cognitive function in neurodegenerative disorders, but the specific proteins and posttranslational modifications that promote synaptic failure in vascular dementia (VaD) remain largely unknown. We therefore used an isobaric tag for relative and absolute proteomic quantitation (iTRAQ) to profile the synapse-associated proteome of post-mortem human cortex from vascular dementia patients and age-matched controls. Brain tissue from VaD patients exhibited significant down-regulation of critical synaptic proteins including clathrin (0.29; p < 1.0⋅10(-3)) and GDI1 (0.51; p = 3.0⋅10(-3)), whereas SNAP25 (1.6; p = 5.5⋅10(-3)), bassoon (1.4; p = 1.3⋅10(-3)), excitatory amino acid transporter 2 (2.6; p = 9.2⋅10(-3)) and Ca(2+)/calmodulin dependent kinase II (1.6; p = 3.0⋅10(-2)) were substantially up-regulated. Our analyses further revealed divergent patterns of protein modification in the dementia patient samples, including a specific deamidation of synapsin1 predicted to compromise protein structure. Our results reveal potential molecular targets for intervention in synaptic failure and prevention of cognitive decline in VaD.
Collapse
Affiliation(s)
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jingru Qian
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory, Aging and Cognition Centre, National University Health System, Singapore
| | - Raj N Kalaria
- Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
27
|
Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr 2014; 2:94. [PMID: 25237665 PMCID: PMC4154395 DOI: 10.3389/fped.2014.00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/21/2014] [Indexed: 12/03/2022] Open
Abstract
Autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests, and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn) genes in humans has been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Syns are pre-synaptic proteins regulating synaptic vesicle traffic, neurotransmitter release, and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication, and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.
Collapse
Affiliation(s)
- Silvia Giovedí
- Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova , Genova , Italy ; Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia , Genova , Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova , Genova , Italy ; Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia , Genova , Italy
| |
Collapse
|
28
|
Vasileva M, Renden R, Horstmann H, Gitler D, Kuner T. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area. Front Cell Neurosci 2013; 7:270. [PMID: 24391547 PMCID: PMC3868894 DOI: 10.3389/fncel.2013.00270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa-known to sustain repetitive transmission in glutamatergic terminals-was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs.
Collapse
Affiliation(s)
- Mariya Vasileva
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Robert Renden
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
29
|
Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I. PLoS One 2013; 8:e67724. [PMID: 23818987 PMCID: PMC3688603 DOI: 10.1371/journal.pone.0067724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/-) ) mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD). Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/-) mice as an experimental model mimicking the human pathology.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Codon, Nonsense
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HeLa Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Neurons/metabolism
- Nonsense Mediated mRNA Decay
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Synapsins/genetics
- Synapsins/metabolism
Collapse
Affiliation(s)
- Maila Giannandrea
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center and Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| |
Collapse
|
30
|
Medrihan L, Cesca F, Raimondi A, Lignani G, Baldelli P, Benfenati F. Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nat Commun 2013; 4:1512. [PMID: 23443540 PMCID: PMC3586721 DOI: 10.1038/ncomms2515] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/18/2013] [Indexed: 01/05/2023] Open
Abstract
In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca2+-dependent manner by a functional interaction with presynaptic Ca2+ channels, revealing a new role in synaptic transmission for synapsins. The arrival of action potentials at nerve terminals often leads to synchronous neurotransmitter release. Medrihan and colleagues use electrophysiology on mouse hippocampal neurons to show that the vesicle protein Synapsin II promotes GABAergic asynchronous release by interacting with calcium channels.
Collapse
Affiliation(s)
- Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 2012; 32:12214-27. [PMID: 22933803 DOI: 10.1523/jneurosci.1554-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The precise subcellular organization of synaptic vesicles (SVs) at presynaptic sites allows for rapid and spatially restricted exocytotic release of neurotransmitter. The synapsins (Syns) are a family of presynaptic proteins that control the availability of SVs for exocytosis by reversibly tethering them to each other and to the actin cytoskeleton in a phosphorylation-dependent manner. Syn ablation leads to reduction in the density of SV proteins in nerve terminals and increased synaptic fatigue under high-frequency stimulation, accompanied by the development of an epileptic phenotype. We analyzed cultured neurons from wild-type and Syn I,II,III(-/-) triple knock-out (TKO) mice and found that SVs were severely dispersed in the absence of Syns. Vesicle dispersion did not affect the readily releasable pool of SVs, whereas the total number of SVs was considerably reduced at synapses of TKO mice. Interestingly, dispersion apparently involved exocytosis-competent SVs as well; it was not affected by stimulation but was reversed by chronic neuronal activity blockade. Altogether, these findings indicate that Syns are essential to maintain the dynamic structural organization of synapses and the size of the reserve pool of SVs during intense SV recycling, whereas an additional Syn-independent mechanism, whose molecular substrate remains to be clarified, targets SVs to synaptic boutons at rest and might be outpaced by activity.
