1
|
Ghorpade KB, Agrawal S, Havelikar U. WITHDRAWN: Biomarker Detection and Therapy of Parkinson's and Alzheimer's disease using upconversion based approach: A Comprehensive Review. Ageing Res Rev 2025:102656. [PMID: 39788432 DOI: 10.1016/j.arr.2025.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
This article has been withdrawn at the request of the author(s). The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India.
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India
| | - Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India
| |
Collapse
|
2
|
Huang L, Zhou Y, Xu L, Ruan X, Huang Z, Ke Y, Lin L, Tang Q. Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission. RSC Adv 2024; 14:32911-32921. [PMID: 39429926 PMCID: PMC11487471 DOI: 10.1039/d4ra05061d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. In recent years, researchers have found a close relationship between microRNAs (miRNAs) and OSCC. In addition, miRNAs are highly stable in tissues and circulation, and are also considered potential biomarkers for cancer detection and prognosis. Among a variety of tools for miRNAs with low abundance, single red-emitting UCNP-based biosensors have attracted special interest due to their unique properties, including deep organizational penetration, weak radiation damage, and low autofluorescence. Additionally, the measurement of low-abundance analytes via enzyme-free signal amplification is also an effective means. Herein, by taking advantage of red-emitting UCNPs and an enzyme-toehold-mediated strand displacement cascade, a dual-signal amplification biosensor was constructed. The recycled miRNA can be regarded as a catalyst for the assembly of multiple H1/H2 duplexes, which promoted the response signal of augmented analyte expression. Moreover, the proposed biosensors improved the measurement accuracy via a dual-signal response to obviously avert false-positive signals. The proposed method was applied to measure miRNA-222 (a model analyte) in serum samples, and the results were similar to those of polymerase chain reaction (PCR), with spiked recoveries ranging from 91.2% to 101.7%. The proposed assay has the merits of high sensitivity, strong recognition, and low background, indicating broad potential for the measurement of diverse analytes in biological samples.
Collapse
Affiliation(s)
- Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Yi Zhou
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Liang Xu
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Xin Ruan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Zhao Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Yue Ke
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Lisong Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Qiuling Tang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| |
Collapse
|
3
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
4
|
Chen R, Wen H, Gao X, Zhao W, Aleem AR. Natural and polyanionic heparin polysaccharide functionalized upconversion nanoparticles for highly sensitive and selective ratiometric detection of pesticide. Int J Biol Macromol 2024; 275:133097. [PMID: 38942670 DOI: 10.1016/j.ijbiomac.2024.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Pesticide contamination is a global concern, threatening human health and food safety. Herein, we developed heparin (HEP) functionalized upconversion nanoparticles (UCNPs)-based ratiometric nanosensor for the sensitive detection of 2,6-dichloro-4-nitroaniline (DCN) pesticide via inner filter effect. The strategy for HEP functionalization of UCNPs is based on adjusting the surface potentials of UCNPs with polyanionic HEP through the electrostatic interaction. UCNPs (NaYbF4:Gd/Y/Tm@NaYbF4@NaYF4) was designed with core-shell-shell structure and extra sensitizer layer for efficient and strong upconversion luminescence (UCL) in the range of UV to NIR. After incorporation of DCN, the upconverted UV emission of UCNPs-HEP ratiometric nanosensor was considerably quenched with the NIR UCL at 800 nm remaining unchanged as internal standard. The UCNPs-HEP ratiometric nanosensor can achieve outstandingly selective and sensitive detection of DCN at the wide linear range of 5-300 μM with a detection limit of 0.41 μM. The remarkable applicability of the UCNPs-HEP ratiometric nanosensor was verified in apple, cucumber and grapes samples. The developed UCNPs-HEP ratiometric nanosensor with excellent biocompatibility and water dispersion capability, is promising for convenient, selective and sensitive sensing of DCN towards food and aqueous samples.
Collapse
Affiliation(s)
- Rihui Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Xin Gao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiren Zhao
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Abdur Raheem Aleem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
5
|
Ouyang Q, Rong Y, Wang B, Ahmad W, Liu S, Chen Q. An innovative solid-phase biosensor for rapid on-site detection of N-nitrosodimethylamine incorporating zein film and upconversion nanoparticles. Food Chem 2024; 430:136981. [PMID: 37541034 DOI: 10.1016/j.foodchem.2023.136981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Pickled frequently contains nitrosodimethylamine (NDMA), a mutagenic and carcinogenic substance that is dangerous for the general public's health. This study reports on the fabrication of a fluorescent biosensor using zein film and aptamer functionalized upconversion nanoparticles (UCNPs) for on-site monitoring of NDMA in meat. UCNPs were first prepared followed by aptamer binding and mixing with zein film, which was further conjugated with cDNA of dabcyl modified at 5'. The fluorescence resonance energy transfer (FRET) mechanism between the UCNPs and dabcyl was exploited. The fluorescence signals of the zein film recovered when NDMA was present because it was selectively collected by the particular aptamer and damaged the cDNA structure. The designed functionalized zein film was used for on-site and portable determination of NDMA with a lower limit of detection of 0.017 ng/mL, and possessed a satisfactory recovery ranging from 95.8% to 100.2% with no significant difference compared with the GC-MS method.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baoning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Yin JH, Liu M, Lan C, Chu B, Meng L, Xu N. Catechol oxidase nanozyme based colorimetric sensors array for highly selective distinction among multiple catecholamines. Anal Chim Acta 2023; 1279:341823. [PMID: 37827622 DOI: 10.1016/j.aca.2023.341823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
In order to effectively monitor multiple catecholamine (CA) neurotransmitters with extreme similar structures, a rapid, sensitive and selective detection strategy has become an urgent problem to be solved. In this paper, a novel colorimetric sensors array based on CuNCs protected by various ligands such as tannic acid, ascorbic acid and polymethylacrylic acid (CuNCs@TA, CuNCs@AA and CuNCs@PMAA) was constructed. All of these CuNCs could mimic catechol oxidase to selective catalyze catechol-type analogues (such as CAs) to corresponding quinones along with color changes. Furthermore, experiments and theory calculations demonstrated that Cr6+-modification on the surface of CuNCs facilitated the steady-state kinetics of enzymatic activity. Based on these CuNCs as sensing probes, this sensors array can quickly detect different CAs (such as epinephrine (EP), including dopamine (DA), norepinephrine (NE) and l-dopa) with similar structures. When those analogues were added to the CuNC-based colorimetric array sensors, different absorbance changes were produced at 485 nm. Linear discriminant analysis (LDA) showed that the tri-probe colorimetric array sensors could recognize and distinguish these analogues, and corresponding binary and ternary mixtures could be well categorized. The value of Factor 1 of an array with varied CA concentrations had a good linear correlation, and the detection limit (LOD) was as low as 10-8∼10-9 mol/L. Four CA analogues in real samples were identified by CuNCs-based colorimetric array sensors. This work provides a fast and convenient experimental basis for monitoring the complex structure CAs neurotransmitters.
Collapse
Affiliation(s)
- Jian-Hang Yin
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Mengxuan Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Chengwu Lan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Baiquan Chu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Lei Meng
- College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Na Xu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| |
Collapse
|
7
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
8
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
9
|
Azargoshasb T, Parvizi R, Bozorgzadeh F, Navid HA, Heidari H. Smart green CQD@SiO 2 hybrid coated optical fiber manifesting dual versatile absorptive and MIP features towards epinephrine detection. NANOSCALE ADVANCES 2023; 5:459-470. [PMID: 36756270 PMCID: PMC9846438 DOI: 10.1039/d2na00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
For the first time, in this study, a novel optical fiber biosensor is proposed and developed via coating only one smart functional layer of silica-supported carbon dots realizing the concepts of both lossy mode resonance (LMR) and molecularly imprinted polymer (MIP) for epinephrine detection. The carbon quantum dots (CQDs) are prepared using a green synthesis method and then treated with a molecularly imprinted polymer (MIP) strategy. Under ultrasonic irradiation, a SiO2 shell was stabilized on the surface of the CQDs to graft and to provide the LMR/MIP functional layer onto the curved optical fiber surface. Accurate structural and morphological characterization confirmed the carbon quantum dot agents and also the SiO2 supporting shells on the optical fiber, while spectroscopic analysis confirms the formation of the imprinted polymer and desirable absorbance characteristics. The experimental and numerical sensing studies revealed that the proposed sensing probe allows the rapid adsorption/desorption of epinephrine to the sensing films and highly permeable coating for studying the influence of effective parameters. Under the optimal experimental conditions, the sensitivity of the proposed LMR-based optical fiber sensor is reported to be 0.37 nm μM-1 with a correlation coefficient of 0.99. So, sensitive detection of epinephrine at a low concentration can be guaranteed with a 0.72 mM LOD.