Collapse
|
32
|
Vasileva M, Horstmann H, Geumann C, Gitler D, Kuner T. Synapsin-dependent reserveo pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission. Eur J Neurosci 2012; 36:3005-20. [DOI: 10.1111/j.1460-9568.2012.08225.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 2012; 32:3969-80. [PMID: 22442064 DOI: 10.1523/jneurosci.5058-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals are specialized sites for information transmission where vesicles fuse with the plasma membrane and are locally recycled. Recent work has extended this classical view, with the observation that a subset of functional vesicles is dynamically shared between adjacent terminals by lateral axonal transport. Conceptually, such transport would be expected to disrupt vesicle retention around the active zone, yet terminals are characterized by a high-density vesicle cluster, suggesting that counteracting stabilizing mechanisms must operate against this tendency. The synapsins are a family of proteins that associate with synaptic vesicles and determine vesicle numbers at the terminal, but their specific function remains controversial. Here, using multiple quantitative fluorescence-based approaches and electron microscopy, we show that synapsin is instrumental for resisting vesicle dispersion and serves as a regulatory element for controlling lateral vesicle sharing between synapses. Deleting synapsin disrupts the organization of presynaptic vesicle clusters, making their boundaries hard to define. Concurrently, the fraction of vesicles amenable to transport is increased, and more vesicles are translocated to the axon. Importantly, in neurons from synapsin knock-out mice the resting and recycling pools are equally mobile. Synapsin, when present, specifically restricts the mobility of resting pool vesicles without affecting the division of vesicles between these pools. Specific expression of synapsin IIa, the sole isoform affecting synaptic depression, rescues the knock-out phenotype. Together, our results show that synapsin is pivotal for maintaining synaptic vesicle cluster integrity and that it contributes to the regulated sharing of vesicles between terminals.
Collapse
|
34
|
Synaptic functions of invertebrate varicosities: what molecular mechanisms lie beneath. Neural Plast 2012; 2012:670821. [PMID: 22655209 PMCID: PMC3359714 DOI: 10.1155/2012/670821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed.
Collapse
|
35
|
Farisello P, Boido D, Nieus T, Medrihan L, Cesca F, Valtorta F, Baldelli P, Benfenati F. Synaptic and extrasynaptic origin of the excitation/inhibition imbalance in the hippocampus of synapsin I/II/III knockout mice. Cereb Cortex 2012; 23:581-93. [PMID: 22368083 DOI: 10.1093/cercor/bhs041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synapsins (Syn I, Syn II, and Syn III) are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans and synapsin I/II/III triple knockout (TKO) mice are epileptic. However, excitatory and inhibitory synaptic transmission and short-term plasticity have never been analyzed in intact neuronal circuits of TKO mice. To clarify the generation and expression of the epileptic phenotype, we performed patch-clamp recordings in the CA1 region of acute hippocampal slices from 1-month-old presymptomatic and 6-month-old epileptic TKO mice and age-matched controls. We found a strong imbalance between basal glutamatergic and γ-aminobutyric acid (GABA)ergic transmission with increased evoked excitatory postsynaptic current and impaired evoked inhibitory postsynaptic current amplitude. This imbalance was accompanied by a parallel derangement of short-term plasticity paradigms, with enhanced facilitation of glutamatergic transmission in the presymptomatic phase and milder depression of inhibitory synapses in the symptomatic phase. Interestingly, a lower tonic GABA(A) current due to the impaired GABA release is responsible for the more depolarized resting potential found in TKO CA1 neurons, which makes them more susceptible to fire. All these changes preceded the appearance of epilepsy, indicating that the distinct changes in excitatory and inhibitory transmission due to the absence of Syns initiate the epileptogenic process.