Collapse
Affiliation(s)
- T Azargoshasb
- Department of Laser and Optical Engineering, University of Bonab Bonab 5551761167 Iran
| | - R Parvizi
- Department of Physics, College of Sciences, Yasouj University Yasouj 75914-353 Iran
- James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| | - F Bozorgzadeh
- Physics Department, College of Sciences, Shiraz University Shiraz Iran
| | - H Ali Navid
- Department of Laser and Optical Engineering, University of Bonab Bonab 5551761167 Iran
| | - H Heidari
- James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
10
|
Zhan S, Xu C, Chen J, Xiao Q, Zhou Z, Xing Z, Gu C, Yin Z, Liu H. A novel epinephrine biosensor based on gold nanoparticles coordinated polydopamine-functionalized acupuncture needle microelectrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Gerelkhuu Z, Lee YI, Yoon TH. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3470. [PMID: 36234598 PMCID: PMC9565472 DOI: 10.3390/nano12193470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
12
|
Wang L, Haruna SA, Ahmad W, Wu J, Chen Q, Ouyang Q. Tunable multiplexed fluorescence biosensing platform for simultaneous and selective detection of paraquat and carbendazim pesticides. Food Chem 2022; 388:132950. [PMID: 35483279 DOI: 10.1016/j.foodchem.2022.132950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/18/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Abstract
The monitoring of multiple pesticides commonly used in food is a prerequisite for public health safety. Herein, a multiplexed biosensor based on fluorescence resonance energy transfer (FRET) from multicolor upconversion nanoparticles (UCNPs)to single black phosphorus nanosheets (BPNSs) was successfully developed for simultaneous and selective detection of paraquat and carbendazim pesticides. Due to the strong π-π stacking interactions, aptamers functionalized UCNPs may adsorb on the BPNSs surface, allowing strong upconversion fluorescence quenching. In the presence of paraquat and carbendazim, the aptamers preferentially integrated with their corresponding targets and altered the aptamer's conformation, restoring the fluorescence. An excellent linear correlation was observed from 1.0 to 1.0 × 105 ng/mL, with a limit of detection of 0.18 ng/mL for paraquat and 0.45 ng/mL for carbendazim. The developed aptasensor was further validated by commercial enzyme-linked immunoassays without significant differences in practical detection. Additionally, this work offers new insights into monitoring multiple targets simultaneously.
Collapse
Affiliation(s)
- Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
14
|
Pan L, Zou M, Ma F, Kong L, Zhang C, Yang L, Zhu A, Long F, Liu XY, Lin N. Fast dopamine detection based on evanescent wave detection platform. Anal Chim Acta 2022; 1191:339312. [PMID: 35033271 DOI: 10.1016/j.aca.2021.339312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
A compact evanescent wave detection platform (EWDP) is developed for the detection of fluorescence gold nanoclusters. The EWDP employs a simple optical system and a Si-based photodetector SOP-1000 assembly to improve the optical efficiency and detection sensitivity. A microfluidic sample cell is also used to decrease the amount of analyte to 200 μL (The volume of sample cell is really about 30 μL). On this basis, we design a strategy for detecting dopamine (DA) based on the photoinduced electron transfer (PET) quenching mechanism. By introduction of tyrosinase (TYR) during the detection, the testing time is shortened to 1 min. The fluorescence emission signal decreased dramatically and the quenching ratio (F0-F)/F0 is linearly related to the concentration of DA in the range of 0.03-60 μM with a detection limit of 0.03 μM. Additionally, this detection platform has potential applications for DA fast detection in the microsamples.
Collapse
Affiliation(s)
- Lipeng Pan
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Mingye Zou
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Fangxing Ma
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Lingqing Kong
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Changnan Zhang
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Likun Yang
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Feng Long
- School of Environment and Natural Resource, Renmin University of China, 100872, Beijing, China.
| | - Xiang-Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Naibo Lin
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China.
| |
Collapse
|
15
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
16
|
Ultrasensitive detection and removal of carbamazepine in wastewater using UCNPs functionalized with thin-shell MIPs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
18
|
Ouyang Q, Wang L, Ahmad W, Yang Y, Chen Q. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of Staphylococcus aureus in Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9947-9956. [PMID: 34406747 DOI: 10.1021/acs.jafc.1c03625] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the foodborne pathogens that can cause infectious diseases and food poisoning. Herein, colorimetric and fluorescent dual-mode nanoprobes were developed for ultrasensitive detection of S. aureus to immediately respond to public health emergencies, reduce false positives, and improve measurement accuracy and persuasiveness. The nanoprobe consists of aptamer-labeled magnetic nanoparticles (apt-MNPs) as the capture signal probe and horseradish peroxidase and complementary DNA-functionalized upconversion nanoparticles (HRP-UCNPs-cDNA) as the chromogenic signal probe. In the absence of S. aureus, the probe forms an immune complex through base complementation with an observable signal. When S. aureus is introduced to this system, it preferentially binds to the apt-MNPs, releasing HRP-UCNPs-cDNA from the apt-MNPs and restoring the chromogenic probe signal. Under optimum conditions, an ultrasensitive assay of S. aureus was obtained, with limits of detection of 22 CFU mL-1 for fluorescence and 20 CFU mL-1 for colorimetry in a linear range of 56-5.6 × 106 CFU mL-1. Additionally, the standard plate counting method confirmed the reliability and accuracy of the established nanoprobe with an insignificant difference. Hence, the developed dual-mode platform has extensive application prospects for speedy and specific determination of S. aureus in meat.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongcun Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Ha Lee S, Tawfik SM, Thangadurai DT, Lee YI. Highly sensitive and selective detection of Alprenolol using upconversion nanoparticles functionalized with amphiphilic conjugated polythiophene. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Gerelkhuu Z, Huy BT, Jung D, Sharipov M, Lee YI. Selective optosensing of iron(III) ions in HeLa cells using NaYF 4:Yb 3+/Tm 3+ upconversion nanoparticles coated with polyepinephrine. Anal Bioanal Chem 2021; 413:1363-1371. [PMID: 33388932 DOI: 10.1007/s00216-020-03099-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/31/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022]
Abstract
Novel polyepinephrine-modified NaYF4:Yb,Tm upconversion luminescent nanoparticles (UCNP@PEP) were prepared via the self-polymerization of epinephrine on the surfaces of the UCNPs for selective sensing of Fe3+ inside a cell and for intracellular imaging. The proposed UCNP@PEP probe is a strong blue light emitter (λmax = 474 nm) upon exposure to an excitation wavelength of 980 nm. The probe was used for detecting Fe3+ owing to the complexation reaction between UCNP@PEP and Fe3+, resulting in reduced upconversion luminescence (UCL) intensity. The proposed probe has a detection limit of 0.2 μM and a good linear range of 1-10 μM for sensing Fe3+ ions. Moreover, the UCNP@PEP probe displays high cell viability (90%) and is feasible for intracellular imaging. The ability of the probe to sense Fe3+ in a human serum sample was tested and shows promising output for diagnostic purposes. The prepared UCNP@PEP probe was characterized by using UV-visible (UV-Vis) absorption spectrometry, fluorescence (FL) spectrometry, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR).
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Dasom Jung
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Yong-Ill Lee
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
22
|
Restrict access material for paper spray ionization mass spectrometry: A versatile tool for catecholamines and antidepressants determination in plasma samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Huy BT, Nghia NN, Lee YI. Highly sensitive colorimetric paper-based analytical device for the determination of tetracycline using green fluorescent carbon nitride nanoparticles. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Jung D, Gerelkhuu Z, Huy BT, Lee YI. Fluorescence Optosensing of Triclosan by Upconversion Nanoparticles with Potassium Permanganate. ACS OMEGA 2019; 4:7931-7937. [PMID: 31459881 PMCID: PMC6649309 DOI: 10.1021/acsomega.8b03680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/05/2019] [Indexed: 05/20/2023]
Abstract
It is greatly significant to develop a simple and rapid sensing method for triclosan (TCS) because it is a widely used and a chronically toxic compound that adversely affects biological organisms and human health. This paper presents the design and development of a novel simple optosensor that uses carboxylic group-functionalized NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNPs) coated with potassium permanganate (KMnO4). The sensor enables the rapid, non-autofluorescence, sensitive, and selective detection of TCS based on the "turn off-on fluorescence" technique through fluorescence resonance energy transfer. Under an near-infrared radiation excitation (980 nm), the "turn-off fluorescence" process involves the transfer of fluorescence resonance energy between the UCNPs and KMnO4, whereas the "turn-on fluorescence" process occurs when KMnO4 is reduced in the presence of TCS. TCS was detected by recovering the green emission of UCNPs. Under optimized conditions, the resulting sensor offered an excellent response to TCS with 0.2 μM of a limit of detection. The developed sensor showed higher selectivity to TCS than other phenolic compounds. Moreover, the analytical performance of the proposed probe was practically demonstrated to successfully monitor trace levels of TCS in samples of tap water and personal care products. The developed simple and sensitive method may offer a new approach for determining TCS in environmental applications.
Collapse
|