Collapse
Affiliation(s)
- Pasqualina Farisello
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, 16163 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 2011; 22:387-92. [PMID: 21827866 DOI: 10.1016/j.semcdb.2011.07.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles are organized in clusters, and synapsin maintains vesicle organization and abundance in nerve terminals. At the functional level, vesicles can be subdivided into three pools: the releasable pool, the recycling pool, and the reserve pool, and synapsin mediates transitions between these pools. Synapsin directs vesicles into the reserve pool, and synapsin II isoform has a primary role in this function. In addition, synapsin actively delivers vesicles to active zones. Finally, synapsin I isoform mediates coupling release events to action potentials at the latest stages of exocytosis. Thus, synapsin is involved in multiple stages of the vesicle cycle, including vesicle clustering, maintaining the reserve pool, vesicle delivery to active zones, and synchronizing release events. These processes are regulated via a dynamic synapsin phosphorylation/dephosphorylation cycle which involves multiple phosphorylation sites and several pathways. Different synapsin isoforms have unique and non-redundant roles in the multifaceted synapsin function.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Universidad Central del Caribe, Neuroscience Department, 2U6 Ave Laurel, Bayamon, PR 00956, USA.
| |
Collapse
|
37
|
Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 2011; 31:7275-90. [PMID: 21593312 DOI: 10.1523/jneurosci.6476-10.2011] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oligomannosidic glycans play important roles in nervous system development and function. By performing a phage display screening with oligomannose-specific antibodies, we identified an oligomannose-mimicking peptide that was functionally active in modulating neurite outgrowth and neuron-astrocyte adhesion. Using the oligomannose-mimicking peptide in crosslinking experiments, synapsin I was identified as a novel oligomannose-binding protein in mouse brain. Further analyses not only verified that synapsin I is an oligomannose-binding lectin, but also indicated that it is a glycoprotein carrying oligomannose and Lewis(x). We also found that synapsin I is expressed in glia-enriched cultures and is released from glial cells via exosomes. Incubation of glial-derived exosomes in the presence of high KCl concentrations or subjecting glial cell cultures to either oxygen/glucose deprivation or hydrogen peroxide resulted in release of synapsin I from exosomes. Application of synapsin I promoted neurite outgrowth from hippocampal neurons and increased survival of cortical neurons upon hydrogen peroxide treatment or oxygen/glucose deprivation. Coculture experiments using wild-type hippocampal neurons and wild-type or synapsin-deficient glial cells showed enhanced neurite outgrowth when synapsin was expressed by glial cells. Synapsin-induced neurite outgrowth was dependent on oligomannose on synapsin I and the neural cell adhesion molecule NCAM at the neuronal cell surface. The data indicate that, under conditions of high neuronal activity and/or oxidative stress, synapsin can be released from glial-derived exosomes and promotes neurite outgrowth and neuronal survival by modulating the interactions between glia and neurons.
Collapse
|
38
|
Humeau Y, Candiani S, Ghirardi M, Poulain B, Montarolo P. Functional roles of synapsin: Lessons from invertebrates. Semin Cell Dev Biol 2011; 22:425-33. [DOI: 10.1016/j.semcdb.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/13/2011] [Indexed: 12/18/2022]
|
39
|
Bogen IL, Jensen V, Hvalby Ø, Walaas SI. Glutamatergic neurotransmission in the synapsin I and II double knock-out mouse. Semin Cell Dev Biol 2011; 22:400-7. [DOI: 10.1016/j.semcdb.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 01/19/2023]
|
40
|
Fassio A, Patry L, Congia S, Onofri F, Piton A, Gauthier J, Pozzi D, Messa M, Defranchi E, Fadda M, Corradi A, Baldelli P, Lapointe L, St-Onge J, Meloche C, Mottron L, Valtorta F, Khoa Nguyen D, Rouleau GA, Benfenati F, Cossette P. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 2011; 20:2297-307. [PMID: 21441247 DOI: 10.1093/hmg/ddr122] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several genes predisposing to autism spectrum disorders (ASDs) with or without epilepsy have been identified, many of which are implicated in synaptic function. Here we report a Q555X mutation in synapsin 1 (SYN1), an X-linked gene encoding for a neuron-specific phosphoprotein implicated in the regulation of neurotransmitter release and synaptogenesis. This nonsense mutation was found in all affected individuals from a large French-Canadian family segregating epilepsy and ASDs. Additional mutations in SYN1 (A51G, A550T and T567A) were found in 1.0 and 3.5% of French-Canadian individuals with autism and epilepsy, respectively. The majority of these SYN1 mutations were clustered in the proline-rich D-domain which is substrate of multiple protein kinases. When expressed in synapsin I (SynI) knockout (KO) neurons, all the D-domain mutants failed in rescuing the impairment in the size and trafficking of synaptic vesicle pools, whereas the wild-type human SynI fully reverted the KO phenotype. Moreover, the nonsense Q555X mutation had a dramatic impact on phosphorylation by MAPK/Erk and neurite outgrowth, whereas the missense A550T and T567A mutants displayed impaired targeting to nerve terminals. These results demonstrate that SYN1 is a novel predisposing gene to ASDs, in addition to epilepsy, and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, National Institute of Neuroscience, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A novel form of presynaptic plasticity based on the fast reactivation of release sites switched off during low-frequency depression. J Neurosci 2011; 30:16679-91. [PMID: 21148007 DOI: 10.1523/jneurosci.3644-09.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive firing of neurons at a low frequency often leads to a decrease in synaptic strength. The mechanism of this low-frequency depression (LFD) is poorly understood. Here, LFD was studied at Aplysia cholinergic synapses. The absence of a significant change in the paired-pulse ratio during LFD, together with the facts that neither the time course nor the extent of LFD were affected by the initial release probability, suggests that LFD is not related to a depletion of the ready-to-fuse synaptic vesicles (SVs) or to a decrease in the release probability, but results from the silencing of a subpopulation of release sites. A subset of SVs or release sites, which acquired a high release probability status during LFD, permits synapses to rapidly and temporarily recover the initial synaptic strength when the stimulation is stopped. However, the recovery of the full capacity of the synapse to sustain repetitive stimulations is slow and involves spontaneous reactivation of the silent release sites. Application of tetanic stimulations accelerates this recovery by immediately switching on the silent sites. This high-frequency-dependent phenomenon underlies a new form of synaptic plasticity that allows resetting of presynaptic efficiency independently of the recent history of the synapse. Microinjection of a mutated Aplysia synapsin that cannot be phosphorylated by cAMP-dependent protein kinase (PKA), or a PKA inhibitor both prevented high-frequency-dependent awakening of release sites. Changes in the firing pattern of neurons appear to be able to regulate the on-off status of release sites via a molecular cascade involving PKA-dependent phosphorylation of synapsin.
Collapse
|
42
|
Hvalby O, Jensen V, Kao HT, Walaas SI. Synapsin-dependent vesicle recruitment modulated by forskolin, phorbol ester and ca in mouse excitatory hippocampal synapses. Front Synaptic Neurosci 2010; 2:152. [PMID: 21423538 PMCID: PMC3059703 DOI: 10.3389/fnsyn.2010.00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 12/09/2010] [Indexed: 12/03/2022] Open
Abstract
Repeated release of transmitter from presynaptic elements depends on stimulus-induced Ca2+ influx together with recruitment and priming of synaptic vesicles from different vesicle pools. We have compared three different manipulations of synaptic strength, all of which are known to increase short-term synaptic efficacy through presynaptic mechanisms, in the glutamatergic CA3-to-CA1 stratum radiatum synapse in the mouse hippocampal slice preparation. Synaptic responses elicited from the readily releasable vesicle pool during low-frequency synaptic activation (0.1 Hz) were significantly enhanced by both the adenylate cyclase activator forskolin, the priming activator β-phorbol-12,13-dibutyrate (PDBu) and 4 mM [Ca2+]o′ whereas during 20 Hz stimulation, the same manipulations reduced the time needed to reach the peak and increased the magnitude of the resulting frequency facilitation. In contrast, paired-pulse facilitations were unchanged in the presence of forskolin, decreased by 4 mM [Ca2+]o and essentially abolished by PDBu. The subsequent delayed response enhancement (DRE) responses, elicited during continuous 20 Hz stimulations and mediated by recruited vesicles, were enhanced by forskolin, essentially unchanged by PDBu and slightly decreased by 4 mM [Ca2+]o· Similar experiments done on slices devoid of the vesicle-associated synapsin I and II proteins indicated that synapsin I/II-induced enhancements of vesicle recruitment were restricted to Ca2+-induced frequency facilitations and forskolin-induced enhancements of the early DRE phase, whereas the proteins had minor effects during PDBu-treatment and represented constraints on late Ca2+-induced responses. The data indicate that in these glutamatergic synapses, the comparable enhancements of single synaptic responses induced by these biochemical mechanisms can be transformed during prolonged synaptic stimulation into highly distinct short-term plasticity patterns, which are partly dependent on synapsins I/II.
Collapse
Affiliation(s)
- Oivind Hvalby
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
43
|
Fei E, Ma X, Zhu C, Xue T, Yan J, Xu Y, Zhou J, Wang G. Nucleocytoplasmic shuttling of dysbindin-1, a schizophrenia-related protein, regulates synapsin I expression. J Biol Chem 2010; 285:38630-40. [PMID: 20921223 PMCID: PMC2992295 DOI: 10.1074/jbc.m110.107912] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/23/2010] [Indexed: 01/29/2023] Open
Abstract
Dysbindin-1 is a 50-kDa coiled-coil-containing protein encoded by the gene DTNBP1 (dystrobrevin-binding protein 1), a candidate genetic factor for schizophrenia. Genetic variations in this gene confer a susceptibility to schizophrenia through a decreased expression of dysbindin-1. It was reported that dysbindin-1 regulates the expression of presynaptic proteins and the release of neurotransmitters. However, the precise functions of dysbindin-1 are largely unknown. Here, we show that dysbindin-1 is a novel nucleocytoplasmic shuttling protein and translocated to the nucleus upon treatment with leptomycin B, an inhibitor of exportin-1/CRM1-mediated nuclear export. Dysbindin-1 harbors a functional nuclear export signal necessary for its nuclear export, and the nucleocytoplasmic shuttling of dysbindin-1 affects its regulation of synapsin I expression. In brains of sandy mice, a dysbindin-1-null strain that displays abnormal behaviors related to schizophrenia, the protein and mRNA levels of synapsin I are decreased. These findings demonstrate that the nucleocytoplasmic shuttling of dysbindin-1 regulates synapsin I expression and thus may be involved in the pathogenesis of schizophrenia.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Brain/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Dysbindin
- Dystrophin-Associated Proteins
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Mice
- Mice, Mutant Strains
- Presynaptic Terminals/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Schizophrenia/genetics
- Schizophrenia/metabolism
- Synapsins/biosynthesis
- Synapsins/genetics
- Exportin 1 Protein
Collapse
Affiliation(s)
- Erkang Fei
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Xiaochuan Ma
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Cuiqing Zhu
- the State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Xue
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Jie Yan
- the State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Xu
- the State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiangning Zhou
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Guanghui Wang
- From the Laboratory of Molecular Neuropathology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| |
Collapse
|
44
|
Boido D, Farisello P, Cesca F, Ferrea E, Valtorta F, Benfenati F, Baldelli P. Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience 2010; 171:268-83. [PMID: 20804820 DOI: 10.1016/j.neuroscience.2010.08.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/03/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Synapsins (SynI, SynII, SynIII) are a multigene family of synaptic vesicle (SV) phosphoproteins implicated in the regulation of synaptic transmission and plasticity. Synapsin I, II, I/II and I/II/III knockout mice are epileptic and SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans. We analyzed cortico-hippocampal epileptiform activity induced by 4-aminopyridine (4AP) in acute slices from presymptomatic (3-weeks-old) and symptomatic (1-year-old) Syn I/II/III triple knockout (TKO) mice and aged-matched triple wild type (TWT) controls and assessed the effect of the SV-targeted antiepileptic drug (AED) levetiracetam (LEV) in reverting the epileptic phenotype. Both fast and slow interictal (I-IC) and ictal (IC) events were observed in both genotypes. The incidence of fast I-IC events was higher in presymptomatic TKO slices, while frequency and latency of I-IC events were similar in both genotypes. The major age and genotype effects were observed in IC activity, that was much more pronounced in 3-weeks-old TKO and persisted with age, while it disappeared from 1-year-old TWT slices. LEV virtually suppressed fast I-IC and IC discharges from 3-weeks-old TWT slices, while it only increased the latency of fast I-IC and IC activity in TKO slices. Analysis of I-IC events in patch-clamped CA1 pyramidal neurons revealed that LEV increased the inhibitory/excitatory ratio of I-IC activity in both genotypes. The lower LEV potency in TKO slices of both ages was associated with a decreased expression of SV2A, a SV protein acting as LEV receptor, in cortex and hippocampus. The results demonstrate that deletion of Syn genes is associated with a higher propensity to 4AP-induced epileptic paroxysms that precedes the onset of epilepsy and consolidates with age. LEV ameliorates such hyper excitability by enhancing the inhibition/excitation ratio, although the effect is hindered in TKO slices which exhibit a concomitant decrease in the levels of the LEV receptor SV2A.
Collapse
Affiliation(s)
- D Boido
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knock-out (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released.
Collapse
|
46
|
Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F. The role of synapsins in neuronal development. Cell Mol Life Sci 2010; 67:1383-96. [PMID: 20035364 PMCID: PMC11115787 DOI: 10.1007/s00018-009-0227-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/22/2009] [Accepted: 12/04/2009] [Indexed: 12/23/2022]
Abstract
The synapsins, the first identified synaptic vesicle-specific proteins, are phosphorylated on multiple sites by a number of protein kinases and are involved in neurite outgrowth and synapse formation as well as in synaptic transmission. In mammals, the synapsin family consists of at least 10 isoforms encoded by 3 distinct genes and composed by a mosaic of conserved and variable domains. The synapsins are highly conserved evolutionarily, and orthologues have been found in invertebrates and lower vertebrates. Within nerve terminals, synapsins are implicated in multiple interactions with presynaptic proteins and the actin cytoskeleton. Via these interactions, synapsins control several mechanisms important for neuronal homeostasis. In this review, we describe the main functional features of the synapsins, in relation to the complex role played by these phosphoproteins in neuronal development.
Collapse
Affiliation(s)
- Eugenio F. Fornasiero
- San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 58, 20132 Milan, Italy
- Unit of Molecular Neuroscience, The Italian Institute of Technology, Via Olgettina 58, 20132 Milan, Italy
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 58, 20132 Milan, Italy
- Present Address: Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- Unit of Molecular Neuroscience, The Italian Institute of Technology, Via Olgettina 58, 20132 Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genoa, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 58, 20132 Milan, Italy
- Unit of Molecular Neuroscience, The Italian Institute of Technology, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
47
|
Coleman WL, Bykhovskaia M. Cooperative regulation of neurotransmitter release by Rab3a and synapsin II. Mol Cell Neurosci 2010; 44:190-200. [PMID: 20338242 DOI: 10.1016/j.mcn.2010.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 11/16/2022] Open
Abstract
To understand how the presynaptic proteins synapsin and Rab3a may interact in the regulation of the synaptic vesicle cycle and the release process, we derived a double knockout (DKO) mouse lacking both synapsin II and Rab3a. We found that Rab3a deletion rescued epileptic-like seizures typical for synapsin II gene deleted animals (Syn II(-)). Furthermore, action potential evoked release was drastically reduced in DKO synapses, although spontaneous release remained normal. At low Ca2+ conditions, quantal content was equally reduced in Rab3a(-) and DKO synapses, but as Ca2+ concentration increased, the increase in quantal content was more prominent in Rab3a(-). Electron microscopy analysis revealed that DKO synapses have a combined phenotype, with docked vesicles being reduced similar to Rab3a(-), and intraterminal vesicles being depleted similar to Syn II(-). Consistently, both Syn II(-) and DKO terminals had increased synaptic depression and incomplete recovery. Taken together, our results suggest that synapsin II and Rab3a have separate roles in maintaining the total store of synaptic vesicles and cooperate in promoting the latest steps of neuronal secretion.
Collapse
Affiliation(s)
- William L Coleman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
48
|
Giachello CNG, Fiumara F, Giacomini C, Corradi A, Milanese C, Ghirardi M, Benfenati F, Montarolo PG. MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. J Cell Sci 2010; 123:881-93. [PMID: 20159961 DOI: 10.1242/jcs.056846] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MAPK/Erk is a protein kinase activated by neurotrophic factors involved in synapse formation and plasticity, which acts at both the nuclear and cytoplasmic level. Synapsin proteins are synaptic-vesicle-associated proteins that are well known to be MAPK/Erk substrates at phylogenetically conserved sites. However, the physiological role of MAPK/Erk-dependent synapsin phosphorylation in regulating synaptic formation and function is poorly understood. Here, we examined whether synapsin acts as a physiological effector of MAPK/Erk in synaptogenesis and plasticity. To this aim, we developed an in vitro model of soma-to-soma paired Helix B2 neurons, that establish bidirectional excitatory synapses. We found that the formation and activity-dependent short-term plasticity of these synapses is dependent on the MAPK/Erk pathway. To address the role of synapsin in this pathway, we generated non-phosphorylatable and pseudo-phosphorylated Helix synapsin mutants at the MAPK/Erk sites. Overexpression experiments revealed that both mutants interfere with presynaptic differentiation, synapsin clustering, and severely impair post-tetanic potentiation, a form of short-term homosynaptic plasticity. Our findings show that MAPK/Erk-dependent synapsin phosphorylation has a dual role both in the establishment of functional synaptic connections and their short-term plasticity, indicating that some of the multiple extranuclear functions of MAPK/Erk in neurons can be mediated by the same multifunctional presynaptic target.
Collapse
|
49
|
Candiani S, Moronti L, Pennati R, De Bernardi F, Benfenati F, Pestarino M. The synapsin gene family in basal chordates: evolutionary perspectives in metazoans. BMC Evol Biol 2010; 10:32. [PMID: 20113475 PMCID: PMC2825198 DOI: 10.1186/1471-2148-10-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/29/2010] [Indexed: 01/07/2023] Open
Abstract
Background Synapsins are neuronal phosphoproteins involved in several functions correlated with both neurotransmitter release and synaptogenesis. The comprehension of the basal role of the synapsin family is hampered in vertebrates by the existence of multiple synapsin genes. Therefore, studying homologous genes in basal chordates, devoid of genome duplication, could help to achieve a better understanding of the complex functions of these proteins. Results In this study we report the cloning and characterization of the Ciona intestinalis and amphioxus Branchiostoma floridae synapsin transcripts and the definition of their gene structure using available C. intestinalis and B. floridae genomic sequences. We demonstrate the occurrence, in both model organisms, of a single member of the synapsin gene family. Full-length synapsin genes were identified in the recently sequenced genomes of phylogenetically diverse metazoans. Comparative genome analysis reveals extensive conservation of the SYN locus in several metazoans. Moreover, developmental expression studies underline that synapsin is a neuronal-specific marker in basal chordates and is expressed in several cell types of PNS and in many, if not all, CNS neurons. Conclusion Our study demonstrates that synapsin genes are metazoan genes present in a single copy per genome, except for vertebrates. Moreover, we hypothesize that, during the evolution of synapsin proteins, new domains are added at different stages probably to cope up with the increased complexity in the nervous system organization. Finally, we demonstrate that protochordate synapsin is restricted to the post-mitotic phase of CNS development and thereby is a good marker of postmitotic neurons.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Biology, University of Genoa, Viale Benedetto XV5, 16132 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
The highly conserved synapsin domain E mediates synapsin dimerization and phospholipid vesicle clustering. Biochem J 2010; 426:55-64. [PMID: 19922412 DOI: 10.1042/bj20090762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synapsins are abundant SV (synaptic vesicle)-associated phosphoproteins that regulate synapse formation and function. The highly conserved C-terminal domain E was shown to contribute to several synapsin functions, ranging from formation of the SV reserve pool to regulation of the kinetics of exocytosis and SV cycling, although the molecular mechanisms underlying these effects are unknown. In the present study, we used a synthetic 25-mer peptide encompassing the most conserved region of domain E (Pep-E) to analyse the role of domain E in regulating the interactions between synapsin I and liposomes mimicking the phospholipid composition of SVs (SV-liposomes) and other pre-synaptic protein partners. In affinity-chromatography and cross-linking assays, Pep-E bound to endogenous and purified exogenous synapsin I and strongly inhibited synapsin dimerization, indicating a role in synapsin oligomerization. Consistently, Pep-E (but not its scrambled version) counteracted the ability of holo-synapsin I to bind and coat phospholipid membranes, as analysed by AFM (atomic force microscopy) topographical scanning, and significantly decreased the clustering of SV-liposomes induced by holo-synapsin I in FRET (Förster resonance energy transfer) assays, suggesting a causal relationship between synapsin oligomerization and vesicle clustering. Either Pep-E or a peptide derived from domain C was necessary and sufficient to inhibit both dimerization and vesicle clustering, indicating the participation of both domains in these activities of synapsin I. The results provide a molecular explanation for the effects of domain E in nerve terminal physiology and suggest that its effects on the size and integrity of SV pools are contributed by the regulation of synapsin dimerization and SV clustering.
Collapse
|